Experimental Study of Transverse Mode Suppression on Wideband Hetero Acoustic Layer Surface Acoustic Wave Resonator

Transverse mode suppression is a great challenge for high performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrow band resonators, but their performances on wideband resonator have not been demonstrated. In this paper, we give an in-depth study on the transverse...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 71; no. 2; p. 1
Main Authors Guo, Yong, Kadota, Michio, Tanaka, Shuji
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-3010
1525-8955
1525-8955
DOI10.1109/TUFFC.2023.3347509

Cover

Abstract Transverse mode suppression is a great challenge for high performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrow band resonators, but their performances on wideband resonator have not been demonstrated. In this paper, we give an in-depth study on the transverse mode suppression of wideband resonators using 11°YX-LiNbO 3 (LN)/ 70°Y90°X-Quartz (Qz) hetero acoustic layer structure as a platform. Two groups of design, including new dummy electrode and zigzag shape apodization, are proposed. The measured results show that the shape of the dummy electrode is not the dominant factor to affect the transverse mode. The proposed zigzag shape apodization can effectively suppress the transverse, at the same time maintain the Quality (Q) factor at the same level with normal type. Additionally, stronger suppression ability can be realized with tiny trade-off of Q factor.
AbstractList Transverse mode suppression is a great challenge for high performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrow band resonators, but their performances on wideband resonator have not been demonstrated. In this paper, we give an in-depth study on the transverse mode suppression of wideband resonators using 11°YX-LiNbO 3 (LN)/ 70°Y90°X-Quartz (Qz) hetero acoustic layer structure as a platform. Two groups of design, including new dummy electrode and zigzag shape apodization, are proposed. The measured results show that the shape of the dummy electrode is not the dominant factor to affect the transverse mode. The proposed zigzag shape apodization can effectively suppress the transverse, at the same time maintain the Quality (Q) factor at the same level with normal type. Additionally, stronger suppression ability can be realized with tiny trade-off of Q factor.
Transverse mode suppression is a great challenge for high-performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrowband resonators, but their performances on wideband resonator have not been demonstrated. In this article, we give an in-depth study on the transverse mode suppression of wideband resonators using 11° YX-LiNbO3 (LN)/70[Formula Omitted]-quartz (Qz) hetero acoustic layer structure as a platform. Two groups of design, including new dummy electrode and zigzag shape apodization, are proposed. The measured results show that the shape of the dummy electrode is not the dominant factor to affect the transverse mode. The proposed zigzag shape apodization can effectively suppress the transverse, at the same time maintain the quality ([Formula Omitted]) factor at the same level with the normal type. Additionally, stronger suppression ability can be realized with a tiny tradeoff of [Formula Omitted]-factor.
Transverse mode suppression is a great challenge for high-performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrowband resonators, but their performances on wideband resonator have not been demonstrated. In this article, we give an in-depth study on the transverse mode suppression of wideband resonators using 11° YX-LiNbO3 (LN)/70 °Y90°X -quartz (Qz) hetero acoustic layer structure as a platform. Two groups of design, including new dummy electrode and zigzag shape apodization, are proposed. The measured results show that the shape of the dummy electrode is not the dominant factor to affect the transverse mode. The proposed zigzag shape apodization can effectively suppress the transverse, at the same time maintain the quality ( Q ) factor at the same level with the normal type. Additionally, stronger suppression ability can be realized with a tiny tradeoff of Q -factor.Transverse mode suppression is a great challenge for high-performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrowband resonators, but their performances on wideband resonator have not been demonstrated. In this article, we give an in-depth study on the transverse mode suppression of wideband resonators using 11° YX-LiNbO3 (LN)/70 °Y90°X -quartz (Qz) hetero acoustic layer structure as a platform. Two groups of design, including new dummy electrode and zigzag shape apodization, are proposed. The measured results show that the shape of the dummy electrode is not the dominant factor to affect the transverse mode. The proposed zigzag shape apodization can effectively suppress the transverse, at the same time maintain the quality ( Q ) factor at the same level with the normal type. Additionally, stronger suppression ability can be realized with a tiny tradeoff of Q -factor.
Transverse mode suppression is a great challenge for high-performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrowband resonators, but their performances on wideband resonator have not been demonstrated. In this article, we give an in-depth study on the transverse mode suppression of wideband resonators using 11° YX-LiNbO3 (LN)/70 Y90 X -quartz (Qz) hetero acoustic layer structure as a platform. Two groups of design, including new dummy electrode and zigzag shape apodization, are proposed. The measured results show that the shape of the dummy electrode is not the dominant factor to affect the transverse mode. The proposed zigzag shape apodization can effectively suppress the transverse, at the same time maintain the quality ( Q ) factor at the same level with the normal type. Additionally, stronger suppression ability can be realized with a tiny tradeoff of Q -factor.
Author Kadota, Michio
Guo, Yong
Tanaka, Shuji
Author_xml – sequence: 1
  givenname: Yong
  orcidid: 0000-0002-0780-0639
  surname: Guo
  fullname: Guo, Yong
  organization: Department of Robotics, Tohoku University, Sendai, Japan
– sequence: 2
  givenname: Michio
  orcidid: 0000-0002-7905-1956
  surname: Kadota
  fullname: Kadota, Michio
  organization: Department of Robotics, Tohoku University, Sendai, Japan
– sequence: 3
  givenname: Shuji
  orcidid: 0000-0002-2663-3266
  surname: Tanaka
  fullname: Tanaka, Shuji
  organization: Department of Robotics, Tohoku University, Sendai, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38147419$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rGzEQxUVJaZy0X6CUIugll3X11ysdg4mbgkuhcchRjLUj2LBebaXdEH_7KrVDSg6FgYHh94aZ987ISR97JOQjZ3POmf26uV2tlnPBhJxLqWrN7Bsy41roylitT8iMGaMryTg7JWc53zPGlbLiHTmVhqtacTsj-epxwNTusB-hozfj1OxpDHSToM8PmDLSH7FBejMNQ8Kc29jTUndtg1voG3qNI6ZIL32c8th6uoY9pkKnAB5fxnfwgPQX5tjDGNN78jZAl_HDsZ-T29XVZnldrX9--768XFdeajFWoBUgC14ZMAurpNwqpn0IQTAbyiyADAABWeMZE1B-bppgEbn23Dag5Dm5OOwdUvw9YR7drs0euw56LIc5YdmirkWtREG_vELv45T6cl2huFkww8SiUJ-P1LTdYeOGYhykvXu2swDmAPgUc04YnG9HGItrY4K2c5y5p-Tc3-TcU3LumFyRilfS5-3_FX06iFpE_EcgayWNkX8A4zulsg
CODEN ITUCER
CitedBy_id crossref_primary_10_1109_LMWT_2024_3496911
Cites_doi 10.1109/ultsym.2018.8580175
10.1143/jjap.46.4714
10.1109/ultsym.2005.1603028
10.1109/ultsym.2011.0203
10.1109/ultsym.2019.8925592
10.1109/tuffc.2007.487
10.35848/1347-4065/acb954
10.1109/tuffc.2020.3039471
10.1109/ultsym.2010.5935738
10.1143/jjap.44.4527
10.7567/jjap.53.07kd03
10.1109/eftf/ifcs52194.2021.9604287
10.1109/lmwc.2019.2898730
10.7567/jjap.52.07hd01
10.1109/ius46767.2020.9251459
10.1109/tmtt.2021.3077261
10.1109/tuffc.2011.2068
10.1109/ultsym.2018.8579852
10.1109/tuffc.2017.2738119
10.1109/tuffc.2022.3144188
10.1109/ius54386.2022.9957707
10.1109/ultsym.1990.171334
10.1109/tuffc.2023.3337249
10.1109/tuffc.2019.2898046
10.1109/tuffc.2022.3221470
10.1143/jjap.50.07hd14
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SP
7U5
8FD
F28
FR3
L7M
7X8
DOI 10.1109/TUFFC.2023.3347509
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList
Solid State and Superconductivity Abstracts
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1525-8955
EndPage 1
ExternalDocumentID 38147419
10_1109_TUFFC_2023_3347509
10374388
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Ministry of Internal Affairs and Communications
  grantid: SCOPE #JP225002001
  funderid: 10.13039/501100009105
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5RE
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
.GJ
186
3EH
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
ICLAB
IFJZH
RIG
UKR
VH1
ZXP
ZY4
NPM
7SP
7U5
8FD
F28
FR3
L7M
7X8
ID FETCH-LOGICAL-c352t-a54ae0fc48a869433b405cfff209f8a8fa3faafe0dc002a895ddf9ee15c19da43
IEDL.DBID RIE
ISSN 0885-3010
1525-8955
IngestDate Thu Jul 10 23:58:46 EDT 2025
Mon Jun 30 14:10:40 EDT 2025
Mon Jul 21 05:58:56 EDT 2025
Tue Jul 01 01:50:23 EDT 2025
Thu Apr 24 22:52:04 EDT 2025
Wed Aug 27 02:34:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-a54ae0fc48a869433b405cfff209f8a8fa3faafe0dc002a895ddf9ee15c19da43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7905-1956
0000-0002-0780-0639
0000-0002-2663-3266
PMID 38147419
PQID 2918608026
PQPubID 85455
PageCount 1
ParticipantIDs crossref_primary_10_1109_TUFFC_2023_3347509
proquest_journals_2918608026
crossref_citationtrail_10_1109_TUFFC_2023_3347509
proquest_miscellaneous_2906772742
pubmed_primary_38147419
ieee_primary_10374388
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on ultrasonics, ferroelectrics, and frequency control
PublicationTitleAbbrev T-UFFC
PublicationTitleAlternate IEEE Trans Ultrason Ferroelectr Freq Control
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref10
  doi: 10.1109/ultsym.2018.8580175
– ident: ref23
  doi: 10.1143/jjap.46.4714
– ident: ref26
  doi: 10.1109/ultsym.2005.1603028
– ident: ref14
  doi: 10.1109/ultsym.2011.0203
– ident: ref5
  doi: 10.1109/ultsym.2019.8925592
– ident: ref13
  doi: 10.1109/tuffc.2007.487
– ident: ref20
  doi: 10.35848/1347-4065/acb954
– ident: ref1
  doi: 10.1109/tuffc.2020.3039471
– ident: ref8
  doi: 10.1109/ultsym.2010.5935738
– ident: ref22
  doi: 10.1143/jjap.44.4527
– ident: ref7
  doi: 10.7567/jjap.53.07kd03
– ident: ref19
  doi: 10.1109/eftf/ifcs52194.2021.9604287
– ident: ref11
  doi: 10.1109/lmwc.2019.2898730
– ident: ref15
  doi: 10.7567/jjap.52.07hd01
– ident: ref17
  doi: 10.1109/ius46767.2020.9251459
– ident: ref25
  doi: 10.1109/tmtt.2021.3077261
– ident: ref16
  doi: 10.1109/tuffc.2011.2068
– ident: ref4
  doi: 10.1109/ultsym.2018.8579852
– ident: ref2
  doi: 10.1109/tuffc.2017.2738119
– ident: ref9
  doi: 10.1109/tuffc.2022.3144188
– ident: ref12
  doi: 10.1109/ius54386.2022.9957707
– ident: ref24
  doi: 10.1109/ultsym.1990.171334
– ident: ref6
  doi: 10.1109/tuffc.2023.3337249
– ident: ref3
  doi: 10.1109/tuffc.2019.2898046
– ident: ref18
  doi: 10.1109/tuffc.2022.3221470
– ident: ref21
  doi: 10.1143/jjap.50.07hd14
SSID ssj0014492
Score 2.4366014
Snippet Transverse mode suppression is a great challenge for high performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrow band...
Transverse mode suppression is a great challenge for high-performance surface acoustic wave (SAW) resonators. Conventional methods work well on narrowband...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Air gaps
Apodization
Broadband
Dummy Electrode
Electrodes
Frequency control
LiNbO<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">3
Lithium niobates
Narrowband
Optical resonators
Q-factor
Quality Factor
Resonators
Shape
Surface acoustic wave devices
Surface Acoustic Wave Resonator
Transverse mode
Wideband
Zigzag Apodization
Title Experimental Study of Transverse Mode Suppression on Wideband Hetero Acoustic Layer Surface Acoustic Wave Resonator
URI https://ieeexplore.ieee.org/document/10374388
https://www.ncbi.nlm.nih.gov/pubmed/38147419
https://www.proquest.com/docview/2918608026
https://www.proquest.com/docview/2906772742
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6aQKE99JGmrdukqNBbsaO15IeOIWRZQppTluRmxnpAabFDdreQ_PrOyN7ttpAS8MHIsi17RtInzeMD-JJX0qlK5WnpeLeqMDqtWySBIDppVai052jkbxflbK7ProvrMVg9xsJ476Pzmc_4NNryXW9XvFV2xDFtWtX1DuyQng3BWhuTgdaRAZl6TZGS1sp1hIw0R5fz6fQkY6LwTCnNc-Rfs1CkVXkYYcaZZvoSLtZtHBxMfmSrZZvZ-3_SNz76I17BixFziuNBSV7DE9_twfOtTIR78DR6gtrFG1icbuX8F-xmeCf6IOKcxi4cXjB9mmA20MGFthN0XH13vsXOiRm71_Ti2PaRJkycI2F6qn0b0Po_xVf4yws2HXS86N-H-fT08mSWjswMqSXAtkyx0OhlsLrGujRaqZZwnw0h5NIEKguoAmLw0lkacbE2hXPBeD8p7MQ41Oot7HZ959-DqL00aEkrasc2RYkyKK1Q0djjgtNVApO1pBo7pi1n9oyfTVy-SNNE6TYs3WaUbgJfN_fcDEk7_lt7n6W0VXMQUAIHa41oxo69aHIzqUuOTy4T-Ly5TF2S7SzYefqLDWfQp0VLpfME3g2atHk4ASRNIM58eOClH-EZtU0PfuEHsLu8XflDgj3L9lNU998V-P4p
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BEGI88DHGCAwwEm8omRs7if04TasKdH1qtb1Fjj-kCZSgtUWCv547Jy0FaQgpD1HiJE7unDv7fnc_gPd5xZ2oRJ6WjlarCi1T1RgUiDGOWxEq6Skb-WJWThby01VxNSSrx1wY730En_mMdmMs33V2TUtlJ5TTJoVSd-EeGn5Z9Ola26CBlJEDGcdNkaLe8k2ODNcn88V4fJYRVXgmhCQr-YcdisQqt_uY0daMH8Ns08seYvIlW6-azP78q4Djf7_GE3g0eJ3stFeTp3DHtwfwcKcW4QHcj1hQu3wGy_Odqv-MgIY_WBdYtGoE4vCMCNQY8YH2INqW4XZ57XxjWscmBLDp2KntIlEYmxr06rH1TTDW_z58ab57RsGDlqb9h7AYn8_PJunAzZBadNlWqSmk8TxYqYwqtRSiQc_PhhByrgMeC0YEY4LnzuI_1yhdOBe096PCjrQzUjyHvbZr_QtgynNtLOqFchRV5IYHIYUR-PdxwckqgdFGUrUdCpcTf8bXOk5guK6jdGuSbj1IN4EP22u-9WU7_tn6kKS007IXUALHG42oh6G9rHM9UiVlKJcJvNuexkFJkRbTevyKNdXQx2lLJfMEjnpN2t4cXSSJbpx-ectD38KDyfxiWk8_zj6_gn3sp-xR4sewt7pZ-9foBK2aN1H1fwGE4wGF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+Study+of+Transverse+Mode+Suppression+on+Wideband+Hetero+Acoustic+Layer+Surface+Acoustic+Wave+Resonator&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=Guo%2C+Yong&rft.au=Kadota%2C+Michio&rft.au=Tanaka%2C+Shuji&rft.date=2024-02-01&rft.issn=1525-8955&rft.eissn=1525-8955&rft.volume=71&rft.issue=2&rft.spage=295&rft_id=info:doi/10.1109%2FTUFFC.2023.3347509&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon