AutoGAN-based dimension reduction for privacy preservation

Protecting sensitive information against data exploiting attacks is an emerging research area in data mining. Over the past, several different methods have been introduced to protect individual privacy from such attacks while maximizing data-utility of the application. However, these existing techni...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 384; pp. 94 - 103
Main Authors Nguyen, Hung, Zhuang, Di, Wu, Pei-Yuan, Chang, Morris
Format Journal Article
LanguageEnglish
Published Elsevier B.V 07.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Protecting sensitive information against data exploiting attacks is an emerging research area in data mining. Over the past, several different methods have been introduced to protect individual privacy from such attacks while maximizing data-utility of the application. However, these existing techniques are not sufficient to effectively protect data owner privacy, especially in the scenarios that utilize visualizable data (e.g. images, videos) or the applications that require heavy computations for implementation. To address these problems, we propose a new dimension reduction-based method for privacy preservation. Our method generates dimension-reduced data for performing machine learning tasks and prevents a strong adversary from reconstructing the original data. We first introduce a theoretical approach to evaluate dimension reduction-based privacy preserving mechanisms, then propose a non-linear dimension reduction framework motivated by state-of-the-art neural network structures for privacy preservation. We conducted experiments over three different face image datasets (AT&T, YaleB, and CelebA), and the results show that when the number of dimensions is reduced to seven, we can achieve the accuracies of 79%, 80%, and 73% respectively and the reconstructed images are not recognizable to naked human eyes.
AbstractList Protecting sensitive information against data exploiting attacks is an emerging research area in data mining. Over the past, several different methods have been introduced to protect individual privacy from such attacks while maximizing data-utility of the application. However, these existing techniques are not sufficient to effectively protect data owner privacy, especially in the scenarios that utilize visualizable data (e.g. images, videos) or the applications that require heavy computations for implementation. To address these problems, we propose a new dimension reduction-based method for privacy preservation. Our method generates dimension-reduced data for performing machine learning tasks and prevents a strong adversary from reconstructing the original data. We first introduce a theoretical approach to evaluate dimension reduction-based privacy preserving mechanisms, then propose a non-linear dimension reduction framework motivated by state-of-the-art neural network structures for privacy preservation. We conducted experiments over three different face image datasets (AT&T, YaleB, and CelebA), and the results show that when the number of dimensions is reduced to seven, we can achieve the accuracies of 79%, 80%, and 73% respectively and the reconstructed images are not recognizable to naked human eyes.
Author Wu, Pei-Yuan
Chang, Morris
Nguyen, Hung
Zhuang, Di
Author_xml – sequence: 1
  givenname: Hung
  surname: Nguyen
  fullname: Nguyen, Hung
  email: nsh@mail.usf.edu
  organization: University of South Florida, USA
– sequence: 2
  givenname: Di
  orcidid: 0000-0003-4569-7123
  surname: Zhuang
  fullname: Zhuang, Di
  email: zhuangdi1990@gmail.com
  organization: University of South Florida, USA
– sequence: 3
  givenname: Pei-Yuan
  surname: Wu
  fullname: Wu, Pei-Yuan
  email: peiyuanwu@ntu.edu.tw
  organization: National Taiwan University, Taiwan
– sequence: 4
  givenname: Morris
  surname: Chang
  fullname: Chang, Morris
  email: morrisjchang@gmail.com
  organization: University of South Florida, USA
BookMark eNqFkE1LAzEQhoNUsK3-Aw_9A7tmJvuR7UEoRatQ9KLnkE1mIaXdSLJd6L931_bkQU8zMDwv8z4zNml9S4zdA0-BQ_GwS1s6Gn9IkUOVAqac4xWbgiwxkSiLCZvyCvMEBeANm8W44xxKwGrKlqtj5zert6TWkezCugO10fl2EcgeTTdujQ-Lr-B6bU7DpEih1-Phll03eh_p7jLn7PP56WP9kmzfN6_r1TYxIscu0Wip0LpGm9WFtDKnrC4rzo0GpMyUDaAwwvDM5lICyQa4BglQDNWEKEoxZ8tzrgk-xkCNMq77-aAL2u0VcDVaUDt1tqBGCwpQDRYGOPsFD1UOOpz-wx7PGA3FekdBReOoNWRdINMp693fAd8-XXsm
CitedBy_id crossref_primary_10_1080_0952813X_2022_2149861
crossref_primary_10_1109_TP_2024_3513254
crossref_primary_10_1038_s41598_025_93509_0
crossref_primary_10_1007_s00354_024_00283_0
crossref_primary_10_1007_s10462_021_10123_y
crossref_primary_10_1016_j_neucom_2021_01_076
crossref_primary_10_1016_j_neucom_2022_05_039
crossref_primary_10_1109_ACCESS_2021_3069737
crossref_primary_10_1016_j_cose_2024_104036
crossref_primary_10_1016_j_jbi_2022_104264
crossref_primary_10_1145_3631421
crossref_primary_10_1016_j_inffus_2023_101826
crossref_primary_10_1016_j_neunet_2020_09_001
crossref_primary_10_1145_3459992
crossref_primary_10_1016_j_iot_2025_101558
crossref_primary_10_1016_j_neucom_2023_127043
crossref_primary_10_3390_app13116799
crossref_primary_10_1109_TETCI_2024_3485677
Cites_doi 10.1016/j.datak.2007.02.004
10.1109/34.927464
10.1016/0169-7439(87)80084-9
10.1109/ACCESS.2018.2817523
10.1145/359168.359176
10.1109/MSP.2016.2616720
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2019.12.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 103
ExternalDocumentID 10_1016_j_neucom_2019_12_002
S0925231219316352
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c352t-a2de6aab2d4b68d85e4b7900ca12e4c7f123c3c04d5881e8f10a1811610133673
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Tue Jul 01 01:46:45 EDT 2025
Thu Apr 24 23:07:47 EDT 2025
Fri Feb 23 02:48:54 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Access control
Dimension reduction
Privacy preservation
Auto-encoder
Generative adversarial nets
Neural-network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-a2de6aab2d4b68d85e4b7900ca12e4c7f123c3c04d5881e8f10a1811610133673
ORCID 0000-0003-4569-7123
OpenAccessLink https://doi.org/10.1016/j.neucom.2019.12.002
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2019_12_002
crossref_primary_10_1016_j_neucom_2019_12_002
elsevier_sciencedirect_doi_10_1016_j_neucom_2019_12_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-07
PublicationDateYYYYMMDD 2020-04-07
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-07
  day: 07
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kung (bib0016) 2017; 355
Zhou, Ligett, Wasserman (bib0014) 2009
I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Networks(2014) 1–9. 10.1001/jamainternmed.2016.8245
Yang, Zhu, Liu, Xiang, Zhou (bib0030) 2018; 6
Chaudhuri, Monteleoni (bib0028) 2009
Svante Wold, Geladi (bib0034) 1987; 2
E. Hesamifard, H. Takabi, M. Ghasemi, CryptoDL : Deep Neural Networks over Encrypted Data, (2017).
Zhuang, Wang, Chang (bib0011) 2017
M. Abadi, A. Chu, I. Goodfellow, H.B. McMahan, I. Mironov, K. Talwar, L. Zhang, Deep Learning with Differential Privacy(Ccs) (2016). 10.1145/2976749.2978318
Phan, Wang, Wu, Dou (bib0008) 2016
Dwork (bib0027) 2006
P.A. Jensen, Algorithms for constrained optimization
Hesamifard, Takabi, Ghasemi (bib0024) 2017; abs/1711.05189
Emekci, Sahin, Agrawal, El Abbadi (bib0002) 2007; 63
A.C.-C. Yao, How to generate and exchange secrets, Proceedings of the 27th Annual Symposium on Foundations of Computer Science(sfcs 1986)(1) (1986) 162–167. 10.1109/SFCS.1986.25
Pedersen, Saygn, Sava (bib0026) 2007
X.C.L.S.R.R. Chong Huang, Peter Kairouz, Generative adversarial privacy, Proceedings of the Privacy in Machine Learning and Artificial Intelligence Workshop, ICML 2018 (2018).
Shamir (bib0005) 1979
J. Zhang, Z. Zhang, X. Xiao, Y. Yang, M. Winslett, Functional Mechanism: Regression Analysis under Differential Privacy (2012) 1364–1375.
Al-Rubaie, Wu, Chang, Kung (bib0025) 2017
Georghiades, Belhumeur, Kriegman (bib0018) 2001; 23
Chen, Kairouz, Rajagopal (bib0013) 2018; abs/1809.08911
Liu, Luo, Wang, Tang (bib0020) 2015
Xiaoqian Jiang, Ji, Wang, Mohammed, Cheng (bib0010) 2013; 6
Bost, Popa, Tu, Goldwasser (bib0001) 2015
Samaria, Harter (bib0019) 1994
Bost, Ada Popa, Tu, Goldwasser (bib0023) 2015
B. Hitaj, G. Ateniese, F. Perez-Cruz, Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning (2017). 10.1145/3133956.3134012
.
Simonyan, Zisserman (bib0033) 2015
Kung (bib0015) 2017; 34
Baldi (bib0022) 2012
Xie, Ning, Wang, Wen, Liu, He, Zhang (bib0017) 2015
Wu, Wang, Wang, Jin (bib0029) 2018; abs/1807.08379
Wu (10.1016/j.neucom.2019.12.002_bib0029) 2018; abs/1807.08379
Liu (10.1016/j.neucom.2019.12.002_bib0020) 2015
Emekci (10.1016/j.neucom.2019.12.002_bib0002) 2007; 63
10.1016/j.neucom.2019.12.002_bib0021
Baldi (10.1016/j.neucom.2019.12.002_bib0022) 2012
Shamir (10.1016/j.neucom.2019.12.002_bib0005) 1979
Svante Wold (10.1016/j.neucom.2019.12.002_bib0034) 1987; 2
Xie (10.1016/j.neucom.2019.12.002_bib0017) 2015
Georghiades (10.1016/j.neucom.2019.12.002_bib0018) 2001; 23
Zhuang (10.1016/j.neucom.2019.12.002_bib0011) 2017
Bost (10.1016/j.neucom.2019.12.002_bib0001) 2015
Kung (10.1016/j.neucom.2019.12.002_bib0015) 2017; 34
Hesamifard (10.1016/j.neucom.2019.12.002_bib0024) 2017; abs/1711.05189
Phan (10.1016/j.neucom.2019.12.002_bib0008) 2016
Dwork (10.1016/j.neucom.2019.12.002_bib0027) 2006
Pedersen (10.1016/j.neucom.2019.12.002_bib0026) 2007
10.1016/j.neucom.2019.12.002_bib0032
10.1016/j.neucom.2019.12.002_bib0031
10.1016/j.neucom.2019.12.002_bib0012
Zhou (10.1016/j.neucom.2019.12.002_bib0014) 2009
Samaria (10.1016/j.neucom.2019.12.002_bib0019) 1994
Bost (10.1016/j.neucom.2019.12.002_bib0023) 2015
Yang (10.1016/j.neucom.2019.12.002_bib0030) 2018; 6
10.1016/j.neucom.2019.12.002_bib0007
Al-Rubaie (10.1016/j.neucom.2019.12.002_bib0025) 2017
Simonyan (10.1016/j.neucom.2019.12.002_bib0033) 2015
10.1016/j.neucom.2019.12.002_bib0009
10.1016/j.neucom.2019.12.002_bib0003
Chaudhuri (10.1016/j.neucom.2019.12.002_bib0028) 2009
10.1016/j.neucom.2019.12.002_bib0004
Kung (10.1016/j.neucom.2019.12.002_bib0016) 2017; 355
Chen (10.1016/j.neucom.2019.12.002_bib0013) 2018; abs/1809.08911
Xiaoqian Jiang (10.1016/j.neucom.2019.12.002_bib0010) 2013; 6
References_xml – volume: 355
  year: 2017
  ident: bib0016
  article-title: A compressive privacy approach to generalized information bottleneck and privacy funnel problems
  publication-title: J. Frankl. Inst.
– start-page: 1
  year: 2006
  end-page: 12
  ident: bib0027
  article-title: Differential privacy
  publication-title: Proc. 33rd Int. Colloq. Autom. Lang. Program.
– year: 2015
  ident: bib0033
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings
– volume: 6
  start-page: 19
  year: 2013
  end-page: 34
  ident: bib0010
  article-title: Differential-Private data publishing through component analysis
  publication-title: Trans. data Priv.
– start-page: 289
  year: 2009
  end-page: 296
  ident: bib0028
  article-title: Privacy-preserving logistic regression
  publication-title: Advances in Neural Information Processing Systems 21
– volume: 63
  start-page: 348
  year: 2007
  end-page: 361
  ident: bib0002
  article-title: Privacy preserving decision tree learning over multiple parties
  publication-title: Data Knowl. Eng.
– volume: 23
  start-page: 643
  year: 2001
  end-page: 660
  ident: bib0018
  article-title: From few to many: illumination cone models for face recognition under variable lighting and pose
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: ).
– start-page: 37
  year: 2012
  end-page: 50
  ident: bib0022
  article-title: Autoencoders, unsupervised learning, and deep architectures
  publication-title: ICML Unsupervised Transf. Learn.
– reference: X.C.L.S.R.R. Chong Huang, Peter Kairouz, Generative adversarial privacy, Proceedings of the Privacy in Machine Learning and Artificial Intelligence Workshop, ICML 2018 (2018).
– reference: I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Networks(2014) 1–9. 10.1001/jamainternmed.2016.8245
– volume: 34
  start-page: 94
  year: 2017
  end-page: 112
  ident: bib0015
  article-title: Compressive privacy: from informationestimation theory to machine learning [lecture notes]
  publication-title: IEEE Signal Process. Mag.
– reference: P.A. Jensen, Algorithms for constrained optimization, (
– year: 2009
  ident: bib0014
  article-title: Differential privacy with compression
  publication-title: CoRR
– start-page: 1
  year: 2015
  end-page: 31
  ident: bib0001
  article-title: Machine learning classification over encrypted data
  publication-title: Ndss ’15
– reference: B. Hitaj, G. Ateniese, F. Perez-Cruz, Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning (2017). 10.1145/3133956.3134012
– start-page: 441
  year: 2017
  end-page: 448
  ident: bib0011
  article-title: Fripal: Face recognition in privacy abstraction layer
  publication-title: Proceedings of the IEEE Conference on Dependable and Secure Computing
– volume: abs/1807.08379
  year: 2018
  ident: bib0029
  article-title: Towards privacy-preserving visual recognition via adversarial training: a pilot study
  publication-title: CoRR
– year: 2007
  ident: bib0026
  article-title: Secret Sharing vs. Encryption-based Techniques For Privacy Preserving Data Mining
  publication-title: Proc. of UNECE/Eurostat Work Session on SDC
– volume: abs/1809.08911
  year: 2018
  ident: bib0013
  article-title: Understanding compressive adversarial privacy
  publication-title: CoRR
– volume: abs/1711.05189
  year: 2017
  ident: bib0024
  article-title: Cryptodl: deep neural networks over encrypted data
  publication-title: CoRR
– year: 2015
  ident: bib0023
  article-title: Machine learning classification over encrypted data
– start-page: 702
  year: 2015
  end-page: 715
  ident: bib0017
  article-title: An efficient privacy-preserving compressive data gathering scheme in wsns
  publication-title: Algorithms and Architectures for Parallel Processing
– start-page: 612
  year: 1979
  end-page: 613
  ident: bib0005
  article-title: How to share a secret
  publication-title: Commun. ACM
– volume: 2
  start-page: 37
  year: 1987
  end-page: 52
  ident: bib0034
  article-title: Principal component analysis
  publication-title: Chemometr. Intell. Laborat. Syst.
– reference: A.C.-C. Yao, How to generate and exchange secrets, Proceedings of the 27th Annual Symposium on Foundations of Computer Science(sfcs 1986)(1) (1986) 162–167. 10.1109/SFCS.1986.25
– start-page: 280
  year: 2017
  end-page: 287
  ident: bib0025
  article-title: Privacy-preserving PCA on horizontally-partitioned data
  publication-title: IEEE Conference on Dependable and Secure Computing
– year: 2015
  ident: bib0020
  article-title: Deep learning face attributes in the wild
  publication-title: Proceedings of International Conference on Computer Vision (ICCV)
– start-page: 1309
  year: 2016
  end-page: 1316
  ident: bib0008
  article-title: Differential privacy preservation for deep auto-Encoders: an application of human behavior prediction
  publication-title: Aaai
– start-page: 138
  year: 1994
  end-page: 142
  ident: bib0019
  article-title: Parameterisation of a stochastic model for human face identification
  publication-title: Proceedings of the IEEE Workshop on Applications of Computer Vision
– reference: J. Zhang, Z. Zhang, X. Xiao, Y. Yang, M. Winslett, Functional Mechanism: Regression Analysis under Differential Privacy (2012) 1364–1375.
– volume: 6
  start-page: 17119
  year: 2018
  end-page: 17129
  ident: bib0030
  article-title: Machine learning differential privacy with multifunctional aggregation in a fog computing architecture
  publication-title: IEEE Access
– reference: M. Abadi, A. Chu, I. Goodfellow, H.B. McMahan, I. Mironov, K. Talwar, L. Zhang, Deep Learning with Differential Privacy(Ccs) (2016). 10.1145/2976749.2978318
– reference: E. Hesamifard, H. Takabi, M. Ghasemi, CryptoDL : Deep Neural Networks over Encrypted Data, (2017).
– volume: 63
  start-page: 348
  issue: 2
  year: 2007
  ident: 10.1016/j.neucom.2019.12.002_bib0002
  article-title: Privacy preserving decision tree learning over multiple parties
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2007.02.004
– volume: 6
  start-page: 19
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2019.12.002_bib0010
  article-title: Differential-Private data publishing through component analysis
  publication-title: Trans. data Priv.
– ident: 10.1016/j.neucom.2019.12.002_bib0009
– year: 2009
  ident: 10.1016/j.neucom.2019.12.002_bib0014
  article-title: Differential privacy with compression
  publication-title: CoRR
– start-page: 441
  year: 2017
  ident: 10.1016/j.neucom.2019.12.002_bib0011
  article-title: Fripal: Face recognition in privacy abstraction layer
– volume: abs/1809.08911
  year: 2018
  ident: 10.1016/j.neucom.2019.12.002_bib0013
  article-title: Understanding compressive adversarial privacy
  publication-title: CoRR
– start-page: 280
  year: 2017
  ident: 10.1016/j.neucom.2019.12.002_bib0025
  article-title: Privacy-preserving PCA on horizontally-partitioned data
– ident: 10.1016/j.neucom.2019.12.002_bib0007
– year: 2007
  ident: 10.1016/j.neucom.2019.12.002_bib0026
  article-title: Secret Sharing vs. Encryption-based Techniques For Privacy Preserving Data Mining
– ident: 10.1016/j.neucom.2019.12.002_bib0003
– start-page: 138
  year: 1994
  ident: 10.1016/j.neucom.2019.12.002_bib0019
  article-title: Parameterisation of a stochastic model for human face identification
– ident: 10.1016/j.neucom.2019.12.002_bib0021
– start-page: 37
  year: 2012
  ident: 10.1016/j.neucom.2019.12.002_bib0022
  article-title: Autoencoders, unsupervised learning, and deep architectures
  publication-title: ICML Unsupervised Transf. Learn.
– volume: 23
  start-page: 643
  issue: 6
  year: 2001
  ident: 10.1016/j.neucom.2019.12.002_bib0018
  article-title: From few to many: illumination cone models for face recognition under variable lighting and pose
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.927464
– volume: abs/1711.05189
  year: 2017
  ident: 10.1016/j.neucom.2019.12.002_bib0024
  article-title: Cryptodl: deep neural networks over encrypted data
  publication-title: CoRR
– volume: 2
  start-page: 37
  year: 1987
  ident: 10.1016/j.neucom.2019.12.002_bib0034
  article-title: Principal component analysis
  publication-title: Chemometr. Intell. Laborat. Syst.
  doi: 10.1016/0169-7439(87)80084-9
– volume: 6
  start-page: 17119
  year: 2018
  ident: 10.1016/j.neucom.2019.12.002_bib0030
  article-title: Machine learning differential privacy with multifunctional aggregation in a fog computing architecture
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2817523
– year: 2015
  ident: 10.1016/j.neucom.2019.12.002_bib0020
  article-title: Deep learning face attributes in the wild
– start-page: 1
  year: 2006
  ident: 10.1016/j.neucom.2019.12.002_bib0027
  article-title: Differential privacy
  publication-title: Proc. 33rd Int. Colloq. Autom. Lang. Program.
– ident: 10.1016/j.neucom.2019.12.002_bib0032
– start-page: 702
  year: 2015
  ident: 10.1016/j.neucom.2019.12.002_bib0017
  article-title: An efficient privacy-preserving compressive data gathering scheme in wsns
– year: 2015
  ident: 10.1016/j.neucom.2019.12.002_bib0023
– start-page: 612
  year: 1979
  ident: 10.1016/j.neucom.2019.12.002_bib0005
  article-title: How to share a secret
  publication-title: Commun. ACM
  doi: 10.1145/359168.359176
– volume: 34
  start-page: 94
  issue: 1
  year: 2017
  ident: 10.1016/j.neucom.2019.12.002_bib0015
  article-title: Compressive privacy: from informationestimation theory to machine learning [lecture notes]
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2016.2616720
– volume: 355
  year: 2017
  ident: 10.1016/j.neucom.2019.12.002_bib0016
  article-title: A compressive privacy approach to generalized information bottleneck and privacy funnel problems
  publication-title: J. Frankl. Inst.
– ident: 10.1016/j.neucom.2019.12.002_bib0004
– start-page: 289
  year: 2009
  ident: 10.1016/j.neucom.2019.12.002_bib0028
  article-title: Privacy-preserving logistic regression
– volume: abs/1807.08379
  year: 2018
  ident: 10.1016/j.neucom.2019.12.002_bib0029
  article-title: Towards privacy-preserving visual recognition via adversarial training: a pilot study
  publication-title: CoRR
– start-page: 1309
  year: 2016
  ident: 10.1016/j.neucom.2019.12.002_bib0008
  article-title: Differential privacy preservation for deep auto-Encoders: an application of human behavior prediction
  publication-title: Aaai
– year: 2015
  ident: 10.1016/j.neucom.2019.12.002_bib0033
  article-title: Very deep convolutional networks for large-scale image recognition
– start-page: 1
  issue: February
  year: 2015
  ident: 10.1016/j.neucom.2019.12.002_bib0001
  article-title: Machine learning classification over encrypted data
  publication-title: Ndss ’15
– ident: 10.1016/j.neucom.2019.12.002_bib0031
– ident: 10.1016/j.neucom.2019.12.002_bib0012
SSID ssj0017129
Score 2.446755
Snippet Protecting sensitive information against data exploiting attacks is an emerging research area in data mining. Over the past, several different methods have...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 94
SubjectTerms Access control
Auto-encoder
Dimension reduction
Generative adversarial nets
Neural-network
Privacy preservation
Title AutoGAN-based dimension reduction for privacy preservation
URI https://dx.doi.org/10.1016/j.neucom.2019.12.002
Volume 384
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYPXuCRNmtZbGc6puIsOdgtJmsJEujE6wYt_u0mbDkVQ8FryIP0leV_83nsAXBZEUxFrizimOWIGG6RpoRBPbaqx5oLUk-ceJ_F4yu5nfNYBw7YWxtMqg-5vdHqtrcOXQUBzsJzPB084pS6KIu7JRc6p4F4PMyb8Lb_62NA8iCC06bdHOfKr2_K5muNV2rXnjDgjmNZJwZBc-WGevpic0R7YCb4izJrt7IOOLQ_AbjuHAYZneQius3W1uM0myJukHOa-Yb9PgsGV78vqkYfONYXL1fxNmXfoqa9tKvYITEc3z8MxCjMRkHG_WCFFcxsrpWnOdJzkCbdMixRjowi1zIjCWSITGcxyniTEJgXByhlx59c5Xy-KRXQMuuWitCcACsaTnDCqC-uiLKy1MsSdkC9OVQIXcQ9ELRTShIbhfm7Fq2yZYS-yAVB6ACWh0gHYA2gjtWwaZvyxXrQoy28HL51O_1Xy9N-SZ2Cb-rDZE3DEOehWq7W9cL5Fpfv15emDrezuYTz5BOibzeE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FD3rxLdbnHrzGJtlks-utFGvVthdb6C0k2SxUpC1lK3jxtzvZR1EEBa9LBna_7Dz5Zgah64waJiPjsCAsxdwSiw3LNBaJSwwxQtJi89xgGPXG_HEiJg3UqXthPK2ysv2lTS-sdfWkVaHZWkynrWeSMMiiKKhcCEGFADu8yUF9_RqDm481z4NKysqBe0xgf7zunytIXjO38qQR8IJJURWsqis__NMXn9PdQztVsBi0y_fZRw03O0C79SKGoNLLQ3TbXuXz-_YQe5-UBqmf2O-rYMHSD2b10AcQmwaL5fRN2_fAc1_rWuwRGnfvRp0erpYiYAvfmGPNUhdpbVjKTRSnsXDcyIQQqylz3MoMXJENLeGpiGPq4owSDV4cAjsI9sJIhsdoYzafuRMUSC7ilHJmMgdpFjFGWwpX5LtTtSRZ1ERhDYWy1cRwv7jiVdXUsBdVAqg8gIoyBQA2EV5LLcqJGX-clzXK6tvNKzDqv0qe_lvyCm31RoO-6j8Mn87QNvM5tGfjyHO0kS9X7gICjdxcFj_SJ82Az28
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AutoGAN-based+dimension+reduction+for+privacy+preservation&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Nguyen%2C+Hung&rft.au=Zhuang%2C+Di&rft.au=Wu%2C+Pei-Yuan&rft.au=Chang%2C+Morris&rft.date=2020-04-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=384&rft.spage=94&rft.epage=103&rft_id=info:doi/10.1016%2Fj.neucom.2019.12.002&rft.externalDocID=S0925231219316352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon