Reference Trajectory Generation for Closed-Loop Control of Electrical Stimulation for Rehabilitation of Upper Limb
Functional movements in the paralyzed upper limb can be restored with the help of brain-computer-interface (BCI). A BCI system typically adopts a functional electrical stimulation (FES) system that activates weakened muscles that are otherwise responsible for actuating finger movements. A BCI-FES sy...
Saved in:
Published in | IFAC-PapersOnLine Vol. 53; no. 2; pp. 16438 - 16444 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2405-8963 2405-8963 |
DOI | 10.1016/j.ifacol.2020.12.710 |
Cover
Abstract | Functional movements in the paralyzed upper limb can be restored with the help of brain-computer-interface (BCI). A BCI system typically adopts a functional electrical stimulation (FES) system that activates weakened muscles that are otherwise responsible for actuating finger movements. A BCI-FES system can enable muscle contraction through the delivery of electrical stimulation pulses. The control of voltage or current stimulation parameters such as pulse width, frequency, and amplitude along with feedback signals from finger joints positions are essential for stable grasping. For the design of a closed-loop functional electrical stimulation controller, it is obligatory to set standard reference trajectories of finger joints’ angular positions and velocities for controlling stimulation parameters in neuroprosthetics and rehabilitation. This study proposes a new closed-loop control architecture targeted for achieving successful and stable grasping of an upper limb paralyzed subject. This can be achieved by characterizing each of the finger joints’ instantaneous angular position and velocity, through reference trajectories. These reference trajectories are generated corresponding to various types of grasping for feeding to the controller, responsible for stimulation of muscles. Hence, to generate such trajectories, first, grasping classification has been implemented using standard machine learning algorithms on a large set of existing real-time data of different types of objects’ grasping such as various diameter, abducted thumb and other types of objects, from many healthy subjects. The results demonstrate the successful implementation of fairly accurate classifications and trajectory generations which are crucial for closed-loop control towards stable grasping. |
---|---|
AbstractList | Functional movements in the paralyzed upper limb can be restored with the help of brain-computer-interface (BCI). A BCI system typically adopts a functional electrical stimulation (FES) system that activates weakened muscles that are otherwise responsible for actuating finger movements. A BCI-FES system can enable muscle contraction through the delivery of electrical stimulation pulses. The control of voltage or current stimulation parameters such as pulse width, frequency, and amplitude along with feedback signals from finger joints positions are essential for stable grasping. For the design of a closed-loop functional electrical stimulation controller, it is obligatory to set standard reference trajectories of finger joints’ angular positions and velocities for controlling stimulation parameters in neuroprosthetics and rehabilitation. This study proposes a new closed-loop control architecture targeted for achieving successful and stable grasping of an upper limb paralyzed subject. This can be achieved by characterizing each of the finger joints’ instantaneous angular position and velocity, through reference trajectories. These reference trajectories are generated corresponding to various types of grasping for feeding to the controller, responsible for stimulation of muscles. Hence, to generate such trajectories, first, grasping classification has been implemented using standard machine learning algorithms on a large set of existing real-time data of different types of objects’ grasping such as various diameter, abducted thumb and other types of objects, from many healthy subjects. The results demonstrate the successful implementation of fairly accurate classifications and trajectory generations which are crucial for closed-loop control towards stable grasping. |
Author | Tiwari, Laxmi Kant Karak, Tarun Sengupta, Somnath Nag, Sudip |
Author_xml | – sequence: 1 givenname: Tarun surname: Karak fullname: Karak, Tarun email: tarunkarak@iitkgp.ac.in organization: Advanced Technology Development Centre, IIT Khargpur, Kharagpur, India – sequence: 2 givenname: Laxmi Kant surname: Tiwari fullname: Tiwari, Laxmi Kant email: laxmimerit@gmail.com organization: Advanced Technology Development Centre, IIT Khargpur, Kharagpur, India – sequence: 3 givenname: Somnath surname: Sengupta fullname: Sengupta, Somnath email: somnath.el21@gmail.com organization: Advanced Technology Development Centre, IIT Khargpur, Kharagpur, India – sequence: 4 givenname: Sudip surname: Nag fullname: Nag, Sudip email: sudipnag1@ece.iitkgp.ac.in organization: Electrical & Electronics Communication Engineering Department, IIT Khargpur, Kharagpur, India |
BookMark | eNqFkFFLwzAQgINMcM79Ax_yB1qTtmlWHwQpcwoFYW7PIU0vmJI1Ja3C_r0ZHSg-KPdwx3Hfcfddo1nnOkDolpKYEprftbHRUjkbJyQJrSTmlFygeZIRFq2KPJ39qK_QchhaQkhS5BkvVnPkt6DBQ6cA77xsQY3OH_EGOvByNK7D2nlcWjdAE1XO9bh03eidxU7jtQ3j3ihp8dtoDh_2m9jCu6yNNePUCsP7vgePK3Oob9CllnaA5Tkv0P5pvSufo-p181I-VpFKWTJGMikUJ0QCT_OUrkhBgTNOpM6lroFxRQtZ04yl0HCSslSyGrhssoIyFaJJF-h-2qu8GwYPWqjzPaOXxgpKxEmgaMUkUJwECpqIIDDA2S-49-Yg_fE_7GHCIDz2acCLQZmT3cb4IEs0zvy94AvFVZBS |
CitedBy_id | crossref_primary_10_1016_j_conengprac_2024_105895 crossref_primary_10_1016_j_eswa_2021_116259 crossref_primary_10_1109_TNSRE_2023_3260210 |
Cites_doi | 10.1038/s41598-017-08120-9 10.1371/journal.pone.0121896 10.1142/0321 10.1109/CYBER.2014.6917498 10.5121/ijdkp.2015.5201 10.5772/intechopen.72455 10.1142/S0129065717500630 10.1007/s11517-018-1833-0 10.2471/BLT.17.204891 10.1109/EMBC.2012.6345937 10.1523/JNEUROSCI.22-04-01426.2002 10.1038/s41598-018-35018-x 10.1038/nature17435 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ifacol.2020.12.710 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2405-8963 |
EndPage | 16444 |
ExternalDocumentID | 10_1016_j_ifacol_2020_12_710 S2405896320310272 |
GroupedDBID | 0R~ 0SF 457 AAJQP AALRI AAXUO ABMAC ACGFS ADBBV ADVLN AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ATDSJ EBS EJD FDB HX~ KQ8 O9- ROL AAYWO AAYXX CITATION |
ID | FETCH-LOGICAL-c352t-a29c700ae736318091e7570af6afbe57c19ab1453ed70353a5be7ad4915c5c5d3 |
ISSN | 2405-8963 |
IngestDate | Tue Jul 01 04:35:20 EDT 2025 Thu Apr 24 23:03:27 EDT 2025 Sat Feb 22 15:41:53 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Keywords | FES classification of grasping EEG BCI closed-loop control trajectory generation machine learning EMG |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c352t-a29c700ae736318091e7570af6afbe57c19ab1453ed70353a5be7ad4915c5c5d3 |
OpenAccessLink | https://doi.org/10.1016/j.ifacol.2020.12.710 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ifacol_2020_12_710 crossref_primary_10_1016_j_ifacol_2020_12_710 elsevier_sciencedirect_doi_10_1016_j_ifacol_2020_12_710 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationTitle | IFAC-PapersOnLine |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Friedenberg, Schwemmer, Landgraf, Annetta, Bockbrader, Bouton, Sharma (bib8) 2017; 7 Roy, Sikdar, Mahadevappa, Kumar (bib12) 2018; 56 Santello, Flanders, Soechting (bib13) 2002; 22 (pp. 333–336). IEEE. Hossin, Sulaiman (bib17) 2015; 5 Chao, E. Y. (1989). Biomechanics of the hand: a basic research study IntechOpen. Djamal, Suprijanto, Setiadi (bib5) 2016; 78 Sburlea, Müller-Putz (bib14) 2018; 8 Chad, Ammar, Nicholas, Marcia, David, Dylan, Sharma, Per, Bradley, Mysiw, Morgan, Deogaonkar, Ali (bib3) 2016; 533 Mattar, E. A., Al-Junaid, H. J., & Al-Seddiqi, H. H. (2017). Biomimetic Based EEG Learning for Robotics Complex Grasping and Dexterous Manipulation. In Yong, Menon (bib16) 2015; 10 Djamal, Li, Guiraud, Andreu, Gelis, Fattal, Hayashibe (bib9) 2018; 28 Westerveld, A. J., Kuck, A., Schouten, A. C., Veltink, P. H., & van der Kooij, H. (2012, August). Grasp and release with surface functional electrical stimulation using a Model Predictive Control approach. In Paul, Suman, Sultan (bib11) 2013; 16 Bandara, D.S.V., Gopura, R. A. R. C., Kajanthan, G., Brunthavan, M., & Abeynayake, H. I. M. M. (2014, June). An under-actuated mechanism for a robotic finger In 407–412 Feix, Pawlik, Schmiedmayer, Romero, Kragic (bib6) 2009; 2 Freeman (bib7) 2016 Briggs, Woolf, Dreinhöfer, Homb, Hoy, Kopansky-Giles, Åkesson, March (bib2) 2018; 96 Briggs (10.1016/j.ifacol.2020.12.710_bib2) 2018; 96 Yong (10.1016/j.ifacol.2020.12.710_bib16) 2015; 10 Roy (10.1016/j.ifacol.2020.12.710_bib12) 2018; 56 Hossin (10.1016/j.ifacol.2020.12.710_bib17) 2015; 5 Santello (10.1016/j.ifacol.2020.12.710_bib13) 2002; 22 Freeman (10.1016/j.ifacol.2020.12.710_bib7) 2016 Feix (10.1016/j.ifacol.2020.12.710_bib6) 2009; 2 Friedenberg (10.1016/j.ifacol.2020.12.710_bib8) 2017; 7 Paul (10.1016/j.ifacol.2020.12.710_bib11) 2013; 16 10.1016/j.ifacol.2020.12.710_bib15 Djamal (10.1016/j.ifacol.2020.12.710_bib9) 2018; 28 Sburlea (10.1016/j.ifacol.2020.12.710_bib14) 2018; 8 10.1016/j.ifacol.2020.12.710_bib4 10.1016/j.ifacol.2020.12.710_bib1 Chad (10.1016/j.ifacol.2020.12.710_bib3) 2016; 533 Djamal (10.1016/j.ifacol.2020.12.710_bib5) 2016; 78 10.1016/j.ifacol.2020.12.710_bib10 |
References_xml | – reference: Westerveld, A. J., Kuck, A., Schouten, A. C., Veltink, P. H., & van der Kooij, H. (2012, August). Grasp and release with surface functional electrical stimulation using a Model Predictive Control approach. In – volume: 10 start-page: e0121896 year: 2015 ident: bib16 article-title: EEG classification of different imaginary movements within the same limb publication-title: PloS one – reference: 407–412 – volume: 96 start-page: 366 year: 2018 ident: bib2 article-title: Reducing the global burden of musculoskeletal conditions publication-title: Bulletin of the World Health Organization – reference: Mattar, E. A., Al-Junaid, H. J., & Al-Seddiqi, H. H. (2017). Biomimetic Based EEG Learning for Robotics Complex Grasping and Dexterous Manipulation. In – reference: IntechOpen. – volume: 8 start-page: 16669 year: 2018 ident: bib14 article-title: Exploring representations of human grasping in neural, muscle and kinematic signals publication-title: Scientific reports – reference: Chao, E. Y. (1989). Biomechanics of the hand: a basic research study, – year: 2016 ident: bib7 publication-title: Control system design for electrical stimulation in upper limb rehabilitation – volume: 5 start-page: 1 year: 2015 ident: bib17 article-title: A review on evaluation metrics for data classification evaluations publication-title: International Journal of Data Mining & Knowledge Management Process – volume: 533 start-page: 247 year: 2016 end-page: 250 ident: bib3 article-title: Restoring cortical control of functional movement in a human with quadriplegia publication-title: Nature – volume: 78 year: 2016 ident: bib5 article-title: Classification of EEG-based hand grasping imagination using autoregressive and neural networks publication-title: Jurnal Teknologi – volume: 2 start-page: 2 year: 2009 end-page: 3 ident: bib6 article-title: A comprehensive grasp taxonomy publication-title: Robotics, science and systems: workshop on understanding the human hand for advancing robotic manipulation – volume: 7 start-page: 8386 year: 2017 ident: bib8 article-title: Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human publication-title: Scientific reports – reference: Bandara, D.S.V., Gopura, R. A. R. C., Kajanthan, G., Brunthavan, M., & Abeynayake, H. I. M. M. (2014, June). An under-actuated mechanism for a robotic finger In – volume: 16 start-page: 32 year: 2013 end-page: 38 ident: bib11 article-title: Methodological analysis of principal component analysis (PCA) method publication-title: International Journal of Computational Engineering & Management – volume: 22 start-page: 1426 year: 2002 end-page: 1435 ident: bib13 article-title: Patterns of hand motion during grasping and the influence of sensory guidance publication-title: Journal of Neuroscience – volume: 56 start-page: 2095 year: 2018 end-page: 2107 ident: bib12 article-title: A fingertip force prediction model for grasp patterns characterised from the chaotic behaviour of EEG publication-title: Medical & biological engineering & computing – reference: (pp. 333–336). IEEE. – volume: 28 start-page: 1750063 year: 2018 ident: bib9 article-title: Real-Time closed-loop functional electrical stimulation control of muscle activation with evoked electromyography feedback for spinal cord injured patients publication-title: International journal of neural systems – volume: 16 start-page: 32 issue: 2 year: 2013 ident: 10.1016/j.ifacol.2020.12.710_bib11 article-title: Methodological analysis of principal component analysis (PCA) method publication-title: International Journal of Computational Engineering & Management – volume: 7 start-page: 8386 issue: 1 year: 2017 ident: 10.1016/j.ifacol.2020.12.710_bib8 article-title: Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human publication-title: Scientific reports doi: 10.1038/s41598-017-08120-9 – volume: 10 start-page: e0121896 issue: 4 year: 2015 ident: 10.1016/j.ifacol.2020.12.710_bib16 article-title: EEG classification of different imaginary movements within the same limb publication-title: PloS one doi: 10.1371/journal.pone.0121896 – ident: 10.1016/j.ifacol.2020.12.710_bib4 doi: 10.1142/0321 – ident: 10.1016/j.ifacol.2020.12.710_bib1 doi: 10.1109/CYBER.2014.6917498 – volume: 5 start-page: 1 issue: 2 year: 2015 ident: 10.1016/j.ifacol.2020.12.710_bib17 article-title: A review on evaluation metrics for data classification evaluations publication-title: International Journal of Data Mining & Knowledge Management Process doi: 10.5121/ijdkp.2015.5201 – ident: 10.1016/j.ifacol.2020.12.710_bib10 doi: 10.5772/intechopen.72455 – volume: 28 start-page: 1750063 issue: 06 year: 2018 ident: 10.1016/j.ifacol.2020.12.710_bib9 article-title: Real-Time closed-loop functional electrical stimulation control of muscle activation with evoked electromyography feedback for spinal cord injured patients publication-title: International journal of neural systems doi: 10.1142/S0129065717500630 – volume: 78 issue: 6–6 year: 2016 ident: 10.1016/j.ifacol.2020.12.710_bib5 article-title: Classification of EEG-based hand grasping imagination using autoregressive and neural networks publication-title: Jurnal Teknologi – volume: 2 start-page: 2 issue: 2.3 year: 2009 ident: 10.1016/j.ifacol.2020.12.710_bib6 article-title: A comprehensive grasp taxonomy publication-title: Robotics, science and systems: workshop on understanding the human hand for advancing robotic manipulation – year: 2016 ident: 10.1016/j.ifacol.2020.12.710_bib7 – volume: 56 start-page: 2095 issue: 11 year: 2018 ident: 10.1016/j.ifacol.2020.12.710_bib12 article-title: A fingertip force prediction model for grasp patterns characterised from the chaotic behaviour of EEG publication-title: Medical & biological engineering & computing doi: 10.1007/s11517-018-1833-0 – volume: 96 start-page: 366 issue: 5 year: 2018 ident: 10.1016/j.ifacol.2020.12.710_bib2 article-title: Reducing the global burden of musculoskeletal conditions publication-title: Bulletin of the World Health Organization doi: 10.2471/BLT.17.204891 – ident: 10.1016/j.ifacol.2020.12.710_bib15 doi: 10.1109/EMBC.2012.6345937 – volume: 22 start-page: 1426 issue: 4 year: 2002 ident: 10.1016/j.ifacol.2020.12.710_bib13 article-title: Patterns of hand motion during grasping and the influence of sensory guidance publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.22-04-01426.2002 – volume: 8 start-page: 16669 issue: 1 year: 2018 ident: 10.1016/j.ifacol.2020.12.710_bib14 article-title: Exploring representations of human grasping in neural, muscle and kinematic signals publication-title: Scientific reports doi: 10.1038/s41598-018-35018-x – volume: 533 start-page: 247 year: 2016 ident: 10.1016/j.ifacol.2020.12.710_bib3 article-title: Restoring cortical control of functional movement in a human with quadriplegia publication-title: Nature doi: 10.1038/nature17435 |
SSID | ssj0002964798 |
Score | 1.816205 |
Snippet | Functional movements in the paralyzed upper limb can be restored with the help of brain-computer-interface (BCI). A BCI system typically adopts a functional... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 16438 |
SubjectTerms | BCI classification of grasping closed-loop control EEG EMG FES machine learning trajectory generation |
Title | Reference Trajectory Generation for Closed-Loop Control of Electrical Stimulation for Rehabilitation of Upper Limb |
URI | https://dx.doi.org/10.1016/j.ifacol.2020.12.710 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBahfdnLWOnGuht62NtQ8DWyH0tY6Zbumgb6ZmRbGgmNbVybbvsh-707R5IvoWGXEjCxIjlC57PO0dF3jgh57ePekYI3Dd8dFgRxymIeC-bBiiXIZKRygbHDHz7OzlfB-6vwajL5NWIttU06zX7ujSu5j1ShDOSKUbL_Idn-oVAA30G-cAUJw_WfZDxkiQWVs9H-9x82kXRPIZxflzcyZxdlWWF4n-alI5tQH3-jJbRs1lt7iJdu8XUneTdWXlWVrDEWKh3bsu_OTufss4Cfbj4VF6P9-YWohSFgi7odEX1vRW1jsb9v128WYqDcLGXxra2MIbsst-jQ773Uwviz29ywrTsXhecMHrMuamagKMHEBkZEyKLYTmxyT5mdmU0aYYtAbzTNwhrP5ISxOhvuTRbJOwrB-CY207XCLOBT7B26f7nl0u6m2l5iL7ATHiZM9Tio9kOPcxepoosvUe-7w61qro9Z7rvdRWVq6uDdP9tv9YwsmctH5KFdgtBTg6cjMpHFMal7LNEBS3TAEgVk0BGWqMUSLRUdsERHWNItdrGElTWWKGLpMVmdvb2cnzN7HgfLwExvmPDijDuOkNyf-Zj3zZU85I5QM6FSGfLMjUXqBqEvc9AjoS_CVHKRB7EbZvDJ_SfkoCgL-ZRQhyuYHDIlfBUFEYx5BpZn7vpemMdSKeeE-N14JZntI56Zcp10rMRNYkY5wVFOXC-BUT4hrG9VmWQtf6nPO1Ek1uA0hmQC8Pljy2f3bvmcPMA748V7QQ6aupUvwa5t0lcaZL8BxUqm8g |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reference+Trajectory+Generation+for+Closed-Loop+Control+of+Electrical+Stimulation+for+Rehabilitation+of+Upper+Limb&rft.jtitle=IFAC-PapersOnLine&rft.au=Karak%2C+Tarun&rft.au=Tiwari%2C+Laxmi+Kant&rft.au=Sengupta%2C+Somnath&rft.au=Nag%2C+Sudip&rft.date=2020&rft.pub=Elsevier+Ltd&rft.issn=2405-8963&rft.eissn=2405-8963&rft.volume=53&rft.issue=2&rft.spage=16438&rft.epage=16444&rft_id=info:doi/10.1016%2Fj.ifacol.2020.12.710&rft.externalDocID=S2405896320310272 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8963&client=summon |