Finding new addictive QTL for yield traits based on a high-density genetic map in hybrid rice
Rice is one of the most important food crops in the world. To discover the genetic basis of yield components in super hybrid rice Nei2You No.6, 386 recombinant inbred sister lines (RISLs) were obtained for mapping quantitative trait loci (QTL) responsible for grain yield per plant, number of panicle...
Saved in:
Published in | Plant growth regulation Vol. 93; no. 1; pp. 105 - 115 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.01.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0167-6903 1573-5087 |
DOI | 10.1007/s10725-020-00669-2 |
Cover
Loading…
Abstract | Rice is one of the most important food crops in the world. To discover the genetic basis of yield components in super hybrid rice Nei2You No.6, 386 recombinant inbred sister lines (RISLs) were obtained for mapping quantitative trait loci (QTL) responsible for grain yield per plant, number of panicles per plant, grain number per panicle and 1000-grain weight. Using whole genome re-sequencing, a high-density linkage map consisting of 3203 Bin markers was constructed with total genetic coverage of 1951.1 cM and average density of 0.61 cM. A total of 43 yield-related QTL were mapped to all 12 chromosomes, and each explained 2.40–10.17% phenotypic variance, indicating that the medium and minor effect QTL are genetic basis for high yield of Nei2You No.6. With positive effect, 28 out of the 43 QTL are inherited from the maintainer line (Nei2B). Nine loci,
qGYP-6b
,
qGNP-6c
,
qNP-7
,
qTGW-1a
,
qTGW-5
,
qTGW-7
,
qTGW-10b
,
qTGW-10c
and
qTGW-12
showed stable effects across multiple environments. Five of these nine QTL were co-located with previously reported QTL, and four novel locus,
qNP-7
,
qGNP-6c
,
qTGW-7
and
qTGW-12
, were firstly identified in the present study. Subsequently,
qNP-7
,
qTGW-7
and
qTGW-12
were validated using corresponding paired sister lines which differed only in the target genome region. The recombinant inbred sister lines is an effective tool for mapping and confirming QTL of yield-associated traits. Newly detected QTL provide new resource for investigating genetics of yield components and will accelerate molecular breeding in rice. |
---|---|
AbstractList | Rice is one of the most important food crops in the world. To discover the genetic basis of yield components in super hybrid rice Nei2You No.6, 386 recombinant inbred sister lines (RISLs) were obtained for mapping quantitative trait loci (QTL) responsible for grain yield per plant, number of panicles per plant, grain number per panicle and 1000-grain weight. Using whole genome re-sequencing, a high-density linkage map consisting of 3203 Bin markers was constructed with total genetic coverage of 1951.1 cM and average density of 0.61 cM. A total of 43 yield-related QTL were mapped to all 12 chromosomes, and each explained 2.40–10.17% phenotypic variance, indicating that the medium and minor effect QTL are genetic basis for high yield of Nei2You No.6. With positive effect, 28 out of the 43 QTL are inherited from the maintainer line (Nei2B). Nine loci, qGYP-6b, qGNP-6c, qNP-7, qTGW-1a, qTGW-5, qTGW-7, qTGW-10b, qTGW-10c and qTGW-12 showed stable effects across multiple environments. Five of these nine QTL were co-located with previously reported QTL, and four novel locus, qNP-7, qGNP-6c, qTGW-7 and qTGW-12, were firstly identified in the present study. Subsequently, qNP-7, qTGW-7 and qTGW-12 were validated using corresponding paired sister lines which differed only in the target genome region. The recombinant inbred sister lines is an effective tool for mapping and confirming QTL of yield-associated traits. Newly detected QTL provide new resource for investigating genetics of yield components and will accelerate molecular breeding in rice. Rice is one of the most important food crops in the world. To discover the genetic basis of yield components in super hybrid rice Nei2You No.6, 386 recombinant inbred sister lines (RISLs) were obtained for mapping quantitative trait loci (QTL) responsible for grain yield per plant, number of panicles per plant, grain number per panicle and 1000-grain weight. Using whole genome re-sequencing, a high-density linkage map consisting of 3203 Bin markers was constructed with total genetic coverage of 1951.1 cM and average density of 0.61 cM. A total of 43 yield-related QTL were mapped to all 12 chromosomes, and each explained 2.40–10.17% phenotypic variance, indicating that the medium and minor effect QTL are genetic basis for high yield of Nei2You No.6. With positive effect, 28 out of the 43 QTL are inherited from the maintainer line (Nei2B). Nine loci, qGYP-6b , qGNP-6c , qNP-7 , qTGW-1a , qTGW-5 , qTGW-7 , qTGW-10b , qTGW-10c and qTGW-12 showed stable effects across multiple environments. Five of these nine QTL were co-located with previously reported QTL, and four novel locus, qNP-7 , qGNP-6c , qTGW-7 and qTGW-12 , were firstly identified in the present study. Subsequently, qNP-7 , qTGW-7 and qTGW-12 were validated using corresponding paired sister lines which differed only in the target genome region. The recombinant inbred sister lines is an effective tool for mapping and confirming QTL of yield-associated traits. Newly detected QTL provide new resource for investigating genetics of yield components and will accelerate molecular breeding in rice. |
Author | Zhang, Miao Chen, Yu-yu Cao, Yong-run Xue, Pao Cao, Li-yong Zhou, Zheng-ping Deng, Chen-wei Zhan, Xiao-deng Cheng, Shi-hua Zhang, Ying-xin |
Author_xml | – sequence: 1 givenname: Miao surname: Zhang fullname: Zhang, Miao organization: State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute – sequence: 2 givenname: Zheng-ping surname: Zhou fullname: Zhou, Zheng-ping organization: State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute – sequence: 3 givenname: Yu-yu surname: Chen fullname: Chen, Yu-yu organization: State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute – sequence: 4 givenname: Yong-run surname: Cao fullname: Cao, Yong-run organization: State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute – sequence: 5 givenname: Chen-wei surname: Deng fullname: Deng, Chen-wei organization: State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute – sequence: 6 givenname: Pao surname: Xue fullname: Xue, Pao organization: State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute – sequence: 7 givenname: Xiao-deng surname: Zhan fullname: Zhan, Xiao-deng organization: State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute – sequence: 8 givenname: Shi-hua surname: Cheng fullname: Cheng, Shi-hua organization: State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute – sequence: 9 givenname: Li-yong surname: Cao fullname: Cao, Li-yong email: caoliyong@caas.cn organization: State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute – sequence: 10 givenname: Ying-xin surname: Zhang fullname: Zhang, Ying-xin email: zhangyingxin@caas.cn organization: State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute |
BookMark | eNp9kE1LXDEUQENRcLT9A64C3XQTvUlePt6ySG2FASnYpYSY3DcTeZM3TTLK_Ps-O4LgwtXdnHPv5ZySozxlJOScwwUHMJeVgxGKgQAGoHXPxCey4MpIpsCaI7IArg3TPcgTclrrIwBYq_iC3F-nHFNe0YzP1MeYQktPSH_fLekwFbpPOEbaik-t0gdfMdIpU0_XabVmEXNNbU9XmLGlQDd-S1Om6_1DSZGWFPAzOR78WPHL6zwjf65_3F39YsvbnzdX35csSCUa64PVAYFHr6IyWhkDylgjue4GLrlCy0Ho2FsbBOeD990QeEAtowD0iPKMfDvs3Zbp7w5rc5tUA46jzzjtqhOqg67vdadm9Os79HHalTx_50RntDRCCz1T4kCFMtVacHDbkja-7B0H91LcHYq7ubj7X9yJWbLvpJCab2nKLwHHj1V5UOt8J6-wvH31gfUPcxiVnQ |
CitedBy_id | crossref_primary_10_3390_agriculture12020165 crossref_primary_10_1038_s41598_024_67543_3 crossref_primary_10_3390_agronomy11040705 crossref_primary_10_1007_s10725_022_00926_6 crossref_primary_10_1016_j_ygeno_2022_110306 |
Cites_doi | 10.1038/ng.352 10.1073/pnas.1421127112 10.1007/s10725-019-00549-4 10.1093/nar/gkq603 10.1016/j.molp.2020.03.009 10.1038/ng.591 10.1186/s12284-018-0236-z 10.1007/s00122-019-03440-y 10.1186/s12915-018-0572-x 10.1631/jzus.2004.0371 10.1104/pp.18.01574 10.9787/PBB.2014.2.3.195 10.1038/nrg2612 10.1093/bioinformatics/btp324 10.1101/gr.089516.108 10.1038/s41598-017-10666-7 10.1073/pnas.1213962110 10.1101/gr.107524.110 10.1007/s00122-003-1269-1 10.1093/pcp/pcw105 10.1007/s00122-009-1218-8 10.1016/S2095-3119(16)61410-7 10.1038/cr.2013.43 10.1007/s00122-002-0974-5 10.1007/s10725-018-0468-3 10.1105/tpc.113.113639 10.1007/s00122-006-0218-1 10.1038/ng.143 10.1007/s10725-020-00644-x 10.1093/mp/ssq070 10.1016/j.plantsci.2019.05.008 10.1007/s11032-015-0401-7 10.1038/ng.2327 10.1038/ng.3346 10.1126/science.1113373 10.1038/nature01518 10.1007/s12284-008-9004-9 10.1093/genetics/145.2.453 |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2020 Springer Nature B.V. 2020. |
Copyright_xml | – notice: Springer Nature B.V. 2020 – notice: Springer Nature B.V. 2020. |
DBID | AAYXX CITATION 3V. 7X2 7XB 8FE 8FH 8FK 8G5 ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ LK8 M0K M2O M7P MBDVC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7S9 L.6 |
DOI | 10.1007/s10725-020-00669-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany |
EISSN | 1573-5087 |
EndPage | 115 |
ExternalDocumentID | 10_1007_s10725_020_00669_2 |
GrantInformation_xml | – fundername: National Key Research and Development Program grantid: 2016YFD0101801 – fundername: Chinese Academy of Agricultural Sciences Innovation Project grantid: CAAS-ASTIP-2013-CNRRI – fundername: Fundamental Research Funds of Central Public Welfare Research Institutions grantid: 2017RG001-1 – fundername: Natural Science Foundation grantid: 31521064 |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AAJSJ AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACULB ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EIOEI EJD EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M2O M4Y M7P MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PF0 PQQKQ PROAC PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7U Z7V Z7W Z7Y Z8O Z8P Z8Q Z8S ZMTXR ZOVNA ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABEEZ ABFSG ACSTC ADHKG AEZWR AFDZB AFGXO AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7XB 8FK MBDVC PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U 7S9 L.6 |
ID | FETCH-LOGICAL-c352t-9c86ce01da5d576577057873164f1315e81026d988c211faa4fc1ce63d20eaee3 |
IEDL.DBID | BENPR |
ISSN | 0167-6903 |
IngestDate | Thu Jul 10 18:43:17 EDT 2025 Sat Aug 23 14:39:07 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Tue Jul 01 04:13:42 EDT 2025 Fri Feb 21 02:36:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Quantitative trait loci Yield High-density linkage map L Recombinant inbred sister lines |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-9c86ce01da5d576577057873164f1315e81026d988c211faa4fc1ce63d20eaee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2476372626 |
PQPubID | 326354 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2540499645 proquest_journals_2476372626 crossref_primary_10_1007_s10725_020_00669_2 crossref_citationtrail_10_1007_s10725_020_00669_2 springer_journals_10_1007_s10725_020_00669_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210100 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210100 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant Growth and Development |
PublicationTitle | Plant growth regulation |
PublicationTitleAbbrev | Plant Growth Regul |
PublicationYear | 2021 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Ashikari, Sakakibara, Lin, Yamamoto, Takashi, Nishimura, Angeles, Qian, Kitano, Matsuoka (CR1) 2005; 309 Xue, Xing, Weng, Zhao, Tang, Wang, Zhou, Yu, Xu, Li, Zhang (CR37) 2008; 40 Wang, Li, Hakonarson (CR27) 2010; 38 Wang, Xiong, Hu, Jiang, Yu, Xu, Fang, Zeng, Xu, Xu, Ye, Meng, Liu, Chen, Jing, Wang, Zhu, Li, Qian (CR29) 2015; 47 Han, Hu, Liu, Liang, Yang, Zhao, Zhang, Li, Zhang, Xing (CR7) 2020; 133 Li, Durbin (CR15) 2009; 25 Li, Wu, Wang, Sun, Xia, Geng, Wang, Xu, Xu (CR18) 2018; 16 Wu, Zheng, Lu, Zhong, Gao, Chen, Wu, Wang, Wang, Zhou, Wang, Wu, Zhang, Guo, Cheng, Lei, Lin, Jiang, Wang, Ge, Wan (CR34) 2013; 110 Huang, Qian, Liu, Sun, He, Luo, Xia, Chu, Li, Fu (CR12) 2009; 41 Yan, Wang, Chen, Zhou, Li, Wang, Ding, Zhang, Yu, Xing, Zhang (CR38) 2011; 4 Thomson (CR26) 2014; 2 Yan, Liu, Zhou, Li, Zhang, Lu, Liu, Liu, Zhang, Zhang, Shen, Yao, Chen, Yu, Xie, Xing (CR39) 2013; 23 Wang, Hou, Si, Huang, Luo, Lu, Zhu, Shangguan, Miao, Xie, Wang, Zhao, Feng, Zhou, Li, Fan, Lu, Tian, Wang, Han (CR31) 2019; 180 Wang, Shang, Yu, Zeng, Hu, Ni, Rao, Li, Chu, Meng, Wang, Hu, Yan, Kang, Qu, Lin, Wang, Wang, Hu, Chen, Wang, Gao, Guo, Zeng, Zhu, Xiong, Li, Qian (CR32) 2020; 13 Wang, Chen, Zhu, Fan, Zhuang (CR30) 2017; 16 Lu, Yu, Xiong, Wang, Jiao, Liu, Jing, Meng, Hu, Qian, Fu, Wang, Li (CR19) 2013; 25 Mackay, Stone, Ayroles (CR20) 2009; 10 Jiao, Wang, Xue, Wang, Yan, Liu, Dong, Zeng, Lu, Zhu (CR14) 2010; 42 Hua, Xing, Xu, Sun, Yu, Zhang (CR10) 2003; 162 Gao, Zhu, Song, He, Shi, Xing (CR6) 2004; 5 Jiang, Yamamoto, Yamamoto, Matsubara, Kato, Adachi, Nomura, Kamahora, Ma, Ookawa (CR13) 2019; 87 Wang, Wu, Yuan, Liu, Liu, Lin, Zeng, Zhu, Dong, Qian, Zhang, Fu (CR28) 2012; 44 Li, Pinson, Park, Paterson, Stansel (CR16) 1997; 145 Li, Qian, Fu, Wang, Xiong, Zeng, Wang, Liu, Teng, Hiroshi, Yuan, Luo, Han, Li (CR17) 2003; 422 Dong, Zhang, Wang, Zhu, Fan, Mou, Ma, Zhuang (CR3) 2018; 11 Doyle, Doyle (CR4) 1986; 19 Terao, Nagata, Morino, Hirose (CR25) 2010; 120 Xu, Zhang, Xu, Feng, Yuan, Yu, Wang, Wei, Yang (CR36) 2020; 90 McKenna, Hanna, Banks, Sivachenko, Cibulskis, Kernytsky, Garimella, Altshuler, Gabriel, Daly, DePristo (CR22) 2010; 20 Song, Kuroha, Ayano, Furuta, Nagai, Komeda, Segami, Miura, Ogawa, Kamura, Suzuki, Higashiyama, Yamasaki, Mori, Inukai, Wu, Kitano, Sakakibara, Jacobsen, Ashikari (CR24) 2015; 112 Chen, Zhong, Wu, Liu, Lu, Jin, Tan, Sheng, Wang, Wang, Cheng, Wang, Zhang, Guo, Wu, Lin, Zhu, Jiang, Zhai, Wu, Wan (CR2) 2015; 35 Veeresha, Rudra Naik, Chetti, Desai, Biradar (CR35) 2015; 5 Zhang, Ponce, Meng, Chakraborty, Zhao, Guo, Gao, Leng, Ye (CR40) 2020 Zhuang, Fan, Rao, Wu, Xia, Zheng (CR43) 2003; 105 Hittalmani, Huang, Courtois, Venuprasad, Shashidhar, Zhuang, Zheng, Liu, Wang, Sidhu, Srivantaneeyakul, Singh, Bagali, Prasanna, McLaren, Khush (CR9) 2003; 107 Fan, Xing, Mao, Lu, Han, Xu, Li, Zhang (CR5) 2006; 112 McCouch (CR21) 2008; 1 Shibaya, Hori, Ogiso-Tanaka, Yamanouchi, Shu, Kitazawa, Shomura, Ando, Ebana, Wu, Yamazaki, Yano (CR23) 2016; 57 Herzig, Backhaus, Seiffert, Wirén, Pillen, Maurer (CR8) 2019; 285 Zhu, Liu, Liu, Li, Liao, Li, Fu, Fu, Huang, Zeng, Ma, Wang (CR41) 2017; 7 Huang, Feng, Qian, Zhao, Wang, Wang, Guan, Fan, Weng, Huang, Dong, Sang, Han (CR11) 2009; 19 Zhuang, Fan, Wu, Xia, Zheng (CR42) 2001; 28 Y Jiao (669_CR14) 2010; 42 Y Wang (669_CR32) 2020; 13 C Fan (669_CR5) 2006; 112 A Wang (669_CR31) 2019; 180 JJ Doyle (669_CR4) 1986; 19 X Huang (669_CR11) 2009; 19 X Huang (669_CR12) 2009; 41 W Xue (669_CR37) 2008; 40 BA Veeresha (669_CR35) 2015; 5 Y Wang (669_CR29) 2015; 47 YM Gao (669_CR6) 2004; 5 M Ashikari (669_CR1) 2005; 309 S Wang (669_CR28) 2012; 44 X Xu (669_CR36) 2020; 90 H Li (669_CR15) 2009; 25 P Herzig (669_CR8) 2019; 285 Y Zhang (669_CR40) 2020 JY Zhuang (669_CR42) 2001; 28 M Jiang (669_CR13) 2019; 87 Q Dong (669_CR3) 2018; 11 S Hittalmani (669_CR9) 2003; 107 A McKenna (669_CR22) 2010; 20 TFC Mackay (669_CR20) 2009; 10 XJ Song (669_CR24) 2015; 112 X Li (669_CR17) 2003; 422 M Thomson (669_CR26) 2014; 2 Z Li (669_CR16) 1997; 145 JP Hua (669_CR10) 2003; 162 K Wang (669_CR27) 2010; 38 SR McCouch (669_CR21) 2008; 1 JY Zhuang (669_CR43) 2003; 105 Z Han (669_CR7) 2020; 133 W Yan (669_CR39) 2013; 23 W Wu (669_CR34) 2013; 110 Z Lu (669_CR19) 2013; 25 M Zhu (669_CR41) 2017; 7 X Li (669_CR18) 2018; 16 T Terao (669_CR25) 2010; 120 Z Wang (669_CR30) 2017; 16 L Chen (669_CR2) 2015; 35 WH Yan (669_CR38) 2011; 4 T Shibaya (669_CR23) 2016; 57 |
References_xml | – volume: 41 start-page: 494 year: 2009 end-page: 497 ident: CR12 article-title: Natural variation at the DEP1 locus enhances grain yield in rice publication-title: Nat Genet doi: 10.1038/ng.352 – volume: 112 start-page: 76 year: 2015 end-page: 81 ident: CR24 article-title: Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1421127112 – volume: 90 start-page: 89 year: 2020 end-page: 100 ident: CR36 article-title: Quantitative trait loci identification and genetic diversity analysis of panicle structure and grain shape in rice publication-title: Plant Growth Regul doi: 10.1007/s10725-019-00549-4 – volume: 38 start-page: e164 year: 2010 end-page: e164 ident: CR27 article-title: ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq603 – volume: 13 start-page: 923 year: 2020 end-page: 932 ident: CR32 article-title: A strigolactone biosynthesis gene contributed to the green revolution in rice publication-title: Mol Plant doi: 10.1016/j.molp.2020.03.009 – volume: 42 start-page: 541 year: 2010 end-page: 544 ident: CR14 article-title: Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice publication-title: Nat Genet doi: 10.1038/ng.591 – volume: 11 start-page: 44 year: 2018 ident: CR3 article-title: Dissection and fine-mapping of two QTL for grain size linked in a 460-kb region on chromosome 1 of rice publication-title: Rice doi: 10.1186/s12284-018-0236-z – volume: 133 start-page: 59 year: 2020 end-page: 71 ident: CR7 article-title: Bin-based genome-wide association analyses improve power and resolution in QTL mapping and identify favorable alleles from multiple parents in a four-way MAGIC rice population publication-title: Theor Appl Genet doi: 10.1007/s00122-019-03440-y – volume: 16 start-page: 102 year: 2018 ident: CR18 article-title: Genome sequencing of rice subspecies and genetic analysis of recombinant lines reveals regional yield- and quality-associated loci publication-title: BMC Biol doi: 10.1186/s12915-018-0572-x – volume: 5 start-page: 2961 year: 2015 end-page: 2965 ident: CR35 article-title: QTL mapping in crop plants: principles and applications publication-title: Int J Dev Res – volume: 5 start-page: 371 year: 2004 end-page: 377 ident: CR6 article-title: Analysis of digenic epistatic effects and QE interaction effects QTL controlling grain weight in rice publication-title: J Zhejiang Univ Sci doi: 10.1631/jzus.2004.0371 – volume: 180 start-page: 2077 year: 2019 end-page: 2090 ident: CR31 article-title: The PLATZ transcription factor GL6 affects grain length and number in rice publication-title: Plant Physiol doi: 10.1104/pp.18.01574 – volume: 2 start-page: 195 year: 2014 end-page: 212 ident: CR26 article-title: High-throughput SNP genotyping to accelerate crop improvement publication-title: Plant Breed Biotechnol doi: 10.9787/PBB.2014.2.3.195 – volume: 10 start-page: 565 year: 2009 end-page: 577 ident: CR20 article-title: The genetics of quantitative traits: challenges and prospects publication-title: Nat Rev Genet doi: 10.1038/nrg2612 – volume: 25 start-page: 1754 year: 2009 end-page: 1760 ident: CR15 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 19 start-page: 1068 year: 2009 end-page: 1076 ident: CR11 article-title: High-throughput genotyping by whole-genome resequencing publication-title: Genome Res doi: 10.1101/gr.089516.108 – volume: 7 start-page: 10914 year: 2017 ident: CR41 article-title: QTL mapping using an ultra-high-density SNP map reveals a major locus for grain yield in an elite rice restorer R998 publication-title: Sci Rep doi: 10.1038/s41598-017-10666-7 – volume: 110 start-page: 2775 year: 2013 ident: CR34 article-title: Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1213962110 – volume: 20 start-page: 1297 year: 2010 end-page: 1303 ident: CR22 article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res doi: 10.1101/gr.107524.110 – volume: 28 start-page: 458 year: 2001 end-page: 464 ident: CR42 article-title: Comparison of the detection of QTL for yield traits in different generations of a rice cross using two mapping approaches publication-title: Acta Genet Sin – volume: 107 start-page: 679 year: 2003 end-page: 690 ident: CR9 article-title: Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia publication-title: Theor Appl Genet doi: 10.1007/s00122-003-1269-1 – volume: 57 start-page: 1828 year: 2016 end-page: 1838 ident: CR23 article-title: Hd18, encoding histone acetylase related to Arabidopsis FLOWERING LOCUS D, is involved in the control of flowering time in rice publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcw105 – volume: 120 start-page: 875 year: 2010 end-page: 893 ident: CR25 article-title: A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice publication-title: Theor Appl Genet doi: 10.1007/s00122-009-1218-8 – volume: 16 start-page: 16 year: 2017 end-page: 26 ident: CR30 article-title: Validation of qGS10, a quantitative trait locus for grain size on the long arm of chromosome 10 in rice ( L.) publication-title: J Integr Agric doi: 10.1016/S2095-3119(16)61410-7 – volume: 23 start-page: 969 year: 2013 end-page: 971 ident: CR39 article-title: Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice publication-title: Cell Res doi: 10.1038/cr.2013.43 – volume: 105 start-page: 1137 year: 2003 end-page: 1145 ident: CR43 article-title: Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice publication-title: Theor Appl Genet doi: 10.1007/s00122-002-0974-5 – volume: 87 start-page: 267 year: 2019 end-page: 276 ident: CR13 article-title: Mapping of QTLs associated with lodging resistance in rice ( L.) using the recombinant inbred lines derived from two high yielding cultivars, Tachisugata and Hokuriku 193 publication-title: Plant Growth Regul doi: 10.1007/s10725-018-0468-3 – volume: 25 start-page: 3743 year: 2013 end-page: 3759 ident: CR19 article-title: Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture publication-title: Plant Cell doi: 10.1105/tpc.113.113639 – volume: 112 start-page: 1164 year: 2006 end-page: 1171 ident: CR5 article-title: GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein publication-title: Theor Appl Genet doi: 10.1007/s00122-006-0218-1 – volume: 145 start-page: 453 year: 1997 end-page: 465 ident: CR16 article-title: Epistasis for three grain yield components in rice ( L.) publication-title: Genetics – volume: 40 start-page: 761 year: 2008 end-page: 767 ident: CR37 article-title: Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice publication-title: Nat Genet doi: 10.1038/ng.143 – year: 2020 ident: CR40 article-title: QTL identification for salt tolerance related traits at the seedling stage in indica rice using a multi-parent advanced generation intercross (MAGIC) population publication-title: Plant Growth Regul doi: 10.1007/s10725-020-00644-x – volume: 4 start-page: 319 year: 2011 end-page: 330 ident: CR38 article-title: A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice publication-title: Mol Plant doi: 10.1093/mp/ssq070 – volume: 285 start-page: 151 year: 2019 end-page: 164 ident: CR8 article-title: Genetic dissection of grain elements predicted by hyperspectral imaging associated with yield-related traits in a wild barley NAM population publication-title: Plant Sci doi: 10.1016/j.plantsci.2019.05.008 – volume: 162 start-page: 1885 year: 2003 end-page: 1895 ident: CR10 article-title: Genetic dissection of an elite rice hybrid reveal that heterozygotes are not always advantageous for performance publication-title: Genetics – volume: 35 start-page: 206 year: 2015 ident: CR2 article-title: Fine mapping of DTH3b, a minor heading date QTL potentially functioning upstream of Hd3a and RFT1 under long-day conditions in rice publication-title: Mol Breed doi: 10.1007/s11032-015-0401-7 – volume: 44 start-page: 950 year: 2012 end-page: 954 ident: CR28 article-title: Control of grain size, shape and quality by OsSPL16 in rice publication-title: Nat Genet doi: 10.1038/ng.2327 – volume: 47 start-page: 944 year: 2015 end-page: 948 ident: CR29 article-title: Copy number variation at the GL7 locus contributes to grain size diversity in rice publication-title: Nat Genet doi: 10.1038/ng.3346 – volume: 309 start-page: 741 year: 2005 end-page: 745 ident: CR1 article-title: Cytokinin oxidase regulates rice grain production publication-title: Science doi: 10.1126/science.1113373 – volume: 422 start-page: 618 year: 2003 end-page: 621 ident: CR17 article-title: Control of tillering in rice publication-title: Nature doi: 10.1038/nature01518 – volume: 1 start-page: 72 year: 2008 end-page: 84 ident: CR21 article-title: Gene nomenclature system for rice publication-title: Rice doi: 10.1007/s12284-008-9004-9 – volume: 19 start-page: 11 year: 1986 end-page: 15 ident: CR4 article-title: A rapid DNA isolation procedure from small quantities of fresh leaf tissues publication-title: Phytochem Bull – volume: 11 start-page: 44 year: 2018 ident: 669_CR3 publication-title: Rice doi: 10.1186/s12284-018-0236-z – volume: 285 start-page: 151 year: 2019 ident: 669_CR8 publication-title: Plant Sci doi: 10.1016/j.plantsci.2019.05.008 – volume: 162 start-page: 1885 year: 2003 ident: 669_CR10 publication-title: Genetics – volume: 41 start-page: 494 year: 2009 ident: 669_CR12 publication-title: Nat Genet doi: 10.1038/ng.352 – volume: 133 start-page: 59 year: 2020 ident: 669_CR7 publication-title: Theor Appl Genet doi: 10.1007/s00122-019-03440-y – volume: 1 start-page: 72 year: 2008 ident: 669_CR21 publication-title: Rice doi: 10.1007/s12284-008-9004-9 – volume: 47 start-page: 944 year: 2015 ident: 669_CR29 publication-title: Nat Genet doi: 10.1038/ng.3346 – year: 2020 ident: 669_CR40 publication-title: Plant Growth Regul doi: 10.1007/s10725-020-00644-x – volume: 38 start-page: e164 year: 2010 ident: 669_CR27 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq603 – volume: 10 start-page: 565 year: 2009 ident: 669_CR20 publication-title: Nat Rev Genet doi: 10.1038/nrg2612 – volume: 5 start-page: 371 year: 2004 ident: 669_CR6 publication-title: J Zhejiang Univ Sci doi: 10.1631/jzus.2004.0371 – volume: 40 start-page: 761 year: 2008 ident: 669_CR37 publication-title: Nat Genet doi: 10.1038/ng.143 – volume: 7 start-page: 10914 year: 2017 ident: 669_CR41 publication-title: Sci Rep doi: 10.1038/s41598-017-10666-7 – volume: 23 start-page: 969 year: 2013 ident: 669_CR39 publication-title: Cell Res doi: 10.1038/cr.2013.43 – volume: 44 start-page: 950 year: 2012 ident: 669_CR28 publication-title: Nat Genet doi: 10.1038/ng.2327 – volume: 19 start-page: 1068 year: 2009 ident: 669_CR11 publication-title: Genome Res doi: 10.1101/gr.089516.108 – volume: 180 start-page: 2077 year: 2019 ident: 669_CR31 publication-title: Plant Physiol doi: 10.1104/pp.18.01574 – volume: 16 start-page: 102 year: 2018 ident: 669_CR18 publication-title: BMC Biol doi: 10.1186/s12915-018-0572-x – volume: 25 start-page: 3743 year: 2013 ident: 669_CR19 publication-title: Plant Cell doi: 10.1105/tpc.113.113639 – volume: 309 start-page: 741 year: 2005 ident: 669_CR1 publication-title: Science doi: 10.1126/science.1113373 – volume: 145 start-page: 453 year: 1997 ident: 669_CR16 publication-title: Genetics doi: 10.1093/genetics/145.2.453 – volume: 2 start-page: 195 year: 2014 ident: 669_CR26 publication-title: Plant Breed Biotechnol doi: 10.9787/PBB.2014.2.3.195 – volume: 112 start-page: 1164 year: 2006 ident: 669_CR5 publication-title: Theor Appl Genet doi: 10.1007/s00122-006-0218-1 – volume: 112 start-page: 76 year: 2015 ident: 669_CR24 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1421127112 – volume: 28 start-page: 458 year: 2001 ident: 669_CR42 publication-title: Acta Genet Sin – volume: 4 start-page: 319 year: 2011 ident: 669_CR38 publication-title: Mol Plant doi: 10.1093/mp/ssq070 – volume: 90 start-page: 89 year: 2020 ident: 669_CR36 publication-title: Plant Growth Regul doi: 10.1007/s10725-019-00549-4 – volume: 120 start-page: 875 year: 2010 ident: 669_CR25 publication-title: Theor Appl Genet doi: 10.1007/s00122-009-1218-8 – volume: 16 start-page: 16 year: 2017 ident: 669_CR30 publication-title: J Integr Agric doi: 10.1016/S2095-3119(16)61410-7 – volume: 87 start-page: 267 year: 2019 ident: 669_CR13 publication-title: Plant Growth Regul doi: 10.1007/s10725-018-0468-3 – volume: 13 start-page: 923 year: 2020 ident: 669_CR32 publication-title: Mol Plant doi: 10.1016/j.molp.2020.03.009 – volume: 19 start-page: 11 year: 1986 ident: 669_CR4 publication-title: Phytochem Bull – volume: 105 start-page: 1137 year: 2003 ident: 669_CR43 publication-title: Theor Appl Genet doi: 10.1007/s00122-002-0974-5 – volume: 25 start-page: 1754 year: 2009 ident: 669_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 5 start-page: 2961 year: 2015 ident: 669_CR35 publication-title: Int J Dev Res – volume: 107 start-page: 679 year: 2003 ident: 669_CR9 publication-title: Theor Appl Genet doi: 10.1007/s00122-003-1269-1 – volume: 20 start-page: 1297 year: 2010 ident: 669_CR22 publication-title: Genome Res doi: 10.1101/gr.107524.110 – volume: 57 start-page: 1828 year: 2016 ident: 669_CR23 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcw105 – volume: 42 start-page: 541 year: 2010 ident: 669_CR14 publication-title: Nat Genet doi: 10.1038/ng.591 – volume: 422 start-page: 618 year: 2003 ident: 669_CR17 publication-title: Nature doi: 10.1038/nature01518 – volume: 35 start-page: 206 year: 2015 ident: 669_CR2 publication-title: Mol Breed doi: 10.1007/s11032-015-0401-7 – volume: 110 start-page: 2775 year: 2013 ident: 669_CR34 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1213962110 |
SSID | ssj0008851 |
Score | 2.317364 |
Snippet | Rice is one of the most important food crops in the world. To discover the genetic basis of yield components in super hybrid rice Nei2You No.6, 386 recombinant... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105 |
SubjectTerms | Agriculture Biomedical and Life Sciences chromosome mapping Chromosomes Crop yield Density Gene mapping Gene sequencing Genetics genome Genomes Grain grain yield hybrids Inbreeding Life Sciences loci Mapping Original Paper panicles phenotypic variation Phenotypic variations Plant Anatomy/Development Plant breeding plant growth Plant Physiology Plant Sciences Quantitative trait loci quantitative traits Rice sequence analysis |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA4yfdAH8SdOp5zgmxbStEmzxykOERUEB3uRkiWpDrQbrj7sv_euazcVFXxOmtLkcvd9zX0Xxk6459I6wwNtEyQowqnAoGkEGYYObHCOl78Gbu_UVS--7st-JQqb1Nnu9ZFk6ak_id0SQWpiUkIr1Q7Q8S5L4u5oxT3RmftfrWVYV_RG7hdVUpmfx_gajhYY89uxaBltuhtsvYKJ0Jmt6yZb8vkWW-s8vVWlMvwWWzkfIbCbbrPH7rCUpgAiZKD8oNKFwf3DDSAihSnlqAFdBVFMgIKWg1EOBqhQceAof72YApoRqRnh1YxhmMPzlIRcQAWHdlive_lwcRVUtyYEFsFUEbStVtbz0BnpkEzIJOG0KyPkRVkYhdJrxBTKtbW2SP4yY-LMhtaryAnujffRLmvko9zvMbBaEL1TmREu5iYyXvLQDjw5Ad2WvsnCevJSW5UUp895SRfFkGnCU5zwtJzwVDTZ6fyZ8aygxp-9W_WapNXmmqQiRqeYCKRiTXY8b8ZtQWcdJvejd-yDSBTJnIplk53Va7kY4vc37v-v-wFbFZTlUv6UabFG8fbuDxGmFIOj0io_AIY02qQ priority: 102 providerName: Springer Nature |
Title | Finding new addictive QTL for yield traits based on a high-density genetic map in hybrid rice |
URI | https://link.springer.com/article/10.1007/s10725-020-00669-2 https://www.proquest.com/docview/2476372626 https://www.proquest.com/docview/2540499645 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8Nugd4mDY2RIFVnrS3zcJxYsd9mkrVDu0DbROV4GGKjO1sSJAUGh763-8uOK02abzkxU6snO_jd-e7M8BbEYRy3gpuXI4OivSaW2QNXqLpwAHvRRsa-HqqT2bZp3N1HgNui5hW2enEVlH72lGM_EhmKAm5RPz9YX7L6dYoOl2NV2hsQA9VsEHnq3c8Of32Y6WLjVFJ190b_cA0ls3E4rlcUnUyVVZrPeTyb9O0xpv_HJG2lmf6HJ5FyMhGD3v8Ap6Eage2R7_uYtuMsANPj2sEecuX8HN61ZapMETLjHKFWnXGvp99YYhO2ZLy1RhdC9EsGBkwz-qKWUZNi7mnXPZmyZClqLKR3dg5u6rY7yUVdTFqPvQKZtPJ2fiExxsUuENg1fChM9oFkXirPDoWKs8FSWiKPlKZpIkKBvGF9kNjHDqCpbVZ6RIXdOqlCDaEdBc2q7oKe8CckeTq6dJKnwmb2qBE4i4DKQQzVKEPSUe8wsX24vQ718W6MTIRvECCFy3BC9mHd6t35g_NNR6dfdjtSREFbVGs2aIPb1bDKCJ07mGrUN_jHESl6NjpTPXhfbeX60_8f8X9x1c8gC1JGS5tQOYQNpu7-_AaIUpzOYDe6OPF58kg8uMANsZ6jM-ZHP0BiAfiiQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDgl4QDCYKBtgJHgCC8eJHfcBoQ1WdayrAHXSXlDm2Q5MgqRbM6H8U_yN3KVJK5DY257t2Mr5Pn5n3wfACxGEct4KblyKDor0mltkDZ6j6cAB70VzNXA40aOj5OOxOl6D310uDIVVdjqxUdS-dHRH_kYmKAmpRPz9bnbOqWsUva52LTQWbHEQ6l_oss3f7n_A830p5XBv-n7E264C3CHYqPjAGe2CiLxVHsG2SlNBXBuj35BHcaSCQZur_cAYh85Rbm2Su8gFHXspgg0hxnVvwHoSoyvTg_XdvcmnL0vdb4yKumri6HfGbZpOm6yXSsqGpkxurQdc_m0KV_j2nyfZxtIN78HdFqKynQVP3Ye1UGzAnZ1vF22ZjrABN3dLBJX1A_g6PGvSYhiic0axSY36ZJ-nY4ZomNUUH8eoDUU1Z2QwPSsLZhkVSeaeYuermiELUyYl-2ln7Kxg32tKImNU7OghHF0LbTehV5RFeATMGUmupc6t9ImwsQ1KRO40kAIyAxX6EHXEy1xbzpx-50e2KsRMBM-Q4FlD8Ez24dXym9mimMeVs7e7M8lawZ5nKzbsw_PlMIokvbPYIpSXOAdRMDqSOlF9eN2d5WqJ_-_4-Oodn8Gt0fRwnI33JwdbcFtSdE1zGbQNveriMjxBeFSdPm15ksHJdYvBH_2cGx8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VLUJwQFBALBQwEpzAquPEjveAUEu7amlZFdRKvaDg2g5UgmTppkL5a_w6ZrLOrkCit57t2Mp4Ht_Y8wB4IYJQzlvBjcvRQZFec4uswUs0HTjgveiuBj5M9O5x9v5EnazA7z4XhsIqe53YKWpfO7oj35AZSkIuEX9vlDEs4nB7_Hb6k1MHKXpp7dtpzFlkP7S_0H2bvdnbxrN-KeV45-jdLo8dBrhD4NHwkTPaBZF4qzwCb5Xngjg4RR-iTNJEBYP2V_uRMQ4dpdLarHSJCzr1UgQbQorrXoPVHL0iMYDVrZ3J4aeFHTBGJX1lcfRB05iyExP3ckmZ0ZTVrfWIy7_N4hLr_vM821m98R24HeEq25zz111YCdUa3Nr8eh5LdoQ1uL5VI8Bs78Hn8VmXIsMQqTOKU-pUKft4dMAQGbOWYuUYtaRoZoyMp2d1xSyjgsncUxx90zJkZ8qqZD_slJ1V7FtLCWWMCh_dh-Mroe0DGFR1FR4Cc0aSm6lLK30mbGqDEok7DaSMzEiFISQ98QoXS5vT73wvlkWZieAFErzoCF7IIbxafDOdF_a4dPZ6fyZFFPJZsWTJITxfDKN40puLrUJ9gXMQEaNTqTM1hNf9WS6X-P-Ojy7f8RncQPYvDvYm-4_hpqRAm-5eaB0GzflFeIJIqTl9GlmSwZerloI_YzkfVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+new+addictive+QTL+for+yield+traits+based+on+a+high-density+genetic+map+in+hybrid+rice&rft.jtitle=Plant+growth+regulation&rft.au=Zhang%2C+Miao&rft.au=Zhou%2C+Zheng-ping&rft.au=Chen%2C+Yu-yu&rft.au=Cao%2C+Yong-run&rft.date=2021-01-01&rft.issn=0167-6903&rft.volume=93&rft.issue=1+p.105-115&rft.spage=105&rft.epage=115&rft_id=info:doi/10.1007%2Fs10725-020-00669-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6903&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6903&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6903&client=summon |