Application of GMDH to Predict Pore Pressure from Well Logs Data: A Case Study from Southeast Sichuan Basin, China
Pore pressure prediction is significant in the petroleum industry because, compared to direct measurement, it is cost-effective and it generates an extensive range of data. Mathematical correlations fail to predict pore pressure due to their failure to include lateral transfer in the reservoir, high...
Saved in:
Published in | Natural resources research (New York, N.Y.) Vol. 32; no. 4; pp. 1711 - 1731 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pore pressure prediction is significant in the petroleum industry because, compared to direct measurement, it is cost-effective and it generates an extensive range of data. Mathematical correlations fail to predict pore pressure due to their failure to include lateral transfer in the reservoir, high temperature and mixed lithology and other mechanisms like aqua-thermal expansion, dehydration of clay and mineral alterations. Also, several machine learning techniques provide unsatisfactory results when predicting pore pressures due to poor selection of input data, over-fitting, slow convergence of results, and manual adjustment of model parameters like hidden layers and weights. To counteract these challenges, we employed, for the first time, group method of data handling (GMDH) technique to predict formation pore pressures from well logs data in the Nanye 1 well, southeast of the Sichuan Basin. Then, the performance of the GMDH technique was compared to other machine learning techniques, including polynomial classifier (POL) and artificial neural networks (ANNs). The GMDH technique provided results with the highest accuracy compared with the other two techniques, giving the lowest root-mean-square error (RMSE) of 0.0308 MPa. In addition, the GMDH technique provided a high coefficient of determination of 0.998. The ANN and POL gave RMSEs 0.0322 and 0.5873 MPa, respectively. Apart from the good results, the GMDH technique was able to identify data structure, direct approximate the results, automatically select the model running parameters and select the relevant input data for predicting the pore pressure, which were the challenges for other techniques. Therefore, the GMDH can be applied to predict pore pressure from the well logs data. |
---|---|
AbstractList | Pore pressure prediction is significant in the petroleum industry because, compared to direct measurement, it is cost-effective and it generates an extensive range of data. Mathematical correlations fail to predict pore pressure due to their failure to include lateral transfer in the reservoir, high temperature and mixed lithology and other mechanisms like aqua-thermal expansion, dehydration of clay and mineral alterations. Also, several machine learning techniques provide unsatisfactory results when predicting pore pressures due to poor selection of input data, over-fitting, slow convergence of results, and manual adjustment of model parameters like hidden layers and weights. To counteract these challenges, we employed, for the first time, group method of data handling (GMDH) technique to predict formation pore pressures from well logs data in the Nanye 1 well, southeast of the Sichuan Basin. Then, the performance of the GMDH technique was compared to other machine learning techniques, including polynomial classifier (POL) and artificial neural networks (ANNs). The GMDH technique provided results with the highest accuracy compared with the other two techniques, giving the lowest root-mean-square error (RMSE) of 0.0308 MPa. In addition, the GMDH technique provided a high coefficient of determination of 0.998. The ANN and POL gave RMSEs 0.0322 and 0.5873 MPa, respectively. Apart from the good results, the GMDH technique was able to identify data structure, direct approximate the results, automatically select the model running parameters and select the relevant input data for predicting the pore pressure, which were the challenges for other techniques. Therefore, the GMDH can be applied to predict pore pressure from the well logs data. Pore pressure prediction is significant in the petroleum industry because, compared to direct measurement, it is cost-effective and it generates an extensive range of data. Mathematical correlations fail to predict pore pressure due to their failure to include lateral transfer in the reservoir, high temperature and mixed lithology and other mechanisms like aqua-thermal expansion, dehydration of clay and mineral alterations. Also, several machine learning techniques provide unsatisfactory results when predicting pore pressures due to poor selection of input data, over-fitting, slow convergence of results, and manual adjustment of model parameters like hidden layers and weights. To counteract these challenges, we employed, for the first time, group method of data handling (GMDH) technique to predict formation pore pressures from well logs data in the Nanye 1 well, southeast of the Sichuan Basin. Then, the performance of the GMDH technique was compared to other machine learning techniques, including polynomial classifier (POL) and artificial neural networks (ANNs). The GMDH technique provided results with the highest accuracy compared with the other two techniques, giving the lowest root-mean-square error (RMSE) of 0.0308 MPa. In addition, the GMDH technique provided a high coefficient of determination of 0.998. The ANN and POL gave RMSEs 0.0322 and 0.5873 MPa, respectively. Apart from the good results, the GMDH technique was able to identify data structure, direct approximate the results, automatically select the model running parameters and select the relevant input data for predicting the pore pressure, which were the challenges for other techniques. Therefore, the GMDH can be applied to predict pore pressure from the well logs data. |
Author | Mgimba, Melckzedeck M. Nyakilla, Edwin E. Jiang, Shu Mwakipunda, Grant Charles |
Author_xml | – sequence: 1 givenname: Melckzedeck M. surname: Mgimba fullname: Mgimba, Melckzedeck M. email: melckmgimba1@gmail.com organization: Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences, Department of Geosciences and Mining Technology, Mbeya University of Science and Technology – sequence: 2 givenname: Shu surname: Jiang fullname: Jiang, Shu email: jiangsu@cug.edu.cn organization: Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences – sequence: 3 givenname: Edwin E. surname: Nyakilla fullname: Nyakilla, Edwin E. organization: Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences – sequence: 4 givenname: Grant Charles surname: Mwakipunda fullname: Mwakipunda, Grant Charles organization: Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences |
BookMark | eNp9kUtPGzEURi1EpQLlD3RlqRsWDPVjzHi6C-FVKVWRAmJp3fhBjCZ2sD0L_n0dBqkSC1a-ls6xvuvvEO2HGCxC3yk5o4R0PzOlRPCGMN5QwkjXsD10QEXHG9lLur-bGWm6lvdf0WHOz6RKXIoDlGbb7eA1FB8Djg7f_Lm8xSXiu2SN1wXfxWR3l5zHOrgUN_jRDgNexKeML6HALzzDc8gWL8toXidiGceytpALXnq9HiHgC8g-nOL52gf4hr44GLI9fj-P0MP11f38tln8vfk9ny0azQUrDQjWA2Oy5xp4J410rm3lSoAzK62dcaKtu4GmRlpmhNV0xcW5BCMomL5b8SN0Mr27TfFltLmojc-6hodg45gVp6KlkvRMVPTHB_Q5jinUdIr1VHJ-3nakUnKidIo5J-uU9uXt50oCPyhK1K4MNZWhahnqrQzFqso-qNvkN5BeP5f4JOUKhyeb_qf6xPoH-0idUw |
CitedBy_id | crossref_primary_10_1016_j_fuel_2025_134534 crossref_primary_10_3390_app14062273 crossref_primary_10_1021_acs_energyfuels_3c01510 crossref_primary_10_1016_j_ijhydene_2025_02_342 crossref_primary_10_2118_223123_PA crossref_primary_10_2118_224438_PA crossref_primary_10_1016_j_ijhydene_2024_09_054 crossref_primary_10_3390_min14010031 crossref_primary_10_1007_s10614_025_10863_x crossref_primary_10_2118_217979_PA crossref_primary_10_1016_j_engappai_2025_110137 |
Cites_doi | 10.1016/j.cageo.2020.104548 10.1007/s11053-021-09908-3 10.1007/s11053-019-09576-4 10.1016/j.egyr.2022.01.012 10.1088/1757-899X/546/3/032017 10.1016/j.petrol.2021.109226 10.1016/j.eswa.2013.04.036 10.1080/19648189.2013.811614 10.1016/j.petrol.2015.02.022 10.3997/1365-2397.2006004 10.2118/150835-MS 10.1177/0144598715623666 10.3390/en13071774 10.1016/j.oceaneng.2015.05.016 10.1177/0144598717752148 10.1007/s12517-019-4800-7 10.1016/B978-0-12-812234-1.00002-9 10.1007/s11053-021-09988-1 10.1016/j.petrol.2017.05.010 10.1016/j.ptlrs.2021.11.001 10.1016/j.asoc.2015.04.046 10.1016/j.petlm.2021.04.003 10.1016/j.neucom.2008.08.006 10.9734/jenrr/2021/v9i230230 10.1016/j.amc.2017.06.012 10.1007/s13369-018-3574-7 10.1063/1.1712886 10.1016/B978-0-12-817236-0.00014-5 10.1016/j.ptlrs.2017.01.003 10.1016/S1876-3804(12)60060-3 10.3390/en13225981 10.1016/j.eswa.2017.04.040 10.1080/19942060.2019.1639549 10.1016/j.petlm.2020.07.007 10.2118/27488-PA 10.3390/en13030551 10.1007/978-1-4471-0345-5 10.1016/0301-9268(91)90068-L 10.3997/2214-4609-pdb.15.O-25 10.1007/s11053-021-09852-2 10.1080/00207720701847745 10.1016/j.energy.2021.121915 10.1002/cjg2.20178 10.1016/j.jngse.2014.12.025 10.1190/tle31111288.1 |
ContentType | Journal Article |
Copyright | International Association for Mathematical Geosciences 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: International Association for Mathematical Geosciences 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. PATMY PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7S9 L.6 |
DOI | 10.1007/s11053-023-10207-2 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Central Student AGRICOLA |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering Geology Physics Computer Science |
EISSN | 1573-8981 |
EndPage | 1731 |
ExternalDocumentID | 10_1007_s11053_023_10207_2 |
GeographicLocations | Sichuan Basin China Sichuan China |
GeographicLocations_xml | – name: China – name: Sichuan China – name: Sichuan Basin |
GrantInformation_xml | – fundername: Innovative Research Group Project of the National Natural Science Foundation of China grantid: 4213080 funderid: http://dx.doi.org/10.13039/100014718 – fundername: China Scholarship Council grantid: CSC No.:2019GBJ002427 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 2.D 203 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV LAK LLZTM M4Y MA- N9A NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PATMY PCBAR PDBOC PF0 PT4 PT5 PYCSY QOK QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7Y Z7Z Z81 Z85 Z86 Z8S Z8T Z8U Z8Z ZMTXR ~02 ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC D1I DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 |
ID | FETCH-LOGICAL-c352t-a529a22893ca378d8ff448b5afdbccfdf54898ac1d8e2d5ec1b3568ad51ad97b3 |
IEDL.DBID | U2A |
ISSN | 1520-7439 |
IngestDate | Fri Jul 11 09:40:11 EDT 2025 Fri Jul 25 10:57:06 EDT 2025 Tue Jul 01 04:16:51 EDT 2025 Thu Apr 24 23:04:37 EDT 2025 Fri Feb 21 02:43:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | means clustering GMDH Well logs Pore pressure Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-a529a22893ca378d8ff448b5afdbccfdf54898ac1d8e2d5ec1b3568ad51ad97b3 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 2918336470 |
PQPubID | 2043663 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_3154180925 proquest_journals_2918336470 crossref_citationtrail_10_1007_s11053_023_10207_2 crossref_primary_10_1007_s11053_023_10207_2 springer_journals_10_1007_s11053_023_10207_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230800 2023-08-00 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 8 year: 2023 text: 20230800 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | Official Journal of the International Association for Mathematical Geosciences |
PublicationTitle | Natural resources research (New York, N.Y.) |
PublicationTitleAbbrev | Nat Resour Res |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Al-MohairHKSalehJMSuandiSAHybrid human skin detection using neural network and K-means clustering techniqueApplied Soft Computing20153333734710.1016/j.asoc.2015.04.046 YuHChenGGuHA machine learning methodology for multivariate pore-pressure predictionComputers & Geosciences202014310.1016/j.cageo.2020.104548 Mathew NkurluBShenCAsante-OkyereSMulashaniAKChunguJWangLPrediction of permeability using group method of data handling (GMDH) neural network from well log dataEnergies202013355110.3390/en13030551 HuLDengJZhuHLinHChenZDengFYanCA new pore pressure prediction method-back propagation artificial neural networkElectronic Journal of Geotechnical Engineering20131840934107 ZhangGDavoodiSBandSSGhorbaniHMosaviAMoslehpourMA robust approach to pore pressure prediction applying petrophysical log data aided by machine learning techniquesEnergy Reports202282233224710.1016/j.egyr.2022.01.012 Swarbrick, R. E. (2001). Challenges of porosity based pore pressure prediction. Paper presented at the 63rd EAGE conference & exhibition. IvakhnenkoAIvakhnenkoGThe review of problems solvable by algorithms of the group method of data handling (GMDH)Pattern recognition and image analysis c/c of raspoznavaniye obrazov i analiz izobrazhenii19955527535 Abu-Kheil, Y. M. Z. (2009). System Identification using group method of data handling (GMDH). AhmedAElkatatnySAliAMahmoudMAbdulraheemANew model for pore pressure prediction while drilling using artificial neural networksArabian Journal for Science and Engineering20194466079608810.1007/s13369-018-3574-7 de Souza, J. A., Martínez, G. C., de Leon, M. F. C. P., Azadpour, M., & Atashbari, V. (2021). Pore pressure and wellbore instability. In Applied Techniques to Integrated Oil and Gas Reservoir Characterization (pp. 355–394): Elsevier. NajafzadehMBaraniG-AHessami-KermaniM-REvaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored bedsOcean Engineering201510438739610.1016/j.oceaneng.2015.05.016 FarsiMMohamadianNGhorbaniHWoodDADavoodiSMoghadasiJAhmadi AlvarMPredicting formation pore-pressure from well-log data with hybrid machine-learning optimization algorithmsNatural Resources Research20213053455348110.1007/s11053-021-09852-2 LiuYQiuNYaoQZhuCThe impact of temperature on overpressure unloading in the central Sichuan Basin, southwest ChinaJournal of Petroleum Science and Engineering201715614215110.1016/j.petrol.2017.05.010 Contreras, O., Tutuncu, A., Aguilera, R., & Hareland, G. (2011). A case study for pore pressure prediction in an abnormally sub-pressured western Canada sedimentary basin. Paper presented at the 45th US Rock Mechanics/Geomechanics Symposium. KeshavarziRJahanbakhshiRReal-time prediction of pore pressure gradient through an artificial intelligence approach: A case study from one of middle east oil fieldsEuropean journal of environmental and civil engineering201317867568610.1080/19648189.2013.811614 CaoCLiLLiuYDuLLiZHeJFactors affecting shale gas chemistry and stable isotope and noble gas isotope composition and distribution: A case study of lower Silurian Longmaxi Shale GasSichuan Basin. Energies20201322598110.3390/en13225981 KorschRHuazhaoMZhaocaiSGorterJThe Sichuan basin, southwest China: A late proterozoic (Sinian) petroleum provincePrecambrian Research1991541456310.1016/0301-9268(91)90068-L BowersGLPore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompactionSPE Drilling & Completion19951002899510.2118/27488-PA SrinivasanDEnergy demand prediction using GMDH networksNeurocomputing2008721–362562910.1016/j.neucom.2008.08.006 BiotMAGeneral theory of three-dimensional consolidationJournal of applied physics194112215516410.1063/1.1712886 LinXZengJWangJHuangMNatural Gas reservoir characteristics and non-Darcy flow in low-permeability sandstone reservoir of Sulige gas field, Ordos BasinEnergies2020137177410.3390/en13071774 Abbey, C. P., chukwudi Meludu, O., & Oniku, A. S. (2021). Investigation of abnormal pore pressure variations by the application of seismic inversion in Norne Field, Mid-Norwegian margin Norway. Petroleum Research. Yi-FengLLun-JuZNan-ShengQJing-KunJQingCThe effect of temperature on the overpressure distribution and formation in the central paleo-uplift of the Sichuan BasinChinese Journal of Geophysics201558434035110.1002/cjg2.20178 QiXHuQYiXZhangSShale gas exploration prospect of Lower Cambrian Wangyinpu formation in Xiuwu BasinChina Mining Magazine20152410102107 ZouCUnconventional petroleum geology2017Elsevier10.1016/B978-0-12-812234-1.00002-9 JingTZhangJXuSLiuZHanSCritical geological characteristics and gas-bearing controlling factors in Longmaxi shales in southeastern ChongqingChina. Energy Exploration & Exploitation2016341426010.1177/0144598715623666 Asante-OkyereSShenCZiggahYYRulegeyaMMZhuXA novel hybrid technique of integrating gradient-boosted machine and clustering algorithms for lithology classificationNatural Resources Research20202942257227310.1007/s11053-019-09576-4 MulashaniAKShenCNkurluBMMkonoCNKawamalaMEnhanced group method of data handling (GMDH) for permeability prediction based on the modified Levenberg Marquardt technique from well log dataEnergy202223910.1016/j.energy.2021.121915 ShaghaghiSBonakdariHGholamiAEbtehajIZeinolabediniMComparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel designApplied Mathematics and Computation201731327128610.1016/j.amc.2017.06.012 Zimmerman, R. W. (1990). Compressibility of sandstones. HailongXGuoqiWChengzaoJWeiYTianweiZWurenXLiCBeiweiLTectonic evolution of the Leshan-Longnüsi paleo-uplift and its control on gas accumulation in the Sinian strataPetroleum Exploration and development201239443644610.1016/S1876-3804(12)60060-3 XuQQiuNLiuWShenAWangXZhangGCharacteristics of the temperature–pressure field evolution of Middle Permian system in the northwest of Sichuan BasinEnergy Exploration & Exploitation201836470572610.1177/0144598717752148 MulashaniAKShenCAsante-OkyereSKerttuPNAbellyENGroup method of data handling (GMDH) neural network for estimating total organic carbon (TOC) and hydrocarbon potential distribution (S1, S2) using well logsNatural Resources Research20213053605362210.1007/s11053-021-09908-3 YoucefiMRHadjadjABoukrederaFSNew model for standpipe pressure prediction while drilling using group method of data handlingPetroleum20228221021810.1016/j.petlm.2021.04.003 MurphyKPDynamic bayesian networks: Representation, inference and learning2002University of California MutumbaGEcheguSAdaramolaSM.Prospects and challenges of geothermal energy in UgandaJournal of Energy Research and Reviews202110.9734/jenrr/2021/v9i230230 SwarbrickRReview of pore-pressure prediction challenges in high-temperature areasThe Leading Edge201231111288129410.1190/tle31111288.1 AzadpourMManamanNSKadkhodaie-IlkhchiASedghipourM-RPore pressure prediction and modeling using well-logging data in one of the gas fields in south of IranJournal of Petroleum Science and Engineering2015128152310.1016/j.petrol.2015.02.022 WangGJuYHanKEarly Paleozoic shale properties and gas potential evaluation in Xiuwu Basin, western Lower Yangtze PlatformJournal of Natural Gas Science and Engineering20152248949710.1016/j.jngse.2014.12.025 LiuSFMaYSWangGZFormation Process and mechanism of the Sinian-Silurian natural Reservoirs in the Sichuan Basin2014Science Press(in Chinese) MesbahMHabibniaSAhmadiSSaeedi DehaghaniAHBayatSDeveloping a robust correlation for prediction of sweet and sour gas hydrate formation temperaturePetroleum20228220420910.1016/j.petlm.2020.07.007 Veeken, P. P. (2006). Seismic stratigraphy, basin analysis and reservoir characterisation: Elsevier. ZhiliLNew recognition of basement in Sichuan BasinJournal of Chengdu University of Technology1998252191200 Hutomo, P., Rosid, M., & Haidar, M. (2019). Pore pressure prediction using eaton and neural network method in carbonate field “X” based on seismic data. Paper presented at the IOP conference series: Materials science and engineering. Rahim, N. A., Taib, M., Adom, A., & Mashor, M. (2006). The NARMAX model for a dc motor using mlp neural network. Paper presented at the Proceeding of the First International Conference 0n MAN-MACHINE SYSTEMS (ICoMMS). AhmedAElkatatnySAliAAbdulraheemAComparative analysis of artificial intelligence techniques for formation pressure prediction while drillingArabian Journal of Geosciences2019121811310.1007/s12517-019-4800-7 WoY-JZhouYXiaoK-HThe burial history and models for hydrocarbon generation and evolution in the marine strata in southern ChinaSedimentary Geology and Tethyan Geology2007273100 Nyakilla, E. E., Silingi, S. N., Shen, C., Jun, G., Mulashani, A. K., & Chibura, P. E. (2022). Evaluation of source rock potentiality and prediction of total organic carbon using well log data and integrated methods of multivariate analysis, machine learning, and geochemical analysis. Natural Resources Research, 1–23. Do NascimentoMZMartinsASNevesLARamosRPFloresELCarrijoGAClassification of masses in mammographic image using wavelet domain features and polynomial classifierExpert Systems with Applications201340156213622110.1016/j.eswa.2013.04.036 NieHJinZMaXLiuZLinTYangZDispositional characteristics of Ordovician Wufeng formation and Silurian Longmaxi formation in Sichuan Basin and its adjacent areasPetroleum Research20172323324610.1016/j.ptlrs.2017.01.003 LiuGPNonlinear identification and control: a neural network approach2001Springer10.1007/978-1-4471-0345-5 KorbiczJMrugalskiMConfidence estimation of GMDH neural networks and its application in fault detection systemsInternational Journal of Systems Science200839878380010.1080/00207720701847745 MartinsRGMartinsASNevesLALimaLVFloresELdo Nascimento, M. Z.Exploring polynomial classifier to predict match results in football championshipsExpert Systems with Applications201783799310.1016/j.eswa.2017.04.040 Atashbari, V., & Tingay, M. (2012). Pore pressure prediction in carbonate reservoirs. Paper presented at the SPE Lat M Farsi (10207_CR14) 2021; 30 KP Murphy (10207_CR33) 2002 10207_CR17 NA Menad (10207_CR29) 2019; 13 H Nie (10207_CR37) 2017; 2 X Lin (10207_CR23) 2020; 13 10207_CR55 10207_CR12 J Korbicz (10207_CR21) 2008; 39 G Mutumba (10207_CR34) 2021 R Keshavarzi (10207_CR20) 2013; 17 MZ Do Nascimento (10207_CR13) 2013; 40 Y Liu (10207_CR26) 2017; 156 L Zhili (10207_CR54) 1998; 25 A Ahmed (10207_CR4) 2019; 44 D Srinivasan (10207_CR43) 2008; 72 R Swarbrick (10207_CR45) 2012; 31 L Yi-Feng (10207_CR50) 2015; 58 H Yu (10207_CR52) 2020; 143 HK Al-Mohair (10207_CR5) 2015; 33 G Wang (10207_CR47) 2015; 22 10207_CR46 10207_CR44 10207_CR42 10207_CR40 AK Mulashani (10207_CR32) 2022; 239 A Ivakhnenko (10207_CR18) 1995; 5 GL Bowers (10207_CR10) 1995; 10 B Mathew Nkurlu (10207_CR28) 2020; 13 S Asante-Okyere (10207_CR6) 2020; 29 MR Youcefi (10207_CR51) 2022; 8 G Zhang (10207_CR53) 2022; 8 10207_CR7 10207_CR38 SF Liu (10207_CR25) 2014 A Ahmed (10207_CR3) 2019; 12 M Najafzadeh (10207_CR36) 2015; 104 AK Mulashani (10207_CR31) 2021; 30 M Azadpour (10207_CR8) 2015; 128 MA Biot (10207_CR9) 1941; 12 C Cao (10207_CR11) 2020; 13 Y-J Wo (10207_CR48) 2007; 27 M Mesbah (10207_CR30) 2022; 8 R Korsch (10207_CR22) 1991; 54 Q Xu (10207_CR49) 2018; 36 X Qi (10207_CR39) 2015; 24 M Nait Amar (10207_CR35) 2022; 208 L Hu (10207_CR16) 2013; 18 T Jing (10207_CR19) 2016; 34 GP Liu (10207_CR24) 2001 C Zou (10207_CR56) 2017 RG Martins (10207_CR27) 2017; 83 10207_CR1 S Shaghaghi (10207_CR41) 2017; 313 10207_CR2 X Hailong (10207_CR15) 2012; 39 |
References_xml | – reference: WoY-JZhouYXiaoK-HThe burial history and models for hydrocarbon generation and evolution in the marine strata in southern ChinaSedimentary Geology and Tethyan Geology2007273100 – reference: Nait AmarMLarestaniALvQZhouTHemmati-SarapardehAModeling of methane adsorption capacity in shale gas formations using white-box supervised machine learning techniquesJournal of Petroleum Science and Engineering202220810.1016/j.petrol.2021.109226 – reference: NajafzadehMBaraniG-AHessami-KermaniM-REvaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored bedsOcean Engineering201510438739610.1016/j.oceaneng.2015.05.016 – reference: Veeken, P. P. (2006). Seismic stratigraphy, basin analysis and reservoir characterisation: Elsevier. – reference: Abu-Kheil, Y. M. Z. (2009). System Identification using group method of data handling (GMDH). – reference: MutumbaGEcheguSAdaramolaSM.Prospects and challenges of geothermal energy in UgandaJournal of Energy Research and Reviews202110.9734/jenrr/2021/v9i230230 – reference: IvakhnenkoAIvakhnenkoGThe review of problems solvable by algorithms of the group method of data handling (GMDH)Pattern recognition and image analysis c/c of raspoznavaniye obrazov i analiz izobrazhenii19955527535 – reference: ZhiliLNew recognition of basement in Sichuan BasinJournal of Chengdu University of Technology1998252191200 – reference: WangGJuYHanKEarly Paleozoic shale properties and gas potential evaluation in Xiuwu Basin, western Lower Yangtze PlatformJournal of Natural Gas Science and Engineering20152248949710.1016/j.jngse.2014.12.025 – reference: Rahim, N. A., Taib, M., Adom, A., & Mashor, M. (2006). The NARMAX model for a dc motor using mlp neural network. Paper presented at the Proceeding of the First International Conference 0n MAN-MACHINE SYSTEMS (ICoMMS). – reference: KorschRHuazhaoMZhaocaiSGorterJThe Sichuan basin, southwest China: A late proterozoic (Sinian) petroleum provincePrecambrian Research1991541456310.1016/0301-9268(91)90068-L – reference: Zimmerman, R. W. (1990). Compressibility of sandstones. – reference: BiotMAGeneral theory of three-dimensional consolidationJournal of applied physics194112215516410.1063/1.1712886 – reference: Atashbari, V., & Tingay, M. (2012). Pore pressure prediction in carbonate reservoirs. Paper presented at the SPE Latin America and Caribbean petroleum engineering conference. – reference: QiXHuQYiXZhangSShale gas exploration prospect of Lower Cambrian Wangyinpu formation in Xiuwu BasinChina Mining Magazine20152410102107 – reference: ZhangGDavoodiSBandSSGhorbaniHMosaviAMoslehpourMA robust approach to pore pressure prediction applying petrophysical log data aided by machine learning techniquesEnergy Reports202282233224710.1016/j.egyr.2022.01.012 – reference: Contreras, O., Tutuncu, A., Aguilera, R., & Hareland, G. (2011). A case study for pore pressure prediction in an abnormally sub-pressured western Canada sedimentary basin. Paper presented at the 45th US Rock Mechanics/Geomechanics Symposium. – reference: LinXZengJWangJHuangMNatural Gas reservoir characteristics and non-Darcy flow in low-permeability sandstone reservoir of Sulige gas field, Ordos BasinEnergies2020137177410.3390/en13071774 – reference: Nyakilla, E. E., Silingi, S. N., Shen, C., Jun, G., Mulashani, A. K., & Chibura, P. E. (2022). Evaluation of source rock potentiality and prediction of total organic carbon using well log data and integrated methods of multivariate analysis, machine learning, and geochemical analysis. Natural Resources Research, 1–23. – reference: XuQQiuNLiuWShenAWangXZhangGCharacteristics of the temperature–pressure field evolution of Middle Permian system in the northwest of Sichuan BasinEnergy Exploration & Exploitation201836470572610.1177/0144598717752148 – reference: Swarbrick, R. E. (2001). Challenges of porosity based pore pressure prediction. Paper presented at the 63rd EAGE conference & exhibition. – reference: MenadNANoureddineZHemmati-SarapardehAShamshirbandSMosaviAChauK-WModeling temperature dependency of oil - water relative permeability in thermal enhanced oil recovery processes using group method of data handling and gene expression programmingEngineering Applications of Computational Fluid Mechanics201913172474310.1080/19942060.2019.1639549 – reference: YuHChenGGuHA machine learning methodology for multivariate pore-pressure predictionComputers & Geosciences202014310.1016/j.cageo.2020.104548 – reference: ShaghaghiSBonakdariHGholamiAEbtehajIZeinolabediniMComparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel designApplied Mathematics and Computation201731327128610.1016/j.amc.2017.06.012 – reference: SwarbrickRReview of pore-pressure prediction challenges in high-temperature areasThe Leading Edge201231111288129410.1190/tle31111288.1 – reference: Yi-FengLLun-JuZNan-ShengQJing-KunJQingCThe effect of temperature on the overpressure distribution and formation in the central paleo-uplift of the Sichuan BasinChinese Journal of Geophysics201558434035110.1002/cjg2.20178 – reference: MurphyKPDynamic bayesian networks: Representation, inference and learning2002University of California – reference: Mathew NkurluBShenCAsante-OkyereSMulashaniAKChunguJWangLPrediction of permeability using group method of data handling (GMDH) neural network from well log dataEnergies202013355110.3390/en13030551 – reference: HuLDengJZhuHLinHChenZDengFYanCA new pore pressure prediction method-back propagation artificial neural networkElectronic Journal of Geotechnical Engineering20131840934107 – reference: CaoCLiLLiuYDuLLiZHeJFactors affecting shale gas chemistry and stable isotope and noble gas isotope composition and distribution: A case study of lower Silurian Longmaxi Shale GasSichuan Basin. Energies20201322598110.3390/en13225981 – reference: YoucefiMRHadjadjABoukrederaFSNew model for standpipe pressure prediction while drilling using group method of data handlingPetroleum20228221021810.1016/j.petlm.2021.04.003 – reference: KorbiczJMrugalskiMConfidence estimation of GMDH neural networks and its application in fault detection systemsInternational Journal of Systems Science200839878380010.1080/00207720701847745 – reference: LiuSFMaYSWangGZFormation Process and mechanism of the Sinian-Silurian natural Reservoirs in the Sichuan Basin2014Science Press(in Chinese) – reference: KeshavarziRJahanbakhshiRReal-time prediction of pore pressure gradient through an artificial intelligence approach: A case study from one of middle east oil fieldsEuropean journal of environmental and civil engineering201317867568610.1080/19648189.2013.811614 – reference: NieHJinZMaXLiuZLinTYangZDispositional characteristics of Ordovician Wufeng formation and Silurian Longmaxi formation in Sichuan Basin and its adjacent areasPetroleum Research20172323324610.1016/j.ptlrs.2017.01.003 – reference: AhmedAElkatatnySAliAAbdulraheemAComparative analysis of artificial intelligence techniques for formation pressure prediction while drillingArabian Journal of Geosciences2019121811310.1007/s12517-019-4800-7 – reference: Hutomo, P., Rosid, M., & Haidar, M. (2019). Pore pressure prediction using eaton and neural network method in carbonate field “X” based on seismic data. Paper presented at the IOP conference series: Materials science and engineering. – reference: BowersGLPore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompactionSPE Drilling & Completion19951002899510.2118/27488-PA – reference: AzadpourMManamanNSKadkhodaie-IlkhchiASedghipourM-RPore pressure prediction and modeling using well-logging data in one of the gas fields in south of IranJournal of Petroleum Science and Engineering2015128152310.1016/j.petrol.2015.02.022 – reference: Abbey, C. P., chukwudi Meludu, O., & Oniku, A. S. (2021). Investigation of abnormal pore pressure variations by the application of seismic inversion in Norne Field, Mid-Norwegian margin Norway. Petroleum Research. – reference: de Souza, J. A., Martínez, G. C., de Leon, M. F. C. P., Azadpour, M., & Atashbari, V. (2021). Pore pressure and wellbore instability. In Applied Techniques to Integrated Oil and Gas Reservoir Characterization (pp. 355–394): Elsevier. – reference: SrinivasanDEnergy demand prediction using GMDH networksNeurocomputing2008721–362562910.1016/j.neucom.2008.08.006 – reference: ZouCUnconventional petroleum geology2017Elsevier10.1016/B978-0-12-812234-1.00002-9 – reference: FarsiMMohamadianNGhorbaniHWoodDADavoodiSMoghadasiJAhmadi AlvarMPredicting formation pore-pressure from well-log data with hybrid machine-learning optimization algorithmsNatural Resources Research20213053455348110.1007/s11053-021-09852-2 – reference: AhmedAElkatatnySAliAMahmoudMAbdulraheemANew model for pore pressure prediction while drilling using artificial neural networksArabian Journal for Science and Engineering20194466079608810.1007/s13369-018-3574-7 – reference: LiuGPNonlinear identification and control: a neural network approach2001Springer10.1007/978-1-4471-0345-5 – reference: MesbahMHabibniaSAhmadiSSaeedi DehaghaniAHBayatSDeveloping a robust correlation for prediction of sweet and sour gas hydrate formation temperaturePetroleum20228220420910.1016/j.petlm.2020.07.007 – reference: Do NascimentoMZMartinsASNevesLARamosRPFloresELCarrijoGAClassification of masses in mammographic image using wavelet domain features and polynomial classifierExpert Systems with Applications201340156213622110.1016/j.eswa.2013.04.036 – reference: MulashaniAKShenCAsante-OkyereSKerttuPNAbellyENGroup method of data handling (GMDH) neural network for estimating total organic carbon (TOC) and hydrocarbon potential distribution (S1, S2) using well logsNatural Resources Research20213053605362210.1007/s11053-021-09908-3 – reference: LiuYQiuNYaoQZhuCThe impact of temperature on overpressure unloading in the central Sichuan Basin, southwest ChinaJournal of Petroleum Science and Engineering201715614215110.1016/j.petrol.2017.05.010 – reference: MartinsRGMartinsASNevesLALimaLVFloresELdo Nascimento, M. Z.Exploring polynomial classifier to predict match results in football championshipsExpert Systems with Applications201783799310.1016/j.eswa.2017.04.040 – reference: JingTZhangJXuSLiuZHanSCritical geological characteristics and gas-bearing controlling factors in Longmaxi shales in southeastern ChongqingChina. Energy Exploration & Exploitation2016341426010.1177/0144598715623666 – reference: MulashaniAKShenCNkurluBMMkonoCNKawamalaMEnhanced group method of data handling (GMDH) for permeability prediction based on the modified Levenberg Marquardt technique from well log dataEnergy202223910.1016/j.energy.2021.121915 – reference: Al-MohairHKSalehJMSuandiSAHybrid human skin detection using neural network and K-means clustering techniqueApplied Soft Computing20153333734710.1016/j.asoc.2015.04.046 – reference: HailongXGuoqiWChengzaoJWeiYTianweiZWurenXLiCBeiweiLTectonic evolution of the Leshan-Longnüsi paleo-uplift and its control on gas accumulation in the Sinian strataPetroleum Exploration and development201239443644610.1016/S1876-3804(12)60060-3 – reference: Asante-OkyereSShenCZiggahYYRulegeyaMMZhuXA novel hybrid technique of integrating gradient-boosted machine and clustering algorithms for lithology classificationNatural Resources Research20202942257227310.1007/s11053-019-09576-4 – volume: 143 year: 2020 ident: 10207_CR52 publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2020.104548 – volume: 30 start-page: 3605 issue: 5 year: 2021 ident: 10207_CR31 publication-title: Natural Resources Research doi: 10.1007/s11053-021-09908-3 – volume: 29 start-page: 2257 issue: 4 year: 2020 ident: 10207_CR6 publication-title: Natural Resources Research doi: 10.1007/s11053-019-09576-4 – volume: 8 start-page: 2233 year: 2022 ident: 10207_CR53 publication-title: Energy Reports doi: 10.1016/j.egyr.2022.01.012 – ident: 10207_CR17 doi: 10.1088/1757-899X/546/3/032017 – volume: 208 year: 2022 ident: 10207_CR35 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2021.109226 – volume: 40 start-page: 6213 issue: 15 year: 2013 ident: 10207_CR13 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.04.036 – volume: 17 start-page: 675 issue: 8 year: 2013 ident: 10207_CR20 publication-title: European journal of environmental and civil engineering doi: 10.1080/19648189.2013.811614 – volume-title: Formation Process and mechanism of the Sinian-Silurian natural Reservoirs in the Sichuan Basin year: 2014 ident: 10207_CR25 – volume: 128 start-page: 15 year: 2015 ident: 10207_CR8 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2015.02.022 – ident: 10207_CR46 doi: 10.3997/1365-2397.2006004 – ident: 10207_CR7 doi: 10.2118/150835-MS – volume: 34 start-page: 42 issue: 1 year: 2016 ident: 10207_CR19 publication-title: China. Energy Exploration & Exploitation doi: 10.1177/0144598715623666 – volume: 13 start-page: 1774 issue: 7 year: 2020 ident: 10207_CR23 publication-title: Energies doi: 10.3390/en13071774 – volume: 104 start-page: 387 year: 2015 ident: 10207_CR36 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2015.05.016 – volume: 36 start-page: 705 issue: 4 year: 2018 ident: 10207_CR49 publication-title: Energy Exploration & Exploitation doi: 10.1177/0144598717752148 – ident: 10207_CR55 – volume: 12 start-page: 1 issue: 18 year: 2019 ident: 10207_CR3 publication-title: Arabian Journal of Geosciences doi: 10.1007/s12517-019-4800-7 – volume-title: Unconventional petroleum geology year: 2017 ident: 10207_CR56 doi: 10.1016/B978-0-12-812234-1.00002-9 – ident: 10207_CR38 doi: 10.1007/s11053-021-09988-1 – volume: 156 start-page: 142 year: 2017 ident: 10207_CR26 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2017.05.010 – ident: 10207_CR1 doi: 10.1016/j.ptlrs.2021.11.001 – volume: 33 start-page: 337 year: 2015 ident: 10207_CR5 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.04.046 – volume: 8 start-page: 210 issue: 2 year: 2022 ident: 10207_CR51 publication-title: Petroleum doi: 10.1016/j.petlm.2021.04.003 – volume: 18 start-page: 4093 year: 2013 ident: 10207_CR16 publication-title: Electronic Journal of Geotechnical Engineering – volume: 72 start-page: 625 issue: 1–3 year: 2008 ident: 10207_CR43 publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.08.006 – year: 2021 ident: 10207_CR34 publication-title: Journal of Energy Research and Reviews doi: 10.9734/jenrr/2021/v9i230230 – volume: 313 start-page: 271 year: 2017 ident: 10207_CR41 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2017.06.012 – ident: 10207_CR2 – volume: 44 start-page: 6079 issue: 6 year: 2019 ident: 10207_CR4 publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-018-3574-7 – volume: 12 start-page: 155 issue: 2 year: 1941 ident: 10207_CR9 publication-title: Journal of applied physics doi: 10.1063/1.1712886 – volume: 5 start-page: 527 year: 1995 ident: 10207_CR18 publication-title: Pattern recognition and image analysis c/c of raspoznavaniye obrazov i analiz izobrazhenii – ident: 10207_CR42 doi: 10.1016/B978-0-12-817236-0.00014-5 – ident: 10207_CR40 – volume: 2 start-page: 233 issue: 3 year: 2017 ident: 10207_CR37 publication-title: Petroleum Research doi: 10.1016/j.ptlrs.2017.01.003 – volume: 39 start-page: 436 issue: 4 year: 2012 ident: 10207_CR15 publication-title: Petroleum Exploration and development doi: 10.1016/S1876-3804(12)60060-3 – volume: 13 start-page: 5981 issue: 22 year: 2020 ident: 10207_CR11 publication-title: Sichuan Basin. Energies doi: 10.3390/en13225981 – volume: 83 start-page: 79 year: 2017 ident: 10207_CR27 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.04.040 – volume: 13 start-page: 724 issue: 1 year: 2019 ident: 10207_CR29 publication-title: Engineering Applications of Computational Fluid Mechanics doi: 10.1080/19942060.2019.1639549 – volume: 8 start-page: 204 issue: 2 year: 2022 ident: 10207_CR30 publication-title: Petroleum doi: 10.1016/j.petlm.2020.07.007 – volume: 27 start-page: 100 issue: 3 year: 2007 ident: 10207_CR48 publication-title: Sedimentary Geology and Tethyan Geology – volume: 10 start-page: 89 issue: 02 year: 1995 ident: 10207_CR10 publication-title: SPE Drilling & Completion doi: 10.2118/27488-PA – volume: 13 start-page: 551 issue: 3 year: 2020 ident: 10207_CR28 publication-title: Energies doi: 10.3390/en13030551 – volume: 24 start-page: 102 issue: 10 year: 2015 ident: 10207_CR39 publication-title: China Mining Magazine – volume-title: Nonlinear identification and control: a neural network approach year: 2001 ident: 10207_CR24 doi: 10.1007/978-1-4471-0345-5 – volume: 54 start-page: 45 issue: 1 year: 1991 ident: 10207_CR22 publication-title: Precambrian Research doi: 10.1016/0301-9268(91)90068-L – ident: 10207_CR44 doi: 10.3997/2214-4609-pdb.15.O-25 – volume: 30 start-page: 3455 issue: 5 year: 2021 ident: 10207_CR14 publication-title: Natural Resources Research doi: 10.1007/s11053-021-09852-2 – volume-title: Dynamic bayesian networks: Representation, inference and learning year: 2002 ident: 10207_CR33 – volume: 39 start-page: 783 issue: 8 year: 2008 ident: 10207_CR21 publication-title: International Journal of Systems Science doi: 10.1080/00207720701847745 – ident: 10207_CR12 – volume: 25 start-page: 191 issue: 2 year: 1998 ident: 10207_CR54 publication-title: Journal of Chengdu University of Technology – volume: 239 year: 2022 ident: 10207_CR32 publication-title: Energy doi: 10.1016/j.energy.2021.121915 – volume: 58 start-page: 340 issue: 4 year: 2015 ident: 10207_CR50 publication-title: Chinese Journal of Geophysics doi: 10.1002/cjg2.20178 – volume: 22 start-page: 489 year: 2015 ident: 10207_CR47 publication-title: Journal of Natural Gas Science and Engineering doi: 10.1016/j.jngse.2014.12.025 – volume: 31 start-page: 1288 issue: 11 year: 2012 ident: 10207_CR45 publication-title: The Leading Edge doi: 10.1190/tle31111288.1 |
SSID | ssj0007385 |
Score | 2.379842 |
Snippet | Pore pressure prediction is significant in the petroleum industry because, compared to direct measurement, it is cost-effective and it generates an extensive... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1711 |
SubjectTerms | Artificial intelligence Artificial neural networks Back propagation basins Case studies Chemistry and Earth Sciences China clay Clay minerals Computer Science cost effectiveness Data structures Dehydration Earth and Environmental Science Earth Sciences Fossil Fuels (incl. Carbon Capture) Gases Geography Group method of data handling High temperature industry Lateral transfers Learning algorithms Lithology Machine learning Mathematical Modeling and Industrial Mathematics Mathematical models Mineral Resources Neural networks Original Paper Parameters petroleum Petroleum industry Physics Polynomials Pore pressure prediction Pressure Root-mean-square errors Statistics for Engineering Support vector machines Sustainable Development temperature Thermal expansion Velocity Well logs |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9qi6APUqviaZUp-GaDyabJ7foi189DbDnUYt_CfkULR1IvuYf-984kexcr2LeEbLKQ2Z2PnZnfD-CdMj4pyfBFQtiUApTURhQ2-0imsXLOyjLvmsLOL_Lp5cHnq-wqHLg1oaxypRM7Re1qy2fkH4Sixcdg5_Gnm98Rs0ZxdjVQaDyALVLBkoKvrcOTi9nXtS5mrJYOMZWCJHa9Q9tM3zxHrgXnMLk2S8TjSNw1TYO_-U-KtLM8p9vwJLiMOOll_BQ2fLUDj_8CEtyBh2cdQe_tM1hMhow01iWenR9Psa1xtuCMTIuzeuGx7wmkC24uwR9-Pscv9c8Gj3WrP-IEj8i0IVcY3vYjOp49JvnBb9f211JXeKib62ofO_bt53B5evL9aBoFXoXIkrvVRjoTSguKtFKr07F0siwpSDOZLp2xtnQlRTFKaps46YXLvE1MmuVSuyzRTo1N-gI2q7ryLwGl8HFupYqVNwfS5cZJuiOvTpks9nE8gmT1SwsbQMeZ-2JeDHDJLIaCxFB0YijECN6v37npITfuHb27klQRtl9TDItlBHvrx7RxOBuiK18vmyIl55HBy0Q2gv2VhIdP_H_GV_fP-BoeMSV9XyS4C5vtYunfkOPSmrdhdf4BEs_m6g priority: 102 providerName: ProQuest |
Title | Application of GMDH to Predict Pore Pressure from Well Logs Data: A Case Study from Southeast Sichuan Basin, China |
URI | https://link.springer.com/article/10.1007/s11053-023-10207-2 https://www.proquest.com/docview/2918336470 https://www.proquest.com/docview/3154180925 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BKwQceCxFLLQrI3GjkRKnztrc0nYfAlqtgBXlFPkVWmmVoE320H_P2Ek2ULVInOIozkMZex6ame8DeCeUjXI0fAGlOsYAJdYBhs024HEojNE8T3xT2Nl5Ml8efbxgF21TWNVVu3cpSa-p-2Y3dAVcztHVUtFwHKDi3WUudsdVvKTpVv86fBaPkoqBkXO321aZ25_xtznqfcwbaVFvbabP4EnrJpK0ketzuGeLATztKBhIuyMH8PgPPMEBPGwpzS-vB_Bg5jl73chXeerqBazTPl1NypzMzk7npC7JYu3SNTVZlGtLmoZBHLjOE_Ldrlbkc_mzIqeylh9ISk7Q7hFXfnjdzPAkfI4BiHy90pcbWZBjWV0Vh8RTc-_Bcjr5djIPWtKFQKMvVgeSUSEphmGxlvGYG57nGMEpJnOjtM5NjiGO4FJHhltqmNWRilnCpWGRNGKs4pewU5SFfQWEUxsmmotQWHXETaIMxzN0-YRioQ3DIUTdv890i0juiDFWWY-l7OSVobwyL6-MDuH99p5fDR7HP2fvdyLN2r1ZZVSgGnOw-fgBb7eXcVe5VIksbLmpshg9S4dsRtkQDrul0D_i7je-_r_pb-CR469vKgr3Yadeb-wBejm1GsF9Pp2NYDed_fg0wePx5HzxZeSX-m_an_No |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NIQQ8IBggCgOMBE8sIrGb1EZCqKy0HWunSWxib8axHZhUJaNJhfqn-I2cnaQBJPa2t0RxHMl3Z3-Xu_sO4KVIbZThwRdQqhk6KEwH6DbbgLNQGKN5lviisPlRMj3tfzqLz7bgV1sL49Iq2z3Rb9Sm0O4f-RsqUPkc2Xn4_uJH4LpGuehq20KjVotDu_6JLlv57mCE8n1F6fjjyf40aLoKBBrBRhWomApF0c9gWrEBNzzL0EVJY5WZVOvMZIjhBVc6MtxSE1sdpSxOuDJxpIwYpAznvQbX-4wJZ1F8PNns_I4ZxvOzokvmgH5TpFOX6iGQcRFTlwlGw0FA_z4IO3T7T0DWn3Pju3CnAahkWGvUPdiy-Q7c_oO2cAduTHw74PV9WA67-DcpMjKZj6akKsjx0sV_KnJcLC2pKxDxwpWykC92sSCz4ltJRqpSb8mQ7ONBSlw-47oe4bv6uZZC5PO5_r5SOfmgyvN8j_he3w_g9ErW-yFs50VuHwHh1IaJ5iIUNu1zk6SG4x1iSJHGoQ3DHkTtkkrdUJy7ThsL2ZEzOzFIFIP0YpC0B68371zUBB-Xjt5tJSUbYy9lp5o9eLF5jGbqYi8qt8WqlAyhqqNKo3EP9loJd1P8_4uPL__ic7g5PZnP5Ozg6PAJ3KJOwXx64i5sV8uVfYqQqUqfeT0l8PWqDeM3m5MkoQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-hIb4eBhQQZQOMxBuLljhLavPWrXQFtqkSVOzN8iebVCVTkz7sv-fsJM2GAIk3R3GcKGffh-7u9wN4z5VNHBq-iFKdYoCS6gjDZhuxNObGaOby0BR2epbPFgdfzrPzG138odq9S0k2PQ0epamo96-M2-8b39At8PlHX1dF41GESvguquPE7-sFHW90scdqCYipGCR517ttm_nzGrdNU-9v_pYiDZZn-gS2W5eRjBsZP4U7thjA446OgbSncwCPbmALDuBBS29-cT2Ae8eBv9ePQsWnrp7BatynrknpyPHpZEbqksxXPnVTk3m5sqRpHsSB70IhP-xySU7KnxWZyFp-JGNyhDaQ-FLE62ZGIOTzbEDk26W-WMuCHMrqstgjgab7OSymn74fzaKWgCHS6JfVkcwolxRDslTLdMQMcw6jOZVJZ5TWzjgMdziTOjHMUpNZnag0y5k0WSINH6n0BWwVZWFfAmHUxrlmPOZWHTCTK8PwCt0_rrLYxvEQku7fC92ik3uSjKXocZW9vATKSwR5CTqED5tnrhpsjn_O3u1EKtpzWgnKUaV5CH38gHeb23jCfNpEFrZcVyJFL9OjnNFsCHvdVuiX-PsbX_3f9Ldwfz6ZipPPZ1934KGntW8KDXdhq16t7Wt0fmr1JuzvX7DO9oM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+GMDH+to+Predict+Pore+Pressure+from+Well+Logs+Data%3A+A+Case+Study+from+Southeast+Sichuan+Basin%2C+China&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Mgimba%2C+Melckzedeck+M.&rft.au=Jiang%2C+Shu&rft.au=Nyakilla%2C+Edwin+E.&rft.au=Mwakipunda%2C+Grant+Charles&rft.date=2023-08-01&rft.pub=Springer+US&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=32&rft.issue=4&rft.spage=1711&rft.epage=1731&rft_id=info:doi/10.1007%2Fs11053-023-10207-2&rft.externalDocID=10_1007_s11053_023_10207_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon |