Using Network Distance Analysis to Predict lncRNA–miRNA Interactions

LncRNA–miRNA interactions contribute to the regulation of therapeutic targets and diagnostic biomarkers in multifarious human diseases. However, it remains difficult to experimentally identify lncRNA–miRNA associations at large scale, and computational prediction methods are limited. In this study,...

Full description

Saved in:
Bibliographic Details
Published inInterdisciplinary sciences : computational life sciences Vol. 13; no. 3; pp. 535 - 545
Main Authors Zhang, Li, Yang, Pengyu, Feng, Huawei, Zhao, Qi, Liu, Hongsheng
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract LncRNA–miRNA interactions contribute to the regulation of therapeutic targets and diagnostic biomarkers in multifarious human diseases. However, it remains difficult to experimentally identify lncRNA–miRNA associations at large scale, and computational prediction methods are limited. In this study, we developed a network distance analysis model for lncRNA–miRNA association prediction (NDALMA). Similarity networks for lncRNAs and miRNAs were calculated and integrated with Gaussian interaction profile (GIP) kernel similarity. Then, network distance analysis was applied to the integrated similarity networks, and final scores were obtained after confidence calculation and score conversion. Our model obtained satisfactory results in fivefold cross validation, achieving an AUC of 0.8810 and an AUPR of 0.8315. Moreover, NDALMA showed superior prediction performance over several other network algorithms, and we tested the suitability and flexibility of the model by comparing different types of similarity. In addition, case studies of the relationships between lncRNAs and miRNAs were conducted, which verified the reliability of our method in predicting lncRNA–miRNA associations. The datasets and source code used in this study are available at https://github.com/Liu-Lab-Lnu/NDALMA . Graphic Abstract
AbstractList LncRNA–miRNA interactions contribute to the regulation of therapeutic targets and diagnostic biomarkers in multifarious human diseases. However, it remains difficult to experimentally identify lncRNA–miRNA associations at large scale, and computational prediction methods are limited. In this study, we developed a network distance analysis model for lncRNA–miRNA association prediction (NDALMA). Similarity networks for lncRNAs and miRNAs were calculated and integrated with Gaussian interaction profile (GIP) kernel similarity. Then, network distance analysis was applied to the integrated similarity networks, and final scores were obtained after confidence calculation and score conversion. Our model obtained satisfactory results in fivefold cross validation, achieving an AUC of 0.8810 and an AUPR of 0.8315. Moreover, NDALMA showed superior prediction performance over several other network algorithms, and we tested the suitability and flexibility of the model by comparing different types of similarity. In addition, case studies of the relationships between lncRNAs and miRNAs were conducted, which verified the reliability of our method in predicting lncRNA–miRNA associations. The datasets and source code used in this study are available at https://github.com/Liu-Lab-Lnu/NDALMA.Graphic Abstract
LncRNA-miRNA interactions contribute to the regulation of therapeutic targets and diagnostic biomarkers in multifarious human diseases. However, it remains difficult to experimentally identify lncRNA-miRNA associations at large scale, and computational prediction methods are limited. In this study, we developed a network distance analysis model for lncRNA-miRNA association prediction (NDALMA). Similarity networks for lncRNAs and miRNAs were calculated and integrated with Gaussian interaction profile (GIP) kernel similarity. Then, network distance analysis was applied to the integrated similarity networks, and final scores were obtained after confidence calculation and score conversion. Our model obtained satisfactory results in fivefold cross validation, achieving an AUC of 0.8810 and an AUPR of 0.8315. Moreover, NDALMA showed superior prediction performance over several other network algorithms, and we tested the suitability and flexibility of the model by comparing different types of similarity. In addition, case studies of the relationships between lncRNAs and miRNAs were conducted, which verified the reliability of our method in predicting lncRNA-miRNA associations. The datasets and source code used in this study are available at https://github.com/Liu-Lab-Lnu/NDALMA .LncRNA-miRNA interactions contribute to the regulation of therapeutic targets and diagnostic biomarkers in multifarious human diseases. However, it remains difficult to experimentally identify lncRNA-miRNA associations at large scale, and computational prediction methods are limited. In this study, we developed a network distance analysis model for lncRNA-miRNA association prediction (NDALMA). Similarity networks for lncRNAs and miRNAs were calculated and integrated with Gaussian interaction profile (GIP) kernel similarity. Then, network distance analysis was applied to the integrated similarity networks, and final scores were obtained after confidence calculation and score conversion. Our model obtained satisfactory results in fivefold cross validation, achieving an AUC of 0.8810 and an AUPR of 0.8315. Moreover, NDALMA showed superior prediction performance over several other network algorithms, and we tested the suitability and flexibility of the model by comparing different types of similarity. In addition, case studies of the relationships between lncRNAs and miRNAs were conducted, which verified the reliability of our method in predicting lncRNA-miRNA associations. The datasets and source code used in this study are available at https://github.com/Liu-Lab-Lnu/NDALMA .
LncRNA–miRNA interactions contribute to the regulation of therapeutic targets and diagnostic biomarkers in multifarious human diseases. However, it remains difficult to experimentally identify lncRNA–miRNA associations at large scale, and computational prediction methods are limited. In this study, we developed a network distance analysis model for lncRNA–miRNA association prediction (NDALMA). Similarity networks for lncRNAs and miRNAs were calculated and integrated with Gaussian interaction profile (GIP) kernel similarity. Then, network distance analysis was applied to the integrated similarity networks, and final scores were obtained after confidence calculation and score conversion. Our model obtained satisfactory results in fivefold cross validation, achieving an AUC of 0.8810 and an AUPR of 0.8315. Moreover, NDALMA showed superior prediction performance over several other network algorithms, and we tested the suitability and flexibility of the model by comparing different types of similarity. In addition, case studies of the relationships between lncRNAs and miRNAs were conducted, which verified the reliability of our method in predicting lncRNA–miRNA associations. The datasets and source code used in this study are available at https://github.com/Liu-Lab-Lnu/NDALMA . Graphic Abstract
Author Zhao, Qi
Feng, Huawei
Yang, Pengyu
Zhang, Li
Liu, Hongsheng
Author_xml – sequence: 1
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  organization: School of Life Science, Liaoning University, Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Shenyang, Liaoning University, Technology Innovation Center for Computer Simulating and Information Processing of Bio-Macromolecules of Shenyang
– sequence: 2
  givenname: Pengyu
  surname: Yang
  fullname: Yang, Pengyu
  organization: School of Information, Liaoning University
– sequence: 3
  givenname: Huawei
  surname: Feng
  fullname: Feng, Huawei
  organization: School of Life Science, Liaoning University
– sequence: 4
  givenname: Qi
  orcidid: 0000-0001-9713-1864
  surname: Zhao
  fullname: Zhao, Qi
  email: zhaoqi@lnu.edu.cn
  organization: School of Computer Science and Software Engineering, University of Science and Technology Liaoning
– sequence: 5
  givenname: Hongsheng
  surname: Liu
  fullname: Liu, Hongsheng
  email: liuhongsheng@lnu.edu.cn
  organization: Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Shenyang, Liaoning University, Technology Innovation Center for Computer Simulating and Information Processing of Bio-Macromolecules of Shenyang, School of Pharmacy, Liaoning University
BookMark eNp9kEFOAyEUQImpibV6AVeTuHEzymeAGZaNWm3SVGPsmlCGNtQpU4HG6Mo7eENPIrUmJl109Vm8x4d3jDqudQahM8CXgHF5FYCwQuSYQI4xZVX-cYC6UPEyB8pJJ50FFDkpGRyh4xAWGHNaFbiLBpNg3Twbm_jW-pfsxoaonDZZ36nmPdiQxTZ79Ka2OmaN00_j_vfn19KmmQ1dNF7paFsXTtDhTDXBnP7NHpoMbp-v7_PRw93wuj_KdcFIzBUILchMTQ1TXPMaqmlJoKqBC2CEAgNRME14zRWrBKaaGmFmVV1SxU1dlEUPXWzvXfn2dW1ClEsbtGka5Uy7DpIwKgghJacJPd9BF-3ap29tKA5YkLQhUWRLad-G4M1MrrxdKv8uActNWrlNK1Na-ZtWfiSp2pG0jWoTInplm_1qsVVD2uPmxv-_ao_1A9Gpj7w
CitedBy_id crossref_primary_10_1038_s41598_023_42904_6
crossref_primary_10_3389_fmicb_2023_1147778
crossref_primary_10_3389_fonc_2022_987609
crossref_primary_10_3389_fmicb_2023_1170559
crossref_primary_10_1038_s41598_024_53716_7
crossref_primary_10_1186_s12890_023_02717_9
crossref_primary_10_1371_journal_pone_0269742
crossref_primary_10_1093_bib_bbac463
crossref_primary_10_3389_fgene_2022_828575
crossref_primary_10_1038_s41598_024_56694_y
crossref_primary_10_1038_s41598_023_31754_x
crossref_primary_10_1007_s12539_021_00478_9
crossref_primary_10_3934_mbe_2023345
crossref_primary_10_1016_j_jare_2024_06_002
crossref_primary_10_1016_j_isci_2022_105299
crossref_primary_10_1038_s41598_024_67717_z
crossref_primary_10_3934_mbe_2022017
crossref_primary_10_3389_fcell_2021_726656
crossref_primary_10_3389_fgene_2022_1023615
crossref_primary_10_1111_jcmm_18180
crossref_primary_10_1186_s12859_023_05314_z
crossref_primary_10_1038_s41598_024_64308_w
crossref_primary_10_3934_mbe_2023085
crossref_primary_10_1021_acs_jcim_3c01214
crossref_primary_10_1111_jcmm_18345
crossref_primary_10_1371_journal_pone_0259436
crossref_primary_10_1371_journal_pone_0317369
crossref_primary_10_3934_mbe_2023476
crossref_primary_10_1016_j_compbiomed_2022_106464
crossref_primary_10_1093_bib_bbad259
crossref_primary_10_1142_S273741652350062X
crossref_primary_10_3389_fmicb_2022_995323
crossref_primary_10_1038_s41598_024_63446_5
crossref_primary_10_3389_fmicb_2022_1024104
crossref_primary_10_1016_j_knosys_2023_110492
crossref_primary_10_1038_s41598_023_51126_9
crossref_primary_10_1186_s12859_021_04485_x
crossref_primary_10_1371_journal_pone_0299898
crossref_primary_10_3389_fmicb_2022_1040252
crossref_primary_10_1186_s12882_025_04047_w
crossref_primary_10_1016_j_compbiomed_2022_105728
crossref_primary_10_1038_s41598_024_63582_y
crossref_primary_10_1111_jcmm_18571
crossref_primary_10_1109_TCBB_2022_3143770
crossref_primary_10_1038_s41598_024_55160_z
crossref_primary_10_1093_bfgp_elac011
crossref_primary_10_3389_fgene_2022_864564
crossref_primary_10_3934_mbe_2022630
crossref_primary_10_1016_j_ymeth_2023_11_014
crossref_primary_10_1186_s12859_023_05571_y
crossref_primary_10_1038_s41598_022_11260_2
crossref_primary_10_1038_s41598_023_46480_7
crossref_primary_10_1371_journal_pone_0264362
crossref_primary_10_3390_jof9100999
crossref_primary_10_1109_TCBB_2023_3264254
crossref_primary_10_1371_journal_pone_0272403
crossref_primary_10_1038_s41598_024_62796_4
crossref_primary_10_1093_bib_bbae533
crossref_primary_10_1111_jcmm_17889
crossref_primary_10_1089_cmb_2023_0266
crossref_primary_10_3389_fgene_2021_736158
crossref_primary_10_3389_fmicb_2022_919380
crossref_primary_10_1093_bib_bbac104
crossref_primary_10_1038_s41598_022_25730_0
crossref_primary_10_1097_MD_0000000000036456
crossref_primary_10_3389_fmicb_2022_1090770
crossref_primary_10_1186_s12864_023_09879_0
crossref_primary_10_1155_2022_9867660
crossref_primary_10_1186_s12859_022_04694_y
crossref_primary_10_1186_s12859_022_04719_6
crossref_primary_10_1093_bib_bbac266
crossref_primary_10_1371_journal_pone_0278817
crossref_primary_10_1038_s41598_022_21243_y
crossref_primary_10_1111_jcmm_18398
crossref_primary_10_1007_s12539_023_00602_x
crossref_primary_10_1007_s12539_024_00616_z
crossref_primary_10_1109_ACCESS_2024_3401005
crossref_primary_10_1186_s12864_022_08687_2
crossref_primary_10_3389_fmicb_2022_846915
crossref_primary_10_1002_cem_3553
crossref_primary_10_3389_fgene_2021_767694
crossref_primary_10_1016_j_ymthe_2022_01_041
crossref_primary_10_1371_journal_pone_0264645
crossref_primary_10_1038_s41598_024_61849_y
crossref_primary_10_1038_s41598_024_58646_y
crossref_primary_10_1016_j_future_2022_04_012
crossref_primary_10_1371_journal_pone_0260720
crossref_primary_10_1007_s12539_022_00535_x
crossref_primary_10_1038_s41598_022_25745_7
crossref_primary_10_1111_jcmm_16818
crossref_primary_10_3389_fmicb_2022_1093615
crossref_primary_10_1089_cmb_2023_0449
crossref_primary_10_3389_fgene_2022_1010089
crossref_primary_10_1016_j_amc_2025_129346
crossref_primary_10_3934_mbe_2024131
crossref_primary_10_1093_bib_bbab440
crossref_primary_10_1038_s41598_022_08930_6
crossref_primary_10_1038_s41598_024_55187_2
crossref_primary_10_1093_bib_bbac527
crossref_primary_10_1016_j_compbiomed_2023_107414
crossref_primary_10_3389_fgene_2021_832627
crossref_primary_10_1186_s12864_024_10038_2
crossref_primary_10_1371_journal_pone_0259475
crossref_primary_10_1002_ctd2_257
crossref_primary_10_3934_mbe_2024008
crossref_primary_10_1111_jcmm_70071
crossref_primary_10_2174_1574893618666221118092849
crossref_primary_10_3389_fmicb_2022_740382
crossref_primary_10_1186_s12864_023_09496_x
crossref_primary_10_1111_jcmm_18372
crossref_primary_10_1186_s12859_024_05708_7
crossref_primary_10_3390_ijms232113590
crossref_primary_10_1038_s41598_024_55812_0
crossref_primary_10_7717_peerj_17396
crossref_primary_10_3389_fmicb_2022_834982
crossref_primary_10_1038_s41598_024_53442_0
crossref_primary_10_1186_s12864_023_09829_w
crossref_primary_10_1016_j_heliyon_2024_e26990
crossref_primary_10_3934_mbe_2022432
crossref_primary_10_1016_j_compbiomed_2022_105881
crossref_primary_10_1109_TCBB_2024_3421924
crossref_primary_10_1142_S0219720024500185
crossref_primary_10_1186_s12859_023_05228_w
crossref_primary_10_1186_s12864_023_09273_w
crossref_primary_10_1109_TCBB_2024_3402248
crossref_primary_10_1186_s12864_023_09363_9
crossref_primary_10_1016_j_heliyon_2023_e17726
crossref_primary_10_3389_fmicb_2022_963704
crossref_primary_10_1038_s41598_024_56583_4
crossref_primary_10_1080_01480545_2024_2364905
crossref_primary_10_1186_s12859_023_05348_3
crossref_primary_10_3389_fgene_2021_749256
crossref_primary_10_1371_journal_pone_0259091
crossref_primary_10_1021_acsomega_3c07923
crossref_primary_10_1371_journal_pone_0267798
crossref_primary_10_1371_journal_pone_0307954
crossref_primary_10_1016_j_heliyon_2023_e20184
crossref_primary_10_1155_2023_8702914
crossref_primary_10_1038_s41598_023_45626_x
crossref_primary_10_1038_s41598_024_54837_9
crossref_primary_10_1155_2023_2785436
crossref_primary_10_1109_JBHI_2024_3467101
crossref_primary_10_1097_MD_0000000000040072
crossref_primary_10_3934_mbe_2023534
crossref_primary_10_1371_journal_pone_0261728
crossref_primary_10_3934_mbe_2022322
crossref_primary_10_3934_mbe_2023894
crossref_primary_10_1038_s41598_023_46669_w
crossref_primary_10_3389_fgene_2022_895629
crossref_primary_10_1038_s41598_024_52653_9
crossref_primary_10_3389_fmicb_2021_735329
crossref_primary_10_1038_s41598_024_61762_4
crossref_primary_10_1186_s12967_025_06222_x
Cites_doi 10.1093/bioinformatics/btv480
10.1093/bioinformatics/btx672
10.1002/jcb.27057
10.1080/15476286.2018.1457935
10.1016/j.ipl.2011.02.003
10.1038/srep16840
10.1111/jcmm.12681
10.1177/1074248416667600
10.18632/oncotarget.21934
10.3389/fgene.2018.00239
10.1109/TNB.2019.2922214
10.1093/nar/gkx1004
10.1016/j.ygeno.2019.08.001
10.18632/oncotarget.19044
10.1093/bioinformatics/9.1.117
10.1002/0471250953.bi1209s29
10.1111/biom.12866
10.1038/srep13186
10.18632/oncotarget.16880
10.1101/gad.17446611
10.1016/j.biopha.2017.09.113
10.1007/s12013-014-0142-y
10.1093/nar/gku1060
10.3109/07357907.2015.1025407
10.1093/nar/gkv1258
10.3390/molecules25194372
10.1016/j.omtn.2018.09.020
10.1016/j.canlet.2014.12.051
10.18632/oncotarget.11251
10.1371/journal.pone.0053823
10.1093/bioinformatics/bty333
10.1039/c7mb00290d
10.1093/nar/gkm1011
10.1093/nar/gkw443
10.1038/s41580-018-0059-1
10.1089/dna.2015.3187
10.1007/978-1-4939-3378-5_21
10.1007/978-94-007-5590-1_1
ContentType Journal Article
Copyright International Association of Scientists in the Interdisciplinary Areas 2021
International Association of Scientists in the Interdisciplinary Areas 2021.
2021. International Association of Scientists in the Interdisciplinary Areas.
Copyright_xml – notice: International Association of Scientists in the Interdisciplinary Areas 2021
– notice: International Association of Scientists in the Interdisciplinary Areas 2021.
– notice: 2021. International Association of Scientists in the Interdisciplinary Areas.
DBID AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
7X8
DOI 10.1007/s12539-021-00458-z
DatabaseName CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1867-1462
EndPage 545
ExternalDocumentID 10_1007_s12539_021_00458_z
GrantInformation_xml – fundername: Key R&D Program of Liaoning Province
  grantid: 2019JH2/10300041
– fundername: Scientific Research Project from Department of Education of Liaoning Province
  grantid: LQN201906
– fundername: Shenyang Science and Technology Plan Project
  grantid: 17-65-7-00; 20-203-6-00
– fundername: National Natural Science Foundation of China
  grantid: 82003655
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
1N0
29~
2KG
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
67N
6NX
7X2
7X7
7XC
88E
8CJ
8FE
8FG
8FH
8FI
8FJ
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEUYN
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
APEBS
ARAPS
ASPBG
ATCPS
AUKKA
AVWKF
AXYYD
AZFZN
BA0
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BVXVI
CAG
CCPQU
COF
D1J
D1K
DDRTE
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IZIGR
I~X
J-C
JBSCW
JCJTX
JZLTJ
K6-
KOV
LK5
LK8
LLZTM
M0K
M1P
M4Y
M7P
M7R
NPVJJ
NQJWS
NU0
O9-
O9J
P62
PATMY
PCBAR
PQQKQ
PROAC
PSQYO
PT4
PYCSY
Q2X
QOR
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SCL
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
T13
TSG
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
AFDZB
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7QO
7SC
8FD
ABRTQ
FR3
JQ2
K9.
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c352t-a19c92fabe5a6c6d18b7218d1691524151935c26d6a58904c4e9ef8d74a6ed373
IEDL.DBID U2A
ISSN 1913-2751
1867-1462
IngestDate Wed Jul 30 10:31:11 EDT 2025
Fri Jul 25 18:51:05 EDT 2025
Thu Apr 24 22:52:29 EDT 2025
Tue Jul 01 02:19:19 EDT 2025
Fri Feb 21 02:47:53 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Interaction prediction
miRNA
lncRNA
Network distance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-a19c92fabe5a6c6d18b7218d1691524151935c26d6a58904c4e9ef8d74a6ed373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9713-1864
PQID 2561092890
PQPubID 326319
PageCount 11
ParticipantIDs proquest_miscellaneous_2549222764
proquest_journals_2561092890
crossref_primary_10_1007_s12539_021_00458_z
crossref_citationtrail_10_1007_s12539_021_00458_z
springer_journals_10_1007_s12539_021_00458_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Bromont
PublicationTitle Interdisciplinary sciences : computational life sciences
PublicationTitleAbbrev Interdiscip Sci Comput Life Sci
PublicationYear 2021
Publisher Springer Singapore
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
References Zhao, Yang, Ren, Ge, Fan (CR23) 2019; 18
Chen (CR36) 2015; 5
Yao, Ma, Xue (CR16) 2015; 359
Liu, Ren, Hu, Zhang, Ai, Zhang, Zhao (CR25) 2017; 8
Ye, Yang, Zhao, Song, Wang, Zheng (CR9) 2014; 70
Li, Wang, Mei, Cao, Yang, Wang, Wen (CR40) 2017; 96
CR13
Chou, Chang, Shrestha (CR30) 2016; 44
Miao, Liu, Zhang, Guo (CR26) 2018; 46
Wallin, Wettergren, Hedman, von Heijne (CR32) 1993; 9
Achawanantakun, Chen, Sun, Zhang (CR3) 2015; 31
Hosseini, Soltani, Tavallaei, Mowla, Tafsiri, Bagheri, Khorshid (CR37) 2018; 10
Yang, Tang, Lu, Shi, Ye, Xu, Zhao (CR5) 2018; 119
Treiber, Treiber, Meister (CR7) 2019; 20
Huang, Chan, You (CR24) 2018; 34
Gao, Wu, Jiang (CR34) 2011; 111
Yang, Wang, Lin, Shao, He, Huang (CR31) 2020; 25
Zhao, Yu, Ming, Hu, Ren, Liu (CR19) 2018; 13
Zhao, Zhang, Hu, Ren, Zhang, Liu (CR17) 2018; 9
Ozen, Karatas, Gulluoglu (CR39) 2015; 33
CR6
Furió-Tarí, Tarazona, Gabaldón, Enright, Conesa (CR15) 2016; 44
Hu, Zhu, Ai, Zhang, Zhao, Zhao, Liu (CR18) 2017; 13
Jalali, Bhartiya, Lalwani, Sivasubbu, Scaria (CR2) 2013; 8
Li, Ponnusamy, Li, Wang, Li (CR14) 2017; 22
Chen (CR8) 2015; 5
Cabili, Trapnell, Goff, Koziol, Tazon-Vega, Regev, Rinn (CR1) 2011; 25
Wu, Guo, Jiang, Li, Li, Chen (CR10) 2015; 19
Chen, Yan, Zhang, You, Huang, Yan (CR33) 2016; 7
He, Liu, Skogerbø (CR29) 2007; 36
Zheng, Jeong, Zhu, Chen, Xia (CR12) 2017; 8
Griffiths-Jones (CR28) 2010; 29
Yang, Zhu, Ibrahim (CR35) 2018; 74
Hu, Zhang, Ai, Zhang, Fan, Zhao, Liu (CR20) 2018; 15
Volders, Verheggen, Menschaert, Vandepoele, Martens, Vandesompele, Mestdagh (CR27) 2015; 43
Shi, Zhang, Wang (CR11) 2017; 8
Li, Tian, Yang, Gong (CR4) 2016; 35
Chen, Xie, Wang, Zhao, You, Liu (CR21) 2018; 34
Jiang, Gao, Liu, Mao (CR38) 2016; 6
Ge, Yang, Gang, Fan, Zhao (CR22) 2020; 112
S Ye (458_CR9) 2014; 70
X Chen (458_CR33) 2016; 7
S Jalali (458_CR2) 2013; 8
R Achawanantakun (458_CR3) 2015; 31
Y-R Miao (458_CR26) 2018; 46
S Griffiths-Jones (458_CR28) 2010; 29
MN Cabili (458_CR1) 2011; 25
H Hu (458_CR20) 2018; 15
458_CR6
H Liu (458_CR25) 2017; 8
Z Yang (458_CR5) 2018; 119
B Zheng (458_CR12) 2017; 8
H Hu (458_CR18) 2017; 13
P-J Volders (458_CR27) 2015; 43
T Treiber (458_CR7) 2019; 20
X Shi (458_CR11) 2017; 8
E Wallin (458_CR32) 1993; 9
SM Hosseini (458_CR37) 2018; 10
Q Zhao (458_CR17) 2018; 9
Q Wu (458_CR10) 2015; 19
H Yang (458_CR35) 2018; 74
M Gao (458_CR34) 2011; 111
M Ozen (458_CR39) 2015; 33
X Chen (458_CR36) 2015; 5
P Furió-Tarí (458_CR15) 2016; 44
Q Zhao (458_CR23) 2019; 18
458_CR13
Y Jiang (458_CR38) 2016; 6
X Chen (458_CR8) 2015; 5
L Li (458_CR40) 2017; 96
S Yang (458_CR31) 2020; 25
Y Yao (458_CR16) 2015; 359
X Chen (458_CR21) 2018; 34
E Ge (458_CR22) 2020; 112
C-H Chou (458_CR30) 2016; 44
N Li (458_CR14) 2017; 22
Y-A Huang (458_CR24) 2018; 34
Q Zhao (458_CR19) 2018; 13
J Li (458_CR4) 2016; 35
S He (458_CR29) 2007; 36
References_xml – volume: 31
  start-page: 3897
  issue: 24
  year: 2015
  end-page: 3905
  ident: CR3
  article-title: LncRNA-ID: long non-coding RNA IDentification using balanced random forests
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv480
– volume: 34
  start-page: 812
  issue: 5
  year: 2018
  end-page: 819
  ident: CR24
  article-title: Constructing prediction models from expression profiles for large scale lncRNA–miRNA interaction profiling
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx672
– volume: 119
  start-page: 8432
  issue: 10
  year: 2018
  end-page: 8440
  ident: CR5
  article-title: Long non-coding RNA reprogramming (lncRNA-ROR) regulates cell apoptosis and autophagy in chondrocytes
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.27057
– volume: 15
  start-page: 797
  issue: 6
  year: 2018
  end-page: 806
  ident: CR20
  article-title: HLPI-ensemble: prediction of human lncRNA–protein interactions based on ensemble strategy
  publication-title: RNA Biol
  doi: 10.1080/15476286.2018.1457935
– volume: 111
  start-page: 440
  issue: 9
  year: 2011
  end-page: 446
  ident: CR34
  article-title: Userrank for item-based collaborative filtering recommendation
  publication-title: Inf Process Lett
  doi: 10.1016/j.ipl.2011.02.003
– volume: 5
  start-page: 16840
  year: 2015
  ident: CR36
  article-title: KATZLDA: KATZ measure for the lncRNA-disease association prediction
  publication-title: Sci Rep
  doi: 10.1038/srep16840
– volume: 19
  start-page: 2874
  issue: 12
  year: 2015
  end-page: 2887
  ident: CR10
  article-title: Analysis of the mi RNA–mRNA–lnc RNA networks in ER+ and ER− breast cancer cell lines
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.12681
– volume: 22
  start-page: 105
  issue: 2
  year: 2017
  end-page: 111
  ident: CR14
  article-title: The role of microRNA and LncRNA–MicroRNA interactions in regulating ischemic heart disease
  publication-title: J Cardiovasc Pharmacol Ther
  doi: 10.1177/1074248416667600
– volume: 8
  start-page: 103975
  issue: 61
  year: 2017
  ident: CR25
  article-title: LPI-NRLMF: lncRNA–protein interaction prediction by neighborhood regularized logistic matrix factorization
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.21934
– volume: 9
  start-page: 239
  year: 2018
  ident: CR17
  article-title: IRWNRLPI: integrating random walk and neighborhood regularized logistic matrix factorization for lncRNA–protein interaction prediction
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00239
– volume: 18
  start-page: 578
  issue: 4
  year: 2019
  end-page: 584
  ident: CR23
  article-title: Integrating bipartite network projection and KATZ measure to identify novel CircRNA-disease associations
  publication-title: IEEE Trans Nanobiosci
  doi: 10.1109/TNB.2019.2922214
– volume: 46
  start-page: D276
  issue: D1
  year: 2018
  end-page: D280
  ident: CR26
  article-title: lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1004
– volume: 112
  start-page: 1335
  issue: 2
  year: 2020
  end-page: 1342
  ident: CR22
  article-title: Predicting human disease-associated circRNAs based on locality-constrained linear coding
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.08.001
– volume: 8
  start-page: 100819
  issue: 59
  year: 2017
  ident: CR12
  article-title: miRNA and lncRNA as biomarkers in cholangiocarcinoma (CCA)
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19044
– volume: 9
  start-page: 117
  issue: 1
  year: 1993
  end-page: 118
  ident: CR32
  article-title: Fast Needleman–Wunsch scanning of sequence databanks on a massively parallel computer
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/9.1.117
– volume: 6
  start-page: 1890
  issue: 9
  year: 2016
  end-page: 1905
  ident: CR38
  article-title: Sorting and biological characteristics analysis for side population cells in human primary hepatocellular carcinoma
  publication-title: Am J Cancer Res
– ident: CR6
– volume: 29
  start-page: 12.19.11
  issue: 1
  year: 2010
  end-page: 12.19.10
  ident: CR28
  article-title: miRBase: microRNA sequences and annotation
  publication-title: Curr Protoc Bioinform
  doi: 10.1002/0471250953.bi1209s29
– volume: 74
  start-page: 834
  issue: 3
  year: 2018
  end-page: 844
  ident: CR35
  article-title: MILFM: Multiple index latent factor model based on high-dimensional features
  publication-title: Biometrics
  doi: 10.1111/biom.12866
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  end-page: 11
  ident: CR8
  article-title: Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA
  publication-title: Sci Rep
  doi: 10.1038/srep13186
– volume: 8
  start-page: 58394
  issue: 35
  year: 2017
  ident: CR11
  article-title: LncRNA AFAP1-AS1 promotes growth and metastasis of cholangiocarcinoma cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.16880
– volume: 25
  start-page: 1915
  issue: 18
  year: 2011
  end-page: 1927
  ident: CR1
  article-title: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses
  publication-title: Genes Dev
  doi: 10.1101/gad.17446611
– volume: 96
  start-page: 165
  year: 2017
  end-page: 172
  ident: CR40
  article-title: lncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1α by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2017.09.113
– volume: 70
  start-page: 1849
  issue: 3
  year: 2014
  end-page: 1858
  ident: CR9
  article-title: Bioinformatics method to predict two regulation mechanism: TF–miRNA–mRNA and lncRNA–miRNA–mRNA in pancreatic cancer
  publication-title: Cell Biochem Biophys
  doi: 10.1007/s12013-014-0142-y
– volume: 43
  start-page: D174
  issue: D1
  year: 2015
  end-page: D180
  ident: CR27
  article-title: An update on LNCipedia: a database for annotated human lncRNA sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1060
– volume: 33
  start-page: 251
  issue: 6
  year: 2015
  end-page: 258
  ident: CR39
  article-title: Overexpression of miR-145-5p inhibits proliferation of prostate cancer cells and reduces SOX2 expression
  publication-title: Cancer Investig
  doi: 10.3109/07357907.2015.1025407
– volume: 44
  start-page: D239
  issue: D1
  year: 2016
  end-page: D247
  ident: CR30
  article-title: miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1258
– volume: 25
  start-page: 4372
  issue: 19
  year: 2020
  ident: CR31
  article-title: LncMirNet: predicting LncRNA–miRNA interaction based on deep learning of ribonucleic acid sequences
  publication-title: Molecules
  doi: 10.3390/molecules25194372
– volume: 13
  start-page: 464
  year: 2018
  end-page: 471
  ident: CR19
  article-title: The bipartite network projection-recommended algorithm for predicting long non-coding RNA–protein interactions
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2018.09.020
– volume: 359
  start-page: 75
  issue: 1
  year: 2015
  end-page: 86
  ident: CR16
  article-title: Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2014.12.051
– volume: 7
  start-page: 65257
  issue: 40
  year: 2016
  ident: CR33
  article-title: HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11251
– volume: 8
  issue: 2
  year: 2013
  ident: CR2
  article-title: Systematic transcriptome wide analysis of lncRNA–miRNA interactions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0053823
– ident: CR13
– volume: 34
  start-page: 3178
  issue: 18
  year: 2018
  end-page: 3186
  ident: CR21
  article-title: BNPMDA: bipartite network projection for MiRNA–disease association prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty333
– volume: 13
  start-page: 1781
  issue: 9
  year: 2017
  end-page: 1787
  ident: CR18
  article-title: LPI-ETSLP: lncRNA–protein interaction prediction using eigenvalue transformation-based semi-supervised link prediction
  publication-title: Mol BioSyst
  doi: 10.1039/c7mb00290d
– volume: 10
  start-page: 98
  issue: 2
  year: 2018
  end-page: 104
  ident: CR37
  article-title: Clinically significant dysregulation of hsa-miR-30d-5p and hsa-let-7b expression in patients with surgically resected non-small cell lung cancer
  publication-title: Avicenna J. Med. Biotechnol.
– volume: 36
  start-page: D170
  issue: suppl_1
  year: 2007
  end-page: D172
  ident: CR29
  article-title: NONCODE v2. 0: decoding the non-coding
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm1011
– volume: 44
  start-page: W176
  issue: W1
  year: 2016
  end-page: W180
  ident: CR15
  article-title: spongeScan: a web for detecting microRNA binding elements in lncRNA sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw443
– volume: 20
  start-page: 5
  issue: 1
  year: 2019
  end-page: 20
  ident: CR7
  article-title: Regulation of microRNA biogenesis and its crosstalk with other cellular pathways
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-018-0059-1
– volume: 35
  start-page: 459
  issue: 9
  year: 2016
  end-page: 470
  ident: CR4
  article-title: Long noncoding RNAs regulate cell growth, proliferation, and apoptosis
  publication-title: DNA Cell Biol
  doi: 10.1089/dna.2015.3187
– volume: 44
  start-page: D239
  issue: D1
  year: 2016
  ident: 458_CR30
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1258
– volume: 34
  start-page: 3178
  issue: 18
  year: 2018
  ident: 458_CR21
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty333
– volume: 25
  start-page: 4372
  issue: 19
  year: 2020
  ident: 458_CR31
  publication-title: Molecules
  doi: 10.3390/molecules25194372
– volume: 31
  start-page: 3897
  issue: 24
  year: 2015
  ident: 458_CR3
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv480
– volume: 20
  start-page: 5
  issue: 1
  year: 2019
  ident: 458_CR7
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-018-0059-1
– volume: 19
  start-page: 2874
  issue: 12
  year: 2015
  ident: 458_CR10
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.12681
– volume: 22
  start-page: 105
  issue: 2
  year: 2017
  ident: 458_CR14
  publication-title: J Cardiovasc Pharmacol Ther
  doi: 10.1177/1074248416667600
– volume: 112
  start-page: 1335
  issue: 2
  year: 2020
  ident: 458_CR22
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.08.001
– volume: 74
  start-page: 834
  issue: 3
  year: 2018
  ident: 458_CR35
  publication-title: Biometrics
  doi: 10.1111/biom.12866
– volume: 8
  issue: 2
  year: 2013
  ident: 458_CR2
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0053823
– ident: 458_CR13
  doi: 10.1007/978-1-4939-3378-5_21
– volume: 5
  start-page: 16840
  year: 2015
  ident: 458_CR36
  publication-title: Sci Rep
  doi: 10.1038/srep16840
– volume: 8
  start-page: 58394
  issue: 35
  year: 2017
  ident: 458_CR11
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.16880
– volume: 34
  start-page: 812
  issue: 5
  year: 2018
  ident: 458_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx672
– volume: 8
  start-page: 103975
  issue: 61
  year: 2017
  ident: 458_CR25
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.21934
– volume: 13
  start-page: 1781
  issue: 9
  year: 2017
  ident: 458_CR18
  publication-title: Mol BioSyst
  doi: 10.1039/c7mb00290d
– volume: 25
  start-page: 1915
  issue: 18
  year: 2011
  ident: 458_CR1
  publication-title: Genes Dev
  doi: 10.1101/gad.17446611
– volume: 359
  start-page: 75
  issue: 1
  year: 2015
  ident: 458_CR16
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2014.12.051
– volume: 13
  start-page: 464
  year: 2018
  ident: 458_CR19
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2018.09.020
– volume: 7
  start-page: 65257
  issue: 40
  year: 2016
  ident: 458_CR33
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11251
– volume: 111
  start-page: 440
  issue: 9
  year: 2011
  ident: 458_CR34
  publication-title: Inf Process Lett
  doi: 10.1016/j.ipl.2011.02.003
– volume: 18
  start-page: 578
  issue: 4
  year: 2019
  ident: 458_CR23
  publication-title: IEEE Trans Nanobiosci
  doi: 10.1109/TNB.2019.2922214
– volume: 29
  start-page: 12.19.11
  issue: 1
  year: 2010
  ident: 458_CR28
  publication-title: Curr Protoc Bioinform
  doi: 10.1002/0471250953.bi1209s29
– volume: 119
  start-page: 8432
  issue: 10
  year: 2018
  ident: 458_CR5
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.27057
– volume: 9
  start-page: 239
  year: 2018
  ident: 458_CR17
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00239
– volume: 10
  start-page: 98
  issue: 2
  year: 2018
  ident: 458_CR37
  publication-title: Avicenna J. Med. Biotechnol.
– volume: 35
  start-page: 459
  issue: 9
  year: 2016
  ident: 458_CR4
  publication-title: DNA Cell Biol
  doi: 10.1089/dna.2015.3187
– volume: 36
  start-page: D170
  issue: suppl_1
  year: 2007
  ident: 458_CR29
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm1011
– volume: 70
  start-page: 1849
  issue: 3
  year: 2014
  ident: 458_CR9
  publication-title: Cell Biochem Biophys
  doi: 10.1007/s12013-014-0142-y
– volume: 43
  start-page: D174
  issue: D1
  year: 2015
  ident: 458_CR27
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1060
– volume: 9
  start-page: 117
  issue: 1
  year: 1993
  ident: 458_CR32
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/9.1.117
– volume: 44
  start-page: W176
  issue: W1
  year: 2016
  ident: 458_CR15
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw443
– volume: 6
  start-page: 1890
  issue: 9
  year: 2016
  ident: 458_CR38
  publication-title: Am J Cancer Res
– volume: 33
  start-page: 251
  issue: 6
  year: 2015
  ident: 458_CR39
  publication-title: Cancer Investig
  doi: 10.3109/07357907.2015.1025407
– volume: 8
  start-page: 100819
  issue: 59
  year: 2017
  ident: 458_CR12
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19044
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  ident: 458_CR8
  publication-title: Sci Rep
  doi: 10.1038/srep13186
– ident: 458_CR6
  doi: 10.1007/978-94-007-5590-1_1
– volume: 96
  start-page: 165
  year: 2017
  ident: 458_CR40
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2017.09.113
– volume: 15
  start-page: 797
  issue: 6
  year: 2018
  ident: 458_CR20
  publication-title: RNA Biol
  doi: 10.1080/15476286.2018.1457935
– volume: 46
  start-page: D276
  issue: D1
  year: 2018
  ident: 458_CR26
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1004
SSID ssj0064830
Score 2.5671856
Snippet LncRNA–miRNA interactions contribute to the regulation of therapeutic targets and diagnostic biomarkers in multifarious human diseases. However, it remains...
LncRNA-miRNA interactions contribute to the regulation of therapeutic targets and diagnostic biomarkers in multifarious human diseases. However, it remains...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 535
SubjectTerms Algorithms
Biomarkers
Biomedical and Life Sciences
Case studies
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Appl. in Life Sciences
Computer applications
Health Sciences
Life Sciences
Mathematical and Computational Physics
Medicine
miRNA
Original Research Article
Predictions
Similarity
Source code
Statistics for Life Sciences
Theoretical
Theoretical and Computational Chemistry
Therapeutic targets
Title Using Network Distance Analysis to Predict lncRNA–miRNA Interactions
URI https://link.springer.com/article/10.1007/s12539-021-00458-z
https://www.proquest.com/docview/2561092890
https://www.proquest.com/docview/2549222764
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58oHgRrYr1RQRvGrCbxybHolZRWkQs6GlJdrMg1K2024Oe_A_-Q3-JmX1YFBU87WEnWZiZZL7ZeQEcMG6csAbdEh1Sbi2jVjBHU-acSmzi0hALhbs9edHnl3firioKG9fZ7nVIsripp8VugWCaYkoB4hBFX2ZhXqDv7rW4H7Tr-1dyVUwY8Y4Io0EoWlWpzM97fDVHU4z5LSxaWJvOCixXMJG0S7muwozLGrBQDo58bsBitwqJr0GnCPqTXpnOTU4RD3pBkrrbCMmH5HqE5DkZZPFNr_3--vb44J-k-BtYFjaM16HfObs9uaDVcAQae8yUU9PSsQ5SY50wMpZJS1nvzKkEm98INMsemYk4kIk0QuljHnOnXaqSkBvpEhayDZjLhpnbBKKtkNqoYyZYzJPUuxiOW7_QOuMdFKOa0Kp5FMVV53AcYDGIpj2Pka-R52tU8DV6acLh55qnsm_Gn9Q7Neuj6gyNowChncZAaBP2P1977ceQhsnccII0XGM1r-RNOKpFNt3i9y9u_Y98G5aCQmswuWwH5vLRxO16NJLbPZhvn99fne0VSvgBK5rXPg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB488HgRT1zPCL5pwG2OJo-LuqzHLiIu-FaSNgVh7YpbH_TJ_-A_9JeY6eGiqOBTHzpJYWaS-aZzAewzbpywBt0SHVJuLaNWMEdT5pxKbOLSEAuFuz3Z6fPzW3FbFYWN6mz3OiRZ3NTjYrdAME0xpQBxiKIvkzDtwYDCRK5-0KrvX8lVMWHEOyKMBqFoVqUyP-_x1RyNMea3sGhhbdqLsFDBRNIq5boEEy5bhplycOTzMsx2q5D4CrSLoD_plenc5ATxoBckqbuNkHxIrh6RPCeDLL7utd5f3-7v_JMUfwPLwobRKvTbpzfHHVoNR6Cxx0w5NU0d6yA11gkjY5k0lfXOnEqw-Y1As-yRmYgDmUgjlD7iMXfapSoJuZEuYSFbg6lsmLl1INoKqY06YoLFPEm9i-G49QutM95BMaoBzZpHUVx1DscBFoNo3PMY-Rp5vkYFX6OXBhx8rnko-2b8Sb1Vsz6qztAoChDaaQyENmDv87XXfgxpmMwNn5CGa6zmlbwBh7XIxlv8_sWN_5HvwlznpnsZXZ71LjZhPig0CBPNtmAqf3xy2x6Z5HanUMQPs9DYnQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VKlAvVctDXUpbI3EDCxI_Yh9XwIoWWCHESnuL7NiRkLbZ1RIO5cR_4B_yS_DksQuIInHKIWNHmvHjm8x8MwDbjBsvrEG3RCeUW8uoFczTnHmvnHU-T5AofNaXxwP-ZyiGT1j8VbZ7G5KsOQ1Ypako9yYu35sT32LBNMX0AsQkit4uwMdwHEe4rgdxtz2LJVdVt5HglDAaJyJqaDOvz_H8aprjzRch0urm6X2Bzw1kJN3axl_hgy9WYKluIvlvBZbPmvD4KvSqBADSr1O7ySFiw2BU0lYeIeWYnE9RvCSjIrvodx_u7v9ehSep_gzWJIfrNRj0ji4PjmnTKIFmAT-V1EQ603FurBdGZtJFygbHTjkshCPwig4oTWSxdNIIpfd5xr32uXIJN9I7lrB1WCzGhf8GRFshtVH7TLCMuzy4G57bMNB6E5wVozoQtTpKs6aKODazGKXz-seo1zToNa30mt52YGc2ZlLX0HhTerNVfdrsp-s0RpinMSjaga3Z67ATMLxhCj--QRmukdkreQd2W5PNp_j_FzfeJ_4Lls8Pe-np7_7Jd_gUVwsIc842YbGc3vgfAaSU9me1Dh8BaIzc2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Network+Distance+Analysis+to+Predict+lncRNA-miRNA+Interactions&rft.jtitle=Interdisciplinary+sciences+%3A+computational+life+sciences&rft.au=Zhang%2C+Li&rft.au=Yang%2C+Pengyu&rft.au=Feng%2C+Huawei&rft.au=Zhao%2C+Qi&rft.date=2021-09-01&rft.issn=1867-1462&rft.eissn=1867-1462&rft.volume=13&rft.issue=3&rft.spage=535&rft_id=info:doi/10.1007%2Fs12539-021-00458-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1913-2751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1913-2751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1913-2751&client=summon