Blocklength Allocation and Power Control in UAV-Assisted URLLC System via Multi-agent Deep Reinforcement Learning
Integration of unmanned aerial vehicles (UAVs) with ultra-reliable and low-latency communication (URLLC) systems can improve the real-time communication performance for various industrial internet of things (IIoT) applications. Designing an intelligent resource allocation system is one of the challe...
Saved in:
Published in | International journal of computational intelligence systems Vol. 17; no. 1; pp. 1 - 13 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
03.06.2024
Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1875-6883 1875-6883 |
DOI | 10.1007/s44196-024-00530-8 |
Cover
Abstract | Integration of unmanned aerial vehicles (UAVs) with ultra-reliable and low-latency communication (URLLC) systems can improve the real-time communication performance for various industrial internet of things (IIoT) applications. Designing an intelligent resource allocation system is one of the challenges posed by an energy-constrained UAV communication system. Therefore, we formulate a sum rate maximization problem, subject to the UAVs’ energy by optimizing the blocklength allocation and the power control jointly in the uplink UAV-assisted URLLC systems, in which the probabilistic channel model between UAV and users is adopted. The problem is difficult to solve due to the non-convex objective function and the energy constraints, and also challenging to make fast decision in the complex communication environment. Thus, we propose a deep reinforcement learning (DRL)-based scheme to optimize the blocklength allocation and power control jointly. First, transform the original problem into the multi-agent reinforcement learning process, where each subcarrier is regarded as the agent that optimizes its individual blocklength allocation and power control. Then, each agent makes the intelligent decision to obtain the maximum reward value depending on the weighted segmented reward function, which is related to the UAV energy consumption and user rates to improve the rate performance. Finally, the simulation results show that the proposed scheme outperforms the benchmark schemes and has the stable convergence in different settings, such as the learning rate, the error probability, the subcarrier spacing, and the number of users. |
---|---|
AbstractList | Integration of unmanned aerial vehicles (UAVs) with ultra-reliable and low-latency communication (URLLC) systems can improve the real-time communication performance for various industrial internet of things (IIoT) applications. Designing an intelligent resource allocation system is one of the challenges posed by an energy-constrained UAV communication system. Therefore, we formulate a sum rate maximization problem, subject to the UAVs’ energy by optimizing the blocklength allocation and the power control jointly in the uplink UAV-assisted URLLC systems, in which the probabilistic channel model between UAV and users is adopted. The problem is difficult to solve due to the non-convex objective function and the energy constraints, and also challenging to make fast decision in the complex communication environment. Thus, we propose a deep reinforcement learning (DRL)-based scheme to optimize the blocklength allocation and power control jointly. First, transform the original problem into the multi-agent reinforcement learning process, where each subcarrier is regarded as the agent that optimizes its individual blocklength allocation and power control. Then, each agent makes the intelligent decision to obtain the maximum reward value depending on the weighted segmented reward function, which is related to the UAV energy consumption and user rates to improve the rate performance. Finally, the simulation results show that the proposed scheme outperforms the benchmark schemes and has the stable convergence in different settings, such as the learning rate, the error probability, the subcarrier spacing, and the number of users. Abstract Integration of unmanned aerial vehicles (UAVs) with ultra-reliable and low-latency communication (URLLC) systems can improve the real-time communication performance for various industrial internet of things (IIoT) applications. Designing an intelligent resource allocation system is one of the challenges posed by an energy-constrained UAV communication system. Therefore, we formulate a sum rate maximization problem, subject to the UAVs’ energy by optimizing the blocklength allocation and the power control jointly in the uplink UAV-assisted URLLC systems, in which the probabilistic channel model between UAV and users is adopted. The problem is difficult to solve due to the non-convex objective function and the energy constraints, and also