TiOx-supported Na-Mn-W oxides for the oxidative coupling of methane

Supported Na-Mn-W oxides are among the most studied catalysts for the oxidative coupling of methane (OCM) because of their superior thermal stability and relatively high C2+ product yields. However, because of the structural complexity, the roles of each component in these catalysts have been contro...

Full description

Saved in:
Bibliographic Details
Published inCatalysis today Vol. 416; p. 113977
Main Authors Aireddy, Divakar R., Roy, Amitava, Cullen, David A., Ding, Kunlun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Supported Na-Mn-W oxides are among the most studied catalysts for the oxidative coupling of methane (OCM) because of their superior thermal stability and relatively high C2+ product yields. However, because of the structural complexity, the roles of each component in these catalysts have been controversial. In this work, WOx and MnOx sites were supported on titanate nanowires and employed in OCM studies. Compared to the commonly studied silica support, which is subject to severe restructuring due to the Na-induced crystallization, titanate support not only serves as a reservoir for alkali metals (e.g., Na), but also stabilizes isolated MnOx species. The catalytic performance of the titanate-based catalyst is similar to that of reference catalyst, MnOx/Na2WO4/SiO2, with a synergistic effect between MnOx and WOx sites. Advanced electron microscopy, X-ray diffraction, infrared spectroscopy, and X-ray absorption near edge structure spectroscopy suggest that the basic NaOx and MnOx species have strong interactions with the acidic WOx and TiOx species, which might contribute to the high selectivity toward C2+ products and suppressed COx formation. [Display omitted] •Titanate-supported Na-Mn-W oxides show comparable performance with MnOx/Na2WO4/SiO2 in the oxidative coupling of methane.•Mn is isolated and stabilized as Na2Mn2Ti6O16.•W is present as Na2WO4 phase and enriched on the surface of the catalyst.•MnOx and WOx species show synergistic effects in the oxidative coupling of methane.
AbstractList Supported Na-Mn-W oxides are among the most studied catalysts for the oxidative coupling of methane (OCM) because of their superior thermal stability and relatively high C2+ product yields. However, because of the structural complexity, the roles of each component in these catalysts have been controversial. In this work, WOx and MnOx sites were supported on titanate nanowires and employed in OCM studies. Compared to the commonly studied silica support, which is subject to severe restructuring due to the Na-induced crystallization, titanate support not only serves as a reservoir for alkali metals (e.g., Na), but also stabilizes isolated MnOx species. The catalytic performance of the titanate-based catalyst is similar to that of reference catalyst, MnOx/Na2WO4/SiO2, with a synergistic effect between MnOx and WOx sites. Advanced electron microscopy, X-ray diffraction, infrared spectroscopy, and X-ray absorption near edge structure spectroscopy suggest that the basic NaOx and MnOx species have strong interactions with the acidic WOx and TiOx species, which might contribute to the high selectivity toward C2+ products and suppressed COx formation. [Display omitted] •Titanate-supported Na-Mn-W oxides show comparable performance with MnOx/Na2WO4/SiO2 in the oxidative coupling of methane.•Mn is isolated and stabilized as Na2Mn2Ti6O16.•W is present as Na2WO4 phase and enriched on the surface of the catalyst.•MnOx and WOx species show synergistic effects in the oxidative coupling of methane.
ArticleNumber 113977
Author Aireddy, Divakar R.
Cullen, David A.
Ding, Kunlun
Roy, Amitava
Author_xml – sequence: 1
  givenname: Divakar R.
  surname: Aireddy
  fullname: Aireddy, Divakar R.
  organization: Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA
– sequence: 2
  givenname: Amitava
  surname: Roy
  fullname: Roy, Amitava
  organization: Center for Advanced Microstructures & Devices, Louisiana State University, Baton Rouge, Louisiana 70806, USA
– sequence: 3
  givenname: David A.
  surname: Cullen
  fullname: Cullen, David A.
  organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
– sequence: 4
  givenname: Kunlun
  surname: Ding
  fullname: Ding, Kunlun
  email: kunlunding@lsu.edu
  organization: Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA
BookMark eNqFkM1KAzEUhYNUsK2-gYt5gYz5m5mMC0GKf1DtpuAypMmNTWknJUlLfXun1pULXV0O3O_Ad0Zo0IUOELqmpKSE1jer0uicgy0ZYaykrCREnqEhlQ3HghM5QEPSMoIrWdMLNEppRfoPKdgQTeZ-dsBpt92GmMEWbxq_dvi9CAdvIRUuxCIv4Tvq7PdQmLDbrn33UQRXbCAvdQeX6NzpdYKrnztG88eH-eQZT2dPL5P7KTa8YhlrAkYw27Q1XwiwwCsqHWlrRxrZSCEttLbiAmrOnGRNQ_nCMN42lbOsEoSPkTjVmhhSiuDUNvqNjp-KEnXcQa3UaQd13EFRpnrLHrv9hRmfe5fQ5aj9-j_47gRD77X3EFUyHjoD1kcwWdng_y74Al9DfP8
CitedBy_id crossref_primary_10_1039_D3MA00844D
crossref_primary_10_1039_D5CY00097A
crossref_primary_10_1016_j_dche_2024_100160
crossref_primary_10_1360_SSC_2023_0200
Cites_doi 10.1134/S0036024418030147
10.1016/j.jcat.2021.06.021
10.1021/ja909456f
10.1007/s10562-014-1417-z
10.1016/j.apcata.2014.11.045
10.1039/C9FD00142E
10.1023/A:1009627216939
10.1016/j.cattod.2018.06.028
10.1016/S0926-860X(01)00864-X
10.1006/jcat.1995.1221
10.1002/anie.202108201
10.1039/cs9891800251
10.1021/acscatal.1c02315
10.1016/j.jcat.2020.03.027
10.1006/jcat.1995.1157
10.1002/anie.200802608
10.1021/acsomega.0c00537
10.1134/S0036024419030087
10.1002/anie.199509701
10.1016/j.cej.2011.02.013
10.1021/j100013a030
10.1016/j.cej.2019.04.006
10.1126/sciadv.1603180
10.1002/cctc.201100186
10.1021/acscatal.9b05591
10.1002/cjoc.20010190104
10.1016/j.psep.2021.02.030
10.1016/j.cattod.2016.04.021
10.1016/j.cattod.2013.12.024
10.1021/acscatal.6b00098
10.1021/acscatal.9b01585
10.1021/j100151a038
10.1016/0021-9517(90)90192-M
10.1016/j.fuel.2021.122539
10.1016/0021-9517(90)90193-N
10.1021/acscatal.1c01392
10.1021/acs.iecr.0c06126
10.1021/jp9001302
10.1002/anie.201006424
10.1002/anie.201510201
10.1016/S1293-2558(03)00031-1
10.1016/S0166-9834(00)80020-2
10.1107/S0909049505012719
10.1016/j.surfrep.2016.06.001
10.1021/ie060269c
10.1016/0021-9517(82)90075-6
10.1006/jcat.1998.2109
10.1016/j.apcatb.2021.120553
10.1021/jp073799a
10.1016/0021-9517(87)90123-0
10.1134/S0023158416050128
10.1016/j.apcata.2012.02.046
10.1021/ic0257827
10.1021/acs.chemrev.6b00715
10.1002/anie.202117201
10.1080/01614948808078620
10.1016/j.jcat.2018.01.022
10.1021/ed064p480
10.1002/anie.201704758
10.1016/0021-9517(89)90143-7
10.1002/anie.202004778
10.1016/j.jcat.2016.06.014
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cattod.2022.12.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-4308
ExternalDocumentID 10_1016_j_cattod_2022_12_008
S0920586122004795
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SSH
VH1
WUQ
XPP
ID FETCH-LOGICAL-c352t-a0ec42d7963b4ede3518f096f0787848de9d534e632f827713bc23975fd25403
IEDL.DBID .~1
ISSN 0920-5861
IngestDate Tue Jul 01 02:53:59 EDT 2025
Thu Apr 24 22:54:56 EDT 2025
Fri Feb 23 02:36:11 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Oxidative coupling of methane
Na-Mn-W oxides
Titanate
Synergistic effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-a0ec42d7963b4ede3518f096f0787848de9d534e632f827713bc23975fd25403
OpenAccessLink https://www.osti.gov/biblio/1986231
ParticipantIDs crossref_primary_10_1016_j_cattod_2022_12_008
crossref_citationtrail_10_1016_j_cattod_2022_12_008
elsevier_sciencedirect_doi_10_1016_j_cattod_2022_12_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Catalysis today
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ravel, Newville (bib45) 2005; 12
Arndt, Otremba, Simon, Yildiz, Schubert, Schomäcker (bib9) 2012; 425–426
Vamvakeros, Matras, Jacques, di Michiel, Price, Senecal, Aran, Middelkoop, Stenning, Mosselmans, Ismagilov, Beale (bib26) 2020; 386
Takanabe, Iglesia (bib59) 2008; 47
Wu, Li (bib15) 1995; 99
Li (bib19) 2001; 19
Si, Zhao, Sun, Liu, Guan, Yang, Shi, Lu (bib22) 2022; 61
Lunsford (bib7) 1995; 34
Kiani, Sourav, Baltrusaitis, Wachs (bib10) 2019; 9
Lomonosov, Gordienko, Sinev, Rogov, Sadykov (bib24) 2018; 92
Si, Sun, Zhao, Lu (bib32) 2022; 311
Ji, Xiao, Li, Xu, Hou, Coleman, Green (bib58) 2002; 225
Schwach, Pan, Bao (bib3) 2017; 117
Jones, Leonard, Sofranko (bib54) 1987; 103
Sourav, Wang, Kiani, Baltrusaitis, Fushimi, Wachs (bib53) 2021; 60
Lane, Miro, Wolf (bib38) 1989; 119
Yildiz, Simon, Otremba, Aksu, Kailasam, Thomas, Schomäcker, Arndt (bib29) 2014; 228
Ding, Gulec, Johnson, Drake, Wu, Lin, Weitz, Marks, Stair (bib44) 2016; 6
Do, Choi, Suh, Yoo, Lee, Ha (bib31) 2021; 298
Sun, Chen, Li (bib41) 2002; 41
Horn, Schlögl (bib2) 2015; 145
Parry (bib48) 1963; 2
Matras, Vamvakeros, Jacques, Grosjean, Rollins, Poulston, Stenning, Godini, Drnec, Cernik, Beale (bib25) 2021; 229
Bavykin, Walsh (bib47) 2007; 111
Wang, Zhao, Wang, Lu (bib20) 2017; 3
Palermo, Holgado Vazquez, Lee, Tikhov, Lambert (bib14) 1998; 177
Takanabe, Iglesia (bib60) 2009; 113
Lomonosov, Gordienko, Ponomareva, Sinev (bib27) 2019; 370
Kiani, Sourav, Baltrusaitis, Wachs (bib52) 2021; 11
Hou, Cao, Xiong, Liu, Kou (bib55) 2006; 45
Yu, Yang, Lunsford, Rosynek (bib28) 1995; 154
Kidamorn, Tiyatha, Chukeaw, Niamnuy, Chareonpanich, Sohn, Seubsai (bib33) 2020; 5
Sinev, Ponomareva, Sinev, Lomonosov, Gordienko, Fattakhova, Shashkin (bib57) 2019; 333
Nakanishi (bib43) 1997; 4
Miro, Santamaria, Wolf (bib39) 1990; 124
Sourav, Wang, Kiani, Baltrusaitis, Fushimi, Wachs (bib21) 2021; 11
Lane, Kalenik, Wolf (bib37) 1989; 53
Schwarz (bib1) 2011; 50
Lomonosov, Sinev (bib11) 2016; 57
Hutchings, Scurrell, Woodhouse (bib6) 1989; 18
Fleischer, Simon, Parishan, Colmenares, Görke, Gurlo, Riedel, Thum, Schmidt, Risse, Dinse, Schomäcker (bib62) 2018; 360
Gordienko, Usmanov, Bychkov, Lomonosov, Fattakhova, Tulenin, Shashkin, Sinev (bib23) 2016; 278
Miro, Santamaria, Wolf (bib40) 1990; 124
Lee, Oyama (bib5) 1988; 30
Serres, Aquino, Mirodatos, Schuurman (bib30) 2015; 504
Jiang, Yu, Fang, Li, Wang (bib12) 1993; 97
Werny, Wang, Girgsdies, Schlögl, Trunschke (bib18) 2020; 59
Simon, Görke, Berthold, Arndt, Schomäcker, Schubert (bib13) 2011; 168
Chukeaw, Tiyatha, Jaroenpanon, Witoon, Kongkachuichay, Chareonpanich, Faungnawakij, Yigit, Rupprechter, Seubsai (bib34) 2021; 148
Zavyalova, Holena, Schlögl, Baerns (bib8) 2011; 3
Wang, Rosynek, Lunsford (bib16) 1995; 155
Takanabe, Khan, Tang, Nguyen, Ziani, Jacobs, Elbaz, Sarathy, Tao (bib17) 2017; 56
Keller, Bhasin (bib4) 1982; 73
Fleischer, Steuer, Parishan, Schomäcker (bib61) 2016; 341
Kiani, Sourav, Taifan, Calatayud, Tielens, Wachs, Baltrusaitis (bib56) 2020; 10
Li, Lunkenbein, Pfeifer, Jastak, Nielsen, Girgsdies, Knop-Gericke, Rosowski, Schlögl, Trunschke (bib63) 2016; 55
Smith (bib49) 1987; 64
Portier, Poizot, Campet, Subramanian, Tarascon (bib50) 2003; 5
Gordienko, Lomonosov, Ponomareva, Sinev, Bukhtiyarov, Vinokurov (bib36) 2019; 93
Kim, Ausenbaugh, Hwang (bib35) 2021; 60
Kukovecz, Kordás, Kiss, Kónya (bib46) 2016; 71
Ortiz-Bravo, Figueroa, Portela, Chagas, Bañares, Toniolo (bib51) 2022; 408
Wu, Wang, Tafen, Wang, Zheng, Lewis, Liu, Leonard, Manivannan (bib42) 2010; 132
Takanabe (10.1016/j.cattod.2022.12.008_bib59) 2008; 47
Fleischer (10.1016/j.cattod.2022.12.008_bib62) 2018; 360
Bavykin (10.1016/j.cattod.2022.12.008_bib47) 2007; 111
Werny (10.1016/j.cattod.2022.12.008_bib18) 2020; 59
Gordienko (10.1016/j.cattod.2022.12.008_bib23) 2016; 278
Wu (10.1016/j.cattod.2022.12.008_bib42) 2010; 132
Yildiz (10.1016/j.cattod.2022.12.008_bib29) 2014; 228
Schwach (10.1016/j.cattod.2022.12.008_bib3) 2017; 117
Lane (10.1016/j.cattod.2022.12.008_bib37) 1989; 53
Vamvakeros (10.1016/j.cattod.2022.12.008_bib26) 2020; 386
Schwarz (10.1016/j.cattod.2022.12.008_bib1) 2011; 50
Takanabe (10.1016/j.cattod.2022.12.008_bib60) 2009; 113
Ortiz-Bravo (10.1016/j.cattod.2022.12.008_bib51) 2022; 408
Ding (10.1016/j.cattod.2022.12.008_bib44) 2016; 6
Kiani (10.1016/j.cattod.2022.12.008_bib10) 2019; 9
Wang (10.1016/j.cattod.2022.12.008_bib16) 1995; 155
Zavyalova (10.1016/j.cattod.2022.12.008_bib8) 2011; 3
Lomonosov (10.1016/j.cattod.2022.12.008_bib24) 2018; 92
Jones (10.1016/j.cattod.2022.12.008_bib54) 1987; 103
Ravel (10.1016/j.cattod.2022.12.008_bib45) 2005; 12
Gordienko (10.1016/j.cattod.2022.12.008_bib36) 2019; 93
Lunsford (10.1016/j.cattod.2022.12.008_bib7) 1995; 34
Sun (10.1016/j.cattod.2022.12.008_bib41) 2002; 41
Miro (10.1016/j.cattod.2022.12.008_bib39) 1990; 124
Lomonosov (10.1016/j.cattod.2022.12.008_bib11) 2016; 57
Arndt (10.1016/j.cattod.2022.12.008_bib9) 2012; 425–426
Keller (10.1016/j.cattod.2022.12.008_bib4) 1982; 73
Wang (10.1016/j.cattod.2022.12.008_bib20) 2017; 3
Matras (10.1016/j.cattod.2022.12.008_bib25) 2021; 229
Nakanishi (10.1016/j.cattod.2022.12.008_bib43) 1997; 4
Miro (10.1016/j.cattod.2022.12.008_bib40) 1990; 124
Lomonosov (10.1016/j.cattod.2022.12.008_bib27) 2019; 370
Wu (10.1016/j.cattod.2022.12.008_bib15) 1995; 99
Horn (10.1016/j.cattod.2022.12.008_bib2) 2015; 145
Hou (10.1016/j.cattod.2022.12.008_bib55) 2006; 45
Simon (10.1016/j.cattod.2022.12.008_bib13) 2011; 168
Fleischer (10.1016/j.cattod.2022.12.008_bib61) 2016; 341
Smith (10.1016/j.cattod.2022.12.008_bib49) 1987; 64
Do (10.1016/j.cattod.2022.12.008_bib31) 2021; 298
Portier (10.1016/j.cattod.2022.12.008_bib50) 2003; 5
Parry (10.1016/j.cattod.2022.12.008_bib48) 1963; 2
Serres (10.1016/j.cattod.2022.12.008_bib30) 2015; 504
Takanabe (10.1016/j.cattod.2022.12.008_bib17) 2017; 56
Chukeaw (10.1016/j.cattod.2022.12.008_bib34) 2021; 148
Sourav (10.1016/j.cattod.2022.12.008_bib21) 2021; 11
Ji (10.1016/j.cattod.2022.12.008_bib58) 2002; 225
Hutchings (10.1016/j.cattod.2022.12.008_bib6) 1989; 18
Kidamorn (10.1016/j.cattod.2022.12.008_bib33) 2020; 5
Si (10.1016/j.cattod.2022.12.008_bib32) 2022; 311
Lane (10.1016/j.cattod.2022.12.008_bib38) 1989; 119
Si (10.1016/j.cattod.2022.12.008_bib22) 2022; 61
Lee (10.1016/j.cattod.2022.12.008_bib5) 1988; 30
Kukovecz (10.1016/j.cattod.2022.12.008_bib46) 2016; 71
Kim (10.1016/j.cattod.2022.12.008_bib35) 2021; 60
Sourav (10.1016/j.cattod.2022.12.008_bib53) 2021; 60
Palermo (10.1016/j.cattod.2022.12.008_bib14) 1998; 177
Kiani (10.1016/j.cattod.2022.12.008_bib56) 2020; 10
Li (10.1016/j.cattod.2022.12.008_bib63) 2016; 55
Sinev (10.1016/j.cattod.2022.12.008_bib57) 2019; 333
Kiani (10.1016/j.cattod.2022.12.008_bib52) 2021; 11
Li (10.1016/j.cattod.2022.12.008_bib19) 2001; 19
Jiang (10.1016/j.cattod.2022.12.008_bib12) 1993; 97
Yu (10.1016/j.cattod.2022.12.008_bib28) 1995; 154
References_xml – volume: 73
  start-page: 9
  year: 1982
  end-page: 19
  ident: bib4
  article-title: Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts
  publication-title: J. Catal.
– volume: 3
  start-page: 1935
  year: 2011
  end-page: 1947
  ident: bib8
  article-title: Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts
  publication-title: ChemCatChem
– volume: 64
  start-page: 480
  year: 1987
  ident: bib49
  article-title: An acidity scale for binary oxides
  publication-title: J. Chem. Educ.
– volume: 93
  start-page: 421
  year: 2019
  end-page: 430
  ident: bib36
  article-title: Chemical and phase transformation in W-Mn-containing catalysts for oxidative coupling of methane
  publication-title: Russ. J. Phys. Chem. A
– volume: 386
  start-page: 39
  year: 2020
  end-page: 52
  ident: bib26
  article-title: Real-time multi-length scale chemical tomography of fixed bed reactors during the oxidative coupling of methane reaction
  publication-title: J. Catal.
– volume: 298
  year: 2021
  ident: bib31
  article-title: Hybrid catalysts containing Ba, Ti, Mn, Na, and W for the low-temperature oxidative coupling of methane
  publication-title: Appl. Catal. B: Environ.
– volume: 333
  start-page: 36
  year: 2019
  end-page: 46
  ident: bib57
  article-title: Oxygen pathways in oxidative coupling of methane and related processes. Case study: NaWMn/SiO2 catalyst
  publication-title: Catal. Today
– volume: 341
  start-page: 91
  year: 2016
  end-page: 103
  ident: bib61
  article-title: Investigation of the surface reaction network of the oxidative coupling of methane over Na2WO4/Mn/SiO2 catalyst by temperature programmed and dynamic experiments
  publication-title: J. Catal.
– volume: 34
  start-page: 970
  year: 1995
  end-page: 980
  ident: bib7
  article-title: The catalytic oxidative coupling of methane
  publication-title: Angew. Chem. Int. Ed.
– volume: 154
  start-page: 163
  year: 1995
  end-page: 173
  ident: bib28
  article-title: Oxidative Coupling of Methane over Na2WO4/CeO2 and Related Catalysts
  publication-title: J. Catal.
– volume: 228
  start-page: 5
  year: 2014
  end-page: 14
  ident: bib29
  article-title: Support material variation for the MnxOy-Na2WO4/SiO2 catalyst
  publication-title: Catal. Today
– volume: 53
  start-page: 183
  year: 1989
  end-page: 195
  ident: bib37
  article-title: Methane oxidative coupling over titanate catalysts
  publication-title: Appl. Catal.
– volume: 56
  start-page: 10403
  year: 2017
  end-page: 10407
  ident: bib17
  article-title: Integrated in situ characterization of a molten salt catalyst surface: evidence of sodium peroxide and hydroxyl radical formation
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 4580
  year: 2020
  end-page: 4592
  ident: bib56
  article-title: Existence and properties of isolated catalytic sites on the surface of β-cristobalite-supported, doped tungsten oxide catalysts (WOx/β-SiO2, Na-WOx/β-SiO2, Mn-WOx/β-SiO2) for oxidative coupling of methane (OCM): a combined periodic DFT and experimental study
  publication-title: ACS Catal.
– volume: 5
  start-page: 695
  year: 2003
  end-page: 699
  ident: bib50
  article-title: Acid–base behavior of oxides and their electronic structure
  publication-title: Solid State Sci.
– volume: 4
  start-page: 67
  year: 1997
  end-page: 112
  ident: bib43
  article-title: Pore structure control of silica gels based on phase separation
  publication-title: J. Porous Mater.
– volume: 229
  start-page: 176
  year: 2021
  end-page: 196
  ident: bib25
  article-title: Effect of thermal treatment on the stability of Na–Mn–W/SiO2 catalyst for the oxidative coupling of methane
  publication-title: Faraday Discuss.
– volume: 11
  start-page: 10131
  year: 2021
  end-page: 10137
  ident: bib52
  article-title: Elucidating the effects of Mn promotion on SiO2-supported Na-promoted tungsten oxide catalysts for oxidative coupling of methane (OCM)
  publication-title: ACS Catal.
– volume: 119
  start-page: 161
  year: 1989
  end-page: 178
  ident: bib38
  article-title: Methane oxidative coupling: II. A study of lithium-titania-catalyzed reactions of methane
  publication-title: J. Catal.
– volume: 177
  start-page: 259
  year: 1998
  end-page: 266
  ident: bib14
  article-title: Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na2WO4/SiO2 catalysts for the oxidative coupling of methane
  publication-title: J. Catal.
– volume: 50
  start-page: 10096
  year: 2011
  end-page: 10115
  ident: bib1
  article-title: Chemistry with methane: concepts rather than recipes
  publication-title: Angew. Chem. Int. Ed.
– volume: 30
  start-page: 249
  year: 1988
  end-page: 280
  ident: bib5
  article-title: Oxidative coupling of methane to higher hydrocarbons
  publication-title: Catal. Rev. - Sci. Rev.
– volume: 3
  year: 2017
  ident: bib20
  article-title: MnTiO3-driven low-temperature oxidative coupling of methane over TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst
  publication-title: Sci. Adv.
– volume: 60
  start-page: 21502
  year: 2021
  end-page: 21511
  ident: bib53
  article-title: New mechanistic and reaction pathway insights for oxidative coupling of methane (OCM) over supported Na2WO4/SiO2
  publication-title: Catal.,
– volume: 41
  start-page: 4996
  year: 2002
  end-page: 4998
  ident: bib41
  article-title: Large-scale synthesis of sodium and potassium titanate nanobelts
  publication-title: Inorg. Chem.
– volume: 99
  start-page: 4566
  year: 1995
  end-page: 4568
  ident: bib15
  article-title: The role of distorted WO4 in the oxidative coupling of methane on supported tungsten oxide catalysts
  publication-title: J. Phys. Chem.
– volume: 2
  start-page: 371
  year: 1963
  end-page: 379
  ident: bib48
  article-title: An infrared study of pyridine adsorbed on acidic solids
  publication-title: Charact. Surf. acidity,
– volume: 103
  start-page: 311
  year: 1987
  end-page: 319
  ident: bib54
  article-title: The oxidative conversion of methane to higher hydrocarbons over alkali-promoted MnSiO2
  publication-title: J. Catal.
– volume: 5
  start-page: 13612
  year: 2020
  end-page: 13620
  ident: bib33
  article-title: Synthesis of value-added chemicals via oxidative coupling of methanes over Na2WO4–TiO2–MnOx/SiO2 catalysts with alkali or alkali earth oxide additives
  publication-title: ACS Omega
– volume: 9
  start-page: 5912
  year: 2019
  end-page: 5928
  ident: bib10
  article-title: Oxidative coupling of methane (OCM) by SiO2-Supported Tungsten Oxide Catalysts Promoted with Mn and Na
  publication-title: ACS Catal.
– volume: 47
  start-page: 7689
  year: 2008
  end-page: 7693
  ident: bib59
  article-title: Rate and selectivity enhancements mediated by OH radicals in the oxidative coupling of methane catalyzed by Mn/Na2WO4/SiO2
  publication-title: Angew. Chem. Int. Ed.
– volume: 425–426
  start-page: 53
  year: 2012
  end-page: 61
  ident: bib9
  article-title: Mn–Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known?
  publication-title: Appl. Catal. A: Gen.
– volume: 168
  start-page: 1352
  year: 2011
  end-page: 1359
  ident: bib13
  article-title: Fluidized bed processing of sodium tungsten manganese catalysts for the oxidative coupling of methane
  publication-title: Chem. Eng. J.
– volume: 124
  start-page: 451
  year: 1990
  end-page: 464
  ident: bib40
  article-title: Oxidative coupling of methane on alkali metal-promoted nickel titanate: I. Catalyst characterization and transient studies
  publication-title: J. Catal.
– volume: 360
  start-page: 102
  year: 2018
  end-page: 117
  ident: bib62
  article-title: Investigation of the role of the Na2WO4/Mn/SiO2 catalyst composition in the oxidative coupling of methane by chemical looping experiments
  publication-title: J. Catal.
– volume: 45
  start-page: 7077
  year: 2006
  end-page: 7083
  ident: bib55
  article-title: Site requirements for the oxidative coupling of methane on SiO2-supported Mn catalysts
  publication-title: Ind. Eng. Chem. Res.
– volume: 504
  start-page: 509
  year: 2015
  end-page: 518
  ident: bib30
  article-title: Influence of the composition/texture of Mn–Na–W catalysts on the oxidative coupling of methane
  publication-title: Appl. Catal. A: Gen.
– volume: 19
  start-page: 16
  year: 2001
  end-page: 21
  ident: bib19
  article-title: Oxidative coupling of methane over W-Mn/SiO2 catalyst
  publication-title: Chin. J. Chem.
– volume: 60
  start-page: 3914
  year: 2021
  end-page: 3921
  ident: bib35
  article-title: Effect of TiO2 on the performance of Mn/Na2WO4 catalysts in oxidative coupling of methane
  publication-title: Ind. Eng. Chem. Res.
– volume: 113
  start-page: 10131
  year: 2009
  end-page: 10145
  ident: bib60
  article-title: Mechanistic aspects and reaction pathways for oxidative coupling of methane on Mn/Na2WO4/SiO2 catalysts
  publication-title: J. Phys. Chem. C.
– volume: 111
  start-page: 14644
  year: 2007
  end-page: 14651
  ident: bib47
  article-title: Kinetics of alkali metal ion exchange into nanotubular and nanofibrous titanates
  publication-title: J. Phys. Chem. C.
– volume: 145
  start-page: 23
  year: 2015
  end-page: 39
  ident: bib2
  article-title: Methane activation by heterogeneous catalysis
  publication-title: Catal. Lett.
– volume: 59
  start-page: 14921
  year: 2020
  end-page: 14926
  ident: bib18
  article-title: Fluctuating storage of the active phase in a Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane
  publication-title: Angew. Chem. Int. Ed.
– volume: 97
  start-page: 12870
  year: 1993
  end-page: 12875
  ident: bib12
  article-title: Oxide/support interaction and surface reconstruction in the sodium tungstate (Na2WO4)/silica system
  publication-title: J. Phys. Chem.
– volume: 408
  start-page: 423
  year: 2022
  end-page: 435
  ident: bib51
  article-title: Elucidating the structure of the W and Mn sites on the Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane (OCM) at real reaction temperatures
  publication-title: J. Catal.
– volume: 55
  start-page: 4092
  year: 2016
  end-page: 4096
  ident: bib63
  article-title: Selective alkane oxidation by manganese oxide: site isolation of MnOx chains at the surface of MnWO4 nanorods
  publication-title: Angew. Chem. Int. Ed.
– volume: 92
  start-page: 430
  year: 2018
  end-page: 437
  ident: bib24
  article-title: Thermochemical properties of the lattice oxygen in W,Mn-containing mixed oxide catalysts for the oxidative coupling of methane
  publication-title: Russ. J. Phys. Chem. A
– volume: 12
  start-page: 537
  year: 2005
  end-page: 541
  ident: bib45
  article-title: Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT
  publication-title: J. Synchrotron Radiat.
– volume: 61
  start-page: 1
  year: 2022
  end-page: 9
  ident: bib22
  article-title: Oxidative coupling of methane: examining the inactivity of the MnOx-Na2WO4/SiO2 catalyst at low temperature
  publication-title: Angew. Chem. Int. Ed.
– volume: 225
  start-page: 271
  year: 2002
  end-page: 284
  ident: bib58
  article-title: The relationship between the structure and the performance of Na-W-Mn/SiO2 catalysts for the oxidative coupling of methane
  publication-title: Appl. Catal. A: Gen.
– volume: 124
  start-page: 465
  year: 1990
  end-page: 476
  ident: bib39
  article-title: Oxidative coupling of methane on alkali metal-promoted nickel titanate: II. Kinetic studies
  publication-title: J. Catal.
– volume: 148
  start-page: 1110
  year: 2021
  end-page: 1122
  ident: bib34
  article-title: Synthesis of value-added hydrocarbons via oxidative coupling of methane over MnTiO3-Na2WO4/SBA-15 catalysts
  publication-title: Process Saf. Environ. Prot.
– volume: 71
  start-page: 473
  year: 2016
  end-page: 546
  ident: bib46
  article-title: Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires
  publication-title: Surf. Sci. Rep.
– volume: 370
  start-page: 1210
  year: 2019
  end-page: 1217
  ident: bib27
  article-title: Kinetic conjugation effects in oxidation of C1-C2 hydrocarbons: Experiment and modeling
  publication-title: Chem. Eng. J.
– volume: 155
  start-page: 390
  year: 1995
  end-page: 402
  ident: bib16
  article-title: Oxidative coupling of methane over oxide-supported sodium-manganese catalysts
  publication-title: J. Catal.
– volume: 132
  start-page: 6679
  year: 2010
  end-page: 6685
  ident: bib42
  article-title: Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 647
  year: 2016
  end-page: 676
  ident: bib11
  article-title: Oxidative coupling of methane: Mechanism and kinetics
  publication-title: Kinet. Catal.
– volume: 6
  start-page: 5740
  year: 2016
  end-page: 5746
  ident: bib44
  article-title: Highly efficient activation, regeneration, and active site identification of oxide-based olefin metathesis catalysts
  publication-title: ACS Catal.
– volume: 18
  start-page: 251
  year: 1989
  end-page: 283
  ident: bib6
  article-title: Oxidative coupling of methane using oxide catalysts
  publication-title: Chem. Soc. Rev.
– volume: 278
  start-page: 127
  year: 2016
  end-page: 134
  ident: bib23
  article-title: Oxygen availability and catalytic performance of NaWMn/SiO2 mixed oxide and its components in oxidative coupling of methane
  publication-title: Catal. Today
– volume: 117
  start-page: 8497
  year: 2017
  end-page: 8520
  ident: bib3
  article-title: Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects
  publication-title: Chem. Rev.
– volume: 11
  start-page: 10288
  year: 2021
  end-page: 10293
  ident: bib21
  article-title: Resolving the Types and Origin of Active Oxygen Species Present in Supported Mn-Na2WO4/SiO2 catalysts for oxidative coupling of methane
  publication-title: ACS Catal.
– volume: 311
  year: 2022
  ident: bib32
  article-title: Support oxide tuning of MnOx-Na2WO4 catalysts enables low-temperature light-off of OCM
  publication-title: Fuel
– volume: 92
  start-page: 430
  year: 2018
  ident: 10.1016/j.cattod.2022.12.008_bib24
  article-title: Thermochemical properties of the lattice oxygen in W,Mn-containing mixed oxide catalysts for the oxidative coupling of methane
  publication-title: Russ. J. Phys. Chem. A
  doi: 10.1134/S0036024418030147
– volume: 408
  start-page: 423
  year: 2022
  ident: 10.1016/j.cattod.2022.12.008_bib51
  article-title: Elucidating the structure of the W and Mn sites on the Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane (OCM) at real reaction temperatures
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2021.06.021
– volume: 132
  start-page: 6679
  year: 2010
  ident: 10.1016/j.cattod.2022.12.008_bib42
  article-title: Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909456f
– volume: 145
  start-page: 23
  year: 2015
  ident: 10.1016/j.cattod.2022.12.008_bib2
  article-title: Methane activation by heterogeneous catalysis
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-014-1417-z
– volume: 504
  start-page: 509
  year: 2015
  ident: 10.1016/j.cattod.2022.12.008_bib30
  article-title: Influence of the composition/texture of Mn–Na–W catalysts on the oxidative coupling of methane
  publication-title: Appl. Catal. A: Gen.
  doi: 10.1016/j.apcata.2014.11.045
– volume: 229
  start-page: 176
  year: 2021
  ident: 10.1016/j.cattod.2022.12.008_bib25
  article-title: Effect of thermal treatment on the stability of Na–Mn–W/SiO2 catalyst for the oxidative coupling of methane
  publication-title: Faraday Discuss.
  doi: 10.1039/C9FD00142E
– volume: 4
  start-page: 67
  year: 1997
  ident: 10.1016/j.cattod.2022.12.008_bib43
  article-title: Pore structure control of silica gels based on phase separation
  publication-title: J. Porous Mater.
  doi: 10.1023/A:1009627216939
– volume: 333
  start-page: 36
  year: 2019
  ident: 10.1016/j.cattod.2022.12.008_bib57
  article-title: Oxygen pathways in oxidative coupling of methane and related processes. Case study: NaWMn/SiO2 catalyst
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.06.028
– volume: 225
  start-page: 271
  year: 2002
  ident: 10.1016/j.cattod.2022.12.008_bib58
  article-title: The relationship between the structure and the performance of Na-W-Mn/SiO2 catalysts for the oxidative coupling of methane
  publication-title: Appl. Catal. A: Gen.
  doi: 10.1016/S0926-860X(01)00864-X
– volume: 155
  start-page: 390
  year: 1995
  ident: 10.1016/j.cattod.2022.12.008_bib16
  article-title: Oxidative coupling of methane over oxide-supported sodium-manganese catalysts
  publication-title: J. Catal.
  doi: 10.1006/jcat.1995.1221
– volume: 60
  start-page: 21502
  year: 2021
  ident: 10.1016/j.cattod.2022.12.008_bib53
  article-title: New mechanistic and reaction pathway insights for oxidative coupling of methane (OCM) over supported Na2WO4/SiO2
  publication-title: Catal., Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202108201
– volume: 18
  start-page: 251
  year: 1989
  ident: 10.1016/j.cattod.2022.12.008_bib6
  article-title: Oxidative coupling of methane using oxide catalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/cs9891800251
– volume: 11
  start-page: 10288
  year: 2021
  ident: 10.1016/j.cattod.2022.12.008_bib21
  article-title: Resolving the Types and Origin of Active Oxygen Species Present in Supported Mn-Na2WO4/SiO2 catalysts for oxidative coupling of methane
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02315
– volume: 386
  start-page: 39
  year: 2020
  ident: 10.1016/j.cattod.2022.12.008_bib26
  article-title: Real-time multi-length scale chemical tomography of fixed bed reactors during the oxidative coupling of methane reaction
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.03.027
– volume: 154
  start-page: 163
  year: 1995
  ident: 10.1016/j.cattod.2022.12.008_bib28
  article-title: Oxidative Coupling of Methane over Na2WO4/CeO2 and Related Catalysts
  publication-title: J. Catal.
  doi: 10.1006/jcat.1995.1157
– volume: 47
  start-page: 7689
  year: 2008
  ident: 10.1016/j.cattod.2022.12.008_bib59
  article-title: Rate and selectivity enhancements mediated by OH radicals in the oxidative coupling of methane catalyzed by Mn/Na2WO4/SiO2
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200802608
– volume: 5
  start-page: 13612
  year: 2020
  ident: 10.1016/j.cattod.2022.12.008_bib33
  article-title: Synthesis of value-added chemicals via oxidative coupling of methanes over Na2WO4–TiO2–MnOx/SiO2 catalysts with alkali or alkali earth oxide additives
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c00537
– volume: 93
  start-page: 421
  year: 2019
  ident: 10.1016/j.cattod.2022.12.008_bib36
  article-title: Chemical and phase transformation in W-Mn-containing catalysts for oxidative coupling of methane
  publication-title: Russ. J. Phys. Chem. A
  doi: 10.1134/S0036024419030087
– volume: 34
  start-page: 970
  year: 1995
  ident: 10.1016/j.cattod.2022.12.008_bib7
  article-title: The catalytic oxidative coupling of methane
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.199509701
– volume: 168
  start-page: 1352
  year: 2011
  ident: 10.1016/j.cattod.2022.12.008_bib13
  article-title: Fluidized bed processing of sodium tungsten manganese catalysts for the oxidative coupling of methane
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.02.013
– volume: 99
  start-page: 4566
  year: 1995
  ident: 10.1016/j.cattod.2022.12.008_bib15
  article-title: The role of distorted WO4 in the oxidative coupling of methane on supported tungsten oxide catalysts
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100013a030
– volume: 370
  start-page: 1210
  year: 2019
  ident: 10.1016/j.cattod.2022.12.008_bib27
  article-title: Kinetic conjugation effects in oxidation of C1-C2 hydrocarbons: Experiment and modeling
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.04.006
– volume: 3
  year: 2017
  ident: 10.1016/j.cattod.2022.12.008_bib20
  article-title: MnTiO3-driven low-temperature oxidative coupling of methane over TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603180
– volume: 3
  start-page: 1935
  year: 2011
  ident: 10.1016/j.cattod.2022.12.008_bib8
  article-title: Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201100186
– volume: 10
  start-page: 4580
  year: 2020
  ident: 10.1016/j.cattod.2022.12.008_bib56
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05591
– volume: 19
  start-page: 16
  year: 2001
  ident: 10.1016/j.cattod.2022.12.008_bib19
  article-title: Oxidative coupling of methane over W-Mn/SiO2 catalyst
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.20010190104
– volume: 148
  start-page: 1110
  year: 2021
  ident: 10.1016/j.cattod.2022.12.008_bib34
  article-title: Synthesis of value-added hydrocarbons via oxidative coupling of methane over MnTiO3-Na2WO4/SBA-15 catalysts
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2021.02.030
– volume: 278
  start-page: 127
  year: 2016
  ident: 10.1016/j.cattod.2022.12.008_bib23
  article-title: Oxygen availability and catalytic performance of NaWMn/SiO2 mixed oxide and its components in oxidative coupling of methane
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.04.021
– volume: 228
  start-page: 5
  year: 2014
  ident: 10.1016/j.cattod.2022.12.008_bib29
  article-title: Support material variation for the MnxOy-Na2WO4/SiO2 catalyst
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2013.12.024
– volume: 6
  start-page: 5740
  year: 2016
  ident: 10.1016/j.cattod.2022.12.008_bib44
  article-title: Highly efficient activation, regeneration, and active site identification of oxide-based olefin metathesis catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00098
– volume: 9
  start-page: 5912
  year: 2019
  ident: 10.1016/j.cattod.2022.12.008_bib10
  article-title: Oxidative coupling of methane (OCM) by SiO2-Supported Tungsten Oxide Catalysts Promoted with Mn and Na
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01585
– volume: 2
  start-page: 371
  year: 1963
  ident: 10.1016/j.cattod.2022.12.008_bib48
  article-title: An infrared study of pyridine adsorbed on acidic solids
  publication-title: Charact. Surf. acidity, J. Catal.
– volume: 97
  start-page: 12870
  year: 1993
  ident: 10.1016/j.cattod.2022.12.008_bib12
  article-title: Oxide/support interaction and surface reconstruction in the sodium tungstate (Na2WO4)/silica system
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100151a038
– volume: 124
  start-page: 451
  year: 1990
  ident: 10.1016/j.cattod.2022.12.008_bib40
  article-title: Oxidative coupling of methane on alkali metal-promoted nickel titanate: I. Catalyst characterization and transient studies
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(90)90192-M
– volume: 311
  year: 2022
  ident: 10.1016/j.cattod.2022.12.008_bib32
  article-title: Support oxide tuning of MnOx-Na2WO4 catalysts enables low-temperature light-off of OCM
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122539
– volume: 124
  start-page: 465
  year: 1990
  ident: 10.1016/j.cattod.2022.12.008_bib39
  article-title: Oxidative coupling of methane on alkali metal-promoted nickel titanate: II. Kinetic studies
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(90)90193-N
– volume: 11
  start-page: 10131
  year: 2021
  ident: 10.1016/j.cattod.2022.12.008_bib52
  article-title: Elucidating the effects of Mn promotion on SiO2-supported Na-promoted tungsten oxide catalysts for oxidative coupling of methane (OCM)
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01392
– volume: 60
  start-page: 3914
  year: 2021
  ident: 10.1016/j.cattod.2022.12.008_bib35
  article-title: Effect of TiO2 on the performance of Mn/Na2WO4 catalysts in oxidative coupling of methane
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c06126
– volume: 113
  start-page: 10131
  year: 2009
  ident: 10.1016/j.cattod.2022.12.008_bib60
  article-title: Mechanistic aspects and reaction pathways for oxidative coupling of methane on Mn/Na2WO4/SiO2 catalysts
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp9001302
– volume: 50
  start-page: 10096
  year: 2011
  ident: 10.1016/j.cattod.2022.12.008_bib1
  article-title: Chemistry with methane: concepts rather than recipes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201006424
– volume: 55
  start-page: 4092
  year: 2016
  ident: 10.1016/j.cattod.2022.12.008_bib63
  article-title: Selective alkane oxidation by manganese oxide: site isolation of MnOx chains at the surface of MnWO4 nanorods
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201510201
– volume: 5
  start-page: 695
  year: 2003
  ident: 10.1016/j.cattod.2022.12.008_bib50
  article-title: Acid–base behavior of oxides and their electronic structure
  publication-title: Solid State Sci.
  doi: 10.1016/S1293-2558(03)00031-1
– volume: 53
  start-page: 183
  year: 1989
  ident: 10.1016/j.cattod.2022.12.008_bib37
  article-title: Methane oxidative coupling over titanate catalysts
  publication-title: Appl. Catal.
  doi: 10.1016/S0166-9834(00)80020-2
– volume: 12
  start-page: 537
  year: 2005
  ident: 10.1016/j.cattod.2022.12.008_bib45
  article-title: Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049505012719
– volume: 71
  start-page: 473
  year: 2016
  ident: 10.1016/j.cattod.2022.12.008_bib46
  article-title: Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/j.surfrep.2016.06.001
– volume: 45
  start-page: 7077
  year: 2006
  ident: 10.1016/j.cattod.2022.12.008_bib55
  article-title: Site requirements for the oxidative coupling of methane on SiO2-supported Mn catalysts
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie060269c
– volume: 73
  start-page: 9
  year: 1982
  ident: 10.1016/j.cattod.2022.12.008_bib4
  article-title: Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(82)90075-6
– volume: 177
  start-page: 259
  year: 1998
  ident: 10.1016/j.cattod.2022.12.008_bib14
  article-title: Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na2WO4/SiO2 catalysts for the oxidative coupling of methane
  publication-title: J. Catal.
  doi: 10.1006/jcat.1998.2109
– volume: 298
  year: 2021
  ident: 10.1016/j.cattod.2022.12.008_bib31
  article-title: Hybrid catalysts containing Ba, Ti, Mn, Na, and W for the low-temperature oxidative coupling of methane
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2021.120553
– volume: 111
  start-page: 14644
  year: 2007
  ident: 10.1016/j.cattod.2022.12.008_bib47
  article-title: Kinetics of alkali metal ion exchange into nanotubular and nanofibrous titanates
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp073799a
– volume: 103
  start-page: 311
  year: 1987
  ident: 10.1016/j.cattod.2022.12.008_bib54
  article-title: The oxidative conversion of methane to higher hydrocarbons over alkali-promoted MnSiO2
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(87)90123-0
– volume: 57
  start-page: 647
  year: 2016
  ident: 10.1016/j.cattod.2022.12.008_bib11
  article-title: Oxidative coupling of methane: Mechanism and kinetics
  publication-title: Kinet. Catal.
  doi: 10.1134/S0023158416050128
– volume: 425–426
  start-page: 53
  year: 2012
  ident: 10.1016/j.cattod.2022.12.008_bib9
  article-title: Mn–Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known?
  publication-title: Appl. Catal. A: Gen.
  doi: 10.1016/j.apcata.2012.02.046
– volume: 41
  start-page: 4996
  year: 2002
  ident: 10.1016/j.cattod.2022.12.008_bib41
  article-title: Large-scale synthesis of sodium and potassium titanate nanobelts
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0257827
– volume: 117
  start-page: 8497
  year: 2017
  ident: 10.1016/j.cattod.2022.12.008_bib3
  article-title: Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00715
– volume: 61
  start-page: 1
  year: 2022
  ident: 10.1016/j.cattod.2022.12.008_bib22
  article-title: Oxidative coupling of methane: examining the inactivity of the MnOx-Na2WO4/SiO2 catalyst at low temperature
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202117201
– volume: 30
  start-page: 249
  year: 1988
  ident: 10.1016/j.cattod.2022.12.008_bib5
  article-title: Oxidative coupling of methane to higher hydrocarbons
  publication-title: Catal. Rev. - Sci. Rev.
  doi: 10.1080/01614948808078620
– volume: 360
  start-page: 102
  year: 2018
  ident: 10.1016/j.cattod.2022.12.008_bib62
  article-title: Investigation of the role of the Na2WO4/Mn/SiO2 catalyst composition in the oxidative coupling of methane by chemical looping experiments
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.01.022
– volume: 64
  start-page: 480
  year: 1987
  ident: 10.1016/j.cattod.2022.12.008_bib49
  article-title: An acidity scale for binary oxides
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed064p480
– volume: 56
  start-page: 10403
  year: 2017
  ident: 10.1016/j.cattod.2022.12.008_bib17
  article-title: Integrated in situ characterization of a molten salt catalyst surface: evidence of sodium peroxide and hydroxyl radical formation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201704758
– volume: 119
  start-page: 161
  year: 1989
  ident: 10.1016/j.cattod.2022.12.008_bib38
  article-title: Methane oxidative coupling: II. A study of lithium-titania-catalyzed reactions of methane
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(89)90143-7
– volume: 59
  start-page: 14921
  year: 2020
  ident: 10.1016/j.cattod.2022.12.008_bib18
  article-title: Fluctuating storage of the active phase in a Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202004778
– volume: 341
  start-page: 91
  year: 2016
  ident: 10.1016/j.cattod.2022.12.008_bib61
  article-title: Investigation of the surface reaction network of the oxidative coupling of methane over Na2WO4/Mn/SiO2 catalyst by temperature programmed and dynamic experiments
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2016.06.014
SSID ssj0008842
Score 2.4380517
Snippet Supported Na-Mn-W oxides are among the most studied catalysts for the oxidative coupling of methane (OCM) because of their superior thermal stability and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113977
SubjectTerms Na-Mn-W oxides
Oxidative coupling of methane
Synergistic effect
Titanate
Title TiOx-supported Na-Mn-W oxides for the oxidative coupling of methane
URI https://dx.doi.org/10.1016/j.cattod.2022.12.008
Volume 416
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA1jPqgPolNxfow8-BrXJunSPo7imF9TdOLeQpsPmUg7XAd78rebpK1OEAWfSksC5XB770m59xwATn2SepJEAiUi9RAVKkApCVIUKY8I6TMmtGuQHfWGj_RyEkwaIK5nYWxbZZX7y5zusnX1pFuh2Z1Np90HL8JeEJoKjZ1Ouh00p5TZKD97_2rzCENnoGMXI7u6Hp9zPV4iKYrc6oVi7H4KWpPJn8rTSskZbIOtiivCfvk6O6ChshZYj2uLthbYXFET3AXxeHq7RPPFzGmVSzhK0E2GnmC-nEo1h4adQsP23K1T-4YiX9h53GeYa2idpJNM7YHx4HwcD1HlkYCEoU4FSjwlKJbMfEcpVVKRwA-1OZZoU_pZSEOpIhkQqnoE6xAzcyRNBTYcJNDSHA09sg-aWZ6pAwA9rCPao77wU0V1ZACTTEcqYYZQ-oImbUBqZLio9MOtjcUrrxvFXniJJ7d4ch9zg2cboM9ds1I_44_1rAadf4sDblL8rzsP_73zCGxYE_myH-cYNIu3hToxVKNIOy6WOmCtH99f39nrxdVw9AHg39O7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8Yn1uQevS5N9NMmxFKVqWw9W9LYk-5CKJMWm0J_v7iYRBVHwmLAD4WN35psw-30AlyHNAkUTiVOZBZhJzXFGeYYTHVCpwiiSxg_ITnrDR3b7zJ9bMGjuwrixyjr3VzndZ-v6TbdGszufzboPQUICHtsKTbxOOl-DdadOxduw3r-5G04-E3Icew8dtx67gOYGnR_zkmlZFk4ylBD_X9D5TP5Uob5Unesd2K7pIupXX7QLLZ3vwcagcWnbg60vgoL7MJjO7ld4sZx7uXKFJike5_gJFauZ0gtkCSqyhM8_esFvJIulu5L7ggqDnJl0musDmF5fTQdDXNskYGnZU4nTQEtGVGSPUsa00pSHsbGdibHVP4pZrHSiOGW6R4mJSWS70kwSS0O4UbY7DOghtPMi10eAAmIS1mOhDDPNTGIBU5FJdBpZThlKlnaANsgIWUuIOyeLN9HMir2KCk_h8BQhERbPDuDPqHklofHH-qgBXXzbCsJm-V8jj_8deQEbw-l4JEY3k7sT2HSe8tV4zim0y_elPrPMo8zO6531AZFv1Nc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TiOx-supported+Na-Mn-W+oxides+for+the+oxidative+coupling+of+methane&rft.jtitle=Catalysis+today&rft.au=Aireddy%2C+Divakar+R.&rft.au=Roy%2C+Amitava&rft.au=Cullen%2C+David+A.&rft.au=Ding%2C+Kunlun&rft.date=2023-04-01&rft.issn=0920-5861&rft.volume=416&rft.spage=113977&rft_id=info:doi/10.1016%2Fj.cattod.2022.12.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cattod_2022_12_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5861&client=summon