Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics

Divalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the abundance of these elements and their lower tendency to form dendrites, but practical demonstrations are lacking. Hou et al . used methoxyethyl amine chelants in which the ligands attach...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 374; no. 6564; pp. 172 - 178
Main Authors Hou, Singyuk, Ji, Xiao, Gaskell, Karen, Wang, Peng-fei, Wang, Luning, Xu, Jijian, Sun, Ruimin, Borodin, Oleg, Wang, Chunsheng
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 08.10.2021
AAAS
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Divalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the abundance of these elements and their lower tendency to form dendrites, but practical demonstrations are lacking. Hou et al . used methoxyethyl amine chelants in which the ligands attach to the metal atom in more than one place, modulating the solvation structure of the metal ions to enable a facile charge-transfer reaction (see the Perspective by Zuo and Yin). In full battery cells, these components lead to high efficiency and energy density. Theoretical calculations were used to understand the solvation structures. —MSL Chelating ligands promote fast charge-transfer kinetics for Mg and Ca batteries with substantially lowered overpotentials. Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. Yet, they are plagued by sluggish kinetics and parasitic reactions. We found a family of methoxyethyl-amine chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible cycling of the RMB and RCB full cells with energy densities of 412 and 471 watt-hours per kilogram, respectively. This work provides a versatile electrolyte design strategy for divalent metal batteries.
AbstractList Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. Yet, they are plagued by sluggish kinetics and parasitic reactions. We found a family of methoxyethyl-amine chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible cycling of the RMB and RCB full cells with energy densities of 412 and 471 watt-hours per kilogram, respectively. This work provides a versatile electrolyte design strategy for divalent metal batteries.
Divalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the abundance of these elements and their lower tendency to form dendrites, but practical demonstrations are lacking. Hou et al . used methoxyethyl amine chelants in which the ligands attach to the metal atom in more than one place, modulating the solvation structure of the metal ions to enable a facile charge-transfer reaction (see the Perspective by Zuo and Yin). In full battery cells, these components lead to high efficiency and energy density. Theoretical calculations were used to understand the solvation structures. —MSL Chelating ligands promote fast charge-transfer kinetics for Mg and Ca batteries with substantially lowered overpotentials. Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. Yet, they are plagued by sluggish kinetics and parasitic reactions. We found a family of methoxyethyl-amine chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible cycling of the RMB and RCB full cells with energy densities of 412 and 471 watt-hours per kilogram, respectively. This work provides a versatile electrolyte design strategy for divalent metal batteries.
Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. Yet, they are plagued by sluggish kinetics and parasitic reactions. We found a family of methoxyethyl-amine chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible cycling of the RMB and RCB full cells with energy densities of 412 and 471 watt-hours per kilogram, respectively. This work provides a versatile electrolyte design strategy for divalent metal batteries.Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. Yet, they are plagued by sluggish kinetics and parasitic reactions. We found a family of methoxyethyl-amine chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible cycling of the RMB and RCB full cells with energy densities of 412 and 471 watt-hours per kilogram, respectively. This work provides a versatile electrolyte design strategy for divalent metal batteries.
Efficient, rechargeable Mg and Ca batteries Divalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the abundance of these elements and their lower tendency to form dendrites, but practical demonstrations are lacking. Houet al. used methoxyethyl amine chelants in which the ligands attach to the metal atom in more than one place, modulating the solvation structure of the metal ions to enable a facile charge-transfer reaction (see the Perspective by Zuo and Yin). In full battery cells, these components lead to high efficiency and energy density. Theoretical calculations were used to understand the solvation structures. —MSL
Efficient, rechargeable Mg and Ca batteriesDivalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the abundance of these elements and their lower tendency to form dendrites, but practical demonstrations are lacking. Hou et al. used methoxyethyl amine chelants in which the ligands attach to the metal atom in more than one place, modulating the solvation structure of the metal ions to enable a facile charge-transfer reaction (see the Perspective by Zuo and Yin). In full battery cells, these components lead to high efficiency and energy density. Theoretical calculations were used to understand the solvation structures. —MSLRechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. Yet, they are plagued by sluggish kinetics and parasitic reactions. We found a family of methoxyethyl-amine chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible cycling of the RMB and RCB full cells with energy densities of 412 and 471 watt-hours per kilogram, respectively. This work provides a versatile electrolyte design strategy for divalent metal batteries.
Author Wang, Chunsheng
Gaskell, Karen
Hou, Singyuk
Sun, Ruimin
Ji, Xiao
Wang, Peng-fei
Wang, Luning
Xu, Jijian
Borodin, Oleg
Author_xml – sequence: 1
  givenname: Singyuk
  orcidid: 0000-0002-6444-7632
  surname: Hou
  fullname: Hou, Singyuk
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA
– sequence: 2
  givenname: Xiao
  orcidid: 0000-0002-7043-5945
  surname: Ji
  fullname: Ji, Xiao
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA
– sequence: 3
  givenname: Karen
  orcidid: 0000-0003-4389-5994
  surname: Gaskell
  fullname: Gaskell, Karen
  organization: Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
– sequence: 4
  givenname: Peng-fei
  orcidid: 0000-0001-9882-5059
  surname: Wang
  fullname: Wang, Peng-fei
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA
– sequence: 5
  givenname: Luning
  orcidid: 0000-0002-6656-7013
  surname: Wang
  fullname: Wang, Luning
  organization: Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
– sequence: 6
  givenname: Jijian
  orcidid: 0000-0001-7727-0488
  surname: Xu
  fullname: Xu, Jijian
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA
– sequence: 7
  givenname: Ruimin
  orcidid: 0000-0002-4464-1016
  surname: Sun
  fullname: Sun, Ruimin
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA
– sequence: 8
  givenname: Oleg
  orcidid: 0000-0002-9428-5291
  surname: Borodin
  fullname: Borodin, Oleg
  organization: Battery Science Branch, Sensors and Electron Devices Directorate, US Army Combat Capabilities Development Command Army Research Laboratory, Adelphi, MD 20783, USA
– sequence: 9
  givenname: Chunsheng
  orcidid: 0000-0002-8626-6381
  surname: Wang
  fullname: Wang, Chunsheng
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34618574$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1980726$$D View this record in Osti.gov
BookMark eNp1kb1vFDEQxS0URC6Bmg6toKHZxB_rXbtEUSBIkSgSamvsHd857NnB9gWFvx7DXZpIVJZmfu_J894JOYopIiFvGT1jjI_nxQWMDs_AroWWwwuyYlTLXnMqjsiKUjH2ik7ymJyUckdp22nxihyLYWRKTsOKpJu0PEANKXZlg1A3XcaU1xDD7_0UI9gFSzeHB1gw1m6LFZbOQq2YQ1v8Ck3kodQuxDby4ELbuw3kNXY1Qywec_cjRKzBldfkpYel4JvDe0q-f768vbjqr799-Xrx6bp3QvLaa5g8G51VkslZDnZmVM3SW0uZ88yPXrnJssmOyoIcuEarHTQE50GgQC1Oyfu9byo1mBZTRbdxKUZ01TDdQuFjgz7uofucfu6wVLMNxeGyQMS0K4ZLRUfN2cAb-uEZepd2ObYTTDNSVPFBika9O1A7u8XZ3OewhfxonvJugNwDLqdSMnrTfvYv6JZUWAyj5m-v5tCrOfTadOfPdE_W_1P8AXPbqno
CitedBy_id crossref_primary_10_1021_acs_nanolett_4c06433
crossref_primary_10_1038_s41586_023_06949_x
crossref_primary_10_1002_adma_202108114
crossref_primary_10_1016_j_ensm_2022_09_021
crossref_primary_10_1002_adma_202300886
crossref_primary_10_1002_advs_202401536
crossref_primary_10_1088_2515_7655_ac71cb
crossref_primary_10_1016_j_cej_2023_142433
crossref_primary_10_1002_adma_202309339
crossref_primary_10_1016_j_cej_2023_141345
crossref_primary_10_1002_ange_202205187
crossref_primary_10_1016_j_jechem_2024_11_041
crossref_primary_10_1016_j_cej_2023_144738
crossref_primary_10_1016_j_jpowsour_2024_234780
crossref_primary_10_1016_j_cej_2023_141901
crossref_primary_10_1016_j_enchem_2022_100089
crossref_primary_10_1039_D3CP01537H
crossref_primary_10_1002_batt_202400418
crossref_primary_10_1039_D2QI02024F
crossref_primary_10_1002_anie_202308561
crossref_primary_10_1002_smtd_202301109
crossref_primary_10_1021_acsaem_3c03261
crossref_primary_10_1002_jcc_27229
crossref_primary_10_1002_aenm_202405253
crossref_primary_10_1002_anie_202415942
crossref_primary_10_1002_adma_202201339
crossref_primary_10_1002_batt_202300003
crossref_primary_10_1002_adfm_202425517
crossref_primary_10_1021_acsenergylett_4c02418
crossref_primary_10_1039_D4EE04478A
crossref_primary_10_1016_j_cej_2025_159445
crossref_primary_10_1021_acsenergylett_4c03504
crossref_primary_10_1021_acsnano_4c03968
crossref_primary_10_1016_j_ensm_2022_09_033
crossref_primary_10_1021_acsaem_2c01767
crossref_primary_10_1021_acs_chemrev_1c00904
crossref_primary_10_1016_j_matt_2024_03_008
crossref_primary_10_1039_D4EE00367E
crossref_primary_10_1016_j_est_2024_113890
crossref_primary_10_1002_ange_202210522
crossref_primary_10_1016_j_apsusc_2022_155843
crossref_primary_10_1002_aenm_202300626
crossref_primary_10_1002_anie_202417450
crossref_primary_10_1016_j_ensm_2024_103957
crossref_primary_10_1016_j_jma_2022_04_001
crossref_primary_10_1016_j_nanoen_2022_107696
crossref_primary_10_1002_advs_202106107
crossref_primary_10_1039_D5QI00310E
crossref_primary_10_1002_adfm_202301909
crossref_primary_10_1002_aenm_202203729
crossref_primary_10_1016_j_nanoen_2024_110292
crossref_primary_10_1016_j_compositesb_2024_112107
crossref_primary_10_1002_advs_202407410
crossref_primary_10_1002_smll_202401215
crossref_primary_10_1039_D3EE04350A
crossref_primary_10_1002_anie_202407770
crossref_primary_10_1002_ange_202214796
crossref_primary_10_1002_anie_202409826
crossref_primary_10_1016_j_cej_2023_148193
crossref_primary_10_1016_j_ensm_2024_103943
crossref_primary_10_1016_j_jpowsour_2022_231724
crossref_primary_10_1021_acsenergylett_2c01838
crossref_primary_10_1007_s10853_023_09313_6
crossref_primary_10_1021_acsnano_2c05745
crossref_primary_10_1021_jacs_3c13627
crossref_primary_10_1016_j_jma_2024_04_010
crossref_primary_10_1002_ange_202401818
crossref_primary_10_1002_smll_202308329
crossref_primary_10_1016_j_commatsci_2025_113791
crossref_primary_10_1016_j_ensm_2023_102939
crossref_primary_10_1038_s41467_022_33612_2
crossref_primary_10_1016_j_nxener_2025_100247
crossref_primary_10_1002_batt_202200318
crossref_primary_10_1016_j_cej_2023_145118
crossref_primary_10_1016_j_ensm_2022_02_047
crossref_primary_10_1016_j_jma_2023_10_001
crossref_primary_10_1063_5_0159107
crossref_primary_10_1039_D3TA01293J
crossref_primary_10_1016_j_cej_2022_139570
crossref_primary_10_1002_adfm_202414181
crossref_primary_10_1039_D3TA01794J
crossref_primary_10_1002_adfm_202210343
crossref_primary_10_1002_eem2_12749
crossref_primary_10_1016_j_cej_2024_151095
crossref_primary_10_1039_D4CS01072H
crossref_primary_10_1016_j_ensm_2023_102822
crossref_primary_10_1021_acsami_2c18477
crossref_primary_10_1038_s41467_024_47628_3
crossref_primary_10_1002_anie_202416582
crossref_primary_10_1016_j_cej_2022_140562
crossref_primary_10_1016_j_ensm_2022_08_014
crossref_primary_10_1016_j_ensm_2024_103816
crossref_primary_10_1016_j_electacta_2021_139786
crossref_primary_10_1002_ange_202415540
crossref_primary_10_1016_j_jechem_2023_02_038
crossref_primary_10_1021_acssuschemeng_3c01519
crossref_primary_10_1016_j_nxener_2023_100095
crossref_primary_10_1021_acs_jpcc_3c05757
crossref_primary_10_1002_anie_202313264
crossref_primary_10_1002_smll_202200418
crossref_primary_10_1016_j_electacta_2022_140213
crossref_primary_10_1002_adma_202203783
crossref_primary_10_1038_s41467_024_53796_z
crossref_primary_10_1002_adfm_202303067
crossref_primary_10_1016_j_cej_2023_148170
crossref_primary_10_1016_j_ensm_2024_103888
crossref_primary_10_1021_acsaem_2c00363
crossref_primary_10_1002_anie_202213416
crossref_primary_10_1016_j_jmst_2022_11_038
crossref_primary_10_1002_aenm_202301544
crossref_primary_10_1002_aenm_202202906
crossref_primary_10_1002_celc_202200585
crossref_primary_10_1039_D4EE02003K
crossref_primary_10_1002_ange_202416582
crossref_primary_10_1039_D4RA03923H
crossref_primary_10_1088_2515_7655_ad34fc
crossref_primary_10_1002_adma_202501538
crossref_primary_10_1038_s41467_025_56556_9
crossref_primary_10_1007_s40820_024_01495_1
crossref_primary_10_1002_anie_202215968
crossref_primary_10_1002_smll_202107853
crossref_primary_10_1016_j_chempr_2024_07_031
crossref_primary_10_1016_j_joule_2023_10_012
crossref_primary_10_1038_s41467_024_52949_4
crossref_primary_10_1021_jacs_2c01815
crossref_primary_10_1093_nsr_nwad220
crossref_primary_10_1016_j_jechem_2024_03_015
crossref_primary_10_1002_agt2_153
crossref_primary_10_1002_ange_202206471
crossref_primary_10_1002_adfm_202208735
crossref_primary_10_1002_adfm_202312564
crossref_primary_10_1021_acsnano_2c01571
crossref_primary_10_1002_aesr_202100192
crossref_primary_10_1016_j_mtener_2024_101510
crossref_primary_10_1021_acsami_3c06907
crossref_primary_10_1021_acsnano_3c05165
crossref_primary_10_1002_aenm_202301795
crossref_primary_10_1002_smll_202207502
crossref_primary_10_1039_D2EE03270H
crossref_primary_10_1021_acs_nanolett_2c02829
crossref_primary_10_1002_smll_202307396
crossref_primary_10_1021_acsnano_3c11033
crossref_primary_10_1126_science_abq3750
crossref_primary_10_1016_j_ccr_2022_214597
crossref_primary_10_1021_acsami_1c20893
crossref_primary_10_1021_acs_chemrev_4c00380
crossref_primary_10_1002_adfm_202200004
crossref_primary_10_1002_anie_202405428
crossref_primary_10_1016_j_mtener_2023_101485
crossref_primary_10_1002_ange_202302617
crossref_primary_10_1002_anie_202406511
crossref_primary_10_1002_appl_202200070
crossref_primary_10_1002_anie_202212780
crossref_primary_10_1002_ange_202215968
crossref_primary_10_1002_anie_202208291
crossref_primary_10_1021_acsami_2c11911
crossref_primary_10_1007_s11426_022_1397_2
crossref_primary_10_1021_acs_iecr_4c01846
crossref_primary_10_1021_acsnano_4c13312
crossref_primary_10_1039_D3EE02164E
crossref_primary_10_1039_D2EE02453E
crossref_primary_10_1016_j_apsusc_2024_159995
crossref_primary_10_1039_D3EE02803H
crossref_primary_10_1016_j_joule_2024_11_007
crossref_primary_10_1002_adfm_202306424
crossref_primary_10_1021_acsenergylett_3c02160
crossref_primary_10_1002_anie_202302617
crossref_primary_10_1021_acsaem_1c03778
crossref_primary_10_1002_ange_202406511
crossref_primary_10_1021_acs_langmuir_4c03528
crossref_primary_10_1016_j_est_2024_111450
crossref_primary_10_1002_ange_202213416
crossref_primary_10_1002_ange_202405428
crossref_primary_10_1016_j_jechem_2024_07_015
crossref_primary_10_1021_acs_chemmater_3c02408
crossref_primary_10_1016_j_coelec_2022_101030
crossref_primary_10_1021_acs_langmuir_3c02690
crossref_primary_10_1016_j_ensm_2022_07_012
crossref_primary_10_1002_aenm_202201608
crossref_primary_10_1021_acs_chemmater_4c01056
crossref_primary_10_1002_adfm_202417287
crossref_primary_10_1002_aenm_202402157
crossref_primary_10_1016_j_ensm_2022_12_041
crossref_primary_10_1021_acsnano_4c02108
crossref_primary_10_1021_acs_chemrev_3c00826
crossref_primary_10_1021_acsenergylett_4c02123
crossref_primary_10_1002_anie_202405846
crossref_primary_10_1016_j_jpowsour_2023_233205
crossref_primary_10_1002_ange_202413416
crossref_primary_10_1016_j_jma_2024_11_025
crossref_primary_10_1021_acsnano_3c13028
crossref_primary_10_1002_adfm_202210639
crossref_primary_10_1002_batt_202200256
crossref_primary_10_1016_j_cej_2025_160145
crossref_primary_10_1002_anie_202415540
crossref_primary_10_1021_acsami_2c08470
crossref_primary_10_1002_batt_202200011
crossref_primary_10_1002_adfm_202410406
crossref_primary_10_1002_ange_202304411
crossref_primary_10_1002_anie_202400837
crossref_primary_10_1002_adma_202403371
crossref_primary_10_1002_smll_202311587
crossref_primary_10_1007_s12598_022_02002_4
crossref_primary_10_1016_j_jechem_2024_04_016
crossref_primary_10_1039_D3EE02861E
crossref_primary_10_1016_j_ensm_2022_11_005
crossref_primary_10_1038_s41467_024_45347_3
crossref_primary_10_1002_ange_202406585
crossref_primary_10_1039_D4TA03765K
crossref_primary_10_1007_s10008_022_05329_1
crossref_primary_10_1021_acsnano_1c10253
crossref_primary_10_1002_adma_202204681
crossref_primary_10_1016_j_jechem_2022_05_046
crossref_primary_10_1016_j_jma_2023_08_009
crossref_primary_10_1039_D4NR03776F
crossref_primary_10_1002_adma_202417652
crossref_primary_10_1002_anie_202402206
crossref_primary_10_1002_ange_202212780
crossref_primary_10_1002_adfm_202314146
crossref_primary_10_1002_anie_202214796
crossref_primary_10_1021_acsaem_2c01488
crossref_primary_10_26599_NRE_2023_9120100
crossref_primary_10_1002_ange_202208291
crossref_primary_10_1002_batt_202200263
crossref_primary_10_1093_nsr_nwae238
crossref_primary_10_1039_D4EE01428F
crossref_primary_10_1021_acsenergylett_2c02525
crossref_primary_10_26599_NRE_2022_9120003
crossref_primary_10_1002_smll_202401857
crossref_primary_10_1016_j_scib_2022_07_002
crossref_primary_10_1021_acsaem_2c02371
crossref_primary_10_1021_acssuschemeng_3c06270
crossref_primary_10_3390_molecules28072948
crossref_primary_10_1039_D3SC03203E
crossref_primary_10_1002_anie_202206471
crossref_primary_10_1016_j_jcis_2024_06_151
crossref_primary_10_1016_j_jma_2022_11_005
crossref_primary_10_1039_D2TA03053E
crossref_primary_10_1039_D2EE03626F
crossref_primary_10_1039_D4EE01257G
crossref_primary_10_1021_acsnano_2c04135
crossref_primary_10_1039_D3TA07942B
crossref_primary_10_1002_smll_202202250
crossref_primary_10_1002_smtd_202201598
crossref_primary_10_1039_D2DT01106A
crossref_primary_10_1021_acs_nanolett_2c03710
crossref_primary_10_1002_aenm_202201718
crossref_primary_10_1002_aenm_202402041
crossref_primary_10_1002_ange_202417450
crossref_primary_10_1039_D2SC00267A
crossref_primary_10_1007_s12598_024_02883_7
crossref_primary_10_1016_j_ensm_2024_103786
crossref_primary_10_1021_acsenergylett_3c01959
crossref_primary_10_1002_adfm_202306190
crossref_primary_10_1016_j_jechem_2023_02_023
crossref_primary_10_1073_pnas_2309981121
crossref_primary_10_1039_D2EE02998G
crossref_primary_10_1002_ange_202313264
crossref_primary_10_1021_acsenergylett_1c02425
crossref_primary_10_1002_adfm_202301177
crossref_primary_10_1016_j_ensm_2023_102792
crossref_primary_10_1002_ange_202407770
crossref_primary_10_1002_adfm_202310449
crossref_primary_10_1039_D3SU00197K
crossref_primary_10_1016_j_jechem_2023_11_034
crossref_primary_10_1002_aenm_202401507
crossref_primary_10_1002_ange_202409826
crossref_primary_10_1016_j_jma_2023_09_021
crossref_primary_10_26599_NR_2025_94907274
crossref_primary_10_1002_adfm_202301974
crossref_primary_10_1039_D2EE03235J
crossref_primary_10_1002_ange_202415942
crossref_primary_10_1016_j_cej_2025_160376
crossref_primary_10_1016_j_ensm_2024_103539
crossref_primary_10_1002_anie_202401818
crossref_primary_10_1021_acs_jpclett_2c00770
crossref_primary_10_1002_aenm_202300682
crossref_primary_10_1021_acsami_4c01826
crossref_primary_10_1002_adfm_202208230
crossref_primary_10_1002_ange_202402206
crossref_primary_10_1021_acsaem_3c01159
crossref_primary_10_1039_D3NR04700H
crossref_primary_10_1002_anie_202406585
crossref_primary_10_1016_j_enrev_2022_100005
crossref_primary_10_1002_adma_202208289
crossref_primary_10_1016_j_jma_2022_09_004
crossref_primary_10_1007_s40843_022_2084_x
crossref_primary_10_1039_D2CP03976A
crossref_primary_10_3390_ma14237488
crossref_primary_10_1002_adfm_202419656
crossref_primary_10_1016_j_jcis_2025_02_156
crossref_primary_10_1007_s11426_024_2195_2
crossref_primary_10_1016_j_ensm_2023_103141
crossref_primary_10_1002_ange_202400837
crossref_primary_10_1360_SSC_2023_0191
crossref_primary_10_1038_s41893_023_01172_y
crossref_primary_10_1016_j_jechem_2022_02_022
crossref_primary_10_1002_smll_202405568
crossref_primary_10_1007_s12209_022_00348_5
crossref_primary_10_1002_smll_202200009
crossref_primary_10_1016_j_electacta_2022_141498
crossref_primary_10_1016_j_ensm_2024_103918
crossref_primary_10_1002_aenm_202203168
crossref_primary_10_1039_D4TA04469J
crossref_primary_10_2139_ssrn_4164978
crossref_primary_10_1016_j_jpowsour_2024_234204
crossref_primary_10_1002_ange_202405846
crossref_primary_10_1016_j_scib_2023_07_027
crossref_primary_10_1016_j_jcis_2025_02_026
crossref_primary_10_1002_anie_202304411
crossref_primary_10_1021_acsaem_2c01048
crossref_primary_10_1038_s41563_022_01381_4
crossref_primary_10_1021_jacs_4c07707
crossref_primary_10_1038_s41929_023_01073_5
crossref_primary_10_5796_denkikagaku_24_TE0004
crossref_primary_10_1002_advs_202207563
crossref_primary_10_1002_ange_202308561
crossref_primary_10_1007_s13369_022_07597_5
crossref_primary_10_1039_D3EE02450D
crossref_primary_10_1039_D2TA02795J
crossref_primary_10_1002_anie_202413416
crossref_primary_10_1016_j_ensm_2023_102863
crossref_primary_10_1016_j_chempr_2023_03_021
crossref_primary_10_1016_j_cej_2024_157793
crossref_primary_10_1016_j_ensm_2023_103153
crossref_primary_10_1021_acsnano_3c07611
crossref_primary_10_1039_D4CS00557K
crossref_primary_10_1021_acsaem_2c02847
crossref_primary_10_1016_j_jma_2023_11_008
crossref_primary_10_1021_acsenergylett_4c00363
crossref_primary_10_1002_anie_202205187
crossref_primary_10_1002_anie_202301934
crossref_primary_10_1007_s11581_024_05549_7
crossref_primary_10_1016_j_electacta_2023_143508
crossref_primary_10_2139_ssrn_4010375
crossref_primary_10_3389_fchem_2022_954592
crossref_primary_10_1002_anie_202210522
crossref_primary_10_1016_j_ensm_2022_08_046
crossref_primary_10_1016_j_ensm_2022_07_023
crossref_primary_10_1021_acs_jpclett_2c01032
crossref_primary_10_1002_adma_202415657
crossref_primary_10_1002_eem2_12792
crossref_primary_10_1126_science_abi6643
crossref_primary_10_1016_j_jechem_2022_12_011
crossref_primary_10_1002_aenm_202202602
crossref_primary_10_1002_adfm_202408535
crossref_primary_10_1038_s41560_023_01439_w
crossref_primary_10_1016_j_ensm_2022_03_046
crossref_primary_10_1016_j_est_2023_110101
crossref_primary_10_1021_acs_nanolett_4c01651
crossref_primary_10_1016_j_cej_2024_154393
crossref_primary_10_1002_aenm_202401154
crossref_primary_10_1016_j_joule_2023_12_022
crossref_primary_10_1002_aenm_202401706
crossref_primary_10_1002_adfm_202408662
crossref_primary_10_1016_j_nanoen_2024_109939
crossref_primary_10_1021_acs_jpcc_3c01452
crossref_primary_10_1002_ange_202301934
crossref_primary_10_1016_j_electacta_2024_143815
crossref_primary_10_1016_j_jmst_2023_01_054
crossref_primary_10_1002_smll_202306576
crossref_primary_10_1002_adma_202305087
Cites_doi 10.1146/annurev.physchem.012809.103324
10.1039/C2EE23686A
10.1021/acsami.8b02425
10.1039/C8EE03586E
10.1038/s41578-019-0166-4
10.1002/cber.19640970229
10.1021/acs.jpcc.5b08999
10.1021/jp068691u
10.1149/1.2085455
10.1039/C7TA02237A
10.1002/sia.2463
10.1073/pnas.0408037102
10.1021/cm034944+
10.1002/sia.1346
10.1021/ed070pA25.5
10.1021/la402391f
10.1021/acsomega.0c00594
10.1038/451652a
10.1021/om030452v
10.1021/jp011150e
10.1126/science.251.4996.919
10.1021/cr500049y
10.1021/acs.chemmater.5b03983
10.1016/j.jmgm.2005.12.005
10.1021/acs.jpclett.5b01219
10.1002/adma.200306592
10.1021/acsenergylett.9b01550
10.1021/acs.jpcb.7b00272
10.1016/j.apsusc.2010.10.051
10.3389/fchem.2019.00175
10.1038/s41560-020-00734-0
10.1039/C4CP03015J
10.1021/jacs.5b01004
10.1021/acs.nanolett.8b02854
10.1002/sia.740170508
10.1016/j.apcata.2013.12.039
10.1021/acs.jpclett.6b00384
10.1021/ja01625a089
10.1021/acs.jpcc.8b01752
10.1002/anie.201310317
10.1021/am405619v
10.1107/S0021889811038970
10.1016/S0022-0728(99)00146-1
10.1002/aenm.201602055
10.1038/ncomms4585
10.1021/acs.chemmater.6b03227
10.1346/CCMN.1986.0340503
10.1002/ejic.200390011
10.1021/acs.chemmater.7b00374
10.1016/j.jct.2010.09.008
10.1021/cr030203g
10.1021/cm9016497
10.1002/anie.201412202
10.1149/2.0641503jes
10.1063/1.1696792
10.1002/anie.201902009
10.1021/acs.jpcb.5b00339
10.1021/acs.chemmater.5b02342
10.1039/C6RA22816J
10.1016/B978-0-12-386984-5.10009-6
10.1002/adem.201500129
10.1038/s41557-018-0019-6
10.1021/acsenergylett.6b00145
10.1021/jp0686893
10.1039/C5CC04947D
10.1146/annurev.pc.15.100164.001103
10.1093/nar/gkx312
10.1126/science.aab1595
10.1021/acs.jpclett.0c02682
10.1021/acs.chemrev.6b00614
10.1039/C6RA11052E
10.1063/1.466711
10.1021/j100075a026
10.1021/jp061624f
10.1039/C9EE01699F
10.3390/ma10010075
10.1021/j100080a011
10.1021/acs.nanolett.5b01109
10.1021/acsenergylett.6b00356
10.1016/j.jcis.2004.05.028
10.1021/ja9621760
10.1021/cm0715489
ContentType Journal Article
Copyright Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
CorporateAuthor Univ. of Maryland, College Park, MD (United States)
CorporateAuthor_xml – name: Univ. of Maryland, College Park, MD (United States)
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
OTOTI
DOI 10.1126/science.abg3954
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 178
ExternalDocumentID 1980726
34618574
10_1126_science_abg3954
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
GX1
NPM
OK1
UIG
YCJ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
0B8
63O
6XO
ABPTK
ABQIS
AEUPB
AEXZC
AFOSN
AFUVZ
ANJGP
B-7
ESX
IGG
OTOTI
PK8
PQEST
VQA
XFK
YJ6
ZA5
ID FETCH-LOGICAL-c352t-9a7f16cb8515d54bd108d5fbb01cf1f6f8c7b17b68ba5429eb9ca08ded43e3e93
ISSN 0036-8075
1095-9203
IngestDate Mon Jun 12 04:06:51 EDT 2023
Fri Jul 11 03:16:47 EDT 2025
Fri Jul 25 19:12:19 EDT 2025
Thu Apr 03 06:53:19 EDT 2025
Tue Jul 01 00:23:51 EDT 2025
Thu Apr 24 22:55:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6564
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-9a7f16cb8515d54bd108d5fbb01cf1f6f8c7b17b68ba5429eb9ca08ded43e3e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
EE0008202
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
ORCID 0000-0002-6444-7632
0000-0002-4464-1016
0000-0002-6656-7013
0000-0002-7043-5945
0000-0001-9882-5059
0000-0001-7727-0488
0000-0003-4389-5994
0000-0002-9428-5291
0000-0002-8626-6381
0000000244641016
0000000343895994
0000000294285291
0000000286266381
0000000266567013
0000000264447632
0000000198825059
0000000270435945
0000000177270488
PMID 34618574
PQID 2638082453
PQPubID 1256
PageCount 7
ParticipantIDs osti_scitechconnect_1980726
proquest_miscellaneous_2580692142
proquest_journals_2638082453
pubmed_primary_34618574
crossref_citationtrail_10_1126_science_abg3954
crossref_primary_10_1126_science_abg3954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-08
2021-Oct-08
20211008
PublicationDateYYYYMMDD 2021-10-08
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2021
Publisher The American Association for the Advancement of Science
AAAS
Publisher_xml – name: The American Association for the Advancement of Science
– name: AAAS
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
Remizov A. L. (e_1_3_2_80_2) 1964; 34
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_81_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_79_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_77_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_82_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_2_2
e_1_3_2_72_2
e_1_3_2_70_2
34618557 - Science. 2021 Oct 8;374(6564):156
References_xml – ident: e_1_3_2_35_2
  doi: 10.1146/annurev.physchem.012809.103324
– ident: e_1_3_2_19_2
  doi: 10.1039/C2EE23686A
– ident: e_1_3_2_70_2
  doi: 10.1021/acsami.8b02425
– ident: e_1_3_2_7_2
  doi: 10.1039/C8EE03586E
– ident: e_1_3_2_4_2
  doi: 10.1038/s41578-019-0166-4
– ident: e_1_3_2_81_2
  doi: 10.1002/cber.19640970229
– ident: e_1_3_2_82_2
  doi: 10.1021/acs.jpcc.5b08999
– ident: e_1_3_2_85_2
  doi: 10.1021/jp068691u
– ident: e_1_3_2_10_2
  doi: 10.1149/1.2085455
– ident: e_1_3_2_27_2
  doi: 10.1039/C7TA02237A
– ident: e_1_3_2_67_2
  doi: 10.1002/sia.2463
– ident: e_1_3_2_49_2
  doi: 10.1073/pnas.0408037102
– ident: e_1_3_2_60_2
  doi: 10.1021/cm034944+
– ident: e_1_3_2_65_2
  doi: 10.1002/sia.1346
– ident: e_1_3_2_63_2
  doi: 10.1021/ed070pA25.5
– ident: e_1_3_2_14_2
  doi: 10.1021/la402391f
– ident: e_1_3_2_55_2
  doi: 10.1021/acsomega.0c00594
– volume: 34
  start-page: 3187
  year: 1964
  ident: e_1_3_2_80_2
  publication-title: Russ. J. Gen. Chem.
– ident: e_1_3_2_2_2
  doi: 10.1038/451652a
– ident: e_1_3_2_33_2
  doi: 10.1021/om030452v
– ident: e_1_3_2_56_2
– ident: e_1_3_2_41_2
  doi: 10.1021/jp011150e
– ident: e_1_3_2_38_2
  doi: 10.1126/science.251.4996.919
– ident: e_1_3_2_3_2
  doi: 10.1021/cr500049y
– ident: e_1_3_2_15_2
  doi: 10.1021/acs.chemmater.5b03983
– ident: e_1_3_2_52_2
  doi: 10.1016/j.jmgm.2005.12.005
– ident: e_1_3_2_18_2
  doi: 10.1021/acs.jpclett.5b01219
– ident: e_1_3_2_46_2
  doi: 10.1002/adma.200306592
– ident: e_1_3_2_44_2
  doi: 10.1021/acsenergylett.9b01550
– ident: e_1_3_2_50_2
  doi: 10.1021/acs.jpcb.7b00272
– ident: e_1_3_2_76_2
  doi: 10.1016/j.apsusc.2010.10.051
– ident: e_1_3_2_83_2
  doi: 10.3389/fchem.2019.00175
– ident: e_1_3_2_26_2
  doi: 10.1038/s41560-020-00734-0
– ident: e_1_3_2_8_2
  doi: 10.1039/C4CP03015J
– ident: e_1_3_2_34_2
  doi: 10.1021/jacs.5b01004
– ident: e_1_3_2_21_2
  doi: 10.1021/acs.nanolett.8b02854
– ident: e_1_3_2_64_2
  doi: 10.1002/sia.740170508
– ident: e_1_3_2_66_2
  doi: 10.1016/j.apcata.2013.12.039
– ident: e_1_3_2_17_2
  doi: 10.1021/acs.jpclett.6b00384
– ident: e_1_3_2_77_2
  doi: 10.1021/ja01625a089
– ident: e_1_3_2_59_2
  doi: 10.1021/acs.jpcc.8b01752
– ident: e_1_3_2_24_2
  doi: 10.1002/anie.201310317
– ident: e_1_3_2_22_2
  doi: 10.1021/am405619v
– ident: e_1_3_2_57_2
  doi: 10.1107/S0021889811038970
– ident: e_1_3_2_9_2
  doi: 10.1016/S0022-0728(99)00146-1
– ident: e_1_3_2_29_2
  doi: 10.1002/aenm.201602055
– ident: e_1_3_2_39_2
  doi: 10.1038/ncomms4585
– ident: e_1_3_2_69_2
  doi: 10.1021/acs.chemmater.6b03227
– ident: e_1_3_2_47_2
  doi: 10.1346/CCMN.1986.0340503
– ident: e_1_3_2_32_2
  doi: 10.1002/ejic.200390011
– ident: e_1_3_2_71_2
  doi: 10.1021/acs.chemmater.7b00374
– ident: e_1_3_2_78_2
  doi: 10.1016/j.jct.2010.09.008
– ident: e_1_3_2_6_2
  doi: 10.1021/cr030203g
– ident: e_1_3_2_11_2
  doi: 10.1021/cm9016497
– ident: e_1_3_2_25_2
  doi: 10.1002/anie.201412202
– ident: e_1_3_2_58_2
  doi: 10.1149/2.0641503jes
– ident: e_1_3_2_37_2
  doi: 10.1063/1.1696792
– ident: e_1_3_2_30_2
  doi: 10.1002/anie.201902009
– ident: e_1_3_2_86_2
  doi: 10.1021/acs.jpcb.5b00339
– ident: e_1_3_2_13_2
  doi: 10.1021/acs.chemmater.5b02342
– ident: e_1_3_2_23_2
  doi: 10.1039/C6RA22816J
– ident: e_1_3_2_61_2
  doi: 10.1016/B978-0-12-386984-5.10009-6
– ident: e_1_3_2_72_2
  doi: 10.1002/adem.201500129
– ident: e_1_3_2_31_2
  doi: 10.1038/s41557-018-0019-6
– ident: e_1_3_2_43_2
  doi: 10.1021/acsenergylett.6b00145
– ident: e_1_3_2_53_2
  doi: 10.1021/jp0686893
– ident: e_1_3_2_12_2
  doi: 10.1039/C5CC04947D
– ident: e_1_3_2_36_2
  doi: 10.1146/annurev.pc.15.100164.001103
– ident: e_1_3_2_51_2
  doi: 10.1093/nar/gkx312
– ident: e_1_3_2_75_2
– ident: e_1_3_2_74_2
  doi: 10.1126/science.aab1595
– ident: e_1_3_2_84_2
  doi: 10.1021/acs.jpclett.0c02682
– ident: e_1_3_2_5_2
  doi: 10.1021/acs.chemrev.6b00614
– ident: e_1_3_2_62_2
  doi: 10.1039/C6RA11052E
– ident: e_1_3_2_54_2
  doi: 10.1063/1.466711
– ident: e_1_3_2_79_2
  doi: 10.1021/j100075a026
– ident: e_1_3_2_73_2
  doi: 10.1021/jp061624f
– ident: e_1_3_2_45_2
  doi: 10.1039/C9EE01699F
– ident: e_1_3_2_68_2
  doi: 10.3390/ma10010075
– ident: e_1_3_2_40_2
  doi: 10.1021/j100080a011
– ident: e_1_3_2_20_2
  doi: 10.1021/acs.nanolett.5b01109
– ident: e_1_3_2_28_2
  doi: 10.1021/acsenergylett.6b00356
– ident: e_1_3_2_16_2
  doi: 10.1016/j.jcis.2004.05.028
– ident: e_1_3_2_48_2
  doi: 10.1021/ja9621760
– ident: e_1_3_2_42_2
  doi: 10.1021/cm0715489
– reference: 34618557 - Science. 2021 Oct 8;374(6564):156
SSID ssj0009593
Score 2.7145598
Snippet Divalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the abundance of these elements and their lower...
Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance...
Efficient, rechargeable Mg and Ca batteriesDivalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the...
Efficient, rechargeable Mg and Ca batteries Divalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 172
SubjectTerms Abundance
Calcium
Charge transfer
Dendrites
Electrolytic cells
Flux density
Kinetics
Lithium
Lithium-ion batteries
Magnesium
Metal ions
Metals
Rechargeable batteries
Science & Technology - Other Topics
Sheaths
Side reactions
Solvation
Title Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics
URI https://www.ncbi.nlm.nih.gov/pubmed/34618574
https://www.proquest.com/docview/2638082453
https://www.proquest.com/docview/2580692142
https://www.osti.gov/biblio/1980726
Volume 374
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZykZfytrdsnZDgz10BAdfZMd-TLeFUNgYrGV5M5Ist6FtXGLnofsp_bU7ulZhC2x7McaSL-T7cs7R0bkg9J6JsAIpRwO5rRkQwmnAwpgHUZUXAlQuj5hcKH75ms3Oyek8nfd6917U0rpjI_7zj3kl_4MqXANcZZbsPyDrHgoX4BzwhSMgDMe_wvh7c609qsNWytTL4Uo0Xm7lUKjEqHZYLeCtctP_RsjcR6ZqasISWXtha9p2qmzEqqbKga6qJwnZPQJsWrEaXoEl2tmoeGPIWpkABqrb9PGgdtGLEx1jYEMOzG2e_2HWrJUHFlTo3dqlDZ2qIIP5gjYuQIi2VzaXyE9g-2Ec3t_E8iKYioXvxohNHJ3WQlr0hrJrZBwmvmxOdAsfQ0KwPYknbCPd9Od3JeC1rRQjyi6SQheq9ihxe6M4kZBMFsMiD9rQxSjaoUdoJ4YlCMjQncnJp5PpRklnUyzKS8Oy79tFT-wTNkyefgOie_tyRpk1Z0_RnlmP4Ikm1z7qieUBeqw7lN4doH0DWIuPTYHyD89Q43iHNe_wJu-w4R22vMOKd9jxDkveYck77PEOa95hyztsefccnU8_n32cBaZxR8DBnu-Cgo7rKOMMrPm0SgmrojCv0pqxMOJ1VGd1zscsGrMsZ1T2SxOs4BSmiIokIhFF8gL1l81SvEIYFDlhglVgJxM4TSihBYvSOqYkr_JEDNDI_rYlN1XtZXOV61KtbuOsNLiUBpcBOnY33OqCLtunHkqw5GVZUJnLyDPelVGRh-M4G6Aji2FpZEJbxqDOwKgmaTJA79wwSGy5DUeXolnDnDQPs0KWOhyglxp79yWWMq-3jhyi3Ye_zxHqd6u1eAN2ccfeGoL-ArvYwLw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solvation+sheath+reorganization+enables+divalent+metal+batteries+with+fast+interfacial+charge+transfer+kinetics&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Hou%2C+Singyuk&rft.au=Ji%2C+Xiao&rft.au=Gaskell%2C+Karen&rft.au=Wang%2C+Peng-Fei&rft.date=2021-10-08&rft.eissn=1095-9203&rft.volume=374&rft.issue=6564&rft.spage=172&rft_id=info:doi/10.1126%2Fscience.abg3954&rft_id=info%3Apmid%2F34618574&rft.externalDocID=34618574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon