Reference Trajectory Generation for Closed-Loop Control of Electrical Stimulation for Rehabilitation of Upper Limb

Functional movements in the paralyzed upper limb can be restored with the help of brain-computer-interface (BCI). A BCI system typically adopts a functional electrical stimulation (FES) system that activates weakened muscles that are otherwise responsible for actuating finger movements. A BCI-FES sy...

Full description

Saved in:
Bibliographic Details
Published inIFAC-PapersOnLine Vol. 53; no. 2; pp. 16438 - 16444
Main Authors Karak, Tarun, Tiwari, Laxmi Kant, Sengupta, Somnath, Nag, Sudip
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2020
Subjects
Online AccessGet full text
ISSN2405-8963
2405-8963
DOI10.1016/j.ifacol.2020.12.710

Cover

Abstract Functional movements in the paralyzed upper limb can be restored with the help of brain-computer-interface (BCI). A BCI system typically adopts a functional electrical stimulation (FES) system that activates weakened muscles that are otherwise responsible for actuating finger movements. A BCI-FES system can enable muscle contraction through the delivery of electrical stimulation pulses. The control of voltage or current stimulation parameters such as pulse width, frequency, and amplitude along with feedback signals from finger joints positions are essential for stable grasping. For the design of a closed-loop functional electrical stimulation controller, it is obligatory to set standard reference trajectories of finger joints’ angular positions and velocities for controlling stimulation parameters in neuroprosthetics and rehabilitation. This study proposes a new closed-loop control architecture targeted for achieving successful and stable grasping of an upper limb paralyzed subject. This can be achieved by characterizing each of the finger joints’ instantaneous angular position and velocity, through reference trajectories. These reference trajectories are generated corresponding to various types of grasping for feeding to the controller, responsible for stimulation of muscles. Hence, to generate such trajectories, first, grasping classification has been implemented using standard machine learning algorithms on a large set of existing real-time data of different types of objects’ grasping such as various diameter, abducted thumb and other types of objects, from many healthy subjects. The results demonstrate the successful implementation of fairly accurate classifications and trajectory generations which are crucial for closed-loop control towards stable grasping.
AbstractList Functional movements in the paralyzed upper limb can be restored with the help of brain-computer-interface (BCI). A BCI system typically adopts a functional electrical stimulation (FES) system that activates weakened muscles that are otherwise responsible for actuating finger movements. A BCI-FES system can enable muscle contraction through the delivery of electrical stimulation pulses. The control of voltage or current stimulation parameters such as pulse width, frequency, and amplitude along with feedback signals from finger joints positions are essential for stable grasping. For the design of a closed-loop functional electrical stimulation controller, it is obligatory to set standard reference trajectories of finger joints’ angular positions and velocities for controlling stimulation parameters in neuroprosthetics and rehabilitation. This study proposes a new closed-loop control architecture targeted for achieving successful and stable grasping of an upper limb paralyzed subject. This can be achieved by characterizing each of the finger joints’ instantaneous angular position and velocity, through reference trajectories. These reference trajectories are generated corresponding to various types of grasping for feeding to the controller, responsible for stimulation of muscles. Hence, to generate such trajectories, first, grasping classification has been implemented using standard machine learning algorithms on a large set of existing real-time data of different types of objects’ grasping such as various diameter, abducted thumb and other types of objects, from many healthy subjects. The results demonstrate the successful implementation of fairly accurate classifications and trajectory generations which are crucial for closed-loop control towards stable grasping.
Author Tiwari, Laxmi Kant
Karak, Tarun
Sengupta, Somnath
Nag, Sudip
Author_xml – sequence: 1
  givenname: Tarun
  surname: Karak
  fullname: Karak, Tarun
  email: tarunkarak@iitkgp.ac.in
  organization: Advanced Technology Development Centre, IIT Khargpur, Kharagpur, India
– sequence: 2
  givenname: Laxmi Kant
  surname: Tiwari
  fullname: Tiwari, Laxmi Kant
  email: laxmimerit@gmail.com
  organization: Advanced Technology Development Centre, IIT Khargpur, Kharagpur, India
– sequence: 3
  givenname: Somnath
  surname: Sengupta
  fullname: Sengupta, Somnath
  email: somnath.el21@gmail.com
  organization: Advanced Technology Development Centre, IIT Khargpur, Kharagpur, India
– sequence: 4
  givenname: Sudip
  surname: Nag
  fullname: Nag, Sudip
  email: sudipnag1@ece.iitkgp.ac.in
  organization: Electrical & Electronics Communication Engineering Department, IIT Khargpur, Kharagpur, India
BookMark eNqFkFFLwzAQgINMcM79Ax_yB1qTtmlWHwQpcwoFYW7PIU0vmJI1Ja3C_r0ZHSg-KPdwx3Hfcfddo1nnOkDolpKYEprftbHRUjkbJyQJrSTmlFygeZIRFq2KPJ39qK_QchhaQkhS5BkvVnPkt6DBQ6cA77xsQY3OH_EGOvByNK7D2nlcWjdAE1XO9bh03eidxU7jtQ3j3ihp8dtoDh_2m9jCu6yNNePUCsP7vgePK3Oob9CllnaA5Tkv0P5pvSufo-p181I-VpFKWTJGMikUJ0QCT_OUrkhBgTNOpM6lroFxRQtZ04yl0HCSslSyGrhssoIyFaJJF-h-2qu8GwYPWqjzPaOXxgpKxEmgaMUkUJwECpqIIDDA2S-49-Yg_fE_7GHCIDz2acCLQZmT3cb4IEs0zvy94AvFVZBS
CitedBy_id crossref_primary_10_1016_j_conengprac_2024_105895
crossref_primary_10_1016_j_eswa_2021_116259
crossref_primary_10_1109_TNSRE_2023_3260210
Cites_doi 10.1038/s41598-017-08120-9
10.1371/journal.pone.0121896
10.1142/0321
10.1109/CYBER.2014.6917498
10.5121/ijdkp.2015.5201
10.5772/intechopen.72455
10.1142/S0129065717500630
10.1007/s11517-018-1833-0
10.2471/BLT.17.204891
10.1109/EMBC.2012.6345937
10.1523/JNEUROSCI.22-04-01426.2002
10.1038/s41598-018-35018-x
10.1038/nature17435
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.ifacol.2020.12.710
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2405-8963
EndPage 16444
ExternalDocumentID 10_1016_j_ifacol_2020_12_710
S2405896320310272
GroupedDBID 0R~
0SF
457
AAJQP
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ATDSJ
EBS
EJD
FDB
HX~
KQ8
O9-
ROL
AAYWO
AAYXX
CITATION
ID FETCH-LOGICAL-c352t-a29c700ae736318091e7570af6afbe57c19ab1453ed70353a5be7ad4915c5c5d3
ISSN 2405-8963
IngestDate Tue Jul 01 04:35:20 EDT 2025
Thu Apr 24 23:03:27 EDT 2025
Sat Feb 22 15:41:53 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Keywords FES
classification of grasping
EEG
BCI
closed-loop control
trajectory generation
machine learning
EMG
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-a29c700ae736318091e7570af6afbe57c19ab1453ed70353a5be7ad4915c5c5d3
OpenAccessLink https://doi.org/10.1016/j.ifacol.2020.12.710
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_ifacol_2020_12_710
crossref_primary_10_1016_j_ifacol_2020_12_710
elsevier_sciencedirect_doi_10_1016_j_ifacol_2020_12_710
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020
2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle IFAC-PapersOnLine
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Friedenberg, Schwemmer, Landgraf, Annetta, Bockbrader, Bouton, Sharma (bib8) 2017; 7
Roy, Sikdar, Mahadevappa, Kumar (bib12) 2018; 56
Santello, Flanders, Soechting (bib13) 2002; 22
(pp. 333–336). IEEE.
Hossin, Sulaiman (bib17) 2015; 5
Chao, E. Y. (1989). Biomechanics of the hand: a basic research study
IntechOpen.
Djamal, Suprijanto, Setiadi (bib5) 2016; 78
Sburlea, Müller-Putz (bib14) 2018; 8
Chad, Ammar, Nicholas, Marcia, David, Dylan, Sharma, Per, Bradley, Mysiw, Morgan, Deogaonkar, Ali (bib3) 2016; 533
Mattar, E. A., Al-Junaid, H. J., & Al-Seddiqi, H. H. (2017). Biomimetic Based EEG Learning for Robotics Complex Grasping and Dexterous Manipulation. In
Yong, Menon (bib16) 2015; 10
Djamal, Li, Guiraud, Andreu, Gelis, Fattal, Hayashibe (bib9) 2018; 28
Westerveld, A. J., Kuck, A., Schouten, A. C., Veltink, P. H., & van der Kooij, H. (2012, August). Grasp and release with surface functional electrical stimulation using a Model Predictive Control approach. In
Paul, Suman, Sultan (bib11) 2013; 16
Bandara, D.S.V., Gopura, R. A. R. C., Kajanthan, G., Brunthavan, M., & Abeynayake, H. I. M. M. (2014, June). An under-actuated mechanism for a robotic finger In
407–412
Feix, Pawlik, Schmiedmayer, Romero, Kragic (bib6) 2009; 2
Freeman (bib7) 2016
Briggs, Woolf, Dreinhöfer, Homb, Hoy, Kopansky-Giles, Åkesson, March (bib2) 2018; 96
Briggs (10.1016/j.ifacol.2020.12.710_bib2) 2018; 96
Yong (10.1016/j.ifacol.2020.12.710_bib16) 2015; 10
Roy (10.1016/j.ifacol.2020.12.710_bib12) 2018; 56
Hossin (10.1016/j.ifacol.2020.12.710_bib17) 2015; 5
Santello (10.1016/j.ifacol.2020.12.710_bib13) 2002; 22
Freeman (10.1016/j.ifacol.2020.12.710_bib7) 2016
Feix (10.1016/j.ifacol.2020.12.710_bib6) 2009; 2
Friedenberg (10.1016/j.ifacol.2020.12.710_bib8) 2017; 7
Paul (10.1016/j.ifacol.2020.12.710_bib11) 2013; 16
10.1016/j.ifacol.2020.12.710_bib15
Djamal (10.1016/j.ifacol.2020.12.710_bib9) 2018; 28
Sburlea (10.1016/j.ifacol.2020.12.710_bib14) 2018; 8
10.1016/j.ifacol.2020.12.710_bib4
10.1016/j.ifacol.2020.12.710_bib1
Chad (10.1016/j.ifacol.2020.12.710_bib3) 2016; 533
Djamal (10.1016/j.ifacol.2020.12.710_bib5) 2016; 78
10.1016/j.ifacol.2020.12.710_bib10
References_xml – reference: Westerveld, A. J., Kuck, A., Schouten, A. C., Veltink, P. H., & van der Kooij, H. (2012, August). Grasp and release with surface functional electrical stimulation using a Model Predictive Control approach. In
– volume: 10
  start-page: e0121896
  year: 2015
  ident: bib16
  article-title: EEG classification of different imaginary movements within the same limb
  publication-title: PloS one
– reference: 407–412
– volume: 96
  start-page: 366
  year: 2018
  ident: bib2
  article-title: Reducing the global burden of musculoskeletal conditions
  publication-title: Bulletin of the World Health Organization
– reference: Mattar, E. A., Al-Junaid, H. J., & Al-Seddiqi, H. H. (2017). Biomimetic Based EEG Learning for Robotics Complex Grasping and Dexterous Manipulation. In
– reference: IntechOpen.
– volume: 8
  start-page: 16669
  year: 2018
  ident: bib14
  article-title: Exploring representations of human grasping in neural, muscle and kinematic signals
  publication-title: Scientific reports
– reference: Chao, E. Y. (1989). Biomechanics of the hand: a basic research study,
– year: 2016
  ident: bib7
  publication-title: Control system design for electrical stimulation in upper limb rehabilitation
– volume: 5
  start-page: 1
  year: 2015
  ident: bib17
  article-title: A review on evaluation metrics for data classification evaluations
  publication-title: International Journal of Data Mining & Knowledge Management Process
– volume: 533
  start-page: 247
  year: 2016
  end-page: 250
  ident: bib3
  article-title: Restoring cortical control of functional movement in a human with quadriplegia
  publication-title: Nature
– volume: 78
  year: 2016
  ident: bib5
  article-title: Classification of EEG-based hand grasping imagination using autoregressive and neural networks
  publication-title: Jurnal Teknologi
– volume: 2
  start-page: 2
  year: 2009
  end-page: 3
  ident: bib6
  article-title: A comprehensive grasp taxonomy
  publication-title: Robotics, science and systems: workshop on understanding the human hand for advancing robotic manipulation
– volume: 7
  start-page: 8386
  year: 2017
  ident: bib8
  article-title: Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human
  publication-title: Scientific reports
– reference: Bandara, D.S.V., Gopura, R. A. R. C., Kajanthan, G., Brunthavan, M., & Abeynayake, H. I. M. M. (2014, June). An under-actuated mechanism for a robotic finger In
– volume: 16
  start-page: 32
  year: 2013
  end-page: 38
  ident: bib11
  article-title: Methodological analysis of principal component analysis (PCA) method
  publication-title: International Journal of Computational Engineering & Management
– volume: 22
  start-page: 1426
  year: 2002
  end-page: 1435
  ident: bib13
  article-title: Patterns of hand motion during grasping and the influence of sensory guidance
  publication-title: Journal of Neuroscience
– volume: 56
  start-page: 2095
  year: 2018
  end-page: 2107
  ident: bib12
  article-title: A fingertip force prediction model for grasp patterns characterised from the chaotic behaviour of EEG
  publication-title: Medical & biological engineering & computing
– reference: (pp. 333–336). IEEE.
– volume: 28
  start-page: 1750063
  year: 2018
  ident: bib9
  article-title: Real-Time closed-loop functional electrical stimulation control of muscle activation with evoked electromyography feedback for spinal cord injured patients
  publication-title: International journal of neural systems
– volume: 16
  start-page: 32
  issue: 2
  year: 2013
  ident: 10.1016/j.ifacol.2020.12.710_bib11
  article-title: Methodological analysis of principal component analysis (PCA) method
  publication-title: International Journal of Computational Engineering & Management
– volume: 7
  start-page: 8386
  issue: 1
  year: 2017
  ident: 10.1016/j.ifacol.2020.12.710_bib8
  article-title: Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human
  publication-title: Scientific reports
  doi: 10.1038/s41598-017-08120-9
– volume: 10
  start-page: e0121896
  issue: 4
  year: 2015
  ident: 10.1016/j.ifacol.2020.12.710_bib16
  article-title: EEG classification of different imaginary movements within the same limb
  publication-title: PloS one
  doi: 10.1371/journal.pone.0121896
– ident: 10.1016/j.ifacol.2020.12.710_bib4
  doi: 10.1142/0321
– ident: 10.1016/j.ifacol.2020.12.710_bib1
  doi: 10.1109/CYBER.2014.6917498
– volume: 5
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.1016/j.ifacol.2020.12.710_bib17
  article-title: A review on evaluation metrics for data classification evaluations
  publication-title: International Journal of Data Mining & Knowledge Management Process
  doi: 10.5121/ijdkp.2015.5201
– ident: 10.1016/j.ifacol.2020.12.710_bib10
  doi: 10.5772/intechopen.72455
– volume: 28
  start-page: 1750063
  issue: 06
  year: 2018
  ident: 10.1016/j.ifacol.2020.12.710_bib9
  article-title: Real-Time closed-loop functional electrical stimulation control of muscle activation with evoked electromyography feedback for spinal cord injured patients
  publication-title: International journal of neural systems
  doi: 10.1142/S0129065717500630
– volume: 78
  issue: 6–6
  year: 2016
  ident: 10.1016/j.ifacol.2020.12.710_bib5
  article-title: Classification of EEG-based hand grasping imagination using autoregressive and neural networks
  publication-title: Jurnal Teknologi
– volume: 2
  start-page: 2
  issue: 2.3
  year: 2009
  ident: 10.1016/j.ifacol.2020.12.710_bib6
  article-title: A comprehensive grasp taxonomy
  publication-title: Robotics, science and systems: workshop on understanding the human hand for advancing robotic manipulation
– year: 2016
  ident: 10.1016/j.ifacol.2020.12.710_bib7
– volume: 56
  start-page: 2095
  issue: 11
  year: 2018
  ident: 10.1016/j.ifacol.2020.12.710_bib12
  article-title: A fingertip force prediction model for grasp patterns characterised from the chaotic behaviour of EEG
  publication-title: Medical & biological engineering & computing
  doi: 10.1007/s11517-018-1833-0
– volume: 96
  start-page: 366
  issue: 5
  year: 2018
  ident: 10.1016/j.ifacol.2020.12.710_bib2
  article-title: Reducing the global burden of musculoskeletal conditions
  publication-title: Bulletin of the World Health Organization
  doi: 10.2471/BLT.17.204891
– ident: 10.1016/j.ifacol.2020.12.710_bib15
  doi: 10.1109/EMBC.2012.6345937
– volume: 22
  start-page: 1426
  issue: 4
  year: 2002
  ident: 10.1016/j.ifacol.2020.12.710_bib13
  article-title: Patterns of hand motion during grasping and the influence of sensory guidance
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.22-04-01426.2002
– volume: 8
  start-page: 16669
  issue: 1
  year: 2018
  ident: 10.1016/j.ifacol.2020.12.710_bib14
  article-title: Exploring representations of human grasping in neural, muscle and kinematic signals
  publication-title: Scientific reports
  doi: 10.1038/s41598-018-35018-x
– volume: 533
  start-page: 247
  year: 2016
  ident: 10.1016/j.ifacol.2020.12.710_bib3
  article-title: Restoring cortical control of functional movement in a human with quadriplegia
  publication-title: Nature
  doi: 10.1038/nature17435
SSID ssj0002964798
Score 1.816205
Snippet Functional movements in the paralyzed upper limb can be restored with the help of brain-computer-interface (BCI). A BCI system typically adopts a functional...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 16438
SubjectTerms BCI
classification of grasping
closed-loop control
EEG
EMG
FES
machine learning
trajectory generation
Title Reference Trajectory Generation for Closed-Loop Control of Electrical Stimulation for Rehabilitation of Upper Limb
URI https://dx.doi.org/10.1016/j.ifacol.2020.12.710
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBahfdnLWOnGuht62NtQ8DWyH0tY6Zbumgb6ZmRbGgmNbVybbvsh-707R5IvoWGXEjCxIjlC57PO0dF3jgh57ePekYI3Dd8dFgRxymIeC-bBiiXIZKRygbHDHz7OzlfB-6vwajL5NWIttU06zX7ujSu5j1ShDOSKUbL_Idn-oVAA30G-cAUJw_WfZDxkiQWVs9H-9x82kXRPIZxflzcyZxdlWWF4n-alI5tQH3-jJbRs1lt7iJdu8XUneTdWXlWVrDEWKh3bsu_OTufss4Cfbj4VF6P9-YWohSFgi7odEX1vRW1jsb9v128WYqDcLGXxra2MIbsst-jQ773Uwviz29ywrTsXhecMHrMuamagKMHEBkZEyKLYTmxyT5mdmU0aYYtAbzTNwhrP5ISxOhvuTRbJOwrB-CY207XCLOBT7B26f7nl0u6m2l5iL7ATHiZM9Tio9kOPcxepoosvUe-7w61qro9Z7rvdRWVq6uDdP9tv9YwsmctH5KFdgtBTg6cjMpHFMal7LNEBS3TAEgVk0BGWqMUSLRUdsERHWNItdrGElTWWKGLpMVmdvb2cnzN7HgfLwExvmPDijDuOkNyf-Zj3zZU85I5QM6FSGfLMjUXqBqEvc9AjoS_CVHKRB7EbZvDJ_SfkoCgL-ZRQhyuYHDIlfBUFEYx5BpZn7vpemMdSKeeE-N14JZntI56Zcp10rMRNYkY5wVFOXC-BUT4hrG9VmWQtf6nPO1Ek1uA0hmQC8Pljy2f3bvmcPMA748V7QQ6aupUvwa5t0lcaZL8BxUqm8g
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reference+Trajectory+Generation+for+Closed-Loop+Control+of+Electrical+Stimulation+for+Rehabilitation+of+Upper+Limb&rft.jtitle=IFAC-PapersOnLine&rft.au=Karak%2C+Tarun&rft.au=Tiwari%2C+Laxmi+Kant&rft.au=Sengupta%2C+Somnath&rft.au=Nag%2C+Sudip&rft.date=2020&rft.pub=Elsevier+Ltd&rft.issn=2405-8963&rft.eissn=2405-8963&rft.volume=53&rft.issue=2&rft.spage=16438&rft.epage=16444&rft_id=info:doi/10.1016%2Fj.ifacol.2020.12.710&rft.externalDocID=S2405896320310272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8963&client=summon