Application of GMDH to Predict Pore Pressure from Well Logs Data: A Case Study from Southeast Sichuan Basin, China

Pore pressure prediction is significant in the petroleum industry because, compared to direct measurement, it is cost-effective and it generates an extensive range of data. Mathematical correlations fail to predict pore pressure due to their failure to include lateral transfer in the reservoir, high...

Full description

Saved in:
Bibliographic Details
Published inNatural resources research (New York, N.Y.) Vol. 32; no. 4; pp. 1711 - 1731
Main Authors Mgimba, Melckzedeck M., Jiang, Shu, Nyakilla, Edwin E., Mwakipunda, Grant Charles
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pore pressure prediction is significant in the petroleum industry because, compared to direct measurement, it is cost-effective and it generates an extensive range of data. Mathematical correlations fail to predict pore pressure due to their failure to include lateral transfer in the reservoir, high temperature and mixed lithology and other mechanisms like aqua-thermal expansion, dehydration of clay and mineral alterations. Also, several machine learning techniques provide unsatisfactory results when predicting pore pressures due to poor selection of input data, over-fitting, slow convergence of results, and manual adjustment of model parameters like hidden layers and weights. To counteract these challenges, we employed, for the first time, group method of data handling (GMDH) technique to predict formation pore pressures from well logs data in the Nanye 1 well, southeast of the Sichuan Basin. Then, the performance of the GMDH technique was compared to other machine learning techniques, including polynomial classifier (POL) and artificial neural networks (ANNs). The GMDH technique provided results with the highest accuracy compared with the other two techniques, giving the lowest root-mean-square error (RMSE) of 0.0308 MPa. In addition, the GMDH technique provided a high coefficient of determination of 0.998. The ANN and POL gave RMSEs 0.0322 and 0.5873 MPa, respectively. Apart from the good results, the GMDH technique was able to identify data structure, direct approximate the results, automatically select the model running parameters and select the relevant input data for predicting the pore pressure, which were the challenges for other techniques. Therefore, the GMDH can be applied to predict pore pressure from the well logs data.
AbstractList Pore pressure prediction is significant in the petroleum industry because, compared to direct measurement, it is cost-effective and it generates an extensive range of data. Mathematical correlations fail to predict pore pressure due to their failure to include lateral transfer in the reservoir, high temperature and mixed lithology and other mechanisms like aqua-thermal expansion, dehydration of clay and mineral alterations. Also, several machine learning techniques provide unsatisfactory results when predicting pore pressures due to poor selection of input data, over-fitting, slow convergence of results, and manual adjustment of model parameters like hidden layers and weights. To counteract these challenges, we employed, for the first time, group method of data handling (GMDH) technique to predict formation pore pressures from well logs data in the Nanye 1 well, southeast of the Sichuan Basin. Then, the performance of the GMDH technique was compared to other machine learning techniques, including polynomial classifier (POL) and artificial neural networks (ANNs). The GMDH technique provided results with the highest accuracy compared with the other two techniques, giving the lowest root-mean-square error (RMSE) of 0.0308 MPa. In addition, the GMDH technique provided a high coefficient of determination of 0.998. The ANN and POL gave RMSEs 0.0322 and 0.5873 MPa, respectively. Apart from the good results, the GMDH technique was able to identify data structure, direct approximate the results, automatically select the model running parameters and select the relevant input data for predicting the pore pressure, which were the challenges for other techniques. Therefore, the GMDH can be applied to predict pore pressure from the well logs data.
Pore pressure prediction is significant in the petroleum industry because, compared to direct measurement, it is cost-effective and it generates an extensive range of data. Mathematical correlations fail to predict pore pressure due to their failure to include lateral transfer in the reservoir, high temperature and mixed lithology and other mechanisms like aqua-thermal expansion, dehydration of clay and mineral alterations. Also, several machine learning techniques provide unsatisfactory results when predicting pore pressures due to poor selection of input data, over-fitting, slow convergence of results, and manual adjustment of model parameters like hidden layers and weights. To counteract these challenges, we employed, for the first time, group method of data handling (GMDH) technique to predict formation pore pressures from well logs data in the Nanye 1 well, southeast of the Sichuan Basin. Then, the performance of the GMDH technique was compared to other machine learning techniques, including polynomial classifier (POL) and artificial neural networks (ANNs). The GMDH technique provided results with the highest accuracy compared with the other two techniques, giving the lowest root-mean-square error (RMSE) of 0.0308 MPa. In addition, the GMDH technique provided a high coefficient of determination of 0.998. The ANN and POL gave RMSEs 0.0322 and 0.5873 MPa, respectively. Apart from the good results, the GMDH technique was able to identify data structure, direct approximate the results, automatically select the model running parameters and select the relevant input data for predicting the pore pressure, which were the challenges for other techniques. Therefore, the GMDH can be applied to predict pore pressure from the well logs data.
Author Mgimba, Melckzedeck M.
Nyakilla, Edwin E.
Jiang, Shu
Mwakipunda, Grant Charles
Author_xml – sequence: 1
  givenname: Melckzedeck M.
  surname: Mgimba
  fullname: Mgimba, Melckzedeck M.
  email: melckmgimba1@gmail.com
  organization: Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences, Department of Geosciences and Mining Technology, Mbeya University of Science and Technology
– sequence: 2
  givenname: Shu
  surname: Jiang
  fullname: Jiang, Shu
  email: jiangsu@cug.edu.cn
  organization: Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences
– sequence: 3
  givenname: Edwin E.
  surname: Nyakilla
  fullname: Nyakilla, Edwin E.
  organization: Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences
– sequence: 4
  givenname: Grant Charles
  surname: Mwakipunda
  fullname: Mwakipunda, Grant Charles
  organization: Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences
BookMark eNp9kUtPGzEURi1EpQLlD3RlqRsWDPVjzHi6C-FVKVWRAmJp3fhBjCZ2sD0L_n0dBqkSC1a-ls6xvuvvEO2HGCxC3yk5o4R0PzOlRPCGMN5QwkjXsD10QEXHG9lLur-bGWm6lvdf0WHOz6RKXIoDlGbb7eA1FB8Djg7f_Lm8xSXiu2SN1wXfxWR3l5zHOrgUN_jRDgNexKeML6HALzzDc8gWL8toXidiGceytpALXnq9HiHgC8g-nOL52gf4hr44GLI9fj-P0MP11f38tln8vfk9ny0azQUrDQjWA2Oy5xp4J410rm3lSoAzK62dcaKtu4GmRlpmhNV0xcW5BCMomL5b8SN0Mr27TfFltLmojc-6hodg45gVp6KlkvRMVPTHB_Q5jinUdIr1VHJ-3nakUnKidIo5J-uU9uXt50oCPyhK1K4MNZWhahnqrQzFqso-qNvkN5BeP5f4JOUKhyeb_qf6xPoH-0idUw
CitedBy_id crossref_primary_10_1016_j_fuel_2025_134534
crossref_primary_10_3390_app14062273
crossref_primary_10_1021_acs_energyfuels_3c01510
crossref_primary_10_1016_j_ijhydene_2025_02_342
crossref_primary_10_2118_223123_PA
crossref_primary_10_2118_224438_PA
crossref_primary_10_1016_j_ijhydene_2024_09_054
crossref_primary_10_3390_min14010031
crossref_primary_10_1007_s10614_025_10863_x
crossref_primary_10_2118_217979_PA
crossref_primary_10_1016_j_engappai_2025_110137
Cites_doi 10.1016/j.cageo.2020.104548
10.1007/s11053-021-09908-3
10.1007/s11053-019-09576-4
10.1016/j.egyr.2022.01.012
10.1088/1757-899X/546/3/032017
10.1016/j.petrol.2021.109226
10.1016/j.eswa.2013.04.036
10.1080/19648189.2013.811614
10.1016/j.petrol.2015.02.022
10.3997/1365-2397.2006004
10.2118/150835-MS
10.1177/0144598715623666
10.3390/en13071774
10.1016/j.oceaneng.2015.05.016
10.1177/0144598717752148
10.1007/s12517-019-4800-7
10.1016/B978-0-12-812234-1.00002-9
10.1007/s11053-021-09988-1
10.1016/j.petrol.2017.05.010
10.1016/j.ptlrs.2021.11.001
10.1016/j.asoc.2015.04.046
10.1016/j.petlm.2021.04.003
10.1016/j.neucom.2008.08.006
10.9734/jenrr/2021/v9i230230
10.1016/j.amc.2017.06.012
10.1007/s13369-018-3574-7
10.1063/1.1712886
10.1016/B978-0-12-817236-0.00014-5
10.1016/j.ptlrs.2017.01.003
10.1016/S1876-3804(12)60060-3
10.3390/en13225981
10.1016/j.eswa.2017.04.040
10.1080/19942060.2019.1639549
10.1016/j.petlm.2020.07.007
10.2118/27488-PA
10.3390/en13030551
10.1007/978-1-4471-0345-5
10.1016/0301-9268(91)90068-L
10.3997/2214-4609-pdb.15.O-25
10.1007/s11053-021-09852-2
10.1080/00207720701847745
10.1016/j.energy.2021.121915
10.1002/cjg2.20178
10.1016/j.jngse.2014.12.025
10.1190/tle31111288.1
ContentType Journal Article
Copyright International Association for Mathematical Geosciences 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: International Association for Mathematical Geosciences 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7S9
L.6
DOI 10.1007/s11053-023-10207-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Central Student
AGRICOLA

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Geology
Physics
Computer Science
EISSN 1573-8981
EndPage 1731
ExternalDocumentID 10_1007_s11053_023_10207_2
GeographicLocations Sichuan Basin
China
Sichuan China
GeographicLocations_xml – name: China
– name: Sichuan China
– name: Sichuan Basin
GrantInformation_xml – fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: 4213080
  funderid: http://dx.doi.org/10.13039/100014718
– fundername: China Scholarship Council
  grantid: CSC No.:2019GBJ002427
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
PATMY
PCBAR
PDBOC
PF0
PT4
PT5
PYCSY
QOK
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z85
Z86
Z8S
Z8T
Z8U
Z8Z
ZMTXR
~02
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
D1I
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c352t-a529a22893ca378d8ff448b5afdbccfdf54898ac1d8e2d5ec1b3568ad51ad97b3
IEDL.DBID U2A
ISSN 1520-7439
IngestDate Fri Jul 11 09:40:11 EDT 2025
Fri Jul 25 10:57:06 EDT 2025
Tue Jul 01 04:16:51 EDT 2025
Thu Apr 24 23:04:37 EDT 2025
Fri Feb 21 02:43:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords means clustering
GMDH
Well logs
Pore pressure
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-a529a22893ca378d8ff448b5afdbccfdf54898ac1d8e2d5ec1b3568ad51ad97b3
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 2918336470
PQPubID 2043663
PageCount 21
ParticipantIDs proquest_miscellaneous_3154180925
proquest_journals_2918336470
crossref_citationtrail_10_1007_s11053_023_10207_2
crossref_primary_10_1007_s11053_023_10207_2
springer_journals_10_1007_s11053_023_10207_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230800
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 8
  year: 2023
  text: 20230800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Official Journal of the International Association for Mathematical Geosciences
PublicationTitle Natural resources research (New York, N.Y.)
PublicationTitleAbbrev Nat Resour Res
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Al-MohairHKSalehJMSuandiSAHybrid human skin detection using neural network and K-means clustering techniqueApplied Soft Computing20153333734710.1016/j.asoc.2015.04.046
YuHChenGGuHA machine learning methodology for multivariate pore-pressure predictionComputers & Geosciences202014310.1016/j.cageo.2020.104548
Mathew NkurluBShenCAsante-OkyereSMulashaniAKChunguJWangLPrediction of permeability using group method of data handling (GMDH) neural network from well log dataEnergies202013355110.3390/en13030551
HuLDengJZhuHLinHChenZDengFYanCA new pore pressure prediction method-back propagation artificial neural networkElectronic Journal of Geotechnical Engineering20131840934107
ZhangGDavoodiSBandSSGhorbaniHMosaviAMoslehpourMA robust approach to pore pressure prediction applying petrophysical log data aided by machine learning techniquesEnergy Reports202282233224710.1016/j.egyr.2022.01.012
Swarbrick, R. E. (2001). Challenges of porosity based pore pressure prediction. Paper presented at the 63rd EAGE conference & exhibition.
IvakhnenkoAIvakhnenkoGThe review of problems solvable by algorithms of the group method of data handling (GMDH)Pattern recognition and image analysis c/c of raspoznavaniye obrazov i analiz izobrazhenii19955527535
Abu-Kheil, Y. M. Z. (2009). System Identification using group method of data handling (GMDH).
AhmedAElkatatnySAliAMahmoudMAbdulraheemANew model for pore pressure prediction while drilling using artificial neural networksArabian Journal for Science and Engineering20194466079608810.1007/s13369-018-3574-7
de Souza, J. A., Martínez, G. C., de Leon, M. F. C. P., Azadpour, M., & Atashbari, V. (2021). Pore pressure and wellbore instability. In Applied Techniques to Integrated Oil and Gas Reservoir Characterization (pp. 355–394): Elsevier.
NajafzadehMBaraniG-AHessami-KermaniM-REvaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored bedsOcean Engineering201510438739610.1016/j.oceaneng.2015.05.016
FarsiMMohamadianNGhorbaniHWoodDADavoodiSMoghadasiJAhmadi AlvarMPredicting formation pore-pressure from well-log data with hybrid machine-learning optimization algorithmsNatural Resources Research20213053455348110.1007/s11053-021-09852-2
LiuYQiuNYaoQZhuCThe impact of temperature on overpressure unloading in the central Sichuan Basin, southwest ChinaJournal of Petroleum Science and Engineering201715614215110.1016/j.petrol.2017.05.010
Contreras, O., Tutuncu, A., Aguilera, R., & Hareland, G. (2011). A case study for pore pressure prediction in an abnormally sub-pressured western Canada sedimentary basin. Paper presented at the 45th US Rock Mechanics/Geomechanics Symposium.
KeshavarziRJahanbakhshiRReal-time prediction of pore pressure gradient through an artificial intelligence approach: A case study from one of middle east oil fieldsEuropean journal of environmental and civil engineering201317867568610.1080/19648189.2013.811614
CaoCLiLLiuYDuLLiZHeJFactors affecting shale gas chemistry and stable isotope and noble gas isotope composition and distribution: A case study of lower Silurian Longmaxi Shale GasSichuan Basin. Energies20201322598110.3390/en13225981
KorschRHuazhaoMZhaocaiSGorterJThe Sichuan basin, southwest China: A late proterozoic (Sinian) petroleum provincePrecambrian Research1991541456310.1016/0301-9268(91)90068-L
BowersGLPore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompactionSPE Drilling & Completion19951002899510.2118/27488-PA
SrinivasanDEnergy demand prediction using GMDH networksNeurocomputing2008721–362562910.1016/j.neucom.2008.08.006
BiotMAGeneral theory of three-dimensional consolidationJournal of applied physics194112215516410.1063/1.1712886
LinXZengJWangJHuangMNatural Gas reservoir characteristics and non-Darcy flow in low-permeability sandstone reservoir of Sulige gas field, Ordos BasinEnergies2020137177410.3390/en13071774
Abbey, C. P., chukwudi Meludu, O., & Oniku, A. S. (2021). Investigation of abnormal pore pressure variations by the application of seismic inversion in Norne Field, Mid-Norwegian margin Norway. Petroleum Research.
Yi-FengLLun-JuZNan-ShengQJing-KunJQingCThe effect of temperature on the overpressure distribution and formation in the central paleo-uplift of the Sichuan BasinChinese Journal of Geophysics201558434035110.1002/cjg2.20178
QiXHuQYiXZhangSShale gas exploration prospect of Lower Cambrian Wangyinpu formation in Xiuwu BasinChina Mining Magazine20152410102107
ZouCUnconventional petroleum geology2017Elsevier10.1016/B978-0-12-812234-1.00002-9
JingTZhangJXuSLiuZHanSCritical geological characteristics and gas-bearing controlling factors in Longmaxi shales in southeastern ChongqingChina. Energy Exploration & Exploitation2016341426010.1177/0144598715623666
Asante-OkyereSShenCZiggahYYRulegeyaMMZhuXA novel hybrid technique of integrating gradient-boosted machine and clustering algorithms for lithology classificationNatural Resources Research20202942257227310.1007/s11053-019-09576-4
MulashaniAKShenCNkurluBMMkonoCNKawamalaMEnhanced group method of data handling (GMDH) for permeability prediction based on the modified Levenberg Marquardt technique from well log dataEnergy202223910.1016/j.energy.2021.121915
ShaghaghiSBonakdariHGholamiAEbtehajIZeinolabediniMComparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel designApplied Mathematics and Computation201731327128610.1016/j.amc.2017.06.012
Zimmerman, R. W. (1990). Compressibility of sandstones.
HailongXGuoqiWChengzaoJWeiYTianweiZWurenXLiCBeiweiLTectonic evolution of the Leshan-Longnüsi paleo-uplift and its control on gas accumulation in the Sinian strataPetroleum Exploration and development201239443644610.1016/S1876-3804(12)60060-3
XuQQiuNLiuWShenAWangXZhangGCharacteristics of the temperature–pressure field evolution of Middle Permian system in the northwest of Sichuan BasinEnergy Exploration & Exploitation201836470572610.1177/0144598717752148
MulashaniAKShenCAsante-OkyereSKerttuPNAbellyENGroup method of data handling (GMDH) neural network for estimating total organic carbon (TOC) and hydrocarbon potential distribution (S1, S2) using well logsNatural Resources Research20213053605362210.1007/s11053-021-09908-3
YoucefiMRHadjadjABoukrederaFSNew model for standpipe pressure prediction while drilling using group method of data handlingPetroleum20228221021810.1016/j.petlm.2021.04.003
MurphyKPDynamic bayesian networks: Representation, inference and learning2002University of California
MutumbaGEcheguSAdaramolaSM.Prospects and challenges of geothermal energy in UgandaJournal of Energy Research and Reviews202110.9734/jenrr/2021/v9i230230
SwarbrickRReview of pore-pressure prediction challenges in high-temperature areasThe Leading Edge201231111288129410.1190/tle31111288.1
AzadpourMManamanNSKadkhodaie-IlkhchiASedghipourM-RPore pressure prediction and modeling using well-logging data in one of the gas fields in south of IranJournal of Petroleum Science and Engineering2015128152310.1016/j.petrol.2015.02.022
WangGJuYHanKEarly Paleozoic shale properties and gas potential evaluation in Xiuwu Basin, western Lower Yangtze PlatformJournal of Natural Gas Science and Engineering20152248949710.1016/j.jngse.2014.12.025
LiuSFMaYSWangGZFormation Process and mechanism of the Sinian-Silurian natural Reservoirs in the Sichuan Basin2014Science Press(in Chinese)
MesbahMHabibniaSAhmadiSSaeedi DehaghaniAHBayatSDeveloping a robust correlation for prediction of sweet and sour gas hydrate formation temperaturePetroleum20228220420910.1016/j.petlm.2020.07.007
Veeken, P. P. (2006). Seismic stratigraphy, basin analysis and reservoir characterisation: Elsevier.
ZhiliLNew recognition of basement in Sichuan BasinJournal of Chengdu University of Technology1998252191200
Hutomo, P., Rosid, M., & Haidar, M. (2019). Pore pressure prediction using eaton and neural network method in carbonate field “X” based on seismic data. Paper presented at the IOP conference series: Materials science and engineering.
Rahim, N. A., Taib, M., Adom, A., & Mashor, M. (2006). The NARMAX model for a dc motor using mlp neural network. Paper presented at the Proceeding of the First International Conference 0n MAN-MACHINE SYSTEMS (ICoMMS).
AhmedAElkatatnySAliAAbdulraheemAComparative analysis of artificial intelligence techniques for formation pressure prediction while drillingArabian Journal of Geosciences2019121811310.1007/s12517-019-4800-7
WoY-JZhouYXiaoK-HThe burial history and models for hydrocarbon generation and evolution in the marine strata in southern ChinaSedimentary Geology and Tethyan Geology2007273100
Nyakilla, E. E., Silingi, S. N., Shen, C., Jun, G., Mulashani, A. K., & Chibura, P. E. (2022). Evaluation of source rock potentiality and prediction of total organic carbon using well log data and integrated methods of multivariate analysis, machine learning, and geochemical analysis. Natural Resources Research, 1–23.
Do NascimentoMZMartinsASNevesLARamosRPFloresELCarrijoGAClassification of masses in mammographic image using wavelet domain features and polynomial classifierExpert Systems with Applications201340156213622110.1016/j.eswa.2013.04.036
NieHJinZMaXLiuZLinTYangZDispositional characteristics of Ordovician Wufeng formation and Silurian Longmaxi formation in Sichuan Basin and its adjacent areasPetroleum Research20172323324610.1016/j.ptlrs.2017.01.003
LiuGPNonlinear identification and control: a neural network approach2001Springer10.1007/978-1-4471-0345-5
KorbiczJMrugalskiMConfidence estimation of GMDH neural networks and its application in fault detection systemsInternational Journal of Systems Science200839878380010.1080/00207720701847745
MartinsRGMartinsASNevesLALimaLVFloresELdo Nascimento, M. Z.Exploring polynomial classifier to predict match results in football championshipsExpert Systems with Applications201783799310.1016/j.eswa.2017.04.040
Atashbari, V., & Tingay, M. (2012). Pore pressure prediction in carbonate reservoirs. Paper presented at the SPE Lat
M Farsi (10207_CR14) 2021; 30
KP Murphy (10207_CR33) 2002
10207_CR17
NA Menad (10207_CR29) 2019; 13
H Nie (10207_CR37) 2017; 2
X Lin (10207_CR23) 2020; 13
10207_CR55
10207_CR12
J Korbicz (10207_CR21) 2008; 39
G Mutumba (10207_CR34) 2021
R Keshavarzi (10207_CR20) 2013; 17
MZ Do Nascimento (10207_CR13) 2013; 40
Y Liu (10207_CR26) 2017; 156
L Zhili (10207_CR54) 1998; 25
A Ahmed (10207_CR4) 2019; 44
D Srinivasan (10207_CR43) 2008; 72
R Swarbrick (10207_CR45) 2012; 31
L Yi-Feng (10207_CR50) 2015; 58
H Yu (10207_CR52) 2020; 143
HK Al-Mohair (10207_CR5) 2015; 33
G Wang (10207_CR47) 2015; 22
10207_CR46
10207_CR44
10207_CR42
10207_CR40
AK Mulashani (10207_CR32) 2022; 239
A Ivakhnenko (10207_CR18) 1995; 5
GL Bowers (10207_CR10) 1995; 10
B Mathew Nkurlu (10207_CR28) 2020; 13
S Asante-Okyere (10207_CR6) 2020; 29
MR Youcefi (10207_CR51) 2022; 8
G Zhang (10207_CR53) 2022; 8
10207_CR7
10207_CR38
SF Liu (10207_CR25) 2014
A Ahmed (10207_CR3) 2019; 12
M Najafzadeh (10207_CR36) 2015; 104
AK Mulashani (10207_CR31) 2021; 30
M Azadpour (10207_CR8) 2015; 128
MA Biot (10207_CR9) 1941; 12
C Cao (10207_CR11) 2020; 13
Y-J Wo (10207_CR48) 2007; 27
M Mesbah (10207_CR30) 2022; 8
R Korsch (10207_CR22) 1991; 54
Q Xu (10207_CR49) 2018; 36
X Qi (10207_CR39) 2015; 24
M Nait Amar (10207_CR35) 2022; 208
L Hu (10207_CR16) 2013; 18
T Jing (10207_CR19) 2016; 34
GP Liu (10207_CR24) 2001
C Zou (10207_CR56) 2017
RG Martins (10207_CR27) 2017; 83
10207_CR1
S Shaghaghi (10207_CR41) 2017; 313
10207_CR2
X Hailong (10207_CR15) 2012; 39
References_xml – reference: WoY-JZhouYXiaoK-HThe burial history and models for hydrocarbon generation and evolution in the marine strata in southern ChinaSedimentary Geology and Tethyan Geology2007273100
– reference: Nait AmarMLarestaniALvQZhouTHemmati-SarapardehAModeling of methane adsorption capacity in shale gas formations using white-box supervised machine learning techniquesJournal of Petroleum Science and Engineering202220810.1016/j.petrol.2021.109226
– reference: NajafzadehMBaraniG-AHessami-KermaniM-REvaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored bedsOcean Engineering201510438739610.1016/j.oceaneng.2015.05.016
– reference: Veeken, P. P. (2006). Seismic stratigraphy, basin analysis and reservoir characterisation: Elsevier.
– reference: Abu-Kheil, Y. M. Z. (2009). System Identification using group method of data handling (GMDH).
– reference: MutumbaGEcheguSAdaramolaSM.Prospects and challenges of geothermal energy in UgandaJournal of Energy Research and Reviews202110.9734/jenrr/2021/v9i230230
– reference: IvakhnenkoAIvakhnenkoGThe review of problems solvable by algorithms of the group method of data handling (GMDH)Pattern recognition and image analysis c/c of raspoznavaniye obrazov i analiz izobrazhenii19955527535
– reference: ZhiliLNew recognition of basement in Sichuan BasinJournal of Chengdu University of Technology1998252191200
– reference: WangGJuYHanKEarly Paleozoic shale properties and gas potential evaluation in Xiuwu Basin, western Lower Yangtze PlatformJournal of Natural Gas Science and Engineering20152248949710.1016/j.jngse.2014.12.025
– reference: Rahim, N. A., Taib, M., Adom, A., & Mashor, M. (2006). The NARMAX model for a dc motor using mlp neural network. Paper presented at the Proceeding of the First International Conference 0n MAN-MACHINE SYSTEMS (ICoMMS).
– reference: KorschRHuazhaoMZhaocaiSGorterJThe Sichuan basin, southwest China: A late proterozoic (Sinian) petroleum provincePrecambrian Research1991541456310.1016/0301-9268(91)90068-L
– reference: Zimmerman, R. W. (1990). Compressibility of sandstones.
– reference: BiotMAGeneral theory of three-dimensional consolidationJournal of applied physics194112215516410.1063/1.1712886
– reference: Atashbari, V., & Tingay, M. (2012). Pore pressure prediction in carbonate reservoirs. Paper presented at the SPE Latin America and Caribbean petroleum engineering conference.
– reference: QiXHuQYiXZhangSShale gas exploration prospect of Lower Cambrian Wangyinpu formation in Xiuwu BasinChina Mining Magazine20152410102107
– reference: ZhangGDavoodiSBandSSGhorbaniHMosaviAMoslehpourMA robust approach to pore pressure prediction applying petrophysical log data aided by machine learning techniquesEnergy Reports202282233224710.1016/j.egyr.2022.01.012
– reference: Contreras, O., Tutuncu, A., Aguilera, R., & Hareland, G. (2011). A case study for pore pressure prediction in an abnormally sub-pressured western Canada sedimentary basin. Paper presented at the 45th US Rock Mechanics/Geomechanics Symposium.
– reference: LinXZengJWangJHuangMNatural Gas reservoir characteristics and non-Darcy flow in low-permeability sandstone reservoir of Sulige gas field, Ordos BasinEnergies2020137177410.3390/en13071774
– reference: Nyakilla, E. E., Silingi, S. N., Shen, C., Jun, G., Mulashani, A. K., & Chibura, P. E. (2022). Evaluation of source rock potentiality and prediction of total organic carbon using well log data and integrated methods of multivariate analysis, machine learning, and geochemical analysis. Natural Resources Research, 1–23.
– reference: XuQQiuNLiuWShenAWangXZhangGCharacteristics of the temperature–pressure field evolution of Middle Permian system in the northwest of Sichuan BasinEnergy Exploration & Exploitation201836470572610.1177/0144598717752148
– reference: Swarbrick, R. E. (2001). Challenges of porosity based pore pressure prediction. Paper presented at the 63rd EAGE conference & exhibition.
– reference: MenadNANoureddineZHemmati-SarapardehAShamshirbandSMosaviAChauK-WModeling temperature dependency of oil - water relative permeability in thermal enhanced oil recovery processes using group method of data handling and gene expression programmingEngineering Applications of Computational Fluid Mechanics201913172474310.1080/19942060.2019.1639549
– reference: YuHChenGGuHA machine learning methodology for multivariate pore-pressure predictionComputers & Geosciences202014310.1016/j.cageo.2020.104548
– reference: ShaghaghiSBonakdariHGholamiAEbtehajIZeinolabediniMComparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel designApplied Mathematics and Computation201731327128610.1016/j.amc.2017.06.012
– reference: SwarbrickRReview of pore-pressure prediction challenges in high-temperature areasThe Leading Edge201231111288129410.1190/tle31111288.1
– reference: Yi-FengLLun-JuZNan-ShengQJing-KunJQingCThe effect of temperature on the overpressure distribution and formation in the central paleo-uplift of the Sichuan BasinChinese Journal of Geophysics201558434035110.1002/cjg2.20178
– reference: MurphyKPDynamic bayesian networks: Representation, inference and learning2002University of California
– reference: Mathew NkurluBShenCAsante-OkyereSMulashaniAKChunguJWangLPrediction of permeability using group method of data handling (GMDH) neural network from well log dataEnergies202013355110.3390/en13030551
– reference: HuLDengJZhuHLinHChenZDengFYanCA new pore pressure prediction method-back propagation artificial neural networkElectronic Journal of Geotechnical Engineering20131840934107
– reference: CaoCLiLLiuYDuLLiZHeJFactors affecting shale gas chemistry and stable isotope and noble gas isotope composition and distribution: A case study of lower Silurian Longmaxi Shale GasSichuan Basin. Energies20201322598110.3390/en13225981
– reference: YoucefiMRHadjadjABoukrederaFSNew model for standpipe pressure prediction while drilling using group method of data handlingPetroleum20228221021810.1016/j.petlm.2021.04.003
– reference: KorbiczJMrugalskiMConfidence estimation of GMDH neural networks and its application in fault detection systemsInternational Journal of Systems Science200839878380010.1080/00207720701847745
– reference: LiuSFMaYSWangGZFormation Process and mechanism of the Sinian-Silurian natural Reservoirs in the Sichuan Basin2014Science Press(in Chinese)
– reference: KeshavarziRJahanbakhshiRReal-time prediction of pore pressure gradient through an artificial intelligence approach: A case study from one of middle east oil fieldsEuropean journal of environmental and civil engineering201317867568610.1080/19648189.2013.811614
– reference: NieHJinZMaXLiuZLinTYangZDispositional characteristics of Ordovician Wufeng formation and Silurian Longmaxi formation in Sichuan Basin and its adjacent areasPetroleum Research20172323324610.1016/j.ptlrs.2017.01.003
– reference: AhmedAElkatatnySAliAAbdulraheemAComparative analysis of artificial intelligence techniques for formation pressure prediction while drillingArabian Journal of Geosciences2019121811310.1007/s12517-019-4800-7
– reference: Hutomo, P., Rosid, M., & Haidar, M. (2019). Pore pressure prediction using eaton and neural network method in carbonate field “X” based on seismic data. Paper presented at the IOP conference series: Materials science and engineering.
– reference: BowersGLPore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompactionSPE Drilling & Completion19951002899510.2118/27488-PA
– reference: AzadpourMManamanNSKadkhodaie-IlkhchiASedghipourM-RPore pressure prediction and modeling using well-logging data in one of the gas fields in south of IranJournal of Petroleum Science and Engineering2015128152310.1016/j.petrol.2015.02.022
– reference: Abbey, C. P., chukwudi Meludu, O., & Oniku, A. S. (2021). Investigation of abnormal pore pressure variations by the application of seismic inversion in Norne Field, Mid-Norwegian margin Norway. Petroleum Research.
– reference: de Souza, J. A., Martínez, G. C., de Leon, M. F. C. P., Azadpour, M., & Atashbari, V. (2021). Pore pressure and wellbore instability. In Applied Techniques to Integrated Oil and Gas Reservoir Characterization (pp. 355–394): Elsevier.
– reference: SrinivasanDEnergy demand prediction using GMDH networksNeurocomputing2008721–362562910.1016/j.neucom.2008.08.006
– reference: ZouCUnconventional petroleum geology2017Elsevier10.1016/B978-0-12-812234-1.00002-9
– reference: FarsiMMohamadianNGhorbaniHWoodDADavoodiSMoghadasiJAhmadi AlvarMPredicting formation pore-pressure from well-log data with hybrid machine-learning optimization algorithmsNatural Resources Research20213053455348110.1007/s11053-021-09852-2
– reference: AhmedAElkatatnySAliAMahmoudMAbdulraheemANew model for pore pressure prediction while drilling using artificial neural networksArabian Journal for Science and Engineering20194466079608810.1007/s13369-018-3574-7
– reference: LiuGPNonlinear identification and control: a neural network approach2001Springer10.1007/978-1-4471-0345-5
– reference: MesbahMHabibniaSAhmadiSSaeedi DehaghaniAHBayatSDeveloping a robust correlation for prediction of sweet and sour gas hydrate formation temperaturePetroleum20228220420910.1016/j.petlm.2020.07.007
– reference: Do NascimentoMZMartinsASNevesLARamosRPFloresELCarrijoGAClassification of masses in mammographic image using wavelet domain features and polynomial classifierExpert Systems with Applications201340156213622110.1016/j.eswa.2013.04.036
– reference: MulashaniAKShenCAsante-OkyereSKerttuPNAbellyENGroup method of data handling (GMDH) neural network for estimating total organic carbon (TOC) and hydrocarbon potential distribution (S1, S2) using well logsNatural Resources Research20213053605362210.1007/s11053-021-09908-3
– reference: LiuYQiuNYaoQZhuCThe impact of temperature on overpressure unloading in the central Sichuan Basin, southwest ChinaJournal of Petroleum Science and Engineering201715614215110.1016/j.petrol.2017.05.010
– reference: MartinsRGMartinsASNevesLALimaLVFloresELdo Nascimento, M. Z.Exploring polynomial classifier to predict match results in football championshipsExpert Systems with Applications201783799310.1016/j.eswa.2017.04.040
– reference: JingTZhangJXuSLiuZHanSCritical geological characteristics and gas-bearing controlling factors in Longmaxi shales in southeastern ChongqingChina. Energy Exploration & Exploitation2016341426010.1177/0144598715623666
– reference: MulashaniAKShenCNkurluBMMkonoCNKawamalaMEnhanced group method of data handling (GMDH) for permeability prediction based on the modified Levenberg Marquardt technique from well log dataEnergy202223910.1016/j.energy.2021.121915
– reference: Al-MohairHKSalehJMSuandiSAHybrid human skin detection using neural network and K-means clustering techniqueApplied Soft Computing20153333734710.1016/j.asoc.2015.04.046
– reference: HailongXGuoqiWChengzaoJWeiYTianweiZWurenXLiCBeiweiLTectonic evolution of the Leshan-Longnüsi paleo-uplift and its control on gas accumulation in the Sinian strataPetroleum Exploration and development201239443644610.1016/S1876-3804(12)60060-3
– reference: Asante-OkyereSShenCZiggahYYRulegeyaMMZhuXA novel hybrid technique of integrating gradient-boosted machine and clustering algorithms for lithology classificationNatural Resources Research20202942257227310.1007/s11053-019-09576-4
– volume: 143
  year: 2020
  ident: 10207_CR52
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2020.104548
– volume: 30
  start-page: 3605
  issue: 5
  year: 2021
  ident: 10207_CR31
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09908-3
– volume: 29
  start-page: 2257
  issue: 4
  year: 2020
  ident: 10207_CR6
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09576-4
– volume: 8
  start-page: 2233
  year: 2022
  ident: 10207_CR53
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2022.01.012
– ident: 10207_CR17
  doi: 10.1088/1757-899X/546/3/032017
– volume: 208
  year: 2022
  ident: 10207_CR35
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2021.109226
– volume: 40
  start-page: 6213
  issue: 15
  year: 2013
  ident: 10207_CR13
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.04.036
– volume: 17
  start-page: 675
  issue: 8
  year: 2013
  ident: 10207_CR20
  publication-title: European journal of environmental and civil engineering
  doi: 10.1080/19648189.2013.811614
– volume-title: Formation Process and mechanism of the Sinian-Silurian natural Reservoirs in the Sichuan Basin
  year: 2014
  ident: 10207_CR25
– volume: 128
  start-page: 15
  year: 2015
  ident: 10207_CR8
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2015.02.022
– ident: 10207_CR46
  doi: 10.3997/1365-2397.2006004
– ident: 10207_CR7
  doi: 10.2118/150835-MS
– volume: 34
  start-page: 42
  issue: 1
  year: 2016
  ident: 10207_CR19
  publication-title: China. Energy Exploration & Exploitation
  doi: 10.1177/0144598715623666
– volume: 13
  start-page: 1774
  issue: 7
  year: 2020
  ident: 10207_CR23
  publication-title: Energies
  doi: 10.3390/en13071774
– volume: 104
  start-page: 387
  year: 2015
  ident: 10207_CR36
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2015.05.016
– volume: 36
  start-page: 705
  issue: 4
  year: 2018
  ident: 10207_CR49
  publication-title: Energy Exploration & Exploitation
  doi: 10.1177/0144598717752148
– ident: 10207_CR55
– volume: 12
  start-page: 1
  issue: 18
  year: 2019
  ident: 10207_CR3
  publication-title: Arabian Journal of Geosciences
  doi: 10.1007/s12517-019-4800-7
– volume-title: Unconventional petroleum geology
  year: 2017
  ident: 10207_CR56
  doi: 10.1016/B978-0-12-812234-1.00002-9
– ident: 10207_CR38
  doi: 10.1007/s11053-021-09988-1
– volume: 156
  start-page: 142
  year: 2017
  ident: 10207_CR26
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2017.05.010
– ident: 10207_CR1
  doi: 10.1016/j.ptlrs.2021.11.001
– volume: 33
  start-page: 337
  year: 2015
  ident: 10207_CR5
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.04.046
– volume: 8
  start-page: 210
  issue: 2
  year: 2022
  ident: 10207_CR51
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2021.04.003
– volume: 18
  start-page: 4093
  year: 2013
  ident: 10207_CR16
  publication-title: Electronic Journal of Geotechnical Engineering
– volume: 72
  start-page: 625
  issue: 1–3
  year: 2008
  ident: 10207_CR43
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.08.006
– year: 2021
  ident: 10207_CR34
  publication-title: Journal of Energy Research and Reviews
  doi: 10.9734/jenrr/2021/v9i230230
– volume: 313
  start-page: 271
  year: 2017
  ident: 10207_CR41
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2017.06.012
– ident: 10207_CR2
– volume: 44
  start-page: 6079
  issue: 6
  year: 2019
  ident: 10207_CR4
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-018-3574-7
– volume: 12
  start-page: 155
  issue: 2
  year: 1941
  ident: 10207_CR9
  publication-title: Journal of applied physics
  doi: 10.1063/1.1712886
– volume: 5
  start-page: 527
  year: 1995
  ident: 10207_CR18
  publication-title: Pattern recognition and image analysis c/c of raspoznavaniye obrazov i analiz izobrazhenii
– ident: 10207_CR42
  doi: 10.1016/B978-0-12-817236-0.00014-5
– ident: 10207_CR40
– volume: 2
  start-page: 233
  issue: 3
  year: 2017
  ident: 10207_CR37
  publication-title: Petroleum Research
  doi: 10.1016/j.ptlrs.2017.01.003
– volume: 39
  start-page: 436
  issue: 4
  year: 2012
  ident: 10207_CR15
  publication-title: Petroleum Exploration and development
  doi: 10.1016/S1876-3804(12)60060-3
– volume: 13
  start-page: 5981
  issue: 22
  year: 2020
  ident: 10207_CR11
  publication-title: Sichuan Basin. Energies
  doi: 10.3390/en13225981
– volume: 83
  start-page: 79
  year: 2017
  ident: 10207_CR27
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.04.040
– volume: 13
  start-page: 724
  issue: 1
  year: 2019
  ident: 10207_CR29
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2019.1639549
– volume: 8
  start-page: 204
  issue: 2
  year: 2022
  ident: 10207_CR30
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2020.07.007
– volume: 27
  start-page: 100
  issue: 3
  year: 2007
  ident: 10207_CR48
  publication-title: Sedimentary Geology and Tethyan Geology
– volume: 10
  start-page: 89
  issue: 02
  year: 1995
  ident: 10207_CR10
  publication-title: SPE Drilling & Completion
  doi: 10.2118/27488-PA
– volume: 13
  start-page: 551
  issue: 3
  year: 2020
  ident: 10207_CR28
  publication-title: Energies
  doi: 10.3390/en13030551
– volume: 24
  start-page: 102
  issue: 10
  year: 2015
  ident: 10207_CR39
  publication-title: China Mining Magazine
– volume-title: Nonlinear identification and control: a neural network approach
  year: 2001
  ident: 10207_CR24
  doi: 10.1007/978-1-4471-0345-5
– volume: 54
  start-page: 45
  issue: 1
  year: 1991
  ident: 10207_CR22
  publication-title: Precambrian Research
  doi: 10.1016/0301-9268(91)90068-L
– ident: 10207_CR44
  doi: 10.3997/2214-4609-pdb.15.O-25
– volume: 30
  start-page: 3455
  issue: 5
  year: 2021
  ident: 10207_CR14
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09852-2
– volume-title: Dynamic bayesian networks: Representation, inference and learning
  year: 2002
  ident: 10207_CR33
– volume: 39
  start-page: 783
  issue: 8
  year: 2008
  ident: 10207_CR21
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207720701847745
– ident: 10207_CR12
– volume: 25
  start-page: 191
  issue: 2
  year: 1998
  ident: 10207_CR54
  publication-title: Journal of Chengdu University of Technology
– volume: 239
  year: 2022
  ident: 10207_CR32
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121915
– volume: 58
  start-page: 340
  issue: 4
  year: 2015
  ident: 10207_CR50
  publication-title: Chinese Journal of Geophysics
  doi: 10.1002/cjg2.20178
– volume: 22
  start-page: 489
  year: 2015
  ident: 10207_CR47
  publication-title: Journal of Natural Gas Science and Engineering
  doi: 10.1016/j.jngse.2014.12.025
– volume: 31
  start-page: 1288
  issue: 11
  year: 2012
  ident: 10207_CR45
  publication-title: The Leading Edge
  doi: 10.1190/tle31111288.1
SSID ssj0007385
Score 2.379842
Snippet Pore pressure prediction is significant in the petroleum industry because, compared to direct measurement, it is cost-effective and it generates an extensive...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1711
SubjectTerms Artificial intelligence
Artificial neural networks
Back propagation
basins
Case studies
Chemistry and Earth Sciences
China
clay
Clay minerals
Computer Science
cost effectiveness
Data structures
Dehydration
Earth and Environmental Science
Earth Sciences
Fossil Fuels (incl. Carbon Capture)
Gases
Geography
Group method of data handling
High temperature
industry
Lateral transfers
Learning algorithms
Lithology
Machine learning
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mineral Resources
Neural networks
Original Paper
Parameters
petroleum
Petroleum industry
Physics
Polynomials
Pore pressure
prediction
Pressure
Root-mean-square errors
Statistics for Engineering
Support vector machines
Sustainable Development
temperature
Thermal expansion
Velocity
Well logs
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9qi6APUqviaZUp-GaDyabJ7foi189DbDnUYt_CfkULR1IvuYf-984kexcr2LeEbLKQ2Z2PnZnfD-CdMj4pyfBFQtiUApTURhQ2-0imsXLOyjLvmsLOL_Lp5cHnq-wqHLg1oaxypRM7Re1qy2fkH4Sixcdg5_Gnm98Rs0ZxdjVQaDyALVLBkoKvrcOTi9nXtS5mrJYOMZWCJHa9Q9tM3zxHrgXnMLk2S8TjSNw1TYO_-U-KtLM8p9vwJLiMOOll_BQ2fLUDj_8CEtyBh2cdQe_tM1hMhow01iWenR9Psa1xtuCMTIuzeuGx7wmkC24uwR9-Pscv9c8Gj3WrP-IEj8i0IVcY3vYjOp49JvnBb9f211JXeKib62ofO_bt53B5evL9aBoFXoXIkrvVRjoTSguKtFKr07F0siwpSDOZLp2xtnQlRTFKaps46YXLvE1MmuVSuyzRTo1N-gI2q7ryLwGl8HFupYqVNwfS5cZJuiOvTpks9nE8gmT1SwsbQMeZ-2JeDHDJLIaCxFB0YijECN6v37npITfuHb27klQRtl9TDItlBHvrx7RxOBuiK18vmyIl55HBy0Q2gv2VhIdP_H_GV_fP-BoeMSV9XyS4C5vtYunfkOPSmrdhdf4BEs_m6g
  priority: 102
  providerName: ProQuest
Title Application of GMDH to Predict Pore Pressure from Well Logs Data: A Case Study from Southeast Sichuan Basin, China
URI https://link.springer.com/article/10.1007/s11053-023-10207-2
https://www.proquest.com/docview/2918336470
https://www.proquest.com/docview/3154180925
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BKwQceCxFLLQrI3GjkRKnztrc0nYfAlqtgBXlFPkVWmmVoE320H_P2Ek2ULVInOIozkMZex6ame8DeCeUjXI0fAGlOsYAJdYBhs024HEojNE8T3xT2Nl5Ml8efbxgF21TWNVVu3cpSa-p-2Y3dAVcztHVUtFwHKDi3WUudsdVvKTpVv86fBaPkoqBkXO321aZ25_xtznqfcwbaVFvbabP4EnrJpK0ketzuGeLATztKBhIuyMH8PgPPMEBPGwpzS-vB_Bg5jl73chXeerqBazTPl1NypzMzk7npC7JYu3SNTVZlGtLmoZBHLjOE_Ldrlbkc_mzIqeylh9ISk7Q7hFXfnjdzPAkfI4BiHy90pcbWZBjWV0Vh8RTc-_Bcjr5djIPWtKFQKMvVgeSUSEphmGxlvGYG57nGMEpJnOjtM5NjiGO4FJHhltqmNWRilnCpWGRNGKs4pewU5SFfQWEUxsmmotQWHXETaIMxzN0-YRioQ3DIUTdv890i0juiDFWWY-l7OSVobwyL6-MDuH99p5fDR7HP2fvdyLN2r1ZZVSgGnOw-fgBb7eXcVe5VIksbLmpshg9S4dsRtkQDrul0D_i7je-_r_pb-CR469vKgr3Yadeb-wBejm1GsF9Pp2NYDed_fg0wePx5HzxZeSX-m_an_No
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NIQQ8IBggCgOMBE8sIrGb1EZCqKy0HWunSWxib8axHZhUJaNJhfqn-I2cnaQBJPa2t0RxHMl3Z3-Xu_sO4KVIbZThwRdQqhk6KEwH6DbbgLNQGKN5lviisPlRMj3tfzqLz7bgV1sL49Iq2z3Rb9Sm0O4f-RsqUPkc2Xn4_uJH4LpGuehq20KjVotDu_6JLlv57mCE8n1F6fjjyf40aLoKBBrBRhWomApF0c9gWrEBNzzL0EVJY5WZVOvMZIjhBVc6MtxSE1sdpSxOuDJxpIwYpAznvQbX-4wJZ1F8PNns_I4ZxvOzokvmgH5TpFOX6iGQcRFTlwlGw0FA_z4IO3T7T0DWn3Pju3CnAahkWGvUPdiy-Q7c_oO2cAduTHw74PV9WA67-DcpMjKZj6akKsjx0sV_KnJcLC2pKxDxwpWykC92sSCz4ltJRqpSb8mQ7ONBSlw-47oe4bv6uZZC5PO5_r5SOfmgyvN8j_he3w_g9ErW-yFs50VuHwHh1IaJ5iIUNu1zk6SG4x1iSJHGoQ3DHkTtkkrdUJy7ThsL2ZEzOzFIFIP0YpC0B68371zUBB-Xjt5tJSUbYy9lp5o9eLF5jGbqYi8qt8WqlAyhqqNKo3EP9loJd1P8_4uPL__ic7g5PZnP5Ozg6PAJ3KJOwXx64i5sV8uVfYqQqUqfeT0l8PWqDeM3m5MkoQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-hIb4eBhQQZQOMxBuLljhLavPWrXQFtqkSVOzN8iebVCVTkz7sv-fsJM2GAIk3R3GcKGffh-7u9wN4z5VNHBq-iFKdYoCS6gjDZhuxNObGaOby0BR2epbPFgdfzrPzG138odq9S0k2PQ0epamo96-M2-8b39At8PlHX1dF41GESvguquPE7-sFHW90scdqCYipGCR517ttm_nzGrdNU-9v_pYiDZZn-gS2W5eRjBsZP4U7thjA446OgbSncwCPbmALDuBBS29-cT2Ae8eBv9ePQsWnrp7BatynrknpyPHpZEbqksxXPnVTk3m5sqRpHsSB70IhP-xySU7KnxWZyFp-JGNyhDaQ-FLE62ZGIOTzbEDk26W-WMuCHMrqstgjgab7OSymn74fzaKWgCHS6JfVkcwolxRDslTLdMQMcw6jOZVJZ5TWzjgMdziTOjHMUpNZnag0y5k0WSINH6n0BWwVZWFfAmHUxrlmPOZWHTCTK8PwCt0_rrLYxvEQku7fC92ik3uSjKXocZW9vATKSwR5CTqED5tnrhpsjn_O3u1EKtpzWgnKUaV5CH38gHeb23jCfNpEFrZcVyJFL9OjnNFsCHvdVuiX-PsbX_3f9Ldwfz6ZipPPZ1934KGntW8KDXdhq16t7Wt0fmr1JuzvX7DO9oM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+GMDH+to+Predict+Pore+Pressure+from+Well+Logs+Data%3A+A+Case+Study+from+Southeast+Sichuan+Basin%2C+China&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Mgimba%2C+Melckzedeck+M.&rft.au=Jiang%2C+Shu&rft.au=Nyakilla%2C+Edwin+E.&rft.au=Mwakipunda%2C+Grant+Charles&rft.date=2023-08-01&rft.pub=Springer+US&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=32&rft.issue=4&rft.spage=1711&rft.epage=1731&rft_id=info:doi/10.1007%2Fs11053-023-10207-2&rft.externalDocID=10_1007_s11053_023_10207_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon