Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics
Divalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the abundance of these elements and their lower tendency to form dendrites, but practical demonstrations are lacking. Hou et al . used methoxyethyl amine chelants in which the ligands attach...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 374; no. 6564; pp. 172 - 178 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
08.10.2021
AAAS |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Divalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the abundance of these elements and their lower tendency to form dendrites, but practical demonstrations are lacking. Hou
et al
. used methoxyethyl amine chelants in which the ligands attach to the metal atom in more than one place, modulating the solvation structure of the metal ions to enable a facile charge-transfer reaction (see the Perspective by Zuo and Yin). In full battery cells, these components lead to high efficiency and energy density. Theoretical calculations were used to understand the solvation structures. —MSL
Chelating ligands promote fast charge-transfer kinetics for Mg and Ca batteries with substantially lowered overpotentials.
Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. Yet, they are plagued by sluggish kinetics and parasitic reactions. We found a family of methoxyethyl-amine chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible cycling of the RMB and RCB full cells with energy densities of 412 and 471 watt-hours per kilogram, respectively. This work provides a versatile electrolyte design strategy for divalent metal batteries. |
---|---|
AbstractList | Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. Yet, they are plagued by sluggish kinetics and parasitic reactions. We found a family of methoxyethyl-amine chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible cycling of the RMB and RCB full cells with energy densities of 412 and 471 watt-hours per kilogram, respectively. This work provides a versatile electrolyte design strategy for divalent metal batteries. Divalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the abundance of these elements and their lower tendency to form dendrites, but practical demonstrations are lacking. Hou et al . used methoxyethyl amine chelants in which the ligands attach to the metal atom in more than one place, modulating the solvation structure of the metal ions to enable a facile charge-transfer reaction (see the Perspective by Zuo and Yin). In full battery cells, these components lead to high efficiency and energy density. Theoretical calculations were used to understand the solvation structures. —MSL Chelating ligands promote fast charge-transfer kinetics for Mg and Ca batteries with substantially lowered overpotentials. Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. Yet, they are plagued by sluggish kinetics and parasitic reactions. We found a family of methoxyethyl-amine chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible cycling of the RMB and RCB full cells with energy densities of 412 and 471 watt-hours per kilogram, respectively. This work provides a versatile electrolyte design strategy for divalent metal batteries. Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. Yet, they are plagued by sluggish kinetics and parasitic reactions. We found a family of methoxyethyl-amine chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible cycling of the RMB and RCB full cells with energy densities of 412 and 471 watt-hours per kilogram, respectively. This work provides a versatile electrolyte design strategy for divalent metal batteries.Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. Yet, they are plagued by sluggish kinetics and parasitic reactions. We found a family of methoxyethyl-amine chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible cycling of the RMB and RCB full cells with energy densities of 412 and 471 watt-hours per kilogram, respectively. This work provides a versatile electrolyte design strategy for divalent metal batteries. Efficient, rechargeable Mg and Ca batteries Divalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the abundance of these elements and their lower tendency to form dendrites, but practical demonstrations are lacking. Houet al. used methoxyethyl amine chelants in which the ligands attach to the metal atom in more than one place, modulating the solvation structure of the metal ions to enable a facile charge-transfer reaction (see the Perspective by Zuo and Yin). In full battery cells, these components lead to high efficiency and energy density. Theoretical calculations were used to understand the solvation structures. —MSL Efficient, rechargeable Mg and Ca batteriesDivalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the abundance of these elements and their lower tendency to form dendrites, but practical demonstrations are lacking. Hou et al. used methoxyethyl amine chelants in which the ligands attach to the metal atom in more than one place, modulating the solvation structure of the metal ions to enable a facile charge-transfer reaction (see the Perspective by Zuo and Yin). In full battery cells, these components lead to high efficiency and energy density. Theoretical calculations were used to understand the solvation structures. —MSLRechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. Yet, they are plagued by sluggish kinetics and parasitic reactions. We found a family of methoxyethyl-amine chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible cycling of the RMB and RCB full cells with energy densities of 412 and 471 watt-hours per kilogram, respectively. This work provides a versatile electrolyte design strategy for divalent metal batteries. |
Author | Wang, Chunsheng Gaskell, Karen Hou, Singyuk Sun, Ruimin Ji, Xiao Wang, Peng-fei Wang, Luning Xu, Jijian Borodin, Oleg |
Author_xml | – sequence: 1 givenname: Singyuk orcidid: 0000-0002-6444-7632 surname: Hou fullname: Hou, Singyuk organization: Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA – sequence: 2 givenname: Xiao orcidid: 0000-0002-7043-5945 surname: Ji fullname: Ji, Xiao organization: Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA – sequence: 3 givenname: Karen orcidid: 0000-0003-4389-5994 surname: Gaskell fullname: Gaskell, Karen organization: Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA – sequence: 4 givenname: Peng-fei orcidid: 0000-0001-9882-5059 surname: Wang fullname: Wang, Peng-fei organization: Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA – sequence: 5 givenname: Luning orcidid: 0000-0002-6656-7013 surname: Wang fullname: Wang, Luning organization: Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA – sequence: 6 givenname: Jijian orcidid: 0000-0001-7727-0488 surname: Xu fullname: Xu, Jijian organization: Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA – sequence: 7 givenname: Ruimin orcidid: 0000-0002-4464-1016 surname: Sun fullname: Sun, Ruimin organization: Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA – sequence: 8 givenname: Oleg orcidid: 0000-0002-9428-5291 surname: Borodin fullname: Borodin, Oleg organization: Battery Science Branch, Sensors and Electron Devices Directorate, US Army Combat Capabilities Development Command Army Research Laboratory, Adelphi, MD 20783, USA – sequence: 9 givenname: Chunsheng orcidid: 0000-0002-8626-6381 surname: Wang fullname: Wang, Chunsheng organization: Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34618574$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1980726$$D View this record in Osti.gov |
BookMark | eNp1kb1vFDEQxS0URC6Bmg6toKHZxB_rXbtEUSBIkSgSamvsHd857NnB9gWFvx7DXZpIVJZmfu_J894JOYopIiFvGT1jjI_nxQWMDs_AroWWwwuyYlTLXnMqjsiKUjH2ik7ymJyUckdp22nxihyLYWRKTsOKpJu0PEANKXZlg1A3XcaU1xDD7_0UI9gFSzeHB1gw1m6LFZbOQq2YQ1v8Ck3kodQuxDby4ELbuw3kNXY1Qywec_cjRKzBldfkpYel4JvDe0q-f768vbjqr799-Xrx6bp3QvLaa5g8G51VkslZDnZmVM3SW0uZ88yPXrnJssmOyoIcuEarHTQE50GgQC1Oyfu9byo1mBZTRbdxKUZ01TDdQuFjgz7uofucfu6wVLMNxeGyQMS0K4ZLRUfN2cAb-uEZepd2ObYTTDNSVPFBika9O1A7u8XZ3OewhfxonvJugNwDLqdSMnrTfvYv6JZUWAyj5m-v5tCrOfTadOfPdE_W_1P8AXPbqno |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_4c06433 crossref_primary_10_1038_s41586_023_06949_x crossref_primary_10_1002_adma_202108114 crossref_primary_10_1016_j_ensm_2022_09_021 crossref_primary_10_1002_adma_202300886 crossref_primary_10_1002_advs_202401536 crossref_primary_10_1088_2515_7655_ac71cb crossref_primary_10_1016_j_cej_2023_142433 crossref_primary_10_1002_adma_202309339 crossref_primary_10_1016_j_cej_2023_141345 crossref_primary_10_1002_ange_202205187 crossref_primary_10_1016_j_jechem_2024_11_041 crossref_primary_10_1016_j_cej_2023_144738 crossref_primary_10_1016_j_jpowsour_2024_234780 crossref_primary_10_1016_j_cej_2023_141901 crossref_primary_10_1016_j_enchem_2022_100089 crossref_primary_10_1039_D3CP01537H crossref_primary_10_1002_batt_202400418 crossref_primary_10_1039_D2QI02024F crossref_primary_10_1002_anie_202308561 crossref_primary_10_1002_smtd_202301109 crossref_primary_10_1021_acsaem_3c03261 crossref_primary_10_1002_jcc_27229 crossref_primary_10_1002_aenm_202405253 crossref_primary_10_1002_anie_202415942 crossref_primary_10_1002_adma_202201339 crossref_primary_10_1002_batt_202300003 crossref_primary_10_1002_adfm_202425517 crossref_primary_10_1021_acsenergylett_4c02418 crossref_primary_10_1039_D4EE04478A crossref_primary_10_1016_j_cej_2025_159445 crossref_primary_10_1021_acsenergylett_4c03504 crossref_primary_10_1021_acsnano_4c03968 crossref_primary_10_1016_j_ensm_2022_09_033 crossref_primary_10_1021_acsaem_2c01767 crossref_primary_10_1021_acs_chemrev_1c00904 crossref_primary_10_1016_j_matt_2024_03_008 crossref_primary_10_1039_D4EE00367E crossref_primary_10_1016_j_est_2024_113890 crossref_primary_10_1002_ange_202210522 crossref_primary_10_1016_j_apsusc_2022_155843 crossref_primary_10_1002_aenm_202300626 crossref_primary_10_1002_anie_202417450 crossref_primary_10_1016_j_ensm_2024_103957 crossref_primary_10_1016_j_jma_2022_04_001 crossref_primary_10_1016_j_nanoen_2022_107696 crossref_primary_10_1002_advs_202106107 crossref_primary_10_1039_D5QI00310E crossref_primary_10_1002_adfm_202301909 crossref_primary_10_1002_aenm_202203729 crossref_primary_10_1016_j_nanoen_2024_110292 crossref_primary_10_1016_j_compositesb_2024_112107 crossref_primary_10_1002_advs_202407410 crossref_primary_10_1002_smll_202401215 crossref_primary_10_1039_D3EE04350A crossref_primary_10_1002_anie_202407770 crossref_primary_10_1002_ange_202214796 crossref_primary_10_1002_anie_202409826 crossref_primary_10_1016_j_cej_2023_148193 crossref_primary_10_1016_j_ensm_2024_103943 crossref_primary_10_1016_j_jpowsour_2022_231724 crossref_primary_10_1021_acsenergylett_2c01838 crossref_primary_10_1007_s10853_023_09313_6 crossref_primary_10_1021_acsnano_2c05745 crossref_primary_10_1021_jacs_3c13627 crossref_primary_10_1016_j_jma_2024_04_010 crossref_primary_10_1002_ange_202401818 crossref_primary_10_1002_smll_202308329 crossref_primary_10_1016_j_commatsci_2025_113791 crossref_primary_10_1016_j_ensm_2023_102939 crossref_primary_10_1038_s41467_022_33612_2 crossref_primary_10_1016_j_nxener_2025_100247 crossref_primary_10_1002_batt_202200318 crossref_primary_10_1016_j_cej_2023_145118 crossref_primary_10_1016_j_ensm_2022_02_047 crossref_primary_10_1016_j_jma_2023_10_001 crossref_primary_10_1063_5_0159107 crossref_primary_10_1039_D3TA01293J crossref_primary_10_1016_j_cej_2022_139570 crossref_primary_10_1002_adfm_202414181 crossref_primary_10_1039_D3TA01794J crossref_primary_10_1002_adfm_202210343 crossref_primary_10_1002_eem2_12749 crossref_primary_10_1016_j_cej_2024_151095 crossref_primary_10_1039_D4CS01072H crossref_primary_10_1016_j_ensm_2023_102822 crossref_primary_10_1021_acsami_2c18477 crossref_primary_10_1038_s41467_024_47628_3 crossref_primary_10_1002_anie_202416582 crossref_primary_10_1016_j_cej_2022_140562 crossref_primary_10_1016_j_ensm_2022_08_014 crossref_primary_10_1016_j_ensm_2024_103816 crossref_primary_10_1016_j_electacta_2021_139786 crossref_primary_10_1002_ange_202415540 crossref_primary_10_1016_j_jechem_2023_02_038 crossref_primary_10_1021_acssuschemeng_3c01519 crossref_primary_10_1016_j_nxener_2023_100095 crossref_primary_10_1021_acs_jpcc_3c05757 crossref_primary_10_1002_anie_202313264 crossref_primary_10_1002_smll_202200418 crossref_primary_10_1016_j_electacta_2022_140213 crossref_primary_10_1002_adma_202203783 crossref_primary_10_1038_s41467_024_53796_z crossref_primary_10_1002_adfm_202303067 crossref_primary_10_1016_j_cej_2023_148170 crossref_primary_10_1016_j_ensm_2024_103888 crossref_primary_10_1021_acsaem_2c00363 crossref_primary_10_1002_anie_202213416 crossref_primary_10_1016_j_jmst_2022_11_038 crossref_primary_10_1002_aenm_202301544 crossref_primary_10_1002_aenm_202202906 crossref_primary_10_1002_celc_202200585 crossref_primary_10_1039_D4EE02003K crossref_primary_10_1002_ange_202416582 crossref_primary_10_1039_D4RA03923H crossref_primary_10_1088_2515_7655_ad34fc crossref_primary_10_1002_adma_202501538 crossref_primary_10_1038_s41467_025_56556_9 crossref_primary_10_1007_s40820_024_01495_1 crossref_primary_10_1002_anie_202215968 crossref_primary_10_1002_smll_202107853 crossref_primary_10_1016_j_chempr_2024_07_031 crossref_primary_10_1016_j_joule_2023_10_012 crossref_primary_10_1038_s41467_024_52949_4 crossref_primary_10_1021_jacs_2c01815 crossref_primary_10_1093_nsr_nwad220 crossref_primary_10_1016_j_jechem_2024_03_015 crossref_primary_10_1002_agt2_153 crossref_primary_10_1002_ange_202206471 crossref_primary_10_1002_adfm_202208735 crossref_primary_10_1002_adfm_202312564 crossref_primary_10_1021_acsnano_2c01571 crossref_primary_10_1002_aesr_202100192 crossref_primary_10_1016_j_mtener_2024_101510 crossref_primary_10_1021_acsami_3c06907 crossref_primary_10_1021_acsnano_3c05165 crossref_primary_10_1002_aenm_202301795 crossref_primary_10_1002_smll_202207502 crossref_primary_10_1039_D2EE03270H crossref_primary_10_1021_acs_nanolett_2c02829 crossref_primary_10_1002_smll_202307396 crossref_primary_10_1021_acsnano_3c11033 crossref_primary_10_1126_science_abq3750 crossref_primary_10_1016_j_ccr_2022_214597 crossref_primary_10_1021_acsami_1c20893 crossref_primary_10_1021_acs_chemrev_4c00380 crossref_primary_10_1002_adfm_202200004 crossref_primary_10_1002_anie_202405428 crossref_primary_10_1016_j_mtener_2023_101485 crossref_primary_10_1002_ange_202302617 crossref_primary_10_1002_anie_202406511 crossref_primary_10_1002_appl_202200070 crossref_primary_10_1002_anie_202212780 crossref_primary_10_1002_ange_202215968 crossref_primary_10_1002_anie_202208291 crossref_primary_10_1021_acsami_2c11911 crossref_primary_10_1007_s11426_022_1397_2 crossref_primary_10_1021_acs_iecr_4c01846 crossref_primary_10_1021_acsnano_4c13312 crossref_primary_10_1039_D3EE02164E crossref_primary_10_1039_D2EE02453E crossref_primary_10_1016_j_apsusc_2024_159995 crossref_primary_10_1039_D3EE02803H crossref_primary_10_1016_j_joule_2024_11_007 crossref_primary_10_1002_adfm_202306424 crossref_primary_10_1021_acsenergylett_3c02160 crossref_primary_10_1002_anie_202302617 crossref_primary_10_1021_acsaem_1c03778 crossref_primary_10_1002_ange_202406511 crossref_primary_10_1021_acs_langmuir_4c03528 crossref_primary_10_1016_j_est_2024_111450 crossref_primary_10_1002_ange_202213416 crossref_primary_10_1002_ange_202405428 crossref_primary_10_1016_j_jechem_2024_07_015 crossref_primary_10_1021_acs_chemmater_3c02408 crossref_primary_10_1016_j_coelec_2022_101030 crossref_primary_10_1021_acs_langmuir_3c02690 crossref_primary_10_1016_j_ensm_2022_07_012 crossref_primary_10_1002_aenm_202201608 crossref_primary_10_1021_acs_chemmater_4c01056 crossref_primary_10_1002_adfm_202417287 crossref_primary_10_1002_aenm_202402157 crossref_primary_10_1016_j_ensm_2022_12_041 crossref_primary_10_1021_acsnano_4c02108 crossref_primary_10_1021_acs_chemrev_3c00826 crossref_primary_10_1021_acsenergylett_4c02123 crossref_primary_10_1002_anie_202405846 crossref_primary_10_1016_j_jpowsour_2023_233205 crossref_primary_10_1002_ange_202413416 crossref_primary_10_1016_j_jma_2024_11_025 crossref_primary_10_1021_acsnano_3c13028 crossref_primary_10_1002_adfm_202210639 crossref_primary_10_1002_batt_202200256 crossref_primary_10_1016_j_cej_2025_160145 crossref_primary_10_1002_anie_202415540 crossref_primary_10_1021_acsami_2c08470 crossref_primary_10_1002_batt_202200011 crossref_primary_10_1002_adfm_202410406 crossref_primary_10_1002_ange_202304411 crossref_primary_10_1002_anie_202400837 crossref_primary_10_1002_adma_202403371 crossref_primary_10_1002_smll_202311587 crossref_primary_10_1007_s12598_022_02002_4 crossref_primary_10_1016_j_jechem_2024_04_016 crossref_primary_10_1039_D3EE02861E crossref_primary_10_1016_j_ensm_2022_11_005 crossref_primary_10_1038_s41467_024_45347_3 crossref_primary_10_1002_ange_202406585 crossref_primary_10_1039_D4TA03765K crossref_primary_10_1007_s10008_022_05329_1 crossref_primary_10_1021_acsnano_1c10253 crossref_primary_10_1002_adma_202204681 crossref_primary_10_1016_j_jechem_2022_05_046 crossref_primary_10_1016_j_jma_2023_08_009 crossref_primary_10_1039_D4NR03776F crossref_primary_10_1002_adma_202417652 crossref_primary_10_1002_anie_202402206 crossref_primary_10_1002_ange_202212780 crossref_primary_10_1002_adfm_202314146 crossref_primary_10_1002_anie_202214796 crossref_primary_10_1021_acsaem_2c01488 crossref_primary_10_26599_NRE_2023_9120100 crossref_primary_10_1002_ange_202208291 crossref_primary_10_1002_batt_202200263 crossref_primary_10_1093_nsr_nwae238 crossref_primary_10_1039_D4EE01428F crossref_primary_10_1021_acsenergylett_2c02525 crossref_primary_10_26599_NRE_2022_9120003 crossref_primary_10_1002_smll_202401857 crossref_primary_10_1016_j_scib_2022_07_002 crossref_primary_10_1021_acsaem_2c02371 crossref_primary_10_1021_acssuschemeng_3c06270 crossref_primary_10_3390_molecules28072948 crossref_primary_10_1039_D3SC03203E crossref_primary_10_1002_anie_202206471 crossref_primary_10_1016_j_jcis_2024_06_151 crossref_primary_10_1016_j_jma_2022_11_005 crossref_primary_10_1039_D2TA03053E crossref_primary_10_1039_D2EE03626F crossref_primary_10_1039_D4EE01257G crossref_primary_10_1021_acsnano_2c04135 crossref_primary_10_1039_D3TA07942B crossref_primary_10_1002_smll_202202250 crossref_primary_10_1002_smtd_202201598 crossref_primary_10_1039_D2DT01106A crossref_primary_10_1021_acs_nanolett_2c03710 crossref_primary_10_1002_aenm_202201718 crossref_primary_10_1002_aenm_202402041 crossref_primary_10_1002_ange_202417450 crossref_primary_10_1039_D2SC00267A crossref_primary_10_1007_s12598_024_02883_7 crossref_primary_10_1016_j_ensm_2024_103786 crossref_primary_10_1021_acsenergylett_3c01959 crossref_primary_10_1002_adfm_202306190 crossref_primary_10_1016_j_jechem_2023_02_023 crossref_primary_10_1073_pnas_2309981121 crossref_primary_10_1039_D2EE02998G crossref_primary_10_1002_ange_202313264 crossref_primary_10_1021_acsenergylett_1c02425 crossref_primary_10_1002_adfm_202301177 crossref_primary_10_1016_j_ensm_2023_102792 crossref_primary_10_1002_ange_202407770 crossref_primary_10_1002_adfm_202310449 crossref_primary_10_1039_D3SU00197K crossref_primary_10_1016_j_jechem_2023_11_034 crossref_primary_10_1002_aenm_202401507 crossref_primary_10_1002_ange_202409826 crossref_primary_10_1016_j_jma_2023_09_021 crossref_primary_10_26599_NR_2025_94907274 crossref_primary_10_1002_adfm_202301974 crossref_primary_10_1039_D2EE03235J crossref_primary_10_1002_ange_202415942 crossref_primary_10_1016_j_cej_2025_160376 crossref_primary_10_1016_j_ensm_2024_103539 crossref_primary_10_1002_anie_202401818 crossref_primary_10_1021_acs_jpclett_2c00770 crossref_primary_10_1002_aenm_202300682 crossref_primary_10_1021_acsami_4c01826 crossref_primary_10_1002_adfm_202208230 crossref_primary_10_1002_ange_202402206 crossref_primary_10_1021_acsaem_3c01159 crossref_primary_10_1039_D3NR04700H crossref_primary_10_1002_anie_202406585 crossref_primary_10_1016_j_enrev_2022_100005 crossref_primary_10_1002_adma_202208289 crossref_primary_10_1016_j_jma_2022_09_004 crossref_primary_10_1007_s40843_022_2084_x crossref_primary_10_1039_D2CP03976A crossref_primary_10_3390_ma14237488 crossref_primary_10_1002_adfm_202419656 crossref_primary_10_1016_j_jcis_2025_02_156 crossref_primary_10_1007_s11426_024_2195_2 crossref_primary_10_1016_j_ensm_2023_103141 crossref_primary_10_1002_ange_202400837 crossref_primary_10_1360_SSC_2023_0191 crossref_primary_10_1038_s41893_023_01172_y crossref_primary_10_1016_j_jechem_2022_02_022 crossref_primary_10_1002_smll_202405568 crossref_primary_10_1007_s12209_022_00348_5 crossref_primary_10_1002_smll_202200009 crossref_primary_10_1016_j_electacta_2022_141498 crossref_primary_10_1016_j_ensm_2024_103918 crossref_primary_10_1002_aenm_202203168 crossref_primary_10_1039_D4TA04469J crossref_primary_10_2139_ssrn_4164978 crossref_primary_10_1016_j_jpowsour_2024_234204 crossref_primary_10_1002_ange_202405846 crossref_primary_10_1016_j_scib_2023_07_027 crossref_primary_10_1016_j_jcis_2025_02_026 crossref_primary_10_1002_anie_202304411 crossref_primary_10_1021_acsaem_2c01048 crossref_primary_10_1038_s41563_022_01381_4 crossref_primary_10_1021_jacs_4c07707 crossref_primary_10_1038_s41929_023_01073_5 crossref_primary_10_5796_denkikagaku_24_TE0004 crossref_primary_10_1002_advs_202207563 crossref_primary_10_1002_ange_202308561 crossref_primary_10_1007_s13369_022_07597_5 crossref_primary_10_1039_D3EE02450D crossref_primary_10_1039_D2TA02795J crossref_primary_10_1002_anie_202413416 crossref_primary_10_1016_j_ensm_2023_102863 crossref_primary_10_1016_j_chempr_2023_03_021 crossref_primary_10_1016_j_cej_2024_157793 crossref_primary_10_1016_j_ensm_2023_103153 crossref_primary_10_1021_acsnano_3c07611 crossref_primary_10_1039_D4CS00557K crossref_primary_10_1021_acsaem_2c02847 crossref_primary_10_1016_j_jma_2023_11_008 crossref_primary_10_1021_acsenergylett_4c00363 crossref_primary_10_1002_anie_202205187 crossref_primary_10_1002_anie_202301934 crossref_primary_10_1007_s11581_024_05549_7 crossref_primary_10_1016_j_electacta_2023_143508 crossref_primary_10_2139_ssrn_4010375 crossref_primary_10_3389_fchem_2022_954592 crossref_primary_10_1002_anie_202210522 crossref_primary_10_1016_j_ensm_2022_08_046 crossref_primary_10_1016_j_ensm_2022_07_023 crossref_primary_10_1021_acs_jpclett_2c01032 crossref_primary_10_1002_adma_202415657 crossref_primary_10_1002_eem2_12792 crossref_primary_10_1126_science_abi6643 crossref_primary_10_1016_j_jechem_2022_12_011 crossref_primary_10_1002_aenm_202202602 crossref_primary_10_1002_adfm_202408535 crossref_primary_10_1038_s41560_023_01439_w crossref_primary_10_1016_j_ensm_2022_03_046 crossref_primary_10_1016_j_est_2023_110101 crossref_primary_10_1021_acs_nanolett_4c01651 crossref_primary_10_1016_j_cej_2024_154393 crossref_primary_10_1002_aenm_202401154 crossref_primary_10_1016_j_joule_2023_12_022 crossref_primary_10_1002_aenm_202401706 crossref_primary_10_1002_adfm_202408662 crossref_primary_10_1016_j_nanoen_2024_109939 crossref_primary_10_1021_acs_jpcc_3c01452 crossref_primary_10_1002_ange_202301934 crossref_primary_10_1016_j_electacta_2024_143815 crossref_primary_10_1016_j_jmst_2023_01_054 crossref_primary_10_1002_smll_202306576 crossref_primary_10_1002_adma_202305087 |
Cites_doi | 10.1146/annurev.physchem.012809.103324 10.1039/C2EE23686A 10.1021/acsami.8b02425 10.1039/C8EE03586E 10.1038/s41578-019-0166-4 10.1002/cber.19640970229 10.1021/acs.jpcc.5b08999 10.1021/jp068691u 10.1149/1.2085455 10.1039/C7TA02237A 10.1002/sia.2463 10.1073/pnas.0408037102 10.1021/cm034944+ 10.1002/sia.1346 10.1021/ed070pA25.5 10.1021/la402391f 10.1021/acsomega.0c00594 10.1038/451652a 10.1021/om030452v 10.1021/jp011150e 10.1126/science.251.4996.919 10.1021/cr500049y 10.1021/acs.chemmater.5b03983 10.1016/j.jmgm.2005.12.005 10.1021/acs.jpclett.5b01219 10.1002/adma.200306592 10.1021/acsenergylett.9b01550 10.1021/acs.jpcb.7b00272 10.1016/j.apsusc.2010.10.051 10.3389/fchem.2019.00175 10.1038/s41560-020-00734-0 10.1039/C4CP03015J 10.1021/jacs.5b01004 10.1021/acs.nanolett.8b02854 10.1002/sia.740170508 10.1016/j.apcata.2013.12.039 10.1021/acs.jpclett.6b00384 10.1021/ja01625a089 10.1021/acs.jpcc.8b01752 10.1002/anie.201310317 10.1021/am405619v 10.1107/S0021889811038970 10.1016/S0022-0728(99)00146-1 10.1002/aenm.201602055 10.1038/ncomms4585 10.1021/acs.chemmater.6b03227 10.1346/CCMN.1986.0340503 10.1002/ejic.200390011 10.1021/acs.chemmater.7b00374 10.1016/j.jct.2010.09.008 10.1021/cr030203g 10.1021/cm9016497 10.1002/anie.201412202 10.1149/2.0641503jes 10.1063/1.1696792 10.1002/anie.201902009 10.1021/acs.jpcb.5b00339 10.1021/acs.chemmater.5b02342 10.1039/C6RA22816J 10.1016/B978-0-12-386984-5.10009-6 10.1002/adem.201500129 10.1038/s41557-018-0019-6 10.1021/acsenergylett.6b00145 10.1021/jp0686893 10.1039/C5CC04947D 10.1146/annurev.pc.15.100164.001103 10.1093/nar/gkx312 10.1126/science.aab1595 10.1021/acs.jpclett.0c02682 10.1021/acs.chemrev.6b00614 10.1039/C6RA11052E 10.1063/1.466711 10.1021/j100075a026 10.1021/jp061624f 10.1039/C9EE01699F 10.3390/ma10010075 10.1021/j100080a011 10.1021/acs.nanolett.5b01109 10.1021/acsenergylett.6b00356 10.1016/j.jcis.2004.05.028 10.1021/ja9621760 10.1021/cm0715489 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
CorporateAuthor | Univ. of Maryland, College Park, MD (United States) |
CorporateAuthor_xml | – name: Univ. of Maryland, College Park, MD (United States) |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 OTOTI |
DOI | 10.1126/science.abg3954 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 178 |
ExternalDocumentID | 1980726 34618574 10_1126_science_abg3954 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ GX1 NPM OK1 UIG YCJ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 0B8 63O 6XO ABPTK ABQIS AEUPB AEXZC AFOSN AFUVZ ANJGP B-7 ESX IGG OTOTI PK8 PQEST VQA XFK YJ6 ZA5 |
ID | FETCH-LOGICAL-c352t-9a7f16cb8515d54bd108d5fbb01cf1f6f8c7b17b68ba5429eb9ca08ded43e3e93 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Mon Jun 12 04:06:51 EDT 2023 Fri Jul 11 03:16:47 EDT 2025 Fri Jul 25 19:12:19 EDT 2025 Thu Apr 03 06:53:19 EDT 2025 Tue Jul 01 00:23:51 EDT 2025 Thu Apr 24 22:55:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6564 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c352t-9a7f16cb8515d54bd108d5fbb01cf1f6f8c7b17b68ba5429eb9ca08ded43e3e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 EE0008202 USDOE Office of Energy Efficiency and Renewable Energy (EERE) |