challenging to make fast decision in the complex communication environment. Thus, we propose a deep reinforcement learning (DRL)-based scheme to optimize the blocklength allocation and power control jointly. First, transform the original problem into the multi-agent reinforcement learning process, where each subcarrier is regarded as the agent that optimizes its individual blocklength allocation and power control. Then, each agent makes the intelligent decision to obtain the maximum reward value depending on the weighted segmented reward function, which is related to the UAV energy consumption and user rates to improve the rate performance. Finally, the simulation results show that the proposed scheme outperforms the benchmark schemes and has the stable convergence in different settings, such as the learning rate, the error probability, the subcarrier spacing, and the number of users. |
ArticleNumber | 138 |
Author | Luo, Feiying Li, Xinmin Zhang, Xiaoqiang Huang, Yi Zhang, Xuhao Li, Jiahui |
Author_xml | – sequence: 1 givenname: Xinmin surname: Li fullname: Li, Xinmin organization: College of Computer Science, Chengdu University, Key Laboratory of Medicinal and Edible Plant Resources Development of Sichuan Education Department, Chengdu University – sequence: 2 givenname: Xuhao surname: Zhang fullname: Zhang, Xuhao organization: School of Information Engineering, Southwest University of Science and Technology – sequence: 3 givenname: Jiahui surname: Li fullname: Li, Jiahui organization: School of Information Engineering, Southwest University of Science and Technology – sequence: 4 givenname: Feiying surname: Luo fullname: Luo, Feiying organization: School of Information Engineering, Southwest University of Science and Technology, CEC Jinjiang Information Industry Co., Ltd – sequence: 5 givenname: Yi surname: Huang fullname: Huang, Yi organization: Department of Information and Communication Engineering, Tongji University – sequence: 6 givenname: Xiaoqiang orcidid: 0000-0002-0196-2901 surname: Zhang fullname: Zhang, Xiaoqiang email: xqzhang@swust.edu.cn organization: School of Information Engineering, Southwest University of Science and Technology |
BookMark | eNp9kd1u1DAQhS1UJErpC3DlFzBMHP9eLstfpSCqtsut5TiT4CVrFzsF9e1Juwhx1auZOTPnk0bnJTlJOSEhrxt40wDot1WIxioGXDAA2QIzz8hpY7Rkypj25L_-BTmvdQ8AvBEAQpySn-_mHH7MmKblO93M6-CXmBP1aaCX-TcWus1pKXmmMdHd5hvb1BrrggPdXXXdll7fr8OB_oqefrmbl8j8hGmh7xFv6RXGNOYS8PAgdehLiml6RZ6Pfq54_reekd3HDzfbz6z7-uliu-lYaCVfmFdBoRp5r8GAkL02XvWWexPAh9aoHhrrZUCQel3KHofeW25bjb2R3GJ7Ri6O3CH7vbst8eDLvcs-ukchl8n5ssQwo5O9EtrjAMKCAKms1aiFaBulxmAlX1n8yAol11pw_MdrwD1k4I4ZuDUD95iBM6upPZrqepwmLG6f70paf37K9Qd-g4rS |
Cites_doi | 10.1561/2200000050 10.1109/JIOT.2020.3023111 10.1109/JPHOT.2021.3139678 10.1109/WCNC45663.2020.9120565 10.1109/LWC.2020.2973624 10.1109/TVT.2022.3143174 10.1109/TIT.2010.2043769 10.1109/TVT.2021.3105878 10.1109/JSAC.2021.3126068 10.1109/LWC.2014.2342736 10.1016/j.comcom.2021.06.007 10.1109/LWC.2021.3073014 10.1109/TITS.2020.3003163 10.1109/JIOT.2020.3025916 10.1109/LWC.2019.2929391 10.1109/LWC.2021.3056446 10.1109/VTC2022-Fall57202.2022.10012707 10.1109/JSAC.2023.3280982 10.1109/TWC.2023.3307154 10.1109/MCOM.2017.1600435CM 10.1109/VTC2022-Fall57202.2022.10012697 10.1109/TVT.2021.3125401 10.1109/TIV.2023.3303932 10.1109/COMST.2022.3151028 10.1109/TWC.2017.2751045 10.1109/TVT.2020.2998899 10.1109/TCOMM.2020.3025578 10.1007/s00500-023-07846-1 10.1109/MNET.2018.1700232 10.1109/TCOMM.2022.3227230 10.1109/LSP.2019.2934579 10.1109/TCOMM.2020.3031930 10.1016/j.dcan.2022.08.006 10.1109/JPROC.2016.2537298 10.1109/COMST.2019.2897800 10.1145/3623377 10.1109/TCYB.2022.3164683 10.1109/ICII.2019.00041 10.1109/TWC.2019.2957745 10.1109/ICCChinaW.2019.8850168 10.1109/TII.2021.3130163 10.1007/s10462-023-10470-y 10.1109/TCE.2023.3305550 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 |
Copyright_xml | – notice: The Author(s) 2024 |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.1007/s44196-024-00530-8 |
DatabaseName | SpringerOpen CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1875-6883 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_5b647aed04904056997e7443166fc952 10_1007_s44196_024_00530_8 |
GrantInformation_xml | – fundername: Open Fund of Key Laboratory of Civil Aircraft Airworthiness Technology grantid: SH2020112706 – fundername: National Science Foundation of China grantid: 62101386 – fundername: Guangdong Provincial Key Laboratory of Future Networks of Intelligence, the Chinese University of Hong Kong, Shenzhen grantid: 2022B1212010001-OF04 – fundername: Natural Science Foundation of Sichuan Province grantid: 2023NSFSC1388 funderid: http://dx.doi.org/10.13039/501100018542 – fundername: Key Laboratory of Medicinal and Edible Plant Resources Development of Sichuan Education Department, Chengdu University grantid: 10Y202201 |
GroupedDBID | 0R~ 4.4 5GY AAFWJ AAJSJ AAKKN AAYZJ ABEEZ ABFIM ACACY ACGFS ACULB ADBBV ADCVX AENEX AFGXO AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AVBZW BCNDV BENPR BGLVJ C24 C6C CS3 DU5 EBLON EBS EJD GROUPED_DOAJ GTTXZ HCIFZ HZ~ J~4 K7- O9- OK1 PIMPY RSV SOJ TFW TR2 AASML AAYXX CITATION |
ID | FETCH-LOGICAL-c352t-a6c6e6f2b708045b78a6b92a8c0ac386b019a5ce0575b75bedba92937eb8529e3 |
IEDL.DBID | C6C |
ISSN | 1875-6883 |
IngestDate | Wed Aug 27 01:22:31 EDT 2025 Tue Jul 01 01:20:22 EDT 2025 Fri Feb 21 02:42:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Deep reinforcement learning URLLC Blocklength allocation UAV Power control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-a6c6e6f2b708045b78a6b92a8c0ac386b019a5ce0575b75bedba92937eb8529e3 |
ORCID | 0000-0002-0196-2901 |
OpenAccessLink | https://doi.org/10.1007/s44196-024-00530-8 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5b647aed04904056997e7443166fc952 crossref_primary_10_1007_s44196_024_00530_8 springer_journals_10_1007_s44196_024_00530_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-03 |
PublicationDateYYYYMMDD | 2024-06-03 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | International journal of computational intelligence systems |
PublicationTitleAbbrev | Int J Comput Intell Syst |
PublicationYear | 2024 |
Publisher | Springer Netherlands Springer |
Publisher_xml | – name: Springer Netherlands – name: Springer |
References | Al-HouraniAKandeepanSLardnerSOptimal LAP altitude for maximum coverageIEEE Wireless Communications Letters.20143656957210.1109/LWC.2014.2342736 CaiYJiangXLiuMZhaoNChenYWangXResource allocation for URLLC-oriented two-way UAV relayingIEEE Trans. Veh. Technol.20227133344334910.1109/TVT.2022.3143174 3GPP TR 38.901: Study on channel model for frequencies from 0.5 to 100 GHz (2021) Yin, B., Li, X., Yan, J., Zhang, S., Zhang, X.: DQN-based power control and offloading computing for information freshness in multi-UAV-assisted V2X system. IEEE 96th Vehicular Technology Conference (VTC2022-Fall). 1–6 (2022) MozaffariMSaadWBennisMDebbahMMobile unmanned aerial vehicles (UAVs) for energy-efficient internet of things communicationsIEEE Trans. Wireless Commun.201716117574758910.1109/TWC.2017.2751045 ZhangXZhangZGongXYinYAn exact branch-and-bound algorithm for seru scheduling problems with sequence-dependent setup timeSoft. Comput.202327106415643610.1007/s00500-023-07846-1 FengRLiZWangQHuangJAn ADMM-based optimization method for URLLC-enabled UAV relay systemIEEE Wireless Communications Letters.202214815 Chen, K., Wang, Y., Fei, Z., Wang, X.: Power limited ultra-reliable and low-latency communication in UAV-enabled IoT networks. IEEE Wireless Communications and Networking Conference (WCNC). 1–6 (2020) Wang, L., Zhang, H.: Analysis of joint scheduling and power control for predictable URLLC in industrial wireless networks. IEEE International Conference on Industrial Internet (ICII). 160–169 (2019) 3GPP TR38.912: Study on new radio access technology: Radio access architecture and interfaces (2016) Ramin, H., Samad, A., Nurul Huda, M., Matti, L.a.: Average rate and error probability analysis in short packet communications over RIS-aided URLLC systems. IEEE Transactions on Vehicular Technology. 70(10), 10,320–10,334 (2021) Hazarika, B., Singh, K.: AFL-DMAAC: Integrated resource management and cooperative caching for URLLC-IoV networks. IEEE Transactions on Intelligent Vehicles. 1–16 (2023) ZhaoJMaoMZhaoXZouJA hybrid of deep reinforcement learning and local search for the vehicle routing problemsIEEE Trans. Intell. Transp. Syst.202122117208721810.1109/TITS.2020.3003163 WangKPanCRenHXuWZhangLNallanathanAPacket error probability and effective throughput for ultra-reliable and low-latency UAV communicationsIEEE Trans. Commun.2021691738410.1109/TCOMM.2020.3025578 Wu, Y., Dai, H.N., Wang, H.: Convergence of blockchain and edge computing for secure and scalable IIoT critical infrastructures in industry 4.0. IEEE Int. Things J. 8(4), 2300–2317 (2021) BubeckSConvex optimization: Algorithms and complexityFoundations and Trends in Machine Learning.201583–423135710.1561/2200000050 Giuseppe, D., Tobias, K., Petar, P.: Toward massive, ultrareliable, and low-latency wireless communication with short packets. Proc. IEEE 104(9), 1711–1726 (2016) LiuYZhouHDengYNallanathanAChannel access optimization in unlicensed spectrum for downlink URLLC: Centralized and federated DRL approachesIEEE J. Sel. Areas Commun.20234172208222210.1109/JSAC.2023.3280982 JoachimSGustavWTorstenDRobertBKittipongK5G radio network design for ultra-reliable low-latency communicationIEEE Network2018322243110.1109/MNET.2018.1700232 NarsaniHKRanjhaADevKMemonFHQureshiNMFLeveraging UAV-assisted communications to improve secrecy for URLLC in 6G systemsDigital Communications and Networks.2023961458146410.1016/j.dcan.2022.08.006 RajwarKDeepKDasSAn exhaustive review of the metaheuristic algorithms for search and optimization: Taxonomy, applications, and open challengesArtif. Intell. Rev.20235611131871325710.1007/s10462-023-10470-y Ranjha, A., Javed, M.A., Piran, M.J., Asif, M., Hussien, M., Zeadally, S., Frnda, J.: Towards facilitating power efficient URLLC systems in UAV networks under jittering. Early Access in IEEE Transactions on Consumer Electronics. (2023) Li, X., Li, J., Yin, B., Yan, J., Fang, Y.: Age of information optimization in UAV-enabled intelligent transportation system via deep reinforcement learning. IEEE 96th Vehicular Technology Conference (VTC2022-Fall). 1–5 (2022) RenHPanCWangKDengYElkashlanMNallanathanAAchievable data rate for URLLC-enabled UAV systems with 3-D channel modelIEEE Wireless Communications Letters.2019861587159010.1109/LWC.2019.2929391 PhilippSMaximilianMHenrikKLatency critical IoT applications in 5G: Perspective on the design of radio interface and network architectureIEEE Commun. Mag.2017552707810.1109/MCOM.2017.1600435CM HuYSunGZhangGGursoyMCSchmeinkAOptimal resource allocation in ground wireless networks supporting unmanned aerial vehicle transmissionsIEEE Trans. Veh. Technol.20206988972898410.1109/TVT.2020.2998899 ShiriHParkJBennisMRemote UAV online path planning via neural network-based opportunistic controlIEEE Wireless Communications Letters.20209686186510.1109/LWC.2020.2973624 PandeySRKimKAlsenwiMTunYKHanZHongCSLatency-sensitive service delivery with UAV-assisted 5G networksIEEE Wireless Communications Letters.20211071518152210.1109/LWC.2021.3073014 LiXXuJPositioning optimization for sum-rate maximization in UAV-enabled interference channelIEEE Signal Process. Lett.2019261014661470404727410.1109/LSP.2019.2934579 Sutton, J., G., Zeng, J., Liu, R., et al.: Enabling technologies for ultra-reliable and low latency communications: From PHY and MAC layer perspectives. IEEE Commun. Surv. Tutorials. 21(3), 2488–2524 (2019) RanjhaAKaddoumGURLLC-enabled by laser powered UAV relay: A quasi-optimal design of resource allocation, trajectory planning and energy harvestingIEEE Trans. Veh. Technol.202271175376510.1109/TVT.2021.3125401 VaeziMAzariAKhosraviradSRShirvanimoghaddamMAzariMMChasakiDPopovskiPCellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6GIEEE Communications Surveys and Tutorials.20222421117117410.1109/COMST.2022.3151028 HicklingTZenatiAAoufNSpencerPExplainability in deep reinforcement learning: A review into current methods and applicationsACM Comput. Surv.202356513510.1145/3623377 FangMLiDZhangHFanLTriguiIPerformance analysis of short-packet communications with incremental relayingComput. Commun.20211771515610.1016/j.comcom.2021.06.007 Li, Y., Hu, C., Wang, J., Xu, M.: Optimization of URLLC and eMBB multiplexing via deep reinforcement learning. IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops). 245–250 (2019) Yang, P., Xi, X., Q. S. Quek, T., Cao, X., Chen, J.: Power control for a URLLC-enabled UAV system incorporated with DNN-based channel estimation. IEEE Wireless Communications Letters. 10(5), 1018–1022 (2021) QinYYuenCShaoYQinBLiXSlow-varying dynamics-assisted temporal capsule network for machinery remaining useful life estimationIEEE Transactions on Cybernetics.202253159260610.1109/TCYB.2022.3164683 PolyanskiyYPoorHVVerduSChannel coding rate in the finite blocklength regimeIEEE Trans. Inf. Theory201056523072359272978710.1109/TIT.2010.2043769 CiftlerBSAlwarafyAAbdallahMDistributed DRL-based downlink power allocation for hybrid RF/VLC networksIEEE Photonics J.202214311010.1109/JPHOT.2021.3139678 Xu, D., Yu, K., Ritcey, J.A.: Cross-layer device authentication with quantum encryption for 5G enabled IIoT in industry 4.0. IEEE Transactions on Industrial Informatics. 18(9), 6368–6378 (2022) KasgariATZSaadWMozaffariMPoorHVExperienced deep reinforcement learning with generative adversarial networks (GANs) for model-free ultra reliable low latency communicationIEEE Trans. Commun.202169288489910.1109/TCOMM.2020.3031930 ZhongRLiuYMuXChenYSongLAI empowered RIS-assisted NOMA networks: Deep learning or reinforcement learning?IEEE J. Sel. Areas Commun.202240118219610.1109/JSAC.2021.3126068 ElwekeilMZapponeABuzziSPower control in cell-free massive MIMO networks for UAVs URLLC under the finite blocklength regimeIEEE Trans. Commun.20237121126114010.1109/TCOMM.2022.3227230 GuBZhangXLinZAlazabMDeep multiagent reinforcement-learning-based resource allocation for internet of controllable thingsIEEE Internet Things J.2021853066307410.1109/JIOT.2020.3023111 RenHPanCDengYElkashlanMNallanathanAJoint power and blocklength optimization for URLLC in a factory automation scenarioIEEE Trans. Wireless Commun.20191931786180110.1109/TWC.2019.2957745 Wu, Q., Cui, M., Zhang, G., Wang, F., Wu, Q., Chu, X.: Latency minimization for UAV-enabled URLLC-based mobile edge computing systems. Early Access in IEEE Transactions on Wireless Communications. (2023) Y Liu (530_CR28) 2023; 41 530_CR24 530_CR23 530_CR45 530_CR44 530_CR42 H Shiri (530_CR12) 2020; 9 530_CR40 HK Narsani (530_CR22) 2023; 9 B Gu (530_CR18) 2021; 8 S Philipp (530_CR6) 2017; 55 H Ren (530_CR13) 2019; 8 S Bubeck (530_CR29) 2015; 8 Y Hu (530_CR10) 2020; 69 M Fang (530_CR38) 2021; 177 R Zhong (530_CR19) 2022; 40 Y Polyanskiy (530_CR7) 2010; 56 H Ren (530_CR9) 2019; 19 BS Ciftler (530_CR43) 2022; 14 K Rajwar (530_CR32) 2023; 56 ATZ Kasgari (530_CR17) 2021; 69 X Zhang (530_CR30) 2023; 27 A Al-Hourani (530_CR34) 2014; 3 530_CR37 Y Cai (530_CR25) 2022; 71 530_CR36 530_CR11 M Elwekeil (530_CR20) 2023; 71 M Mozaffari (530_CR15) 2017; 16 T Hickling (530_CR33) 2023; 56 SR Pandey (530_CR16) 2021; 10 K Wang (530_CR21) 2021; 69 J Zhao (530_CR31) 2021; 22 R Feng (530_CR41) 2022; 14 M Vaezi (530_CR2) 2022; 24 530_CR3 Y Qin (530_CR39) 2022; 53 530_CR1 530_CR4 X Li (530_CR35) 2019; 26 530_CR5 A Ranjha (530_CR14) 2022; 71 530_CR8 530_CR27 S Joachim (530_CR46) 2018; 32 530_CR26 |
References_xml | – reference: HuYSunGZhangGGursoyMCSchmeinkAOptimal resource allocation in ground wireless networks supporting unmanned aerial vehicle transmissionsIEEE Trans. Veh. Technol.20206988972898410.1109/TVT.2020.2998899 – reference: RajwarKDeepKDasSAn exhaustive review of the metaheuristic algorithms for search and optimization: Taxonomy, applications, and open challengesArtif. Intell. Rev.20235611131871325710.1007/s10462-023-10470-y – reference: 3GPP TR38.912: Study on new radio access technology: Radio access architecture and interfaces (2016) – reference: PhilippSMaximilianMHenrikKLatency critical IoT applications in 5G: Perspective on the design of radio interface and network architectureIEEE Commun. Mag.2017552707810.1109/MCOM.2017.1600435CM – reference: Wu, Q., Cui, M., Zhang, G., Wang, F., Wu, Q., Chu, X.: Latency minimization for UAV-enabled URLLC-based mobile edge computing systems. Early Access in IEEE Transactions on Wireless Communications. (2023) – reference: LiXXuJPositioning optimization for sum-rate maximization in UAV-enabled interference channelIEEE Signal Process. Lett.2019261014661470404727410.1109/LSP.2019.2934579 – reference: CaiYJiangXLiuMZhaoNChenYWangXResource allocation for URLLC-oriented two-way UAV relayingIEEE Trans. Veh. Technol.20227133344334910.1109/TVT.2022.3143174 – reference: 3GPP TR 38.901: Study on channel model for frequencies from 0.5 to 100 GHz (2021) – reference: KasgariATZSaadWMozaffariMPoorHVExperienced deep reinforcement learning with generative adversarial networks (GANs) for model-free ultra reliable low latency communicationIEEE Trans. Commun.202169288489910.1109/TCOMM.2020.3031930 – reference: Xu, D., Yu, K., Ritcey, J.A.: Cross-layer device authentication with quantum encryption for 5G enabled IIoT in industry 4.0. IEEE Transactions on Industrial Informatics. 18(9), 6368–6378 (2022) – reference: HicklingTZenatiAAoufNSpencerPExplainability in deep reinforcement learning: A review into current methods and applicationsACM Comput. Surv.202356513510.1145/3623377 – reference: VaeziMAzariAKhosraviradSRShirvanimoghaddamMAzariMMChasakiDPopovskiPCellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6GIEEE Communications Surveys and Tutorials.20222421117117410.1109/COMST.2022.3151028 – reference: QinYYuenCShaoYQinBLiXSlow-varying dynamics-assisted temporal capsule network for machinery remaining useful life estimationIEEE Transactions on Cybernetics.202253159260610.1109/TCYB.2022.3164683 – reference: Li, Y., Hu, C., Wang, J., Xu, M.: Optimization of URLLC and eMBB multiplexing via deep reinforcement learning. IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops). 245–250 (2019) – reference: Ramin, H., Samad, A., Nurul Huda, M., Matti, L.a.: Average rate and error probability analysis in short packet communications over RIS-aided URLLC systems. IEEE Transactions on Vehicular Technology. 70(10), 10,320–10,334 (2021) – reference: FengRLiZWangQHuangJAn ADMM-based optimization method for URLLC-enabled UAV relay systemIEEE Wireless Communications Letters.202214815 – reference: CiftlerBSAlwarafyAAbdallahMDistributed DRL-based downlink power allocation for hybrid RF/VLC networksIEEE Photonics J.202214311010.1109/JPHOT.2021.3139678 – reference: Chen, K., Wang, Y., Fei, Z., Wang, X.: Power limited ultra-reliable and low-latency communication in UAV-enabled IoT networks. IEEE Wireless Communications and Networking Conference (WCNC). 1–6 (2020) – reference: Wu, Y., Dai, H.N., Wang, H.: Convergence of blockchain and edge computing for secure and scalable IIoT critical infrastructures in industry 4.0. IEEE Int. Things J. 8(4), 2300–2317 (2021) – reference: NarsaniHKRanjhaADevKMemonFHQureshiNMFLeveraging UAV-assisted communications to improve secrecy for URLLC in 6G systemsDigital Communications and Networks.2023961458146410.1016/j.dcan.2022.08.006 – reference: ZhangXZhangZGongXYinYAn exact branch-and-bound algorithm for seru scheduling problems with sequence-dependent setup timeSoft. Comput.202327106415643610.1007/s00500-023-07846-1 – reference: PolyanskiyYPoorHVVerduSChannel coding rate in the finite blocklength regimeIEEE Trans. Inf. Theory201056523072359272978710.1109/TIT.2010.2043769 – reference: RenHPanCWangKDengYElkashlanMNallanathanAAchievable data rate for URLLC-enabled UAV systems with 3-D channel modelIEEE Wireless Communications Letters.2019861587159010.1109/LWC.2019.2929391 – reference: RenHPanCDengYElkashlanMNallanathanAJoint power and blocklength optimization for URLLC in a factory automation scenarioIEEE Trans. Wireless Commun.20191931786180110.1109/TWC.2019.2957745 – reference: ElwekeilMZapponeABuzziSPower control in cell-free massive MIMO networks for UAVs URLLC under the finite blocklength regimeIEEE Trans. Commun.20237121126114010.1109/TCOMM.2022.3227230 – reference: Wang, L., Zhang, H.: Analysis of joint scheduling and power control for predictable URLLC in industrial wireless networks. IEEE International Conference on Industrial Internet (ICII). 160–169 (2019) – reference: GuBZhangXLinZAlazabMDeep multiagent reinforcement-learning-based resource allocation for internet of controllable thingsIEEE Internet Things J.2021853066307410.1109/JIOT.2020.3023111 – reference: RanjhaAKaddoumGURLLC-enabled by laser powered UAV relay: A quasi-optimal design of resource allocation, trajectory planning and energy harvestingIEEE Trans. Veh. Technol.202271175376510.1109/TVT.2021.3125401 – reference: Li, X., Li, J., Yin, B., Yan, J., Fang, Y.: Age of information optimization in UAV-enabled intelligent transportation system via deep reinforcement learning. IEEE 96th Vehicular Technology Conference (VTC2022-Fall). 1–5 (2022) – reference: JoachimSGustavWTorstenDRobertBKittipongK5G radio network design for ultra-reliable low-latency communicationIEEE Network2018322243110.1109/MNET.2018.1700232 – reference: MozaffariMSaadWBennisMDebbahMMobile unmanned aerial vehicles (UAVs) for energy-efficient internet of things communicationsIEEE Trans. Wireless Commun.201716117574758910.1109/TWC.2017.2751045 – reference: ZhongRLiuYMuXChenYSongLAI empowered RIS-assisted NOMA networks: Deep learning or reinforcement learning?IEEE J. Sel. Areas Commun.202240118219610.1109/JSAC.2021.3126068 – reference: Ranjha, A., Javed, M.A., Piran, M.J., Asif, M., Hussien, M., Zeadally, S., Frnda, J.: Towards facilitating power efficient URLLC systems in UAV networks under jittering. Early Access in IEEE Transactions on Consumer Electronics. (2023) – reference: FangMLiDZhangHFanLTriguiIPerformance analysis of short-packet communications with incremental relayingComput. Commun.20211771515610.1016/j.comcom.2021.06.007 – reference: Hazarika, B., Singh, K.: AFL-DMAAC: Integrated resource management and cooperative caching for URLLC-IoV networks. IEEE Transactions on Intelligent Vehicles. 1–16 (2023) – reference: ShiriHParkJBennisMRemote UAV online path planning via neural network-based opportunistic controlIEEE Wireless Communications Letters.20209686186510.1109/LWC.2020.2973624 – reference: LiuYZhouHDengYNallanathanAChannel access optimization in unlicensed spectrum for downlink URLLC: Centralized and federated DRL approachesIEEE J. Sel. Areas Commun.20234172208222210.1109/JSAC.2023.3280982 – reference: Giuseppe, D., Tobias, K., Petar, P.: Toward massive, ultrareliable, and low-latency wireless communication with short packets. Proc. IEEE 104(9), 1711–1726 (2016) – reference: Sutton, J., G., Zeng, J., Liu, R., et al.: Enabling technologies for ultra-reliable and low latency communications: From PHY and MAC layer perspectives. IEEE Commun. Surv. Tutorials. 21(3), 2488–2524 (2019) – reference: WangKPanCRenHXuWZhangLNallanathanAPacket error probability and effective throughput for ultra-reliable and low-latency UAV communicationsIEEE Trans. Commun.2021691738410.1109/TCOMM.2020.3025578 – reference: ZhaoJMaoMZhaoXZouJA hybrid of deep reinforcement learning and local search for the vehicle routing problemsIEEE Trans. Intell. Transp. Syst.202122117208721810.1109/TITS.2020.3003163 – reference: Yang, P., Xi, X., Q. S. Quek, T., Cao, X., Chen, J.: Power control for a URLLC-enabled UAV system incorporated with DNN-based channel estimation. IEEE Wireless Communications Letters. 10(5), 1018–1022 (2021) – reference: BubeckSConvex optimization: Algorithms and complexityFoundations and Trends in Machine Learning.201583–423135710.1561/2200000050 – reference: Yin, B., Li, X., Yan, J., Zhang, S., Zhang, X.: DQN-based power control and offloading computing for information freshness in multi-UAV-assisted V2X system. IEEE 96th Vehicular Technology Conference (VTC2022-Fall). 1–6 (2022) – reference: PandeySRKimKAlsenwiMTunYKHanZHongCSLatency-sensitive service delivery with UAV-assisted 5G networksIEEE Wireless Communications Letters.20211071518152210.1109/LWC.2021.3073014 – reference: Al-HouraniAKandeepanSLardnerSOptimal LAP altitude for maximum coverageIEEE Wireless Communications Letters.20143656957210.1109/LWC.2014.2342736 – volume: 8 start-page: 231 issue: 3–4 year: 2015 ident: 530_CR29 publication-title: Foundations and Trends in Machine Learning. doi: 10.1561/2200000050 – volume: 8 start-page: 3066 issue: 5 year: 2021 ident: 530_CR18 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3023111 – volume: 14 start-page: 1 issue: 3 year: 2022 ident: 530_CR43 publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2021.3139678 – ident: 530_CR11 doi: 10.1109/WCNC45663.2020.9120565 – volume: 9 start-page: 861 issue: 6 year: 2020 ident: 530_CR12 publication-title: IEEE Wireless Communications Letters. doi: 10.1109/LWC.2020.2973624 – volume: 71 start-page: 3344 issue: 3 year: 2022 ident: 530_CR25 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3143174 – volume: 56 start-page: 2307 issue: 5 year: 2010 ident: 530_CR7 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2010.2043769 – ident: 530_CR8 doi: 10.1109/TVT.2021.3105878 – volume: 40 start-page: 182 issue: 1 year: 2022 ident: 530_CR19 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2021.3126068 – volume: 3 start-page: 569 issue: 6 year: 2014 ident: 530_CR34 publication-title: IEEE Wireless Communications Letters. doi: 10.1109/LWC.2014.2342736 – volume: 177 start-page: 51 issue: 1 year: 2021 ident: 530_CR38 publication-title: Comput. Commun. doi: 10.1016/j.comcom.2021.06.007 – volume: 10 start-page: 1518 issue: 7 year: 2021 ident: 530_CR16 publication-title: IEEE Wireless Communications Letters. doi: 10.1109/LWC.2021.3073014 – volume: 22 start-page: 7208 issue: 11 year: 2021 ident: 530_CR31 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3003163 – ident: 530_CR1 doi: 10.1109/JIOT.2020.3025916 – volume: 8 start-page: 1587 issue: 6 year: 2019 ident: 530_CR13 publication-title: IEEE Wireless Communications Letters. doi: 10.1109/LWC.2019.2929391 – ident: 530_CR26 doi: 10.1109/LWC.2021.3056446 – ident: 530_CR42 doi: 10.1109/VTC2022-Fall57202.2022.10012707 – volume: 41 start-page: 2208 issue: 7 year: 2023 ident: 530_CR28 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2023.3280982 – ident: 530_CR23 doi: 10.1109/TWC.2023.3307154 – volume: 55 start-page: 70 issue: 2 year: 2017 ident: 530_CR6 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2017.1600435CM – ident: 530_CR44 doi: 10.1109/VTC2022-Fall57202.2022.10012697 – ident: 530_CR45 – volume: 71 start-page: 753 issue: 1 year: 2022 ident: 530_CR14 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3125401 – ident: 530_CR27 doi: 10.1109/TIV.2023.3303932 – volume: 24 start-page: 1117 issue: 2 year: 2022 ident: 530_CR2 publication-title: IEEE Communications Surveys and Tutorials. doi: 10.1109/COMST.2022.3151028 – volume: 16 start-page: 7574 issue: 11 year: 2017 ident: 530_CR15 publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2017.2751045 – volume: 69 start-page: 8972 issue: 8 year: 2020 ident: 530_CR10 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.2998899 – volume: 69 start-page: 73 issue: 1 year: 2021 ident: 530_CR21 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2020.3025578 – volume: 27 start-page: 6415 issue: 10 year: 2023 ident: 530_CR30 publication-title: Soft. Comput. doi: 10.1007/s00500-023-07846-1 – volume: 32 start-page: 24 issue: 2 year: 2018 ident: 530_CR46 publication-title: IEEE Network doi: 10.1109/MNET.2018.1700232 – volume: 71 start-page: 1126 issue: 2 year: 2023 ident: 530_CR20 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2022.3227230 – volume: 26 start-page: 1466 issue: 10 year: 2019 ident: 530_CR35 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2019.2934579 – volume: 69 start-page: 884 issue: 2 year: 2021 ident: 530_CR17 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2020.3031930 – volume: 9 start-page: 1458 issue: 6 year: 2023 ident: 530_CR22 publication-title: Digital Communications and Networks. doi: 10.1016/j.dcan.2022.08.006 – ident: 530_CR36 – ident: 530_CR40 doi: 10.1109/JPROC.2016.2537298 – ident: 530_CR5 doi: 10.1109/COMST.2019.2897800 – volume: 56 start-page: 1 issue: 5 year: 2023 ident: 530_CR33 publication-title: ACM Comput. Surv. doi: 10.1145/3623377 – volume: 53 start-page: 592 issue: 1 year: 2022 ident: 530_CR39 publication-title: IEEE Transactions on Cybernetics. doi: 10.1109/TCYB.2022.3164683 – ident: 530_CR37 doi: 10.1109/ICII.2019.00041 – volume: 14 start-page: 1 issue: 8 year: 2022 ident: 530_CR41 publication-title: IEEE Wireless Communications Letters. – volume: 19 start-page: 1786 issue: 3 year: 2019 ident: 530_CR9 publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2019.2957745 – ident: 530_CR4 doi: 10.1109/ICCChinaW.2019.8850168 – ident: 530_CR3 doi: 10.1109/TII.2021.3130163 – volume: 56 start-page: 13187 issue: 11 year: 2023 ident: 530_CR32 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10470-y – ident: 530_CR24 doi: 10.1109/TCE.2023.3305550 |
SSID | ssj0002140044 |
Score | 2.3256145 |
Snippet | Integration of unmanned aerial vehicles (UAVs) with ultra-reliable and low-latency communication (URLLC) systems can improve the real-time communication... Abstract Integration of unmanned aerial vehicles (UAVs) with ultra-reliable and low-latency communication (URLLC) systems can improve the real-time... |
SourceID | doaj crossref springer |
SourceType | Open Website Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial Intelligence Blocklength allocation Computational Intelligence Control Deep reinforcement learning Engineering Mathematical Logic and Foundations Mechatronics Power control Research Article Robotics UAV URLLC |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxffYn2RgzcN7mZ38zi21VKkihQrvS2TbKpFWatWf7-Z7LZUBL0Ie1oWsnwzyXxJZr4h5IQLKaXVwDIdZyz1G2YG3EomuIqTIjZJDHjecX0jesP0apSNllp9YU5YJQ9cAXeeGZFKcAXeUHlyIbSWTqZYwC3GVmdh9Y10tLSZwjWYx-ibaV0lE2rlfNwP-bYpQ8eLmPoWiYJg_4_b0BBkuhtkrWaHtFX91SZZceUWWZ93XqD1RNwmr20fg56wCcrskbaeMSAhwBTKgt5i3zPaqVLQ6aSkw9Y981ZAexZ0OOj3O7TSKaefE6ChApcBVljRC-emdOCCmKoN54a01l992CHD7uVdp8fq5gnMek41YyCscGLMjfScMM2MVCCM5qBsBDZRwnhuB5l1yNeMf1xhwFOlRDqjMq5dsksa5Uvp9ghVwMGqAvkCpLFTykUJ8LHnBlabyPEmOZ0DmU8rjYx8oYYcYM897HmAPVdN0kasF1-ivnV44a2e11bP_7J6k5zNLZXXk-79lzH3_2PMA7LKg_t4L0oOSWP29uGOPCOZmePgfF9aLNge priority: 102 providerName: Directory of Open Access Journals |
Title | Blocklength Allocation and Power Control in UAV-Assisted URLLC System via Multi-agent Deep Reinforcement Learning |
URI | https://link.springer.com/article/10.1007/s44196-024-00530-8 https://doaj.org/article/5b647aed04904056997e7443166fc952 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3rwLT5LDt402M3mtcdtVaSoiFrxtkyyqYqyvqq_30m6Lb4QhD0tCYF8M8yXTOYbQra50lq7DJjMEskEHpgZcKeZ4iZJy8SmCYT7jpNTddQT3Wt5XcvkhFqYb_n7vVcM1_GZrGDBXlrMTJIpmaQqJmZVZ3yfwpNgjaKui_l96pfYEyX6f-Q_Y1g5nCezNR-k-RDABTLhq0UyN-q1QGvXWyQzn4QDl8hzG2PQfWiCMril-UMISGGDKVQlPQt9z2hn-ASd3lW0l18xRCHgWdLe-fFxhw51yun7HdBYgcsgVFjRfe-f6LmPYqou3hvSWn_1Zpn0Dg8uO0esbp7AHHKqAQPllFd9bjVyQiGtNqBsxsG4FrjUKIvcDqTzga9Z_HxpAalSqr01kmc-XSGN6rHyq4Qa4OBMGfgCiMQb41sp8D5yA5fZludrZGe0rcXTUCOjGKshRxAKBKGIIBRmjbTDzo9HBn3r-ANhL2p3KaRVQoMvQ14SKaXKMu21CGX7qu8yiUvujnAraqd7_WPN9f8N3yDTPJoNWk-6SRqDlze_hdxjYJtkKs-7F90mGh8XzWiCzXiO_wAT7NHi |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-DurBt_g2B28a6GZ3k-yxVqVqFREr3sIkm1ZR1lf195tJs0VRBGFPISGQb5L5Npn5hpBdLqSUtgCWF0nOMv_DzIBbyQRXSVomJk0A7zvOL0S7m53e5rcxKeytjnavnyTDST1KdvOOOwTMZgwtp8HUOJn0TRIDuVoxxwHPX56gXWYxQ-b3od-8UBDr__ESGhzM8TyZjcyQNodQLpAxVy2SubrqAo2bcJHMfJEQXCIvB94bPWA5lMEdbT6ia8KlplCV9BIroNHWMBid3le027xhHg9EtqTdq06nRYeK5fTjHmjIxWWAuVb00LlneuWCrKoNN4g0KrH2l0n3-Oi61WaxjAKznl0NGAgrnOhxIz07zHIjFQhTcFC2ATZVwniWB7l1yNyM_1xpwJOmVDqjcl64dIVMVE-VWyVUAQerSmQOkCVOKddIgfc8S7CFaTi-RvbqZdXPQ7UMPdJFDiBoD4IOIGi1Rg5w5Uc9Uek6NDy99nXcODo3IpPgSnyh9ORSFIV0MsMEftGzRe6n3K9x03H7vf0x5_r_uu-Qqfb1eUd3Ti7ONsg0DybkLSndJBOD13e35RnJwGwHA_wEFA_VcQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT9swFLVGJyF42MaXxjaGH3gDi8ZxbOexLasYFIQQRbxZ147bVZvSAoHfj6-TViAQ0qQ8RY4s-Vzrnvj6nEvIHpdKKZcDy_IkYyL8MDPgTjHJdZIWiU0TwPOOs3N5PBQnN9nNMxV_vO0-L0nWmgZ0aSqrw1kxOlwI30ISj5dnBcMoajO9RD4KTH1YrpW9xSkLTzBGRaOWefvTFxkpGve_qorGZNP_Qj41LJF2aljXyAdfrpPP8w4MtNmQ62T1mZ3gBrnthsz0F1ujVH9o5x-mKVx2CmVBL7AbGu3VF9PppKTDzjUL2CDKBR1eDgY9WruX08cJ0KjLZYC6K3rk_Yxe-mix6uJpIm1cWcebZNj_ddU7Zk1LBeYC06oYSCe9HHGrAlMUmVUapM05aNcGl2ppA-ODzHlkcTY8vrAQCFSqvNUZz326RVrltPRfCdXAwekCWQSIxGvt2ynwUWAMLrdtz7fJ_nxZzax2zjALj-QIggkgmAiC0dukiyu_GImu1_HF9G5smk1kMiuFAl9gtTIQTZnnyiuBYn45cnkWpjyY42aarXj_zpzf_m_4Llm-OOqbwe_z0-9khccICoGU_iCt6u7B7wRyUtmfMf6eAKvG2cs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blocklength+Allocation+and+Power+Control+in+UAV-Assisted+URLLC+System+via+Multi-agent+Deep+Reinforcement+Learning&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Li%2C+Xinmin&rft.au=Zhang%2C+Xuhao&rft.au=Li%2C+Jiahui&rft.au=Luo%2C+Feiying&rft.date=2024-06-03&rft.pub=Springer+Netherlands&rft.eissn=1875-6883&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1007%2Fs44196-024-00530-8&rft.externalDocID=10_1007_s44196_024_00530_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon |