Blocklength Allocation and Power Control in UAV-Assisted URLLC System via Multi-agent Deep Reinforcement Learning

Integration of unmanned aerial vehicles (UAVs) with ultra-reliable and low-latency communication (URLLC) systems can improve the real-time communication performance for various industrial internet of things (IIoT) applications. Designing an intelligent resource allocation system is one of the challe...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computational intelligence systems Vol. 17; no. 1; pp. 1 - 13
Main Authors Li, Xinmin, Zhang, Xuhao, Li, Jiahui, Luo, Feiying, Huang, Yi, Zhang, Xiaoqiang
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 03.06.2024
Springer
Subjects
Online AccessGet full text
ISSN1875-6883
1875-6883
DOI10.1007/s44196-024-00530-8

Cover

Abstract Integration of unmanned aerial vehicles (UAVs) with ultra-reliable and low-latency communication (URLLC) systems can improve the real-time communication performance for various industrial internet of things (IIoT) applications. Designing an intelligent resource allocation system is one of the challenges posed by an energy-constrained UAV communication system. Therefore, we formulate a sum rate maximization problem, subject to the UAVs’ energy by optimizing the blocklength allocation and the power control jointly in the uplink UAV-assisted URLLC systems, in which the probabilistic channel model between UAV and users is adopted. The problem is difficult to solve due to the non-convex objective function and the energy constraints, and also challenging to make fast decision in the complex communication environment. Thus, we propose a deep reinforcement learning (DRL)-based scheme to optimize the blocklength allocation and power control jointly. First, transform the original problem into the multi-agent reinforcement learning process, where each subcarrier is regarded as the agent that optimizes its individual blocklength allocation and power control. Then, each agent makes the intelligent decision to obtain the maximum reward value depending on the weighted segmented reward function, which is related to the UAV energy consumption and user rates to improve the rate performance. Finally, the simulation results show that the proposed scheme outperforms the benchmark schemes and has the stable convergence in different settings, such as the learning rate, the error probability, the subcarrier spacing, and the number of users.
AbstractList Integration of unmanned aerial vehicles (UAVs) with ultra-reliable and low-latency communication (URLLC) systems can improve the real-time communication performance for various industrial internet of things (IIoT) applications. Designing an intelligent resource allocation system is one of the challenges posed by an energy-constrained UAV communication system. Therefore, we formulate a sum rate maximization problem, subject to the UAVs’ energy by optimizing the blocklength allocation and the power control jointly in the uplink UAV-assisted URLLC systems, in which the probabilistic channel model between UAV and users is adopted. The problem is difficult to solve due to the non-convex objective function and the energy constraints, and also challenging to make fast decision in the complex communication environment. Thus, we propose a deep reinforcement learning (DRL)-based scheme to optimize the blocklength allocation and power control jointly. First, transform the original problem into the multi-agent reinforcement learning process, where each subcarrier is regarded as the agent that optimizes its individual blocklength allocation and power control. Then, each agent makes the intelligent decision to obtain the maximum reward value depending on the weighted segmented reward function, which is related to the UAV energy consumption and user rates to improve the rate performance. Finally, the simulation results show that the proposed scheme outperforms the benchmark schemes and has the stable convergence in different settings, such as the learning rate, the error probability, the subcarrier spacing, and the number of users.
Abstract Integration of unmanned aerial vehicles (UAVs) with ultra-reliable and low-latency communication (URLLC) systems can improve the real-time communication performance for various industrial internet of things (IIoT) applications. Designing an intelligent resource allocation system is one of the challenges posed by an energy-constrained UAV communication system. Therefore, we formulate a sum rate maximization problem, subject to the UAVs’ energy by optimizing the blocklength allocation and the power control jointly in the uplink UAV-assisted URLLC systems, in which the probabilistic channel model between UAV and users is adopted. The problem is difficult to solve due to the non-convex objective function and the energy constraints, and also challenging to make fast decision in the complex communication environment. Thus, we propose a deep reinforcement learning (DRL)-based scheme to optimize the blocklength allocation and power control jointly. First, transform the original problem into the multi-agent reinforcement learning process, where each subcarrier is regarded as the agent that optimizes its individual blocklength allocation and power control. Then, each agent makes the intelligent decision to obtain the maximum reward value depending on the weighted segmented reward function, which is related to the UAV energy consumption and user rates to improve the rate performance. Finally, the simulation results show that the proposed scheme outperforms the benchmark schemes and has the stable convergence in different settings, such as the learning rate, the error probability, the subcarrier spacing, and the number of users.
ArticleNumber 138
Author Luo, Feiying
Li, Xinmin
Zhang, Xiaoqiang
Huang, Yi
Zhang, Xuhao
Li, Jiahui
Author_xml – sequence: 1
  givenname: Xinmin
  surname: Li
  fullname: Li, Xinmin
  organization: College of Computer Science, Chengdu University, Key Laboratory of Medicinal and Edible Plant Resources Development of Sichuan Education Department, Chengdu University
– sequence: 2
  givenname: Xuhao
  surname: Zhang
  fullname: Zhang, Xuhao
  organization: School of Information Engineering, Southwest University of Science and Technology
– sequence: 3
  givenname: Jiahui
  surname: Li
  fullname: Li, Jiahui
  organization: School of Information Engineering, Southwest University of Science and Technology
– sequence: 4
  givenname: Feiying
  surname: Luo
  fullname: Luo, Feiying
  organization: School of Information Engineering, Southwest University of Science and Technology, CEC Jinjiang Information Industry Co., Ltd
– sequence: 5
  givenname: Yi
  surname: Huang
  fullname: Huang, Yi
  organization: Department of Information and Communication Engineering, Tongji University
– sequence: 6
  givenname: Xiaoqiang
  orcidid: 0000-0002-0196-2901
  surname: Zhang
  fullname: Zhang, Xiaoqiang
  email: xqzhang@swust.edu.cn
  organization: School of Information Engineering, Southwest University of Science and Technology
BookMark eNp9kd1u1DAQhS1UJErpC3DlFzBMHP9eLstfpSCqtsut5TiT4CVrFzsF9e1Juwhx1auZOTPnk0bnJTlJOSEhrxt40wDot1WIxioGXDAA2QIzz8hpY7Rkypj25L_-BTmvdQ8AvBEAQpySn-_mHH7MmKblO93M6-CXmBP1aaCX-TcWus1pKXmmMdHd5hvb1BrrggPdXXXdll7fr8OB_oqefrmbl8j8hGmh7xFv6RXGNOYS8PAgdehLiml6RZ6Pfq54_reekd3HDzfbz6z7-uliu-lYaCVfmFdBoRp5r8GAkL02XvWWexPAh9aoHhrrZUCQel3KHofeW25bjb2R3GJ7Ri6O3CH7vbst8eDLvcs-ukchl8n5ssQwo5O9EtrjAMKCAKms1aiFaBulxmAlX1n8yAol11pw_MdrwD1k4I4ZuDUD95iBM6upPZrqepwmLG6f70paf37K9Qd-g4rS
Cites_doi 10.1561/2200000050
10.1109/JIOT.2020.3023111
10.1109/JPHOT.2021.3139678
10.1109/WCNC45663.2020.9120565
10.1109/LWC.2020.2973624
10.1109/TVT.2022.3143174
10.1109/TIT.2010.2043769
10.1109/TVT.2021.3105878
10.1109/JSAC.2021.3126068
10.1109/LWC.2014.2342736
10.1016/j.comcom.2021.06.007
10.1109/LWC.2021.3073014
10.1109/TITS.2020.3003163
10.1109/JIOT.2020.3025916
10.1109/LWC.2019.2929391
10.1109/LWC.2021.3056446
10.1109/VTC2022-Fall57202.2022.10012707
10.1109/JSAC.2023.3280982
10.1109/TWC.2023.3307154
10.1109/MCOM.2017.1600435CM
10.1109/VTC2022-Fall57202.2022.10012697
10.1109/TVT.2021.3125401
10.1109/TIV.2023.3303932
10.1109/COMST.2022.3151028
10.1109/TWC.2017.2751045
10.1109/TVT.2020.2998899
10.1109/TCOMM.2020.3025578
10.1007/s00500-023-07846-1
10.1109/MNET.2018.1700232
10.1109/TCOMM.2022.3227230
10.1109/LSP.2019.2934579
10.1109/TCOMM.2020.3031930
10.1016/j.dcan.2022.08.006
10.1109/JPROC.2016.2537298
10.1109/COMST.2019.2897800
10.1145/3623377
10.1109/TCYB.2022.3164683
10.1109/ICII.2019.00041
10.1109/TWC.2019.2957745
10.1109/ICCChinaW.2019.8850168
10.1109/TII.2021.3130163
10.1007/s10462-023-10470-y
10.1109/TCE.2023.3305550
ContentType Journal Article
Copyright The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/s44196-024-00530-8
DatabaseName SpringerOpen
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1875-6883
EndPage 13
ExternalDocumentID oai_doaj_org_article_5b647aed04904056997e7443166fc952
10_1007_s44196_024_00530_8
GrantInformation_xml – fundername: Open Fund of Key Laboratory of Civil Aircraft Airworthiness Technology
  grantid: SH2020112706
– fundername: National Science Foundation of China
  grantid: 62101386
– fundername: Guangdong Provincial Key Laboratory of Future Networks of Intelligence, the Chinese University of Hong Kong, Shenzhen
  grantid: 2022B1212010001-OF04
– fundername: Natural Science Foundation of Sichuan Province
  grantid: 2023NSFSC1388
  funderid: http://dx.doi.org/10.13039/501100018542
– fundername: Key Laboratory of Medicinal and Edible Plant Resources Development of Sichuan Education Department, Chengdu University
  grantid: 10Y202201
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
AENEX
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AVBZW
BCNDV
BENPR
BGLVJ
C24
C6C
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
HCIFZ
HZ~
J~4
K7-
O9-
OK1
PIMPY
RSV
SOJ
TFW
TR2
AASML
AAYXX
CITATION
ID FETCH-LOGICAL-c352t-a6c6e6f2b708045b78a6b92a8c0ac386b019a5ce0575b75bedba92937eb8529e3
IEDL.DBID C6C
ISSN 1875-6883
IngestDate Wed Aug 27 01:22:31 EDT 2025
Tue Jul 01 01:20:22 EDT 2025
Fri Feb 21 02:42:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep reinforcement learning
URLLC
Blocklength allocation
UAV
Power control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-a6c6e6f2b708045b78a6b92a8c0ac386b019a5ce0575b75bedba92937eb8529e3
ORCID 0000-0002-0196-2901
OpenAccessLink https://doi.org/10.1007/s44196-024-00530-8
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_5b647aed04904056997e7443166fc952
crossref_primary_10_1007_s44196_024_00530_8
springer_journals_10_1007_s44196_024_00530_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-03
PublicationDateYYYYMMDD 2024-06-03
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-03
  day: 03
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2024
Publisher Springer Netherlands
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer
References Al-HouraniAKandeepanSLardnerSOptimal LAP altitude for maximum coverageIEEE Wireless Communications Letters.20143656957210.1109/LWC.2014.2342736
CaiYJiangXLiuMZhaoNChenYWangXResource allocation for URLLC-oriented two-way UAV relayingIEEE Trans. Veh. Technol.20227133344334910.1109/TVT.2022.3143174
3GPP TR 38.901: Study on channel model for frequencies from 0.5 to 100 GHz (2021)
Yin, B., Li, X., Yan, J., Zhang, S., Zhang, X.: DQN-based power control and offloading computing for information freshness in multi-UAV-assisted V2X system. IEEE 96th Vehicular Technology Conference (VTC2022-Fall). 1–6 (2022)
MozaffariMSaadWBennisMDebbahMMobile unmanned aerial vehicles (UAVs) for energy-efficient internet of things communicationsIEEE Trans. Wireless Commun.201716117574758910.1109/TWC.2017.2751045
ZhangXZhangZGongXYinYAn exact branch-and-bound algorithm for seru scheduling problems with sequence-dependent setup timeSoft. Comput.202327106415643610.1007/s00500-023-07846-1
FengRLiZWangQHuangJAn ADMM-based optimization method for URLLC-enabled UAV relay systemIEEE Wireless Communications Letters.202214815
Chen, K., Wang, Y., Fei, Z., Wang, X.: Power limited ultra-reliable and low-latency communication in UAV-enabled IoT networks. IEEE Wireless Communications and Networking Conference (WCNC). 1–6 (2020)
Wang, L., Zhang, H.: Analysis of joint scheduling and power control for predictable URLLC in industrial wireless networks. IEEE International Conference on Industrial Internet (ICII). 160–169 (2019)
3GPP TR38.912: Study on new radio access technology: Radio access architecture and interfaces (2016)
Ramin, H., Samad, A., Nurul Huda, M., Matti, L.a.: Average rate and error probability analysis in short packet communications over RIS-aided URLLC systems. IEEE Transactions on Vehicular Technology. 70(10), 10,320–10,334 (2021)
Hazarika, B., Singh, K.: AFL-DMAAC: Integrated resource management and cooperative caching for URLLC-IoV networks. IEEE Transactions on Intelligent Vehicles. 1–16 (2023)
ZhaoJMaoMZhaoXZouJA hybrid of deep reinforcement learning and local search for the vehicle routing problemsIEEE Trans. Intell. Transp. Syst.202122117208721810.1109/TITS.2020.3003163
WangKPanCRenHXuWZhangLNallanathanAPacket error probability and effective throughput for ultra-reliable and low-latency UAV communicationsIEEE Trans. Commun.2021691738410.1109/TCOMM.2020.3025578
Wu, Y., Dai, H.N., Wang, H.: Convergence of blockchain and edge computing for secure and scalable IIoT critical infrastructures in industry 4.0. IEEE Int. Things J. 8(4), 2300–2317 (2021)
BubeckSConvex optimization: Algorithms and complexityFoundations and Trends in Machine Learning.201583–423135710.1561/2200000050
Giuseppe, D., Tobias, K., Petar, P.: Toward massive, ultrareliable, and low-latency wireless communication with short packets. Proc. IEEE 104(9), 1711–1726 (2016)
LiuYZhouHDengYNallanathanAChannel access optimization in unlicensed spectrum for downlink URLLC: Centralized and federated DRL approachesIEEE J. Sel. Areas Commun.20234172208222210.1109/JSAC.2023.3280982
JoachimSGustavWTorstenDRobertBKittipongK5G radio network design for ultra-reliable low-latency communicationIEEE Network2018322243110.1109/MNET.2018.1700232
NarsaniHKRanjhaADevKMemonFHQureshiNMFLeveraging UAV-assisted communications to improve secrecy for URLLC in 6G systemsDigital Communications and Networks.2023961458146410.1016/j.dcan.2022.08.006
RajwarKDeepKDasSAn exhaustive review of the metaheuristic algorithms for search and optimization: Taxonomy, applications, and open challengesArtif. Intell. Rev.20235611131871325710.1007/s10462-023-10470-y
Ranjha, A., Javed, M.A., Piran, M.J., Asif, M., Hussien, M., Zeadally, S., Frnda, J.: Towards facilitating power efficient URLLC systems in UAV networks under jittering. Early Access in IEEE Transactions on Consumer Electronics. (2023)
Li, X., Li, J., Yin, B., Yan, J., Fang, Y.: Age of information optimization in UAV-enabled intelligent transportation system via deep reinforcement learning. IEEE 96th Vehicular Technology Conference (VTC2022-Fall). 1–5 (2022)
RenHPanCWangKDengYElkashlanMNallanathanAAchievable data rate for URLLC-enabled UAV systems with 3-D channel modelIEEE Wireless Communications Letters.2019861587159010.1109/LWC.2019.2929391
PhilippSMaximilianMHenrikKLatency critical IoT applications in 5G: Perspective on the design of radio interface and network architectureIEEE Commun. Mag.2017552707810.1109/MCOM.2017.1600435CM
HuYSunGZhangGGursoyMCSchmeinkAOptimal resource allocation in ground wireless networks supporting unmanned aerial vehicle transmissionsIEEE Trans. Veh. Technol.20206988972898410.1109/TVT.2020.2998899
ShiriHParkJBennisMRemote UAV online path planning via neural network-based opportunistic controlIEEE Wireless Communications Letters.20209686186510.1109/LWC.2020.2973624
PandeySRKimKAlsenwiMTunYKHanZHongCSLatency-sensitive service delivery with UAV-assisted 5G networksIEEE Wireless Communications Letters.20211071518152210.1109/LWC.2021.3073014
LiXXuJPositioning optimization for sum-rate maximization in UAV-enabled interference channelIEEE Signal Process. Lett.2019261014661470404727410.1109/LSP.2019.2934579
Sutton, J., G., Zeng, J., Liu, R., et al.: Enabling technologies for ultra-reliable and low latency communications: From PHY and MAC layer perspectives. IEEE Commun. Surv. Tutorials. 21(3), 2488–2524 (2019)
RanjhaAKaddoumGURLLC-enabled by laser powered UAV relay: A quasi-optimal design of resource allocation, trajectory planning and energy harvestingIEEE Trans. Veh. Technol.202271175376510.1109/TVT.2021.3125401
VaeziMAzariAKhosraviradSRShirvanimoghaddamMAzariMMChasakiDPopovskiPCellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6GIEEE Communications Surveys and Tutorials.20222421117117410.1109/COMST.2022.3151028
HicklingTZenatiAAoufNSpencerPExplainability in deep reinforcement learning: A review into current methods and applicationsACM Comput. Surv.202356513510.1145/3623377
FangMLiDZhangHFanLTriguiIPerformance analysis of short-packet communications with incremental relayingComput. Commun.20211771515610.1016/j.comcom.2021.06.007
Li, Y., Hu, C., Wang, J., Xu, M.: Optimization of URLLC and eMBB multiplexing via deep reinforcement learning. IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops). 245–250 (2019)
Yang, P., Xi, X., Q. S. Quek, T., Cao, X., Chen, J.: Power control for a URLLC-enabled UAV system incorporated with DNN-based channel estimation. IEEE Wireless Communications Letters. 10(5), 1018–1022 (2021)
QinYYuenCShaoYQinBLiXSlow-varying dynamics-assisted temporal capsule network for machinery remaining useful life estimationIEEE Transactions on Cybernetics.202253159260610.1109/TCYB.2022.3164683
PolyanskiyYPoorHVVerduSChannel coding rate in the finite blocklength regimeIEEE Trans. Inf. Theory201056523072359272978710.1109/TIT.2010.2043769
CiftlerBSAlwarafyAAbdallahMDistributed DRL-based downlink power allocation for hybrid RF/VLC networksIEEE Photonics J.202214311010.1109/JPHOT.2021.3139678
Xu, D., Yu, K., Ritcey, J.A.: Cross-layer device authentication with quantum encryption for 5G enabled IIoT in industry 4.0. IEEE Transactions on Industrial Informatics. 18(9), 6368–6378 (2022)
KasgariATZSaadWMozaffariMPoorHVExperienced deep reinforcement learning with generative adversarial networks (GANs) for model-free ultra reliable low latency communicationIEEE Trans. Commun.202169288489910.1109/TCOMM.2020.3031930
ZhongRLiuYMuXChenYSongLAI empowered RIS-assisted NOMA networks: Deep learning or reinforcement learning?IEEE J. Sel. Areas Commun.202240118219610.1109/JSAC.2021.3126068
ElwekeilMZapponeABuzziSPower control in cell-free massive MIMO networks for UAVs URLLC under the finite blocklength regimeIEEE Trans. Commun.20237121126114010.1109/TCOMM.2022.3227230
GuBZhangXLinZAlazabMDeep multiagent reinforcement-learning-based resource allocation for internet of controllable thingsIEEE Internet Things J.2021853066307410.1109/JIOT.2020.3023111
RenHPanCDengYElkashlanMNallanathanAJoint power and blocklength optimization for URLLC in a factory automation scenarioIEEE Trans. Wireless Commun.20191931786180110.1109/TWC.2019.2957745
Wu, Q., Cui, M., Zhang, G., Wang, F., Wu, Q., Chu, X.: Latency minimization for UAV-enabled URLLC-based mobile edge computing systems. Early Access in IEEE Transactions on Wireless Communications. (2023)
Y Liu (530_CR28) 2023; 41
530_CR24
530_CR23
530_CR45
530_CR44
530_CR42
H Shiri (530_CR12) 2020; 9
530_CR40
HK Narsani (530_CR22) 2023; 9
B Gu (530_CR18) 2021; 8
S Philipp (530_CR6) 2017; 55
H Ren (530_CR13) 2019; 8
S Bubeck (530_CR29) 2015; 8
Y Hu (530_CR10) 2020; 69
M Fang (530_CR38) 2021; 177
R Zhong (530_CR19) 2022; 40
Y Polyanskiy (530_CR7) 2010; 56
H Ren (530_CR9) 2019; 19
BS Ciftler (530_CR43) 2022; 14
K Rajwar (530_CR32) 2023; 56
ATZ Kasgari (530_CR17) 2021; 69
X Zhang (530_CR30) 2023; 27
A Al-Hourani (530_CR34) 2014; 3
530_CR37
Y Cai (530_CR25) 2022; 71
530_CR36
530_CR11
M Elwekeil (530_CR20) 2023; 71
M Mozaffari (530_CR15) 2017; 16
T Hickling (530_CR33) 2023; 56
SR Pandey (530_CR16) 2021; 10
K Wang (530_CR21) 2021; 69
J Zhao (530_CR31) 2021; 22
R Feng (530_CR41) 2022; 14
M Vaezi (530_CR2) 2022; 24
530_CR3
Y Qin (530_CR39) 2022; 53
530_CR1
530_CR4
X Li (530_CR35) 2019; 26
530_CR5
A Ranjha (530_CR14) 2022; 71
530_CR8
530_CR27
S Joachim (530_CR46) 2018; 32
530_CR26
References_xml – reference: HuYSunGZhangGGursoyMCSchmeinkAOptimal resource allocation in ground wireless networks supporting unmanned aerial vehicle transmissionsIEEE Trans. Veh. Technol.20206988972898410.1109/TVT.2020.2998899
– reference: RajwarKDeepKDasSAn exhaustive review of the metaheuristic algorithms for search and optimization: Taxonomy, applications, and open challengesArtif. Intell. Rev.20235611131871325710.1007/s10462-023-10470-y
– reference: 3GPP TR38.912: Study on new radio access technology: Radio access architecture and interfaces (2016)
– reference: PhilippSMaximilianMHenrikKLatency critical IoT applications in 5G: Perspective on the design of radio interface and network architectureIEEE Commun. Mag.2017552707810.1109/MCOM.2017.1600435CM
– reference: Wu, Q., Cui, M., Zhang, G., Wang, F., Wu, Q., Chu, X.: Latency minimization for UAV-enabled URLLC-based mobile edge computing systems. Early Access in IEEE Transactions on Wireless Communications. (2023)
– reference: LiXXuJPositioning optimization for sum-rate maximization in UAV-enabled interference channelIEEE Signal Process. Lett.2019261014661470404727410.1109/LSP.2019.2934579
– reference: CaiYJiangXLiuMZhaoNChenYWangXResource allocation for URLLC-oriented two-way UAV relayingIEEE Trans. Veh. Technol.20227133344334910.1109/TVT.2022.3143174
– reference: 3GPP TR 38.901: Study on channel model for frequencies from 0.5 to 100 GHz (2021)
– reference: KasgariATZSaadWMozaffariMPoorHVExperienced deep reinforcement learning with generative adversarial networks (GANs) for model-free ultra reliable low latency communicationIEEE Trans. Commun.202169288489910.1109/TCOMM.2020.3031930
– reference: Xu, D., Yu, K., Ritcey, J.A.: Cross-layer device authentication with quantum encryption for 5G enabled IIoT in industry 4.0. IEEE Transactions on Industrial Informatics. 18(9), 6368–6378 (2022)
– reference: HicklingTZenatiAAoufNSpencerPExplainability in deep reinforcement learning: A review into current methods and applicationsACM Comput. Surv.202356513510.1145/3623377
– reference: VaeziMAzariAKhosraviradSRShirvanimoghaddamMAzariMMChasakiDPopovskiPCellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6GIEEE Communications Surveys and Tutorials.20222421117117410.1109/COMST.2022.3151028
– reference: QinYYuenCShaoYQinBLiXSlow-varying dynamics-assisted temporal capsule network for machinery remaining useful life estimationIEEE Transactions on Cybernetics.202253159260610.1109/TCYB.2022.3164683
– reference: Li, Y., Hu, C., Wang, J., Xu, M.: Optimization of URLLC and eMBB multiplexing via deep reinforcement learning. IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops). 245–250 (2019)
– reference: Ramin, H., Samad, A., Nurul Huda, M., Matti, L.a.: Average rate and error probability analysis in short packet communications over RIS-aided URLLC systems. IEEE Transactions on Vehicular Technology. 70(10), 10,320–10,334 (2021)
– reference: FengRLiZWangQHuangJAn ADMM-based optimization method for URLLC-enabled UAV relay systemIEEE Wireless Communications Letters.202214815
– reference: CiftlerBSAlwarafyAAbdallahMDistributed DRL-based downlink power allocation for hybrid RF/VLC networksIEEE Photonics J.202214311010.1109/JPHOT.2021.3139678
– reference: Chen, K., Wang, Y., Fei, Z., Wang, X.: Power limited ultra-reliable and low-latency communication in UAV-enabled IoT networks. IEEE Wireless Communications and Networking Conference (WCNC). 1–6 (2020)
– reference: Wu, Y., Dai, H.N., Wang, H.: Convergence of blockchain and edge computing for secure and scalable IIoT critical infrastructures in industry 4.0. IEEE Int. Things J. 8(4), 2300–2317 (2021)
– reference: NarsaniHKRanjhaADevKMemonFHQureshiNMFLeveraging UAV-assisted communications to improve secrecy for URLLC in 6G systemsDigital Communications and Networks.2023961458146410.1016/j.dcan.2022.08.006
– reference: ZhangXZhangZGongXYinYAn exact branch-and-bound algorithm for seru scheduling problems with sequence-dependent setup timeSoft. Comput.202327106415643610.1007/s00500-023-07846-1
– reference: PolyanskiyYPoorHVVerduSChannel coding rate in the finite blocklength regimeIEEE Trans. Inf. Theory201056523072359272978710.1109/TIT.2010.2043769
– reference: RenHPanCWangKDengYElkashlanMNallanathanAAchievable data rate for URLLC-enabled UAV systems with 3-D channel modelIEEE Wireless Communications Letters.2019861587159010.1109/LWC.2019.2929391
– reference: RenHPanCDengYElkashlanMNallanathanAJoint power and blocklength optimization for URLLC in a factory automation scenarioIEEE Trans. Wireless Commun.20191931786180110.1109/TWC.2019.2957745
– reference: ElwekeilMZapponeABuzziSPower control in cell-free massive MIMO networks for UAVs URLLC under the finite blocklength regimeIEEE Trans. Commun.20237121126114010.1109/TCOMM.2022.3227230
– reference: Wang, L., Zhang, H.: Analysis of joint scheduling and power control for predictable URLLC in industrial wireless networks. IEEE International Conference on Industrial Internet (ICII). 160–169 (2019)
– reference: GuBZhangXLinZAlazabMDeep multiagent reinforcement-learning-based resource allocation for internet of controllable thingsIEEE Internet Things J.2021853066307410.1109/JIOT.2020.3023111
– reference: RanjhaAKaddoumGURLLC-enabled by laser powered UAV relay: A quasi-optimal design of resource allocation, trajectory planning and energy harvestingIEEE Trans. Veh. Technol.202271175376510.1109/TVT.2021.3125401
– reference: Li, X., Li, J., Yin, B., Yan, J., Fang, Y.: Age of information optimization in UAV-enabled intelligent transportation system via deep reinforcement learning. IEEE 96th Vehicular Technology Conference (VTC2022-Fall). 1–5 (2022)
– reference: JoachimSGustavWTorstenDRobertBKittipongK5G radio network design for ultra-reliable low-latency communicationIEEE Network2018322243110.1109/MNET.2018.1700232
– reference: MozaffariMSaadWBennisMDebbahMMobile unmanned aerial vehicles (UAVs) for energy-efficient internet of things communicationsIEEE Trans. Wireless Commun.201716117574758910.1109/TWC.2017.2751045
– reference: ZhongRLiuYMuXChenYSongLAI empowered RIS-assisted NOMA networks: Deep learning or reinforcement learning?IEEE J. Sel. Areas Commun.202240118219610.1109/JSAC.2021.3126068
– reference: Ranjha, A., Javed, M.A., Piran, M.J., Asif, M., Hussien, M., Zeadally, S., Frnda, J.: Towards facilitating power efficient URLLC systems in UAV networks under jittering. Early Access in IEEE Transactions on Consumer Electronics. (2023)
– reference: FangMLiDZhangHFanLTriguiIPerformance analysis of short-packet communications with incremental relayingComput. Commun.20211771515610.1016/j.comcom.2021.06.007
– reference: Hazarika, B., Singh, K.: AFL-DMAAC: Integrated resource management and cooperative caching for URLLC-IoV networks. IEEE Transactions on Intelligent Vehicles. 1–16 (2023)
– reference: ShiriHParkJBennisMRemote UAV online path planning via neural network-based opportunistic controlIEEE Wireless Communications Letters.20209686186510.1109/LWC.2020.2973624
– reference: LiuYZhouHDengYNallanathanAChannel access optimization in unlicensed spectrum for downlink URLLC: Centralized and federated DRL approachesIEEE J. Sel. Areas Commun.20234172208222210.1109/JSAC.2023.3280982
– reference: Giuseppe, D., Tobias, K., Petar, P.: Toward massive, ultrareliable, and low-latency wireless communication with short packets. Proc. IEEE 104(9), 1711–1726 (2016)
– reference: Sutton, J., G., Zeng, J., Liu, R., et al.: Enabling technologies for ultra-reliable and low latency communications: From PHY and MAC layer perspectives. IEEE Commun. Surv. Tutorials. 21(3), 2488–2524 (2019)
– reference: WangKPanCRenHXuWZhangLNallanathanAPacket error probability and effective throughput for ultra-reliable and low-latency UAV communicationsIEEE Trans. Commun.2021691738410.1109/TCOMM.2020.3025578
– reference: ZhaoJMaoMZhaoXZouJA hybrid of deep reinforcement learning and local search for the vehicle routing problemsIEEE Trans. Intell. Transp. Syst.202122117208721810.1109/TITS.2020.3003163
– reference: Yang, P., Xi, X., Q. S. Quek, T., Cao, X., Chen, J.: Power control for a URLLC-enabled UAV system incorporated with DNN-based channel estimation. IEEE Wireless Communications Letters. 10(5), 1018–1022 (2021)
– reference: BubeckSConvex optimization: Algorithms and complexityFoundations and Trends in Machine Learning.201583–423135710.1561/2200000050
– reference: Yin, B., Li, X., Yan, J., Zhang, S., Zhang, X.: DQN-based power control and offloading computing for information freshness in multi-UAV-assisted V2X system. IEEE 96th Vehicular Technology Conference (VTC2022-Fall). 1–6 (2022)
– reference: PandeySRKimKAlsenwiMTunYKHanZHongCSLatency-sensitive service delivery with UAV-assisted 5G networksIEEE Wireless Communications Letters.20211071518152210.1109/LWC.2021.3073014
– reference: Al-HouraniAKandeepanSLardnerSOptimal LAP altitude for maximum coverageIEEE Wireless Communications Letters.20143656957210.1109/LWC.2014.2342736
– volume: 8
  start-page: 231
  issue: 3–4
  year: 2015
  ident: 530_CR29
  publication-title: Foundations and Trends in Machine Learning.
  doi: 10.1561/2200000050
– volume: 8
  start-page: 3066
  issue: 5
  year: 2021
  ident: 530_CR18
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3023111
– volume: 14
  start-page: 1
  issue: 3
  year: 2022
  ident: 530_CR43
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2021.3139678
– ident: 530_CR11
  doi: 10.1109/WCNC45663.2020.9120565
– volume: 9
  start-page: 861
  issue: 6
  year: 2020
  ident: 530_CR12
  publication-title: IEEE Wireless Communications Letters.
  doi: 10.1109/LWC.2020.2973624
– volume: 71
  start-page: 3344
  issue: 3
  year: 2022
  ident: 530_CR25
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3143174
– volume: 56
  start-page: 2307
  issue: 5
  year: 2010
  ident: 530_CR7
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2010.2043769
– ident: 530_CR8
  doi: 10.1109/TVT.2021.3105878
– volume: 40
  start-page: 182
  issue: 1
  year: 2022
  ident: 530_CR19
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2021.3126068
– volume: 3
  start-page: 569
  issue: 6
  year: 2014
  ident: 530_CR34
  publication-title: IEEE Wireless Communications Letters.
  doi: 10.1109/LWC.2014.2342736
– volume: 177
  start-page: 51
  issue: 1
  year: 2021
  ident: 530_CR38
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.06.007
– volume: 10
  start-page: 1518
  issue: 7
  year: 2021
  ident: 530_CR16
  publication-title: IEEE Wireless Communications Letters.
  doi: 10.1109/LWC.2021.3073014
– volume: 22
  start-page: 7208
  issue: 11
  year: 2021
  ident: 530_CR31
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3003163
– ident: 530_CR1
  doi: 10.1109/JIOT.2020.3025916
– volume: 8
  start-page: 1587
  issue: 6
  year: 2019
  ident: 530_CR13
  publication-title: IEEE Wireless Communications Letters.
  doi: 10.1109/LWC.2019.2929391
– ident: 530_CR26
  doi: 10.1109/LWC.2021.3056446
– ident: 530_CR42
  doi: 10.1109/VTC2022-Fall57202.2022.10012707
– volume: 41
  start-page: 2208
  issue: 7
  year: 2023
  ident: 530_CR28
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2023.3280982
– ident: 530_CR23
  doi: 10.1109/TWC.2023.3307154
– volume: 55
  start-page: 70
  issue: 2
  year: 2017
  ident: 530_CR6
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2017.1600435CM
– ident: 530_CR44
  doi: 10.1109/VTC2022-Fall57202.2022.10012697
– ident: 530_CR45
– volume: 71
  start-page: 753
  issue: 1
  year: 2022
  ident: 530_CR14
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3125401
– ident: 530_CR27
  doi: 10.1109/TIV.2023.3303932
– volume: 24
  start-page: 1117
  issue: 2
  year: 2022
  ident: 530_CR2
  publication-title: IEEE Communications Surveys and Tutorials.
  doi: 10.1109/COMST.2022.3151028
– volume: 16
  start-page: 7574
  issue: 11
  year: 2017
  ident: 530_CR15
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2017.2751045
– volume: 69
  start-page: 8972
  issue: 8
  year: 2020
  ident: 530_CR10
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.2998899
– volume: 69
  start-page: 73
  issue: 1
  year: 2021
  ident: 530_CR21
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2020.3025578
– volume: 27
  start-page: 6415
  issue: 10
  year: 2023
  ident: 530_CR30
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-023-07846-1
– volume: 32
  start-page: 24
  issue: 2
  year: 2018
  ident: 530_CR46
  publication-title: IEEE Network
  doi: 10.1109/MNET.2018.1700232
– volume: 71
  start-page: 1126
  issue: 2
  year: 2023
  ident: 530_CR20
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2022.3227230
– volume: 26
  start-page: 1466
  issue: 10
  year: 2019
  ident: 530_CR35
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2019.2934579
– volume: 69
  start-page: 884
  issue: 2
  year: 2021
  ident: 530_CR17
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2020.3031930
– volume: 9
  start-page: 1458
  issue: 6
  year: 2023
  ident: 530_CR22
  publication-title: Digital Communications and Networks.
  doi: 10.1016/j.dcan.2022.08.006
– ident: 530_CR36
– ident: 530_CR40
  doi: 10.1109/JPROC.2016.2537298
– ident: 530_CR5
  doi: 10.1109/COMST.2019.2897800
– volume: 56
  start-page: 1
  issue: 5
  year: 2023
  ident: 530_CR33
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3623377
– volume: 53
  start-page: 592
  issue: 1
  year: 2022
  ident: 530_CR39
  publication-title: IEEE Transactions on Cybernetics.
  doi: 10.1109/TCYB.2022.3164683
– ident: 530_CR37
  doi: 10.1109/ICII.2019.00041
– volume: 14
  start-page: 1
  issue: 8
  year: 2022
  ident: 530_CR41
  publication-title: IEEE Wireless Communications Letters.
– volume: 19
  start-page: 1786
  issue: 3
  year: 2019
  ident: 530_CR9
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2019.2957745
– ident: 530_CR4
  doi: 10.1109/ICCChinaW.2019.8850168
– ident: 530_CR3
  doi: 10.1109/TII.2021.3130163
– volume: 56
  start-page: 13187
  issue: 11
  year: 2023
  ident: 530_CR32
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10470-y
– ident: 530_CR24
  doi: 10.1109/TCE.2023.3305550
SSID ssj0002140044
Score 2.3256145
Snippet Integration of unmanned aerial vehicles (UAVs) with ultra-reliable and low-latency communication (URLLC) systems can improve the real-time communication...
Abstract Integration of unmanned aerial vehicles (UAVs) with ultra-reliable and low-latency communication (URLLC) systems can improve the real-time...
SourceID doaj
crossref
springer
SourceType Open Website
Index Database
Publisher
StartPage 1
SubjectTerms Artificial Intelligence
Blocklength allocation
Computational Intelligence
Control
Deep reinforcement learning
Engineering
Mathematical Logic and Foundations
Mechatronics
Power control
Research Article
Robotics
UAV
URLLC
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxffYn2RgzcN7mZ38zi21VKkihQrvS2TbKpFWatWf7-Z7LZUBL0Ie1oWsnwzyXxJZr4h5IQLKaXVwDIdZyz1G2YG3EomuIqTIjZJDHjecX0jesP0apSNllp9YU5YJQ9cAXeeGZFKcAXeUHlyIbSWTqZYwC3GVmdh9Y10tLSZwjWYx-ibaV0lE2rlfNwP-bYpQ8eLmPoWiYJg_4_b0BBkuhtkrWaHtFX91SZZceUWWZ93XqD1RNwmr20fg56wCcrskbaeMSAhwBTKgt5i3zPaqVLQ6aSkw9Y981ZAexZ0OOj3O7TSKaefE6ChApcBVljRC-emdOCCmKoN54a01l992CHD7uVdp8fq5gnMek41YyCscGLMjfScMM2MVCCM5qBsBDZRwnhuB5l1yNeMf1xhwFOlRDqjMq5dsksa5Uvp9ghVwMGqAvkCpLFTykUJ8LHnBlabyPEmOZ0DmU8rjYx8oYYcYM897HmAPVdN0kasF1-ivnV44a2e11bP_7J6k5zNLZXXk-79lzH3_2PMA7LKg_t4L0oOSWP29uGOPCOZmePgfF9aLNge
  priority: 102
  providerName: Directory of Open Access Journals
Title Blocklength Allocation and Power Control in UAV-Assisted URLLC System via Multi-agent Deep Reinforcement Learning
URI https://link.springer.com/article/10.1007/s44196-024-00530-8
https://doaj.org/article/5b647aed04904056997e7443166fc952
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3rwLT5LDt402M3mtcdtVaSoiFrxtkyyqYqyvqq_30m6Lb4QhD0tCYF8M8yXTOYbQra50lq7DJjMEskEHpgZcKeZ4iZJy8SmCYT7jpNTddQT3Wt5XcvkhFqYb_n7vVcM1_GZrGDBXlrMTJIpmaQqJmZVZ3yfwpNgjaKui_l96pfYEyX6f-Q_Y1g5nCezNR-k-RDABTLhq0UyN-q1QGvXWyQzn4QDl8hzG2PQfWiCMril-UMISGGDKVQlPQt9z2hn-ASd3lW0l18xRCHgWdLe-fFxhw51yun7HdBYgcsgVFjRfe-f6LmPYqou3hvSWn_1Zpn0Dg8uO0esbp7AHHKqAQPllFd9bjVyQiGtNqBsxsG4FrjUKIvcDqTzga9Z_HxpAalSqr01kmc-XSGN6rHyq4Qa4OBMGfgCiMQb41sp8D5yA5fZludrZGe0rcXTUCOjGKshRxAKBKGIIBRmjbTDzo9HBn3r-ANhL2p3KaRVQoMvQ14SKaXKMu21CGX7qu8yiUvujnAraqd7_WPN9f8N3yDTPJoNWk-6SRqDlze_hdxjYJtkKs-7F90mGh8XzWiCzXiO_wAT7NHi
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-DurBt_g2B28a6GZ3k-yxVqVqFREr3sIkm1ZR1lf195tJs0VRBGFPISGQb5L5Npn5hpBdLqSUtgCWF0nOMv_DzIBbyQRXSVomJk0A7zvOL0S7m53e5rcxKeytjnavnyTDST1KdvOOOwTMZgwtp8HUOJn0TRIDuVoxxwHPX56gXWYxQ-b3od-8UBDr__ESGhzM8TyZjcyQNodQLpAxVy2SubrqAo2bcJHMfJEQXCIvB94bPWA5lMEdbT6ia8KlplCV9BIroNHWMBid3le027xhHg9EtqTdq06nRYeK5fTjHmjIxWWAuVb00LlneuWCrKoNN4g0KrH2l0n3-Oi61WaxjAKznl0NGAgrnOhxIz07zHIjFQhTcFC2ATZVwniWB7l1yNyM_1xpwJOmVDqjcl64dIVMVE-VWyVUAQerSmQOkCVOKddIgfc8S7CFaTi-RvbqZdXPQ7UMPdJFDiBoD4IOIGi1Rg5w5Uc9Uek6NDy99nXcODo3IpPgSnyh9ORSFIV0MsMEftGzRe6n3K9x03H7vf0x5_r_uu-Qqfb1eUd3Ti7ONsg0DybkLSndJBOD13e35RnJwGwHA_wEFA_VcQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT9swFLVGJyF42MaXxjaGH3gDi8ZxbOexLasYFIQQRbxZ147bVZvSAoHfj6-TViAQ0qQ8RY4s-Vzrnvj6nEvIHpdKKZcDy_IkYyL8MDPgTjHJdZIWiU0TwPOOs3N5PBQnN9nNMxV_vO0-L0nWmgZ0aSqrw1kxOlwI30ISj5dnBcMoajO9RD4KTH1YrpW9xSkLTzBGRaOWefvTFxkpGve_qorGZNP_Qj41LJF2aljXyAdfrpPP8w4MtNmQ62T1mZ3gBrnthsz0F1ujVH9o5x-mKVx2CmVBL7AbGu3VF9PppKTDzjUL2CDKBR1eDgY9WruX08cJ0KjLZYC6K3rk_Yxe-mix6uJpIm1cWcebZNj_ddU7Zk1LBeYC06oYSCe9HHGrAlMUmVUapM05aNcGl2ppA-ODzHlkcTY8vrAQCFSqvNUZz326RVrltPRfCdXAwekCWQSIxGvt2ynwUWAMLrdtz7fJ_nxZzax2zjALj-QIggkgmAiC0dukiyu_GImu1_HF9G5smk1kMiuFAl9gtTIQTZnnyiuBYn45cnkWpjyY42aarXj_zpzf_m_4Llm-OOqbwe_z0-9khccICoGU_iCt6u7B7wRyUtmfMf6eAKvG2cs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blocklength+Allocation+and+Power+Control+in+UAV-Assisted+URLLC+System+via+Multi-agent+Deep+Reinforcement+Learning&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Li%2C+Xinmin&rft.au=Zhang%2C+Xuhao&rft.au=Li%2C+Jiahui&rft.au=Luo%2C+Feiying&rft.date=2024-06-03&rft.pub=Springer+Netherlands&rft.eissn=1875-6883&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1007%2Fs44196-024-00530-8&rft.externalDocID=10_1007_s44196_024_00530_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon