AutoGAN-based dimension reduction for privacy preservation
Protecting sensitive information against data exploiting attacks is an emerging research area in data mining. Over the past, several different methods have been introduced to protect individual privacy from such attacks while maximizing data-utility of the application. However, these existing techni...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 384; pp. 94 - 103 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
07.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protecting sensitive information against data exploiting attacks is an emerging research area in data mining. Over the past, several different methods have been introduced to protect individual privacy from such attacks while maximizing data-utility of the application. However, these existing techniques are not sufficient to effectively protect data owner privacy, especially in the scenarios that utilize visualizable data (e.g. images, videos) or the applications that require heavy computations for implementation. To address these problems, we propose a new dimension reduction-based method for privacy preservation. Our method generates dimension-reduced data for performing machine learning tasks and prevents a strong adversary from reconstructing the original data. We first introduce a theoretical approach to evaluate dimension reduction-based privacy preserving mechanisms, then propose a non-linear dimension reduction framework motivated by state-of-the-art neural network structures for privacy preservation. We conducted experiments over three different face image datasets (AT&T, YaleB, and CelebA), and the results show that when the number of dimensions is reduced to seven, we can achieve the accuracies of 79%, 80%, and 73% respectively and the reconstructed images are not recognizable to naked human eyes. |
---|---|
AbstractList | Protecting sensitive information against data exploiting attacks is an emerging research area in data mining. Over the past, several different methods have been introduced to protect individual privacy from such attacks while maximizing data-utility of the application. However, these existing techniques are not sufficient to effectively protect data owner privacy, especially in the scenarios that utilize visualizable data (e.g. images, videos) or the applications that require heavy computations for implementation. To address these problems, we propose a new dimension reduction-based method for privacy preservation. Our method generates dimension-reduced data for performing machine learning tasks and prevents a strong adversary from reconstructing the original data. We first introduce a theoretical approach to evaluate dimension reduction-based privacy preserving mechanisms, then propose a non-linear dimension reduction framework motivated by state-of-the-art neural network structures for privacy preservation. We conducted experiments over three different face image datasets (AT&T, YaleB, and CelebA), and the results show that when the number of dimensions is reduced to seven, we can achieve the accuracies of 79%, 80%, and 73% respectively and the reconstructed images are not recognizable to naked human eyes. |
Author | Wu, Pei-Yuan Chang, Morris Nguyen, Hung Zhuang, Di |
Author_xml | – sequence: 1 givenname: Hung surname: Nguyen fullname: Nguyen, Hung email: nsh@mail.usf.edu organization: University of South Florida, USA – sequence: 2 givenname: Di orcidid: 0000-0003-4569-7123 surname: Zhuang fullname: Zhuang, Di email: zhuangdi1990@gmail.com organization: University of South Florida, USA – sequence: 3 givenname: Pei-Yuan surname: Wu fullname: Wu, Pei-Yuan email: peiyuanwu@ntu.edu.tw organization: National Taiwan University, Taiwan – sequence: 4 givenname: Morris surname: Chang fullname: Chang, Morris email: morrisjchang@gmail.com organization: University of South Florida, USA |
BookMark | eNqFkE1LAzEQhoNUsK3-Aw_9A7tmJvuR7UEoRatQ9KLnkE1mIaXdSLJd6L931_bkQU8zMDwv8z4zNml9S4zdA0-BQ_GwS1s6Gn9IkUOVAqac4xWbgiwxkSiLCZvyCvMEBeANm8W44xxKwGrKlqtj5zert6TWkezCugO10fl2EcgeTTdujQ-Lr-B6bU7DpEih1-Phll03eh_p7jLn7PP56WP9kmzfN6_r1TYxIscu0Wip0LpGm9WFtDKnrC4rzo0GpMyUDaAwwvDM5lICyQa4BglQDNWEKEoxZ8tzrgk-xkCNMq77-aAL2u0VcDVaUDt1tqBGCwpQDRYGOPsFD1UOOpz-wx7PGA3FekdBReOoNWRdINMp693fAd8-XXsm |
CitedBy_id | crossref_primary_10_1080_0952813X_2022_2149861 crossref_primary_10_1109_TP_2024_3513254 crossref_primary_10_1038_s41598_025_93509_0 crossref_primary_10_1007_s00354_024_00283_0 crossref_primary_10_1007_s10462_021_10123_y crossref_primary_10_1016_j_neucom_2021_01_076 crossref_primary_10_1016_j_neucom_2022_05_039 crossref_primary_10_1109_ACCESS_2021_3069737 crossref_primary_10_1016_j_cose_2024_104036 crossref_primary_10_1016_j_jbi_2022_104264 crossref_primary_10_1145_3631421 crossref_primary_10_1016_j_inffus_2023_101826 crossref_primary_10_1016_j_neunet_2020_09_001 crossref_primary_10_1145_3459992 crossref_primary_10_1016_j_iot_2025_101558 crossref_primary_10_1016_j_neucom_2023_127043 crossref_primary_10_3390_app13116799 crossref_primary_10_1109_TETCI_2024_3485677 |
Cites_doi | 10.1016/j.datak.2007.02.004 10.1109/34.927464 10.1016/0169-7439(87)80084-9 10.1109/ACCESS.2018.2817523 10.1145/359168.359176 10.1109/MSP.2016.2616720 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2019.12.002 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 103 |
ExternalDocumentID | 10_1016_j_neucom_2019_12_002 S0925231219316352 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c352t-a2de6aab2d4b68d85e4b7900ca12e4c7f123c3c04d5881e8f10a1811610133673 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Tue Jul 01 01:46:45 EDT 2025 Thu Apr 24 23:07:47 EDT 2025 Fri Feb 23 02:48:54 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Access control Dimension reduction Privacy preservation Auto-encoder Generative adversarial nets Neural-network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-a2de6aab2d4b68d85e4b7900ca12e4c7f123c3c04d5881e8f10a1811610133673 |
ORCID | 0000-0003-4569-7123 |
OpenAccessLink | https://doi.org/10.1016/j.neucom.2019.12.002 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2019_12_002 crossref_primary_10_1016_j_neucom_2019_12_002 elsevier_sciencedirect_doi_10_1016_j_neucom_2019_12_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-07 |
PublicationDateYYYYMMDD | 2020-04-07 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kung (bib0016) 2017; 355 Zhou, Ligett, Wasserman (bib0014) 2009 I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Networks(2014) 1–9. 10.1001/jamainternmed.2016.8245 Yang, Zhu, Liu, Xiang, Zhou (bib0030) 2018; 6 Chaudhuri, Monteleoni (bib0028) 2009 Svante Wold, Geladi (bib0034) 1987; 2 E. Hesamifard, H. Takabi, M. Ghasemi, CryptoDL : Deep Neural Networks over Encrypted Data, (2017). Zhuang, Wang, Chang (bib0011) 2017 M. Abadi, A. Chu, I. Goodfellow, H.B. McMahan, I. Mironov, K. Talwar, L. Zhang, Deep Learning with Differential Privacy(Ccs) (2016). 10.1145/2976749.2978318 Phan, Wang, Wu, Dou (bib0008) 2016 Dwork (bib0027) 2006 P.A. Jensen, Algorithms for constrained optimization Hesamifard, Takabi, Ghasemi (bib0024) 2017; abs/1711.05189 Emekci, Sahin, Agrawal, El Abbadi (bib0002) 2007; 63 A.C.-C. Yao, How to generate and exchange secrets, Proceedings of the 27th Annual Symposium on Foundations of Computer Science(sfcs 1986)(1) (1986) 162–167. 10.1109/SFCS.1986.25 Pedersen, Saygn, Sava (bib0026) 2007 X.C.L.S.R.R. Chong Huang, Peter Kairouz, Generative adversarial privacy, Proceedings of the Privacy in Machine Learning and Artificial Intelligence Workshop, ICML 2018 (2018). Shamir (bib0005) 1979 J. Zhang, Z. Zhang, X. Xiao, Y. Yang, M. Winslett, Functional Mechanism: Regression Analysis under Differential Privacy (2012) 1364–1375. Al-Rubaie, Wu, Chang, Kung (bib0025) 2017 Georghiades, Belhumeur, Kriegman (bib0018) 2001; 23 Chen, Kairouz, Rajagopal (bib0013) 2018; abs/1809.08911 Liu, Luo, Wang, Tang (bib0020) 2015 Xiaoqian Jiang, Ji, Wang, Mohammed, Cheng (bib0010) 2013; 6 Bost, Popa, Tu, Goldwasser (bib0001) 2015 Samaria, Harter (bib0019) 1994 Bost, Ada Popa, Tu, Goldwasser (bib0023) 2015 B. Hitaj, G. Ateniese, F. Perez-Cruz, Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning (2017). 10.1145/3133956.3134012 . Simonyan, Zisserman (bib0033) 2015 Kung (bib0015) 2017; 34 Baldi (bib0022) 2012 Xie, Ning, Wang, Wen, Liu, He, Zhang (bib0017) 2015 Wu, Wang, Wang, Jin (bib0029) 2018; abs/1807.08379 Wu (10.1016/j.neucom.2019.12.002_bib0029) 2018; abs/1807.08379 Liu (10.1016/j.neucom.2019.12.002_bib0020) 2015 Emekci (10.1016/j.neucom.2019.12.002_bib0002) 2007; 63 10.1016/j.neucom.2019.12.002_bib0021 Baldi (10.1016/j.neucom.2019.12.002_bib0022) 2012 Shamir (10.1016/j.neucom.2019.12.002_bib0005) 1979 Svante Wold (10.1016/j.neucom.2019.12.002_bib0034) 1987; 2 Xie (10.1016/j.neucom.2019.12.002_bib0017) 2015 Georghiades (10.1016/j.neucom.2019.12.002_bib0018) 2001; 23 Zhuang (10.1016/j.neucom.2019.12.002_bib0011) 2017 Bost (10.1016/j.neucom.2019.12.002_bib0001) 2015 Kung (10.1016/j.neucom.2019.12.002_bib0015) 2017; 34 Hesamifard (10.1016/j.neucom.2019.12.002_bib0024) 2017; abs/1711.05189 Phan (10.1016/j.neucom.2019.12.002_bib0008) 2016 Dwork (10.1016/j.neucom.2019.12.002_bib0027) 2006 Pedersen (10.1016/j.neucom.2019.12.002_bib0026) 2007 10.1016/j.neucom.2019.12.002_bib0032 10.1016/j.neucom.2019.12.002_bib0031 10.1016/j.neucom.2019.12.002_bib0012 Zhou (10.1016/j.neucom.2019.12.002_bib0014) 2009 Samaria (10.1016/j.neucom.2019.12.002_bib0019) 1994 Bost (10.1016/j.neucom.2019.12.002_bib0023) 2015 Yang (10.1016/j.neucom.2019.12.002_bib0030) 2018; 6 10.1016/j.neucom.2019.12.002_bib0007 Al-Rubaie (10.1016/j.neucom.2019.12.002_bib0025) 2017 Simonyan (10.1016/j.neucom.2019.12.002_bib0033) 2015 10.1016/j.neucom.2019.12.002_bib0009 10.1016/j.neucom.2019.12.002_bib0003 Chaudhuri (10.1016/j.neucom.2019.12.002_bib0028) 2009 10.1016/j.neucom.2019.12.002_bib0004 Kung (10.1016/j.neucom.2019.12.002_bib0016) 2017; 355 Chen (10.1016/j.neucom.2019.12.002_bib0013) 2018; abs/1809.08911 Xiaoqian Jiang (10.1016/j.neucom.2019.12.002_bib0010) 2013; 6 |
References_xml | – volume: 355 year: 2017 ident: bib0016 article-title: A compressive privacy approach to generalized information bottleneck and privacy funnel problems publication-title: J. Frankl. Inst. – start-page: 1 year: 2006 end-page: 12 ident: bib0027 article-title: Differential privacy publication-title: Proc. 33rd Int. Colloq. Autom. Lang. Program. – year: 2015 ident: bib0033 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings – volume: 6 start-page: 19 year: 2013 end-page: 34 ident: bib0010 article-title: Differential-Private data publishing through component analysis publication-title: Trans. data Priv. – start-page: 289 year: 2009 end-page: 296 ident: bib0028 article-title: Privacy-preserving logistic regression publication-title: Advances in Neural Information Processing Systems 21 – volume: 63 start-page: 348 year: 2007 end-page: 361 ident: bib0002 article-title: Privacy preserving decision tree learning over multiple parties publication-title: Data Knowl. Eng. – volume: 23 start-page: 643 year: 2001 end-page: 660 ident: bib0018 article-title: From few to many: illumination cone models for face recognition under variable lighting and pose publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: ). – start-page: 37 year: 2012 end-page: 50 ident: bib0022 article-title: Autoencoders, unsupervised learning, and deep architectures publication-title: ICML Unsupervised Transf. Learn. – reference: X.C.L.S.R.R. Chong Huang, Peter Kairouz, Generative adversarial privacy, Proceedings of the Privacy in Machine Learning and Artificial Intelligence Workshop, ICML 2018 (2018). – reference: I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Networks(2014) 1–9. 10.1001/jamainternmed.2016.8245 – volume: 34 start-page: 94 year: 2017 end-page: 112 ident: bib0015 article-title: Compressive privacy: from informationestimation theory to machine learning [lecture notes] publication-title: IEEE Signal Process. Mag. – reference: P.A. Jensen, Algorithms for constrained optimization, ( – year: 2009 ident: bib0014 article-title: Differential privacy with compression publication-title: CoRR – start-page: 1 year: 2015 end-page: 31 ident: bib0001 article-title: Machine learning classification over encrypted data publication-title: Ndss ’15 – reference: B. Hitaj, G. Ateniese, F. Perez-Cruz, Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning (2017). 10.1145/3133956.3134012 – start-page: 441 year: 2017 end-page: 448 ident: bib0011 article-title: Fripal: Face recognition in privacy abstraction layer publication-title: Proceedings of the IEEE Conference on Dependable and Secure Computing – volume: abs/1807.08379 year: 2018 ident: bib0029 article-title: Towards privacy-preserving visual recognition via adversarial training: a pilot study publication-title: CoRR – year: 2007 ident: bib0026 article-title: Secret Sharing vs. Encryption-based Techniques For Privacy Preserving Data Mining publication-title: Proc. of UNECE/Eurostat Work Session on SDC – volume: abs/1809.08911 year: 2018 ident: bib0013 article-title: Understanding compressive adversarial privacy publication-title: CoRR – volume: abs/1711.05189 year: 2017 ident: bib0024 article-title: Cryptodl: deep neural networks over encrypted data publication-title: CoRR – year: 2015 ident: bib0023 article-title: Machine learning classification over encrypted data – start-page: 702 year: 2015 end-page: 715 ident: bib0017 article-title: An efficient privacy-preserving compressive data gathering scheme in wsns publication-title: Algorithms and Architectures for Parallel Processing – start-page: 612 year: 1979 end-page: 613 ident: bib0005 article-title: How to share a secret publication-title: Commun. ACM – volume: 2 start-page: 37 year: 1987 end-page: 52 ident: bib0034 article-title: Principal component analysis publication-title: Chemometr. Intell. Laborat. Syst. – reference: A.C.-C. Yao, How to generate and exchange secrets, Proceedings of the 27th Annual Symposium on Foundations of Computer Science(sfcs 1986)(1) (1986) 162–167. 10.1109/SFCS.1986.25 – start-page: 280 year: 2017 end-page: 287 ident: bib0025 article-title: Privacy-preserving PCA on horizontally-partitioned data publication-title: IEEE Conference on Dependable and Secure Computing – year: 2015 ident: bib0020 article-title: Deep learning face attributes in the wild publication-title: Proceedings of International Conference on Computer Vision (ICCV) – start-page: 1309 year: 2016 end-page: 1316 ident: bib0008 article-title: Differential privacy preservation for deep auto-Encoders: an application of human behavior prediction publication-title: Aaai – start-page: 138 year: 1994 end-page: 142 ident: bib0019 article-title: Parameterisation of a stochastic model for human face identification publication-title: Proceedings of the IEEE Workshop on Applications of Computer Vision – reference: J. Zhang, Z. Zhang, X. Xiao, Y. Yang, M. Winslett, Functional Mechanism: Regression Analysis under Differential Privacy (2012) 1364–1375. – volume: 6 start-page: 17119 year: 2018 end-page: 17129 ident: bib0030 article-title: Machine learning differential privacy with multifunctional aggregation in a fog computing architecture publication-title: IEEE Access – reference: M. Abadi, A. Chu, I. Goodfellow, H.B. McMahan, I. Mironov, K. Talwar, L. Zhang, Deep Learning with Differential Privacy(Ccs) (2016). 10.1145/2976749.2978318 – reference: E. Hesamifard, H. Takabi, M. Ghasemi, CryptoDL : Deep Neural Networks over Encrypted Data, (2017). – volume: 63 start-page: 348 issue: 2 year: 2007 ident: 10.1016/j.neucom.2019.12.002_bib0002 article-title: Privacy preserving decision tree learning over multiple parties publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2007.02.004 – volume: 6 start-page: 19 issue: 1 year: 2013 ident: 10.1016/j.neucom.2019.12.002_bib0010 article-title: Differential-Private data publishing through component analysis publication-title: Trans. data Priv. – ident: 10.1016/j.neucom.2019.12.002_bib0009 – year: 2009 ident: 10.1016/j.neucom.2019.12.002_bib0014 article-title: Differential privacy with compression publication-title: CoRR – start-page: 441 year: 2017 ident: 10.1016/j.neucom.2019.12.002_bib0011 article-title: Fripal: Face recognition in privacy abstraction layer – volume: abs/1809.08911 year: 2018 ident: 10.1016/j.neucom.2019.12.002_bib0013 article-title: Understanding compressive adversarial privacy publication-title: CoRR – start-page: 280 year: 2017 ident: 10.1016/j.neucom.2019.12.002_bib0025 article-title: Privacy-preserving PCA on horizontally-partitioned data – ident: 10.1016/j.neucom.2019.12.002_bib0007 – year: 2007 ident: 10.1016/j.neucom.2019.12.002_bib0026 article-title: Secret Sharing vs. Encryption-based Techniques For Privacy Preserving Data Mining – ident: 10.1016/j.neucom.2019.12.002_bib0003 – start-page: 138 year: 1994 ident: 10.1016/j.neucom.2019.12.002_bib0019 article-title: Parameterisation of a stochastic model for human face identification – ident: 10.1016/j.neucom.2019.12.002_bib0021 – start-page: 37 year: 2012 ident: 10.1016/j.neucom.2019.12.002_bib0022 article-title: Autoencoders, unsupervised learning, and deep architectures publication-title: ICML Unsupervised Transf. Learn. – volume: 23 start-page: 643 issue: 6 year: 2001 ident: 10.1016/j.neucom.2019.12.002_bib0018 article-title: From few to many: illumination cone models for face recognition under variable lighting and pose publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.927464 – volume: abs/1711.05189 year: 2017 ident: 10.1016/j.neucom.2019.12.002_bib0024 article-title: Cryptodl: deep neural networks over encrypted data publication-title: CoRR – volume: 2 start-page: 37 year: 1987 ident: 10.1016/j.neucom.2019.12.002_bib0034 article-title: Principal component analysis publication-title: Chemometr. Intell. Laborat. Syst. doi: 10.1016/0169-7439(87)80084-9 – volume: 6 start-page: 17119 year: 2018 ident: 10.1016/j.neucom.2019.12.002_bib0030 article-title: Machine learning differential privacy with multifunctional aggregation in a fog computing architecture publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2817523 – year: 2015 ident: 10.1016/j.neucom.2019.12.002_bib0020 article-title: Deep learning face attributes in the wild – start-page: 1 year: 2006 ident: 10.1016/j.neucom.2019.12.002_bib0027 article-title: Differential privacy publication-title: Proc. 33rd Int. Colloq. Autom. Lang. Program. – ident: 10.1016/j.neucom.2019.12.002_bib0032 – start-page: 702 year: 2015 ident: 10.1016/j.neucom.2019.12.002_bib0017 article-title: An efficient privacy-preserving compressive data gathering scheme in wsns – year: 2015 ident: 10.1016/j.neucom.2019.12.002_bib0023 – start-page: 612 year: 1979 ident: 10.1016/j.neucom.2019.12.002_bib0005 article-title: How to share a secret publication-title: Commun. ACM doi: 10.1145/359168.359176 – volume: 34 start-page: 94 issue: 1 year: 2017 ident: 10.1016/j.neucom.2019.12.002_bib0015 article-title: Compressive privacy: from informationestimation theory to machine learning [lecture notes] publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2016.2616720 – volume: 355 year: 2017 ident: 10.1016/j.neucom.2019.12.002_bib0016 article-title: A compressive privacy approach to generalized information bottleneck and privacy funnel problems publication-title: J. Frankl. Inst. – ident: 10.1016/j.neucom.2019.12.002_bib0004 – start-page: 289 year: 2009 ident: 10.1016/j.neucom.2019.12.002_bib0028 article-title: Privacy-preserving logistic regression – volume: abs/1807.08379 year: 2018 ident: 10.1016/j.neucom.2019.12.002_bib0029 article-title: Towards privacy-preserving visual recognition via adversarial training: a pilot study publication-title: CoRR – start-page: 1309 year: 2016 ident: 10.1016/j.neucom.2019.12.002_bib0008 article-title: Differential privacy preservation for deep auto-Encoders: an application of human behavior prediction publication-title: Aaai – year: 2015 ident: 10.1016/j.neucom.2019.12.002_bib0033 article-title: Very deep convolutional networks for large-scale image recognition – start-page: 1 issue: February year: 2015 ident: 10.1016/j.neucom.2019.12.002_bib0001 article-title: Machine learning classification over encrypted data publication-title: Ndss ’15 – ident: 10.1016/j.neucom.2019.12.002_bib0031 – ident: 10.1016/j.neucom.2019.12.002_bib0012 |
SSID | ssj0017129 |
Score | 2.446755 |
Snippet | Protecting sensitive information against data exploiting attacks is an emerging research area in data mining. Over the past, several different methods have... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 94 |
SubjectTerms | Access control Auto-encoder Dimension reduction Generative adversarial nets Neural-network Privacy preservation |
Title | AutoGAN-based dimension reduction for privacy preservation |
URI | https://dx.doi.org/10.1016/j.neucom.2019.12.002 |
Volume | 384 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYPXuCRNmtZbGc6puIsOdgtJmsJEujE6wYt_u0mbDkVQ8FryIP0leV_83nsAXBZEUxFrizimOWIGG6RpoRBPbaqx5oLUk-ceJ_F4yu5nfNYBw7YWxtMqg-5vdHqtrcOXQUBzsJzPB084pS6KIu7JRc6p4F4PMyb8Lb_62NA8iCC06bdHOfKr2_K5muNV2rXnjDgjmNZJwZBc-WGevpic0R7YCb4izJrt7IOOLQ_AbjuHAYZneQius3W1uM0myJukHOa-Yb9PgsGV78vqkYfONYXL1fxNmXfoqa9tKvYITEc3z8MxCjMRkHG_WCFFcxsrpWnOdJzkCbdMixRjowi1zIjCWSITGcxyniTEJgXByhlx59c5Xy-KRXQMuuWitCcACsaTnDCqC-uiLKy1MsSdkC9OVQIXcQ9ELRTShIbhfm7Fq2yZYS-yAVB6ACWh0gHYA2gjtWwaZvyxXrQoy28HL51O_1Xy9N-SZ2Cb-rDZE3DEOehWq7W9cL5Fpfv15emDrezuYTz5BOibzeE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FD3rxLdbnHrzGJtlks-utFGvVthdb6C0k2SxUpC1lK3jxtzvZR1EEBa9LBna_7Dz5Zgah64waJiPjsCAsxdwSiw3LNBaJSwwxQtJi89xgGPXG_HEiJg3UqXthPK2ysv2lTS-sdfWkVaHZWkynrWeSMMiiKKhcCEGFADu8yUF9_RqDm481z4NKysqBe0xgf7zunytIXjO38qQR8IJJURWsqis__NMXn9PdQztVsBi0y_fZRw03O0C79SKGoNLLQ3TbXuXz-_YQe5-UBqmf2O-rYMHSD2b10AcQmwaL5fRN2_fAc1_rWuwRGnfvRp0erpYiYAvfmGPNUhdpbVjKTRSnsXDcyIQQqylz3MoMXJENLeGpiGPq4owSDV4cAjsI9sJIhsdoYzafuRMUSC7ilHJmMgdpFjFGWwpX5LtTtSRZ1ERhDYWy1cRwv7jiVdXUsBdVAqg8gIoyBQA2EV5LLcqJGX-clzXK6tvNKzDqv0qe_lvyCm31RoO-6j8Mn87QNvM5tGfjyHO0kS9X7gICjdxcFj_SJ82Az28 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AutoGAN-based+dimension+reduction+for+privacy+preservation&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Nguyen%2C+Hung&rft.au=Zhuang%2C+Di&rft.au=Wu%2C+Pei-Yuan&rft.au=Chang%2C+Morris&rft.date=2020-04-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=384&rft.spage=94&rft.epage=103&rft_id=info:doi/10.1016%2Fj.neucom.2019.12.002&rft.externalDocID=S0925231219316352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |