Experimental Study of Transverse Mode Suppression on Wideband Hetero Acoustic Layer Surface Acoustic Wave Resonator
Transverse mode suppression is a great challenge for high performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrow band resonators, but their performances on wideband resonator have not been demonstrated. In this paper, we give an in-depth study on the transverse...
Saved in:
Published in | IEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 71; no. 2; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0885-3010 1525-8955 1525-8955 |
DOI | 10.1109/TUFFC.2023.3347509 |
Cover
Abstract | Transverse mode suppression is a great challenge for high performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrow band resonators, but their performances on wideband resonator have not been demonstrated. In this paper, we give an in-depth study on the transverse mode suppression of wideband resonators using 11°YX-LiNbO 3 (LN)/ 70°Y90°X-Quartz (Qz) hetero acoustic layer structure as a platform. Two groups of design, including new dummy electrode and zigzag shape apodization, are proposed. The measured results show that the shape of the dummy electrode is not the dominant factor to affect the transverse mode. The proposed zigzag shape apodization can effectively suppress the transverse, at the same time maintain the Quality (Q) factor at the same level with normal type. Additionally, stronger suppression ability can be realized with tiny trade-off of Q factor. |
---|---|
AbstractList | Transverse mode suppression is a great challenge for high performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrow band resonators, but their performances on wideband resonator have not been demonstrated. In this paper, we give an in-depth study on the transverse mode suppression of wideband resonators using 11°YX-LiNbO 3 (LN)/ 70°Y90°X-Quartz (Qz) hetero acoustic layer structure as a platform. Two groups of design, including new dummy electrode and zigzag shape apodization, are proposed. The measured results show that the shape of the dummy electrode is not the dominant factor to affect the transverse mode. The proposed zigzag shape apodization can effectively suppress the transverse, at the same time maintain the Quality (Q) factor at the same level with normal type. Additionally, stronger suppression ability can be realized with tiny trade-off of Q factor. Transverse mode suppression is a great challenge for high-performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrowband resonators, but their performances on wideband resonator have not been demonstrated. In this article, we give an in-depth study on the transverse mode suppression of wideband resonators using 11° YX-LiNbO3 (LN)/70[Formula Omitted]-quartz (Qz) hetero acoustic layer structure as a platform. Two groups of design, including new dummy electrode and zigzag shape apodization, are proposed. The measured results show that the shape of the dummy electrode is not the dominant factor to affect the transverse mode. The proposed zigzag shape apodization can effectively suppress the transverse, at the same time maintain the quality ([Formula Omitted]) factor at the same level with the normal type. Additionally, stronger suppression ability can be realized with a tiny tradeoff of [Formula Omitted]-factor. Transverse mode suppression is a great challenge for high-performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrowband resonators, but their performances on wideband resonator have not been demonstrated. In this article, we give an in-depth study on the transverse mode suppression of wideband resonators using 11° YX-LiNbO3 (LN)/70 °Y90°X -quartz (Qz) hetero acoustic layer structure as a platform. Two groups of design, including new dummy electrode and zigzag shape apodization, are proposed. The measured results show that the shape of the dummy electrode is not the dominant factor to affect the transverse mode. The proposed zigzag shape apodization can effectively suppress the transverse, at the same time maintain the quality ( Q ) factor at the same level with the normal type. Additionally, stronger suppression ability can be realized with a tiny tradeoff of Q -factor.Transverse mode suppression is a great challenge for high-performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrowband resonators, but their performances on wideband resonator have not been demonstrated. In this article, we give an in-depth study on the transverse mode suppression of wideband resonators using 11° YX-LiNbO3 (LN)/70 °Y90°X -quartz (Qz) hetero acoustic layer structure as a platform. Two groups of design, including new dummy electrode and zigzag shape apodization, are proposed. The measured results show that the shape of the dummy electrode is not the dominant factor to affect the transverse mode. The proposed zigzag shape apodization can effectively suppress the transverse, at the same time maintain the quality ( Q ) factor at the same level with the normal type. Additionally, stronger suppression ability can be realized with a tiny tradeoff of Q -factor. Transverse mode suppression is a great challenge for high-performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrowband resonators, but their performances on wideband resonator have not been demonstrated. In this article, we give an in-depth study on the transverse mode suppression of wideband resonators using 11° YX-LiNbO3 (LN)/70 Y90 X -quartz (Qz) hetero acoustic layer structure as a platform. Two groups of design, including new dummy electrode and zigzag shape apodization, are proposed. The measured results show that the shape of the dummy electrode is not the dominant factor to affect the transverse mode. The proposed zigzag shape apodization can effectively suppress the transverse, at the same time maintain the quality ( Q ) factor at the same level with the normal type. Additionally, stronger suppression ability can be realized with a tiny tradeoff of Q -factor. |
Author | Kadota, Michio Guo, Yong Tanaka, Shuji |
Author_xml | – sequence: 1 givenname: Yong orcidid: 0000-0002-0780-0639 surname: Guo fullname: Guo, Yong organization: Department of Robotics, Tohoku University, Sendai, Japan – sequence: 2 givenname: Michio orcidid: 0000-0002-7905-1956 surname: Kadota fullname: Kadota, Michio organization: Department of Robotics, Tohoku University, Sendai, Japan – sequence: 3 givenname: Shuji orcidid: 0000-0002-2663-3266 surname: Tanaka fullname: Tanaka, Shuji organization: Department of Robotics, Tohoku University, Sendai, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38147419$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9rGzEQxUVJaZy0X6CUIugll3X11ysdg4mbgkuhcchRjLUj2LBebaXdEH_7KrVDSg6FgYHh94aZ987ISR97JOQjZ3POmf26uV2tlnPBhJxLqWrN7Bsy41roylitT8iMGaMryTg7JWc53zPGlbLiHTmVhqtacTsj-epxwNTusB-hozfj1OxpDHSToM8PmDLSH7FBejMNQ8Kc29jTUndtg1voG3qNI6ZIL32c8th6uoY9pkKnAB5fxnfwgPQX5tjDGNN78jZAl_HDsZ-T29XVZnldrX9--768XFdeajFWoBUgC14ZMAurpNwqpn0IQTAbyiyADAABWeMZE1B-bppgEbn23Dag5Dm5OOwdUvw9YR7drs0euw56LIc5YdmirkWtREG_vELv45T6cl2huFkww8SiUJ-P1LTdYeOGYhykvXu2swDmAPgUc04YnG9HGItrY4K2c5y5p-Tc3-TcU3LumFyRilfS5-3_FX06iFpE_EcgayWNkX8A4zulsg |
CODEN | ITUCER |
CitedBy_id | crossref_primary_10_1109_LMWT_2024_3496911 |
Cites_doi | 10.1109/ultsym.2018.8580175 10.1143/jjap.46.4714 10.1109/ultsym.2005.1603028 10.1109/ultsym.2011.0203 10.1109/ultsym.2019.8925592 10.1109/tuffc.2007.487 10.35848/1347-4065/acb954 10.1109/tuffc.2020.3039471 10.1109/ultsym.2010.5935738 10.1143/jjap.44.4527 10.7567/jjap.53.07kd03 10.1109/eftf/ifcs52194.2021.9604287 10.1109/lmwc.2019.2898730 10.7567/jjap.52.07hd01 10.1109/ius46767.2020.9251459 10.1109/tmtt.2021.3077261 10.1109/tuffc.2011.2068 10.1109/ultsym.2018.8579852 10.1109/tuffc.2017.2738119 10.1109/tuffc.2022.3144188 10.1109/ius54386.2022.9957707 10.1109/ultsym.1990.171334 10.1109/tuffc.2023.3337249 10.1109/tuffc.2019.2898046 10.1109/tuffc.2022.3221470 10.1143/jjap.50.07hd14 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SP 7U5 8FD F28 FR3 L7M 7X8 |
DOI | 10.1109/TUFFC.2023.3347509 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | Solid State and Superconductivity Abstracts MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1525-8955 |
EndPage | 1 |
ExternalDocumentID | 38147419 10_1109_TUFFC_2023_3347509 10374388 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Ministry of Internal Affairs and Communications grantid: SCOPE #JP225002001 funderid: 10.13039/501100009105 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5RE 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ .GJ 186 3EH 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 ICLAB IFJZH RIG UKR VH1 ZXP ZY4 NPM 7SP 7U5 8FD F28 FR3 L7M 7X8 |
ID | FETCH-LOGICAL-c352t-a54ae0fc48a869433b405cfff209f8a8fa3faafe0dc002a895ddf9ee15c19da43 |
IEDL.DBID | RIE |
ISSN | 0885-3010 1525-8955 |
IngestDate | Thu Jul 10 23:58:46 EDT 2025 Mon Jun 30 14:10:40 EDT 2025 Mon Jul 21 05:58:56 EDT 2025 Tue Jul 01 01:50:23 EDT 2025 Thu Apr 24 22:52:04 EDT 2025 Wed Aug 27 02:34:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-a54ae0fc48a869433b405cfff209f8a8fa3faafe0dc002a895ddf9ee15c19da43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7905-1956 0000-0002-0780-0639 0000-0002-2663-3266 |
PMID | 38147419 |
PQID | 2918608026 |
PQPubID | 85455 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1109_TUFFC_2023_3347509 proquest_journals_2918608026 crossref_citationtrail_10_1109_TUFFC_2023_3347509 proquest_miscellaneous_2906772742 pubmed_primary_38147419 ieee_primary_10374388 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
PublicationTitleAbbrev | T-UFFC |
PublicationTitleAlternate | IEEE Trans Ultrason Ferroelectr Freq Control |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref10 doi: 10.1109/ultsym.2018.8580175 – ident: ref23 doi: 10.1143/jjap.46.4714 – ident: ref26 doi: 10.1109/ultsym.2005.1603028 – ident: ref14 doi: 10.1109/ultsym.2011.0203 – ident: ref5 doi: 10.1109/ultsym.2019.8925592 – ident: ref13 doi: 10.1109/tuffc.2007.487 – ident: ref20 doi: 10.35848/1347-4065/acb954 – ident: ref1 doi: 10.1109/tuffc.2020.3039471 – ident: ref8 doi: 10.1109/ultsym.2010.5935738 – ident: ref22 doi: 10.1143/jjap.44.4527 – ident: ref7 doi: 10.7567/jjap.53.07kd03 – ident: ref19 doi: 10.1109/eftf/ifcs52194.2021.9604287 – ident: ref11 doi: 10.1109/lmwc.2019.2898730 – ident: ref15 doi: 10.7567/jjap.52.07hd01 – ident: ref17 doi: 10.1109/ius46767.2020.9251459 – ident: ref25 doi: 10.1109/tmtt.2021.3077261 – ident: ref16 doi: 10.1109/tuffc.2011.2068 – ident: ref4 doi: 10.1109/ultsym.2018.8579852 – ident: ref2 doi: 10.1109/tuffc.2017.2738119 – ident: ref9 doi: 10.1109/tuffc.2022.3144188 – ident: ref12 doi: 10.1109/ius54386.2022.9957707 – ident: ref24 doi: 10.1109/ultsym.1990.171334 – ident: ref6 doi: 10.1109/tuffc.2023.3337249 – ident: ref3 doi: 10.1109/tuffc.2019.2898046 – ident: ref18 doi: 10.1109/tuffc.2022.3221470 – ident: ref21 doi: 10.1143/jjap.50.07hd14 |
SSID | ssj0014492 |
Score | 2.4366014 |
Snippet | Transverse mode suppression is a great challenge for high performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrow band... Transverse mode suppression is a great challenge for high-performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrowband... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Air gaps Apodization Broadband Dummy Electrode Electrodes Frequency control LiNbO<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">3 Lithium niobates Narrowband Optical resonators Q-factor Quality Factor Resonators Shape Surface acoustic wave devices Surface Acoustic Wave Resonator Transverse mode Wideband Zigzag Apodization |
Title | Experimental Study of Transverse Mode Suppression on Wideband Hetero Acoustic Layer Surface Acoustic Wave Resonator |
URI | https://ieeexplore.ieee.org/document/10374388 https://www.ncbi.nlm.nih.gov/pubmed/38147419 https://www.proquest.com/docview/2918608026 https://www.proquest.com/docview/2906772742 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6aQKE99JGmrdukqNBbsaO15IeOIWRZQppTluRmxnpAabFDdreQ_PrOyN7ttpAS8MHIsi17RtInzeMD-JJX0qlK5WnpeLeqMDqtWySBIDppVai052jkbxflbK7ProvrMVg9xsJ476Pzmc_4NNryXW9XvFV2xDFtWtX1DuyQng3BWhuTgdaRAZl6TZGS1sp1hIw0R5fz6fQkY6LwTCnNc-Rfs1CkVXkYYcaZZvoSLtZtHBxMfmSrZZvZ-3_SNz76I17BixFziuNBSV7DE9_twfOtTIR78DR6gtrFG1icbuX8F-xmeCf6IOKcxi4cXjB9mmA20MGFthN0XH13vsXOiRm71_Ti2PaRJkycI2F6qn0b0Po_xVf4yws2HXS86N-H-fT08mSWjswMqSXAtkyx0OhlsLrGujRaqZZwnw0h5NIEKguoAmLw0lkacbE2hXPBeD8p7MQ41Oot7HZ959-DqL00aEkrasc2RYkyKK1Q0djjgtNVApO1pBo7pi1n9oyfTVy-SNNE6TYs3WaUbgJfN_fcDEk7_lt7n6W0VXMQUAIHa41oxo69aHIzqUuOTy4T-Ly5TF2S7SzYefqLDWfQp0VLpfME3g2atHk4ASRNIM58eOClH-EZtU0PfuEHsLu8XflDgj3L9lNU998V-P4p |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BEGI88DHGCAwwEm8omRs7if04TasKdH1qtb1Fjj-kCZSgtUWCv547Jy0FaQgpD1HiJE7unDv7fnc_gPd5xZ2oRJ6WjlarCi1T1RgUiDGOWxEq6Skb-WJWThby01VxNSSrx1wY730En_mMdmMs33V2TUtlJ5TTJoVSd-EeGn5Z9Ola26CBlJEDGcdNkaLe8k2ODNcn88V4fJYRVXgmhCQr-YcdisQqt_uY0daMH8Ns08seYvIlW6-azP78q4Djf7_GE3g0eJ3stFeTp3DHtwfwcKcW4QHcj1hQu3wGy_Odqv-MgIY_WBdYtGoE4vCMCNQY8YH2INqW4XZ57XxjWscmBLDp2KntIlEYmxr06rH1TTDW_z58ab57RsGDlqb9h7AYn8_PJunAzZBadNlWqSmk8TxYqYwqtRSiQc_PhhByrgMeC0YEY4LnzuI_1yhdOBe096PCjrQzUjyHvbZr_QtgynNtLOqFchRV5IYHIYUR-PdxwckqgdFGUrUdCpcTf8bXOk5guK6jdGuSbj1IN4EP22u-9WU7_tn6kKS007IXUALHG42oh6G9rHM9UiVlKJcJvNuexkFJkRbTevyKNdXQx2lLJfMEjnpN2t4cXSSJbpx-ectD38KDyfxiWk8_zj6_gn3sp-xR4sewt7pZ-9foBK2aN1H1fwGE4wGF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+Study+of+Transverse+Mode+Suppression+on+Wideband+Hetero+Acoustic+Layer+Surface+Acoustic+Wave+Resonator&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=Guo%2C+Yong&rft.au=Kadota%2C+Michio&rft.au=Tanaka%2C+Shuji&rft.date=2024-02-01&rft.issn=1525-8955&rft.eissn=1525-8955&rft.volume=71&rft.issue=2&rft.spage=295&rft_id=info:doi/10.1109%2FTUFFC.2023.3347509&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon |