TiOx-supported Na-Mn-W oxides for the oxidative coupling of methane
Supported Na-Mn-W oxides are among the most studied catalysts for the oxidative coupling of methane (OCM) because of their superior thermal stability and relatively high C2+ product yields. However, because of the structural complexity, the roles of each component in these catalysts have been contro...
Saved in:
Published in | Catalysis today Vol. 416; p. 113977 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Supported Na-Mn-W oxides are among the most studied catalysts for the oxidative coupling of methane (OCM) because of their superior thermal stability and relatively high C2+ product yields. However, because of the structural complexity, the roles of each component in these catalysts have been controversial. In this work, WOx and MnOx sites were supported on titanate nanowires and employed in OCM studies. Compared to the commonly studied silica support, which is subject to severe restructuring due to the Na-induced crystallization, titanate support not only serves as a reservoir for alkali metals (e.g., Na), but also stabilizes isolated MnOx species. The catalytic performance of the titanate-based catalyst is similar to that of reference catalyst, MnOx/Na2WO4/SiO2, with a synergistic effect between MnOx and WOx sites. Advanced electron microscopy, X-ray diffraction, infrared spectroscopy, and X-ray absorption near edge structure spectroscopy suggest that the basic NaOx and MnOx species have strong interactions with the acidic WOx and TiOx species, which might contribute to the high selectivity toward C2+ products and suppressed COx formation.
[Display omitted]
•Titanate-supported Na-Mn-W oxides show comparable performance with MnOx/Na2WO4/SiO2 in the oxidative coupling of methane.•Mn is isolated and stabilized as Na2Mn2Ti6O16.•W is present as Na2WO4 phase and enriched on the surface of the catalyst.•MnOx and WOx species show synergistic effects in the oxidative coupling of methane. |
---|---|
AbstractList | Supported Na-Mn-W oxides are among the most studied catalysts for the oxidative coupling of methane (OCM) because of their superior thermal stability and relatively high C2+ product yields. However, because of the structural complexity, the roles of each component in these catalysts have been controversial. In this work, WOx and MnOx sites were supported on titanate nanowires and employed in OCM studies. Compared to the commonly studied silica support, which is subject to severe restructuring due to the Na-induced crystallization, titanate support not only serves as a reservoir for alkali metals (e.g., Na), but also stabilizes isolated MnOx species. The catalytic performance of the titanate-based catalyst is similar to that of reference catalyst, MnOx/Na2WO4/SiO2, with a synergistic effect between MnOx and WOx sites. Advanced electron microscopy, X-ray diffraction, infrared spectroscopy, and X-ray absorption near edge structure spectroscopy suggest that the basic NaOx and MnOx species have strong interactions with the acidic WOx and TiOx species, which might contribute to the high selectivity toward C2+ products and suppressed COx formation.
[Display omitted]
•Titanate-supported Na-Mn-W oxides show comparable performance with MnOx/Na2WO4/SiO2 in the oxidative coupling of methane.•Mn is isolated and stabilized as Na2Mn2Ti6O16.•W is present as Na2WO4 phase and enriched on the surface of the catalyst.•MnOx and WOx species show synergistic effects in the oxidative coupling of methane. |
ArticleNumber | 113977 |
Author | Aireddy, Divakar R. Cullen, David A. Ding, Kunlun Roy, Amitava |
Author_xml | – sequence: 1 givenname: Divakar R. surname: Aireddy fullname: Aireddy, Divakar R. organization: Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA – sequence: 2 givenname: Amitava surname: Roy fullname: Roy, Amitava organization: Center for Advanced Microstructures & Devices, Louisiana State University, Baton Rouge, Louisiana 70806, USA – sequence: 3 givenname: David A. surname: Cullen fullname: Cullen, David A. organization: Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA – sequence: 4 givenname: Kunlun surname: Ding fullname: Ding, Kunlun email: kunlunding@lsu.edu organization: Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA |
BookMark | eNqFkM1KAzEUhYNUsK2-gYt5gYz5m5mMC0GKf1DtpuAypMmNTWknJUlLfXun1pULXV0O3O_Ad0Zo0IUOELqmpKSE1jer0uicgy0ZYaykrCREnqEhlQ3HghM5QEPSMoIrWdMLNEppRfoPKdgQTeZ-dsBpt92GmMEWbxq_dvi9CAdvIRUuxCIv4Tvq7PdQmLDbrn33UQRXbCAvdQeX6NzpdYKrnztG88eH-eQZT2dPL5P7KTa8YhlrAkYw27Q1XwiwwCsqHWlrRxrZSCEttLbiAmrOnGRNQ_nCMN42lbOsEoSPkTjVmhhSiuDUNvqNjp-KEnXcQa3UaQd13EFRpnrLHrv9hRmfe5fQ5aj9-j_47gRD77X3EFUyHjoD1kcwWdng_y74Al9DfP8 |
CitedBy_id | crossref_primary_10_1039_D3MA00844D crossref_primary_10_1039_D5CY00097A crossref_primary_10_1016_j_dche_2024_100160 crossref_primary_10_1360_SSC_2023_0200 |
Cites_doi | 10.1134/S0036024418030147 10.1016/j.jcat.2021.06.021 10.1021/ja909456f 10.1007/s10562-014-1417-z 10.1016/j.apcata.2014.11.045 10.1039/C9FD00142E 10.1023/A:1009627216939 10.1016/j.cattod.2018.06.028 10.1016/S0926-860X(01)00864-X 10.1006/jcat.1995.1221 10.1002/anie.202108201 10.1039/cs9891800251 10.1021/acscatal.1c02315 10.1016/j.jcat.2020.03.027 10.1006/jcat.1995.1157 10.1002/anie.200802608 10.1021/acsomega.0c00537 10.1134/S0036024419030087 10.1002/anie.199509701 10.1016/j.cej.2011.02.013 10.1021/j100013a030 10.1016/j.cej.2019.04.006 10.1126/sciadv.1603180 10.1002/cctc.201100186 10.1021/acscatal.9b05591 10.1002/cjoc.20010190104 10.1016/j.psep.2021.02.030 10.1016/j.cattod.2016.04.021 10.1016/j.cattod.2013.12.024 10.1021/acscatal.6b00098 10.1021/acscatal.9b01585 10.1021/j100151a038 10.1016/0021-9517(90)90192-M 10.1016/j.fuel.2021.122539 10.1016/0021-9517(90)90193-N 10.1021/acscatal.1c01392 10.1021/acs.iecr.0c06126 10.1021/jp9001302 10.1002/anie.201006424 10.1002/anie.201510201 10.1016/S1293-2558(03)00031-1 10.1016/S0166-9834(00)80020-2 10.1107/S0909049505012719 10.1016/j.surfrep.2016.06.001 10.1021/ie060269c 10.1016/0021-9517(82)90075-6 10.1006/jcat.1998.2109 10.1016/j.apcatb.2021.120553 10.1021/jp073799a 10.1016/0021-9517(87)90123-0 10.1134/S0023158416050128 10.1016/j.apcata.2012.02.046 10.1021/ic0257827 10.1021/acs.chemrev.6b00715 10.1002/anie.202117201 10.1080/01614948808078620 10.1016/j.jcat.2018.01.022 10.1021/ed064p480 10.1002/anie.201704758 10.1016/0021-9517(89)90143-7 10.1002/anie.202004778 10.1016/j.jcat.2016.06.014 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cattod.2022.12.008 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-4308 |
ExternalDocumentID | 10_1016_j_cattod_2022_12_008 S0920586122004795 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- RIG SCE SSH VH1 WUQ XPP |
ID | FETCH-LOGICAL-c352t-a0ec42d7963b4ede3518f096f0787848de9d534e632f827713bc23975fd25403 |
IEDL.DBID | .~1 |
ISSN | 0920-5861 |
IngestDate | Tue Jul 01 02:53:59 EDT 2025 Thu Apr 24 22:54:56 EDT 2025 Fri Feb 23 02:36:11 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxidative coupling of methane Na-Mn-W oxides Titanate Synergistic effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-a0ec42d7963b4ede3518f096f0787848de9d534e632f827713bc23975fd25403 |
OpenAccessLink | https://www.osti.gov/biblio/1986231 |
ParticipantIDs | crossref_primary_10_1016_j_cattod_2022_12_008 crossref_citationtrail_10_1016_j_cattod_2022_12_008 elsevier_sciencedirect_doi_10_1016_j_cattod_2022_12_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 2023-04-00 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Catalysis today |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ravel, Newville (bib45) 2005; 12 Arndt, Otremba, Simon, Yildiz, Schubert, Schomäcker (bib9) 2012; 425–426 Vamvakeros, Matras, Jacques, di Michiel, Price, Senecal, Aran, Middelkoop, Stenning, Mosselmans, Ismagilov, Beale (bib26) 2020; 386 Takanabe, Iglesia (bib59) 2008; 47 Wu, Li (bib15) 1995; 99 Li (bib19) 2001; 19 Si, Zhao, Sun, Liu, Guan, Yang, Shi, Lu (bib22) 2022; 61 Lunsford (bib7) 1995; 34 Kiani, Sourav, Baltrusaitis, Wachs (bib10) 2019; 9 Lomonosov, Gordienko, Sinev, Rogov, Sadykov (bib24) 2018; 92 Si, Sun, Zhao, Lu (bib32) 2022; 311 Ji, Xiao, Li, Xu, Hou, Coleman, Green (bib58) 2002; 225 Schwach, Pan, Bao (bib3) 2017; 117 Jones, Leonard, Sofranko (bib54) 1987; 103 Sourav, Wang, Kiani, Baltrusaitis, Fushimi, Wachs (bib53) 2021; 60 Lane, Miro, Wolf (bib38) 1989; 119 Yildiz, Simon, Otremba, Aksu, Kailasam, Thomas, Schomäcker, Arndt (bib29) 2014; 228 Ding, Gulec, Johnson, Drake, Wu, Lin, Weitz, Marks, Stair (bib44) 2016; 6 Do, Choi, Suh, Yoo, Lee, Ha (bib31) 2021; 298 Sun, Chen, Li (bib41) 2002; 41 Horn, Schlögl (bib2) 2015; 145 Parry (bib48) 1963; 2 Matras, Vamvakeros, Jacques, Grosjean, Rollins, Poulston, Stenning, Godini, Drnec, Cernik, Beale (bib25) 2021; 229 Bavykin, Walsh (bib47) 2007; 111 Wang, Zhao, Wang, Lu (bib20) 2017; 3 Palermo, Holgado Vazquez, Lee, Tikhov, Lambert (bib14) 1998; 177 Takanabe, Iglesia (bib60) 2009; 113 Lomonosov, Gordienko, Ponomareva, Sinev (bib27) 2019; 370 Kiani, Sourav, Baltrusaitis, Wachs (bib52) 2021; 11 Hou, Cao, Xiong, Liu, Kou (bib55) 2006; 45 Yu, Yang, Lunsford, Rosynek (bib28) 1995; 154 Kidamorn, Tiyatha, Chukeaw, Niamnuy, Chareonpanich, Sohn, Seubsai (bib33) 2020; 5 Sinev, Ponomareva, Sinev, Lomonosov, Gordienko, Fattakhova, Shashkin (bib57) 2019; 333 Nakanishi (bib43) 1997; 4 Miro, Santamaria, Wolf (bib39) 1990; 124 Sourav, Wang, Kiani, Baltrusaitis, Fushimi, Wachs (bib21) 2021; 11 Lane, Kalenik, Wolf (bib37) 1989; 53 Schwarz (bib1) 2011; 50 Lomonosov, Sinev (bib11) 2016; 57 Hutchings, Scurrell, Woodhouse (bib6) 1989; 18 Fleischer, Simon, Parishan, Colmenares, Görke, Gurlo, Riedel, Thum, Schmidt, Risse, Dinse, Schomäcker (bib62) 2018; 360 Gordienko, Usmanov, Bychkov, Lomonosov, Fattakhova, Tulenin, Shashkin, Sinev (bib23) 2016; 278 Miro, Santamaria, Wolf (bib40) 1990; 124 Lee, Oyama (bib5) 1988; 30 Serres, Aquino, Mirodatos, Schuurman (bib30) 2015; 504 Jiang, Yu, Fang, Li, Wang (bib12) 1993; 97 Werny, Wang, Girgsdies, Schlögl, Trunschke (bib18) 2020; 59 Simon, Görke, Berthold, Arndt, Schomäcker, Schubert (bib13) 2011; 168 Chukeaw, Tiyatha, Jaroenpanon, Witoon, Kongkachuichay, Chareonpanich, Faungnawakij, Yigit, Rupprechter, Seubsai (bib34) 2021; 148 Zavyalova, Holena, Schlögl, Baerns (bib8) 2011; 3 Wang, Rosynek, Lunsford (bib16) 1995; 155 Takanabe, Khan, Tang, Nguyen, Ziani, Jacobs, Elbaz, Sarathy, Tao (bib17) 2017; 56 Keller, Bhasin (bib4) 1982; 73 Fleischer, Steuer, Parishan, Schomäcker (bib61) 2016; 341 Kiani, Sourav, Taifan, Calatayud, Tielens, Wachs, Baltrusaitis (bib56) 2020; 10 Li, Lunkenbein, Pfeifer, Jastak, Nielsen, Girgsdies, Knop-Gericke, Rosowski, Schlögl, Trunschke (bib63) 2016; 55 Smith (bib49) 1987; 64 Portier, Poizot, Campet, Subramanian, Tarascon (bib50) 2003; 5 Gordienko, Lomonosov, Ponomareva, Sinev, Bukhtiyarov, Vinokurov (bib36) 2019; 93 Kim, Ausenbaugh, Hwang (bib35) 2021; 60 Kukovecz, Kordás, Kiss, Kónya (bib46) 2016; 71 Ortiz-Bravo, Figueroa, Portela, Chagas, Bañares, Toniolo (bib51) 2022; 408 Wu, Wang, Tafen, Wang, Zheng, Lewis, Liu, Leonard, Manivannan (bib42) 2010; 132 Takanabe (10.1016/j.cattod.2022.12.008_bib59) 2008; 47 Fleischer (10.1016/j.cattod.2022.12.008_bib62) 2018; 360 Bavykin (10.1016/j.cattod.2022.12.008_bib47) 2007; 111 Werny (10.1016/j.cattod.2022.12.008_bib18) 2020; 59 Gordienko (10.1016/j.cattod.2022.12.008_bib23) 2016; 278 Wu (10.1016/j.cattod.2022.12.008_bib42) 2010; 132 Yildiz (10.1016/j.cattod.2022.12.008_bib29) 2014; 228 Schwach (10.1016/j.cattod.2022.12.008_bib3) 2017; 117 Lane (10.1016/j.cattod.2022.12.008_bib37) 1989; 53 Vamvakeros (10.1016/j.cattod.2022.12.008_bib26) 2020; 386 Schwarz (10.1016/j.cattod.2022.12.008_bib1) 2011; 50 Takanabe (10.1016/j.cattod.2022.12.008_bib60) 2009; 113 Ortiz-Bravo (10.1016/j.cattod.2022.12.008_bib51) 2022; 408 Ding (10.1016/j.cattod.2022.12.008_bib44) 2016; 6 Kiani (10.1016/j.cattod.2022.12.008_bib10) 2019; 9 Wang (10.1016/j.cattod.2022.12.008_bib16) 1995; 155 Zavyalova (10.1016/j.cattod.2022.12.008_bib8) 2011; 3 Lomonosov (10.1016/j.cattod.2022.12.008_bib24) 2018; 92 Jones (10.1016/j.cattod.2022.12.008_bib54) 1987; 103 Ravel (10.1016/j.cattod.2022.12.008_bib45) 2005; 12 Gordienko (10.1016/j.cattod.2022.12.008_bib36) 2019; 93 Lunsford (10.1016/j.cattod.2022.12.008_bib7) 1995; 34 Sun (10.1016/j.cattod.2022.12.008_bib41) 2002; 41 Miro (10.1016/j.cattod.2022.12.008_bib39) 1990; 124 Lomonosov (10.1016/j.cattod.2022.12.008_bib11) 2016; 57 Arndt (10.1016/j.cattod.2022.12.008_bib9) 2012; 425–426 Keller (10.1016/j.cattod.2022.12.008_bib4) 1982; 73 Wang (10.1016/j.cattod.2022.12.008_bib20) 2017; 3 Matras (10.1016/j.cattod.2022.12.008_bib25) 2021; 229 Nakanishi (10.1016/j.cattod.2022.12.008_bib43) 1997; 4 Miro (10.1016/j.cattod.2022.12.008_bib40) 1990; 124 Lomonosov (10.1016/j.cattod.2022.12.008_bib27) 2019; 370 Wu (10.1016/j.cattod.2022.12.008_bib15) 1995; 99 Horn (10.1016/j.cattod.2022.12.008_bib2) 2015; 145 Hou (10.1016/j.cattod.2022.12.008_bib55) 2006; 45 Simon (10.1016/j.cattod.2022.12.008_bib13) 2011; 168 Fleischer (10.1016/j.cattod.2022.12.008_bib61) 2016; 341 Smith (10.1016/j.cattod.2022.12.008_bib49) 1987; 64 Do (10.1016/j.cattod.2022.12.008_bib31) 2021; 298 Portier (10.1016/j.cattod.2022.12.008_bib50) 2003; 5 Parry (10.1016/j.cattod.2022.12.008_bib48) 1963; 2 Serres (10.1016/j.cattod.2022.12.008_bib30) 2015; 504 Takanabe (10.1016/j.cattod.2022.12.008_bib17) 2017; 56 Chukeaw (10.1016/j.cattod.2022.12.008_bib34) 2021; 148 Sourav (10.1016/j.cattod.2022.12.008_bib21) 2021; 11 Ji (10.1016/j.cattod.2022.12.008_bib58) 2002; 225 Hutchings (10.1016/j.cattod.2022.12.008_bib6) 1989; 18 Kidamorn (10.1016/j.cattod.2022.12.008_bib33) 2020; 5 Si (10.1016/j.cattod.2022.12.008_bib32) 2022; 311 Lane (10.1016/j.cattod.2022.12.008_bib38) 1989; 119 Si (10.1016/j.cattod.2022.12.008_bib22) 2022; 61 Lee (10.1016/j.cattod.2022.12.008_bib5) 1988; 30 Kukovecz (10.1016/j.cattod.2022.12.008_bib46) 2016; 71 Kim (10.1016/j.cattod.2022.12.008_bib35) 2021; 60 Sourav (10.1016/j.cattod.2022.12.008_bib53) 2021; 60 Palermo (10.1016/j.cattod.2022.12.008_bib14) 1998; 177 Kiani (10.1016/j.cattod.2022.12.008_bib56) 2020; 10 Li (10.1016/j.cattod.2022.12.008_bib63) 2016; 55 Sinev (10.1016/j.cattod.2022.12.008_bib57) 2019; 333 Kiani (10.1016/j.cattod.2022.12.008_bib52) 2021; 11 Li (10.1016/j.cattod.2022.12.008_bib19) 2001; 19 Jiang (10.1016/j.cattod.2022.12.008_bib12) 1993; 97 Yu (10.1016/j.cattod.2022.12.008_bib28) 1995; 154 |
References_xml | – volume: 73 start-page: 9 year: 1982 end-page: 19 ident: bib4 article-title: Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts publication-title: J. Catal. – volume: 3 start-page: 1935 year: 2011 end-page: 1947 ident: bib8 article-title: Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts publication-title: ChemCatChem – volume: 64 start-page: 480 year: 1987 ident: bib49 article-title: An acidity scale for binary oxides publication-title: J. Chem. Educ. – volume: 93 start-page: 421 year: 2019 end-page: 430 ident: bib36 article-title: Chemical and phase transformation in W-Mn-containing catalysts for oxidative coupling of methane publication-title: Russ. J. Phys. Chem. A – volume: 386 start-page: 39 year: 2020 end-page: 52 ident: bib26 article-title: Real-time multi-length scale chemical tomography of fixed bed reactors during the oxidative coupling of methane reaction publication-title: J. Catal. – volume: 298 year: 2021 ident: bib31 article-title: Hybrid catalysts containing Ba, Ti, Mn, Na, and W for the low-temperature oxidative coupling of methane publication-title: Appl. Catal. B: Environ. – volume: 333 start-page: 36 year: 2019 end-page: 46 ident: bib57 article-title: Oxygen pathways in oxidative coupling of methane and related processes. Case study: NaWMn/SiO2 catalyst publication-title: Catal. Today – volume: 341 start-page: 91 year: 2016 end-page: 103 ident: bib61 article-title: Investigation of the surface reaction network of the oxidative coupling of methane over Na2WO4/Mn/SiO2 catalyst by temperature programmed and dynamic experiments publication-title: J. Catal. – volume: 34 start-page: 970 year: 1995 end-page: 980 ident: bib7 article-title: The catalytic oxidative coupling of methane publication-title: Angew. Chem. Int. Ed. – volume: 154 start-page: 163 year: 1995 end-page: 173 ident: bib28 article-title: Oxidative Coupling of Methane over Na2WO4/CeO2 and Related Catalysts publication-title: J. Catal. – volume: 228 start-page: 5 year: 2014 end-page: 14 ident: bib29 article-title: Support material variation for the MnxOy-Na2WO4/SiO2 catalyst publication-title: Catal. Today – volume: 53 start-page: 183 year: 1989 end-page: 195 ident: bib37 article-title: Methane oxidative coupling over titanate catalysts publication-title: Appl. Catal. – volume: 56 start-page: 10403 year: 2017 end-page: 10407 ident: bib17 article-title: Integrated in situ characterization of a molten salt catalyst surface: evidence of sodium peroxide and hydroxyl radical formation publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 4580 year: 2020 end-page: 4592 ident: bib56 article-title: Existence and properties of isolated catalytic sites on the surface of β-cristobalite-supported, doped tungsten oxide catalysts (WOx/β-SiO2, Na-WOx/β-SiO2, Mn-WOx/β-SiO2) for oxidative coupling of methane (OCM): a combined periodic DFT and experimental study publication-title: ACS Catal. – volume: 5 start-page: 695 year: 2003 end-page: 699 ident: bib50 article-title: Acid–base behavior of oxides and their electronic structure publication-title: Solid State Sci. – volume: 4 start-page: 67 year: 1997 end-page: 112 ident: bib43 article-title: Pore structure control of silica gels based on phase separation publication-title: J. Porous Mater. – volume: 229 start-page: 176 year: 2021 end-page: 196 ident: bib25 article-title: Effect of thermal treatment on the stability of Na–Mn–W/SiO2 catalyst for the oxidative coupling of methane publication-title: Faraday Discuss. – volume: 11 start-page: 10131 year: 2021 end-page: 10137 ident: bib52 article-title: Elucidating the effects of Mn promotion on SiO2-supported Na-promoted tungsten oxide catalysts for oxidative coupling of methane (OCM) publication-title: ACS Catal. – volume: 119 start-page: 161 year: 1989 end-page: 178 ident: bib38 article-title: Methane oxidative coupling: II. A study of lithium-titania-catalyzed reactions of methane publication-title: J. Catal. – volume: 177 start-page: 259 year: 1998 end-page: 266 ident: bib14 article-title: Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na2WO4/SiO2 catalysts for the oxidative coupling of methane publication-title: J. Catal. – volume: 50 start-page: 10096 year: 2011 end-page: 10115 ident: bib1 article-title: Chemistry with methane: concepts rather than recipes publication-title: Angew. Chem. Int. Ed. – volume: 30 start-page: 249 year: 1988 end-page: 280 ident: bib5 article-title: Oxidative coupling of methane to higher hydrocarbons publication-title: Catal. Rev. - Sci. Rev. – volume: 3 year: 2017 ident: bib20 article-title: MnTiO3-driven low-temperature oxidative coupling of methane over TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst publication-title: Sci. Adv. – volume: 60 start-page: 21502 year: 2021 end-page: 21511 ident: bib53 article-title: New mechanistic and reaction pathway insights for oxidative coupling of methane (OCM) over supported Na2WO4/SiO2 publication-title: Catal., – volume: 41 start-page: 4996 year: 2002 end-page: 4998 ident: bib41 article-title: Large-scale synthesis of sodium and potassium titanate nanobelts publication-title: Inorg. Chem. – volume: 99 start-page: 4566 year: 1995 end-page: 4568 ident: bib15 article-title: The role of distorted WO4 in the oxidative coupling of methane on supported tungsten oxide catalysts publication-title: J. Phys. Chem. – volume: 2 start-page: 371 year: 1963 end-page: 379 ident: bib48 article-title: An infrared study of pyridine adsorbed on acidic solids publication-title: Charact. Surf. acidity, – volume: 103 start-page: 311 year: 1987 end-page: 319 ident: bib54 article-title: The oxidative conversion of methane to higher hydrocarbons over alkali-promoted MnSiO2 publication-title: J. Catal. – volume: 5 start-page: 13612 year: 2020 end-page: 13620 ident: bib33 article-title: Synthesis of value-added chemicals via oxidative coupling of methanes over Na2WO4–TiO2–MnOx/SiO2 catalysts with alkali or alkali earth oxide additives publication-title: ACS Omega – volume: 9 start-page: 5912 year: 2019 end-page: 5928 ident: bib10 article-title: Oxidative coupling of methane (OCM) by SiO2-Supported Tungsten Oxide Catalysts Promoted with Mn and Na publication-title: ACS Catal. – volume: 47 start-page: 7689 year: 2008 end-page: 7693 ident: bib59 article-title: Rate and selectivity enhancements mediated by OH radicals in the oxidative coupling of methane catalyzed by Mn/Na2WO4/SiO2 publication-title: Angew. Chem. Int. Ed. – volume: 425–426 start-page: 53 year: 2012 end-page: 61 ident: bib9 article-title: Mn–Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known? publication-title: Appl. Catal. A: Gen. – volume: 168 start-page: 1352 year: 2011 end-page: 1359 ident: bib13 article-title: Fluidized bed processing of sodium tungsten manganese catalysts for the oxidative coupling of methane publication-title: Chem. Eng. J. – volume: 124 start-page: 451 year: 1990 end-page: 464 ident: bib40 article-title: Oxidative coupling of methane on alkali metal-promoted nickel titanate: I. Catalyst characterization and transient studies publication-title: J. Catal. – volume: 360 start-page: 102 year: 2018 end-page: 117 ident: bib62 article-title: Investigation of the role of the Na2WO4/Mn/SiO2 catalyst composition in the oxidative coupling of methane by chemical looping experiments publication-title: J. Catal. – volume: 45 start-page: 7077 year: 2006 end-page: 7083 ident: bib55 article-title: Site requirements for the oxidative coupling of methane on SiO2-supported Mn catalysts publication-title: Ind. Eng. Chem. Res. – volume: 504 start-page: 509 year: 2015 end-page: 518 ident: bib30 article-title: Influence of the composition/texture of Mn–Na–W catalysts on the oxidative coupling of methane publication-title: Appl. Catal. A: Gen. – volume: 19 start-page: 16 year: 2001 end-page: 21 ident: bib19 article-title: Oxidative coupling of methane over W-Mn/SiO2 catalyst publication-title: Chin. J. Chem. – volume: 60 start-page: 3914 year: 2021 end-page: 3921 ident: bib35 article-title: Effect of TiO2 on the performance of Mn/Na2WO4 catalysts in oxidative coupling of methane publication-title: Ind. Eng. Chem. Res. – volume: 113 start-page: 10131 year: 2009 end-page: 10145 ident: bib60 article-title: Mechanistic aspects and reaction pathways for oxidative coupling of methane on Mn/Na2WO4/SiO2 catalysts publication-title: J. Phys. Chem. C. – volume: 111 start-page: 14644 year: 2007 end-page: 14651 ident: bib47 article-title: Kinetics of alkali metal ion exchange into nanotubular and nanofibrous titanates publication-title: J. Phys. Chem. C. – volume: 145 start-page: 23 year: 2015 end-page: 39 ident: bib2 article-title: Methane activation by heterogeneous catalysis publication-title: Catal. Lett. – volume: 59 start-page: 14921 year: 2020 end-page: 14926 ident: bib18 article-title: Fluctuating storage of the active phase in a Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane publication-title: Angew. Chem. Int. Ed. – volume: 97 start-page: 12870 year: 1993 end-page: 12875 ident: bib12 article-title: Oxide/support interaction and surface reconstruction in the sodium tungstate (Na2WO4)/silica system publication-title: J. Phys. Chem. – volume: 408 start-page: 423 year: 2022 end-page: 435 ident: bib51 article-title: Elucidating the structure of the W and Mn sites on the Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane (OCM) at real reaction temperatures publication-title: J. Catal. – volume: 55 start-page: 4092 year: 2016 end-page: 4096 ident: bib63 article-title: Selective alkane oxidation by manganese oxide: site isolation of MnOx chains at the surface of MnWO4 nanorods publication-title: Angew. Chem. Int. Ed. – volume: 92 start-page: 430 year: 2018 end-page: 437 ident: bib24 article-title: Thermochemical properties of the lattice oxygen in W,Mn-containing mixed oxide catalysts for the oxidative coupling of methane publication-title: Russ. J. Phys. Chem. A – volume: 12 start-page: 537 year: 2005 end-page: 541 ident: bib45 article-title: Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT publication-title: J. Synchrotron Radiat. – volume: 61 start-page: 1 year: 2022 end-page: 9 ident: bib22 article-title: Oxidative coupling of methane: examining the inactivity of the MnOx-Na2WO4/SiO2 catalyst at low temperature publication-title: Angew. Chem. Int. Ed. – volume: 225 start-page: 271 year: 2002 end-page: 284 ident: bib58 article-title: The relationship between the structure and the performance of Na-W-Mn/SiO2 catalysts for the oxidative coupling of methane publication-title: Appl. Catal. A: Gen. – volume: 124 start-page: 465 year: 1990 end-page: 476 ident: bib39 article-title: Oxidative coupling of methane on alkali metal-promoted nickel titanate: II. Kinetic studies publication-title: J. Catal. – volume: 148 start-page: 1110 year: 2021 end-page: 1122 ident: bib34 article-title: Synthesis of value-added hydrocarbons via oxidative coupling of methane over MnTiO3-Na2WO4/SBA-15 catalysts publication-title: Process Saf. Environ. Prot. – volume: 71 start-page: 473 year: 2016 end-page: 546 ident: bib46 article-title: Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires publication-title: Surf. Sci. Rep. – volume: 370 start-page: 1210 year: 2019 end-page: 1217 ident: bib27 article-title: Kinetic conjugation effects in oxidation of C1-C2 hydrocarbons: Experiment and modeling publication-title: Chem. Eng. J. – volume: 155 start-page: 390 year: 1995 end-page: 402 ident: bib16 article-title: Oxidative coupling of methane over oxide-supported sodium-manganese catalysts publication-title: J. Catal. – volume: 132 start-page: 6679 year: 2010 end-page: 6685 ident: bib42 article-title: Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 647 year: 2016 end-page: 676 ident: bib11 article-title: Oxidative coupling of methane: Mechanism and kinetics publication-title: Kinet. Catal. – volume: 6 start-page: 5740 year: 2016 end-page: 5746 ident: bib44 article-title: Highly efficient activation, regeneration, and active site identification of oxide-based olefin metathesis catalysts publication-title: ACS Catal. – volume: 18 start-page: 251 year: 1989 end-page: 283 ident: bib6 article-title: Oxidative coupling of methane using oxide catalysts publication-title: Chem. Soc. Rev. – volume: 278 start-page: 127 year: 2016 end-page: 134 ident: bib23 article-title: Oxygen availability and catalytic performance of NaWMn/SiO2 mixed oxide and its components in oxidative coupling of methane publication-title: Catal. Today – volume: 117 start-page: 8497 year: 2017 end-page: 8520 ident: bib3 article-title: Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects publication-title: Chem. Rev. – volume: 11 start-page: 10288 year: 2021 end-page: 10293 ident: bib21 article-title: Resolving the Types and Origin of Active Oxygen Species Present in Supported Mn-Na2WO4/SiO2 catalysts for oxidative coupling of methane publication-title: ACS Catal. – volume: 311 year: 2022 ident: bib32 article-title: Support oxide tuning of MnOx-Na2WO4 catalysts enables low-temperature light-off of OCM publication-title: Fuel – volume: 92 start-page: 430 year: 2018 ident: 10.1016/j.cattod.2022.12.008_bib24 article-title: Thermochemical properties of the lattice oxygen in W,Mn-containing mixed oxide catalysts for the oxidative coupling of methane publication-title: Russ. J. Phys. Chem. A doi: 10.1134/S0036024418030147 – volume: 408 start-page: 423 year: 2022 ident: 10.1016/j.cattod.2022.12.008_bib51 article-title: Elucidating the structure of the W and Mn sites on the Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane (OCM) at real reaction temperatures publication-title: J. Catal. doi: 10.1016/j.jcat.2021.06.021 – volume: 132 start-page: 6679 year: 2010 ident: 10.1016/j.cattod.2022.12.008_bib42 article-title: Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909456f – volume: 145 start-page: 23 year: 2015 ident: 10.1016/j.cattod.2022.12.008_bib2 article-title: Methane activation by heterogeneous catalysis publication-title: Catal. Lett. doi: 10.1007/s10562-014-1417-z – volume: 504 start-page: 509 year: 2015 ident: 10.1016/j.cattod.2022.12.008_bib30 article-title: Influence of the composition/texture of Mn–Na–W catalysts on the oxidative coupling of methane publication-title: Appl. Catal. A: Gen. doi: 10.1016/j.apcata.2014.11.045 – volume: 229 start-page: 176 year: 2021 ident: 10.1016/j.cattod.2022.12.008_bib25 article-title: Effect of thermal treatment on the stability of Na–Mn–W/SiO2 catalyst for the oxidative coupling of methane publication-title: Faraday Discuss. doi: 10.1039/C9FD00142E – volume: 4 start-page: 67 year: 1997 ident: 10.1016/j.cattod.2022.12.008_bib43 article-title: Pore structure control of silica gels based on phase separation publication-title: J. Porous Mater. doi: 10.1023/A:1009627216939 – volume: 333 start-page: 36 year: 2019 ident: 10.1016/j.cattod.2022.12.008_bib57 article-title: Oxygen pathways in oxidative coupling of methane and related processes. Case study: NaWMn/SiO2 catalyst publication-title: Catal. Today doi: 10.1016/j.cattod.2018.06.028 – volume: 225 start-page: 271 year: 2002 ident: 10.1016/j.cattod.2022.12.008_bib58 article-title: The relationship between the structure and the performance of Na-W-Mn/SiO2 catalysts for the oxidative coupling of methane publication-title: Appl. Catal. A: Gen. doi: 10.1016/S0926-860X(01)00864-X – volume: 155 start-page: 390 year: 1995 ident: 10.1016/j.cattod.2022.12.008_bib16 article-title: Oxidative coupling of methane over oxide-supported sodium-manganese catalysts publication-title: J. Catal. doi: 10.1006/jcat.1995.1221 – volume: 60 start-page: 21502 year: 2021 ident: 10.1016/j.cattod.2022.12.008_bib53 article-title: New mechanistic and reaction pathway insights for oxidative coupling of methane (OCM) over supported Na2WO4/SiO2 publication-title: Catal., Angew. Chem. Int. Ed. doi: 10.1002/anie.202108201 – volume: 18 start-page: 251 year: 1989 ident: 10.1016/j.cattod.2022.12.008_bib6 article-title: Oxidative coupling of methane using oxide catalysts publication-title: Chem. Soc. Rev. doi: 10.1039/cs9891800251 – volume: 11 start-page: 10288 year: 2021 ident: 10.1016/j.cattod.2022.12.008_bib21 article-title: Resolving the Types and Origin of Active Oxygen Species Present in Supported Mn-Na2WO4/SiO2 catalysts for oxidative coupling of methane publication-title: ACS Catal. doi: 10.1021/acscatal.1c02315 – volume: 386 start-page: 39 year: 2020 ident: 10.1016/j.cattod.2022.12.008_bib26 article-title: Real-time multi-length scale chemical tomography of fixed bed reactors during the oxidative coupling of methane reaction publication-title: J. Catal. doi: 10.1016/j.jcat.2020.03.027 – volume: 154 start-page: 163 year: 1995 ident: 10.1016/j.cattod.2022.12.008_bib28 article-title: Oxidative Coupling of Methane over Na2WO4/CeO2 and Related Catalysts publication-title: J. Catal. doi: 10.1006/jcat.1995.1157 – volume: 47 start-page: 7689 year: 2008 ident: 10.1016/j.cattod.2022.12.008_bib59 article-title: Rate and selectivity enhancements mediated by OH radicals in the oxidative coupling of methane catalyzed by Mn/Na2WO4/SiO2 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200802608 – volume: 5 start-page: 13612 year: 2020 ident: 10.1016/j.cattod.2022.12.008_bib33 article-title: Synthesis of value-added chemicals via oxidative coupling of methanes over Na2WO4–TiO2–MnOx/SiO2 catalysts with alkali or alkali earth oxide additives publication-title: ACS Omega doi: 10.1021/acsomega.0c00537 – volume: 93 start-page: 421 year: 2019 ident: 10.1016/j.cattod.2022.12.008_bib36 article-title: Chemical and phase transformation in W-Mn-containing catalysts for oxidative coupling of methane publication-title: Russ. J. Phys. Chem. A doi: 10.1134/S0036024419030087 – volume: 34 start-page: 970 year: 1995 ident: 10.1016/j.cattod.2022.12.008_bib7 article-title: The catalytic oxidative coupling of methane publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.199509701 – volume: 168 start-page: 1352 year: 2011 ident: 10.1016/j.cattod.2022.12.008_bib13 article-title: Fluidized bed processing of sodium tungsten manganese catalysts for the oxidative coupling of methane publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.02.013 – volume: 99 start-page: 4566 year: 1995 ident: 10.1016/j.cattod.2022.12.008_bib15 article-title: The role of distorted WO4 in the oxidative coupling of methane on supported tungsten oxide catalysts publication-title: J. Phys. Chem. doi: 10.1021/j100013a030 – volume: 370 start-page: 1210 year: 2019 ident: 10.1016/j.cattod.2022.12.008_bib27 article-title: Kinetic conjugation effects in oxidation of C1-C2 hydrocarbons: Experiment and modeling publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.006 – volume: 3 year: 2017 ident: 10.1016/j.cattod.2022.12.008_bib20 article-title: MnTiO3-driven low-temperature oxidative coupling of methane over TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst publication-title: Sci. Adv. doi: 10.1126/sciadv.1603180 – volume: 3 start-page: 1935 year: 2011 ident: 10.1016/j.cattod.2022.12.008_bib8 article-title: Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts publication-title: ChemCatChem doi: 10.1002/cctc.201100186 – volume: 10 start-page: 4580 year: 2020 ident: 10.1016/j.cattod.2022.12.008_bib56 publication-title: ACS Catal. doi: 10.1021/acscatal.9b05591 – volume: 19 start-page: 16 year: 2001 ident: 10.1016/j.cattod.2022.12.008_bib19 article-title: Oxidative coupling of methane over W-Mn/SiO2 catalyst publication-title: Chin. J. Chem. doi: 10.1002/cjoc.20010190104 – volume: 148 start-page: 1110 year: 2021 ident: 10.1016/j.cattod.2022.12.008_bib34 article-title: Synthesis of value-added hydrocarbons via oxidative coupling of methane over MnTiO3-Na2WO4/SBA-15 catalysts publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2021.02.030 – volume: 278 start-page: 127 year: 2016 ident: 10.1016/j.cattod.2022.12.008_bib23 article-title: Oxygen availability and catalytic performance of NaWMn/SiO2 mixed oxide and its components in oxidative coupling of methane publication-title: Catal. Today doi: 10.1016/j.cattod.2016.04.021 – volume: 228 start-page: 5 year: 2014 ident: 10.1016/j.cattod.2022.12.008_bib29 article-title: Support material variation for the MnxOy-Na2WO4/SiO2 catalyst publication-title: Catal. Today doi: 10.1016/j.cattod.2013.12.024 – volume: 6 start-page: 5740 year: 2016 ident: 10.1016/j.cattod.2022.12.008_bib44 article-title: Highly efficient activation, regeneration, and active site identification of oxide-based olefin metathesis catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.6b00098 – volume: 9 start-page: 5912 year: 2019 ident: 10.1016/j.cattod.2022.12.008_bib10 article-title: Oxidative coupling of methane (OCM) by SiO2-Supported Tungsten Oxide Catalysts Promoted with Mn and Na publication-title: ACS Catal. doi: 10.1021/acscatal.9b01585 – volume: 2 start-page: 371 year: 1963 ident: 10.1016/j.cattod.2022.12.008_bib48 article-title: An infrared study of pyridine adsorbed on acidic solids publication-title: Charact. Surf. acidity, J. Catal. – volume: 97 start-page: 12870 year: 1993 ident: 10.1016/j.cattod.2022.12.008_bib12 article-title: Oxide/support interaction and surface reconstruction in the sodium tungstate (Na2WO4)/silica system publication-title: J. Phys. Chem. doi: 10.1021/j100151a038 – volume: 124 start-page: 451 year: 1990 ident: 10.1016/j.cattod.2022.12.008_bib40 article-title: Oxidative coupling of methane on alkali metal-promoted nickel titanate: I. Catalyst characterization and transient studies publication-title: J. Catal. doi: 10.1016/0021-9517(90)90192-M – volume: 311 year: 2022 ident: 10.1016/j.cattod.2022.12.008_bib32 article-title: Support oxide tuning of MnOx-Na2WO4 catalysts enables low-temperature light-off of OCM publication-title: Fuel doi: 10.1016/j.fuel.2021.122539 – volume: 124 start-page: 465 year: 1990 ident: 10.1016/j.cattod.2022.12.008_bib39 article-title: Oxidative coupling of methane on alkali metal-promoted nickel titanate: II. Kinetic studies publication-title: J. Catal. doi: 10.1016/0021-9517(90)90193-N – volume: 11 start-page: 10131 year: 2021 ident: 10.1016/j.cattod.2022.12.008_bib52 article-title: Elucidating the effects of Mn promotion on SiO2-supported Na-promoted tungsten oxide catalysts for oxidative coupling of methane (OCM) publication-title: ACS Catal. doi: 10.1021/acscatal.1c01392 – volume: 60 start-page: 3914 year: 2021 ident: 10.1016/j.cattod.2022.12.008_bib35 article-title: Effect of TiO2 on the performance of Mn/Na2WO4 catalysts in oxidative coupling of methane publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c06126 – volume: 113 start-page: 10131 year: 2009 ident: 10.1016/j.cattod.2022.12.008_bib60 article-title: Mechanistic aspects and reaction pathways for oxidative coupling of methane on Mn/Na2WO4/SiO2 catalysts publication-title: J. Phys. Chem. C. doi: 10.1021/jp9001302 – volume: 50 start-page: 10096 year: 2011 ident: 10.1016/j.cattod.2022.12.008_bib1 article-title: Chemistry with methane: concepts rather than recipes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201006424 – volume: 55 start-page: 4092 year: 2016 ident: 10.1016/j.cattod.2022.12.008_bib63 article-title: Selective alkane oxidation by manganese oxide: site isolation of MnOx chains at the surface of MnWO4 nanorods publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201510201 – volume: 5 start-page: 695 year: 2003 ident: 10.1016/j.cattod.2022.12.008_bib50 article-title: Acid–base behavior of oxides and their electronic structure publication-title: Solid State Sci. doi: 10.1016/S1293-2558(03)00031-1 – volume: 53 start-page: 183 year: 1989 ident: 10.1016/j.cattod.2022.12.008_bib37 article-title: Methane oxidative coupling over titanate catalysts publication-title: Appl. Catal. doi: 10.1016/S0166-9834(00)80020-2 – volume: 12 start-page: 537 year: 2005 ident: 10.1016/j.cattod.2022.12.008_bib45 article-title: Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049505012719 – volume: 71 start-page: 473 year: 2016 ident: 10.1016/j.cattod.2022.12.008_bib46 article-title: Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2016.06.001 – volume: 45 start-page: 7077 year: 2006 ident: 10.1016/j.cattod.2022.12.008_bib55 article-title: Site requirements for the oxidative coupling of methane on SiO2-supported Mn catalysts publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie060269c – volume: 73 start-page: 9 year: 1982 ident: 10.1016/j.cattod.2022.12.008_bib4 article-title: Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts publication-title: J. Catal. doi: 10.1016/0021-9517(82)90075-6 – volume: 177 start-page: 259 year: 1998 ident: 10.1016/j.cattod.2022.12.008_bib14 article-title: Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na2WO4/SiO2 catalysts for the oxidative coupling of methane publication-title: J. Catal. doi: 10.1006/jcat.1998.2109 – volume: 298 year: 2021 ident: 10.1016/j.cattod.2022.12.008_bib31 article-title: Hybrid catalysts containing Ba, Ti, Mn, Na, and W for the low-temperature oxidative coupling of methane publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2021.120553 – volume: 111 start-page: 14644 year: 2007 ident: 10.1016/j.cattod.2022.12.008_bib47 article-title: Kinetics of alkali metal ion exchange into nanotubular and nanofibrous titanates publication-title: J. Phys. Chem. C. doi: 10.1021/jp073799a – volume: 103 start-page: 311 year: 1987 ident: 10.1016/j.cattod.2022.12.008_bib54 article-title: The oxidative conversion of methane to higher hydrocarbons over alkali-promoted MnSiO2 publication-title: J. Catal. doi: 10.1016/0021-9517(87)90123-0 – volume: 57 start-page: 647 year: 2016 ident: 10.1016/j.cattod.2022.12.008_bib11 article-title: Oxidative coupling of methane: Mechanism and kinetics publication-title: Kinet. Catal. doi: 10.1134/S0023158416050128 – volume: 425–426 start-page: 53 year: 2012 ident: 10.1016/j.cattod.2022.12.008_bib9 article-title: Mn–Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known? publication-title: Appl. Catal. A: Gen. doi: 10.1016/j.apcata.2012.02.046 – volume: 41 start-page: 4996 year: 2002 ident: 10.1016/j.cattod.2022.12.008_bib41 article-title: Large-scale synthesis of sodium and potassium titanate nanobelts publication-title: Inorg. Chem. doi: 10.1021/ic0257827 – volume: 117 start-page: 8497 year: 2017 ident: 10.1016/j.cattod.2022.12.008_bib3 article-title: Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00715 – volume: 61 start-page: 1 year: 2022 ident: 10.1016/j.cattod.2022.12.008_bib22 article-title: Oxidative coupling of methane: examining the inactivity of the MnOx-Na2WO4/SiO2 catalyst at low temperature publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202117201 – volume: 30 start-page: 249 year: 1988 ident: 10.1016/j.cattod.2022.12.008_bib5 article-title: Oxidative coupling of methane to higher hydrocarbons publication-title: Catal. Rev. - Sci. Rev. doi: 10.1080/01614948808078620 – volume: 360 start-page: 102 year: 2018 ident: 10.1016/j.cattod.2022.12.008_bib62 article-title: Investigation of the role of the Na2WO4/Mn/SiO2 catalyst composition in the oxidative coupling of methane by chemical looping experiments publication-title: J. Catal. doi: 10.1016/j.jcat.2018.01.022 – volume: 64 start-page: 480 year: 1987 ident: 10.1016/j.cattod.2022.12.008_bib49 article-title: An acidity scale for binary oxides publication-title: J. Chem. Educ. doi: 10.1021/ed064p480 – volume: 56 start-page: 10403 year: 2017 ident: 10.1016/j.cattod.2022.12.008_bib17 article-title: Integrated in situ characterization of a molten salt catalyst surface: evidence of sodium peroxide and hydroxyl radical formation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201704758 – volume: 119 start-page: 161 year: 1989 ident: 10.1016/j.cattod.2022.12.008_bib38 article-title: Methane oxidative coupling: II. A study of lithium-titania-catalyzed reactions of methane publication-title: J. Catal. doi: 10.1016/0021-9517(89)90143-7 – volume: 59 start-page: 14921 year: 2020 ident: 10.1016/j.cattod.2022.12.008_bib18 article-title: Fluctuating storage of the active phase in a Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202004778 – volume: 341 start-page: 91 year: 2016 ident: 10.1016/j.cattod.2022.12.008_bib61 article-title: Investigation of the surface reaction network of the oxidative coupling of methane over Na2WO4/Mn/SiO2 catalyst by temperature programmed and dynamic experiments publication-title: J. Catal. doi: 10.1016/j.jcat.2016.06.014 |
SSID | ssj0008842 |
Score | 2.4380517 |
Snippet | Supported Na-Mn-W oxides are among the most studied catalysts for the oxidative coupling of methane (OCM) because of their superior thermal stability and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 113977 |
SubjectTerms | Na-Mn-W oxides Oxidative coupling of methane Synergistic effect Titanate |
Title | TiOx-supported Na-Mn-W oxides for the oxidative coupling of methane |
URI | https://dx.doi.org/10.1016/j.cattod.2022.12.008 |
Volume | 416 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA1jPqgPolNxfow8-BrXJunSPo7imF9TdOLeQpsPmUg7XAd78rebpK1OEAWfSksC5XB770m59xwATn2SepJEAiUi9RAVKkApCVIUKY8I6TMmtGuQHfWGj_RyEkwaIK5nYWxbZZX7y5zusnX1pFuh2Z1Np90HL8JeEJoKjZ1Ouh00p5TZKD97_2rzCENnoGMXI7u6Hp9zPV4iKYrc6oVi7H4KWpPJn8rTSskZbIOtiivCfvk6O6ChshZYj2uLthbYXFET3AXxeHq7RPPFzGmVSzhK0E2GnmC-nEo1h4adQsP23K1T-4YiX9h53GeYa2idpJNM7YHx4HwcD1HlkYCEoU4FSjwlKJbMfEcpVVKRwA-1OZZoU_pZSEOpIhkQqnoE6xAzcyRNBTYcJNDSHA09sg-aWZ6pAwA9rCPao77wU0V1ZACTTEcqYYZQ-oImbUBqZLio9MOtjcUrrxvFXniJJ7d4ch9zg2cboM9ds1I_44_1rAadf4sDblL8rzsP_73zCGxYE_myH-cYNIu3hToxVKNIOy6WOmCtH99f39nrxdVw9AHg39O7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8Yn1uQevS5N9NMmxFKVqWw9W9LYk-5CKJMWm0J_v7iYRBVHwmLAD4WN35psw-30AlyHNAkUTiVOZBZhJzXFGeYYTHVCpwiiSxg_ITnrDR3b7zJ9bMGjuwrixyjr3VzndZ-v6TbdGszufzboPQUICHtsKTbxOOl-DdadOxduw3r-5G04-E3Icew8dtx67gOYGnR_zkmlZFk4ylBD_X9D5TP5Uob5Unesd2K7pIupXX7QLLZ3vwcagcWnbg60vgoL7MJjO7ld4sZx7uXKFJike5_gJFauZ0gtkCSqyhM8_esFvJIulu5L7ggqDnJl0musDmF5fTQdDXNskYGnZU4nTQEtGVGSPUsa00pSHsbGdibHVP4pZrHSiOGW6R4mJSWS70kwSS0O4UbY7DOghtPMi10eAAmIS1mOhDDPNTGIBU5FJdBpZThlKlnaANsgIWUuIOyeLN9HMir2KCk_h8BQhERbPDuDPqHklofHH-qgBXXzbCsJm-V8jj_8deQEbw-l4JEY3k7sT2HSe8tV4zim0y_elPrPMo8zO6531AZFv1Nc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TiOx-supported+Na-Mn-W+oxides+for+the+oxidative+coupling+of+methane&rft.jtitle=Catalysis+today&rft.au=Aireddy%2C+Divakar+R.&rft.au=Roy%2C+Amitava&rft.au=Cullen%2C+David+A.&rft.au=Ding%2C+Kunlun&rft.date=2023-04-01&rft.issn=0920-5861&rft.volume=416&rft.spage=113977&rft_id=info:doi/10.1016%2Fj.cattod.2022.12.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cattod_2022_12_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5861&client=summon |