ORCID | 0000-0002-6444-7632 0000-0002-4464-1016 0000-0002-6656-7013 0000-0002-7043-5945 0000-0001-9882-5059 0000-0001-7727-0488 0000-0003-4389-5994 0000-0002-9428-5291 0000-0002-8626-6381 0000000244641016 0000000343895994 0000000294285291 0000000286266381 0000000266567013 0000000264447632 0000000198825059 0000000270435945 0000000177270488 |
PMID | 34618574 |
PQID | 2638082453 |
PQPubID | 1256 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1980726 proquest_miscellaneous_2580692142 proquest_journals_2638082453 pubmed_primary_34618574 crossref_citationtrail_10_1126_science_abg3954 crossref_primary_10_1126_science_abg3954 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-08 2021-Oct-08 20211008 |
PublicationDateYYYYMMDD | 2021-10-08 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2021 |
Publisher | The American Association for the Advancement of Science AAAS |
Publisher_xml | – name: The American Association for the Advancement of Science – name: AAAS |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 Remizov A. L. (e_1_3_2_80_2) 1964; 34 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_81_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_79_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_77_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_82_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 e_1_3_2_72_2 e_1_3_2_70_2 34618557 - Science. 2021 Oct 8;374(6564):156 |
References_xml | – ident: e_1_3_2_35_2 doi: 10.1146/annurev.physchem.012809.103324 – ident: e_1_3_2_19_2 doi: 10.1039/C2EE23686A – ident: e_1_3_2_70_2 doi: 10.1021/acsami.8b02425 – ident: e_1_3_2_7_2 doi: 10.1039/C8EE03586E – ident: e_1_3_2_4_2 doi: 10.1038/s41578-019-0166-4 – ident: e_1_3_2_81_2 doi: 10.1002/cber.19640970229 – ident: e_1_3_2_82_2 doi: 10.1021/acs.jpcc.5b08999 – ident: e_1_3_2_85_2 doi: 10.1021/jp068691u – ident: e_1_3_2_10_2 doi: 10.1149/1.2085455 – ident: e_1_3_2_27_2 doi: 10.1039/C7TA02237A – ident: e_1_3_2_67_2 doi: 10.1002/sia.2463 – ident: e_1_3_2_49_2 doi: 10.1073/pnas.0408037102 – ident: e_1_3_2_60_2 doi: 10.1021/cm034944+ – ident: e_1_3_2_65_2 doi: 10.1002/sia.1346 – ident: e_1_3_2_63_2 doi: 10.1021/ed070pA25.5 – ident: e_1_3_2_14_2 doi: 10.1021/la402391f – ident: e_1_3_2_55_2 doi: 10.1021/acsomega.0c00594 – volume: 34 start-page: 3187 year: 1964 ident: e_1_3_2_80_2 publication-title: Russ. J. Gen. Chem. – ident: e_1_3_2_2_2 doi: 10.1038/451652a – ident: e_1_3_2_33_2 doi: 10.1021/om030452v – ident: e_1_3_2_56_2 – ident: e_1_3_2_41_2 doi: 10.1021/jp011150e – ident: e_1_3_2_38_2 doi: 10.1126/science.251.4996.919 – ident: e_1_3_2_3_2 doi: 10.1021/cr500049y – ident: e_1_3_2_15_2 doi: 10.1021/acs.chemmater.5b03983 – ident: e_1_3_2_52_2 doi: 10.1016/j.jmgm.2005.12.005 – ident: e_1_3_2_18_2 doi: 10.1021/acs.jpclett.5b01219 – ident: e_1_3_2_46_2 doi: 10.1002/adma.200306592 – ident: e_1_3_2_44_2 doi: 10.1021/acsenergylett.9b01550 – ident: e_1_3_2_50_2 doi: 10.1021/acs.jpcb.7b00272 – ident: e_1_3_2_76_2 doi: 10.1016/j.apsusc.2010.10.051 – ident: e_1_3_2_83_2 doi: 10.3389/fchem.2019.00175 – ident: e_1_3_2_26_2 doi: 10.1038/s41560-020-00734-0 – ident: e_1_3_2_8_2 doi: 10.1039/C4CP03015J – ident: e_1_3_2_34_2 doi: 10.1021/jacs.5b01004 – ident: e_1_3_2_21_2 doi: 10.1021/acs.nanolett.8b02854 – ident: e_1_3_2_64_2 doi: 10.1002/sia.740170508 – ident: e_1_3_2_66_2 doi: 10.1016/j.apcata.2013.12.039 – ident: e_1_3_2_17_2 doi: 10.1021/acs.jpclett.6b00384 – ident: e_1_3_2_77_2 doi: 10.1021/ja01625a089 – ident: e_1_3_2_59_2 doi: 10.1021/acs.jpcc.8b01752 – ident: e_1_3_2_24_2 doi: 10.1002/anie.201310317 – ident: e_1_3_2_22_2 doi: 10.1021/am405619v – ident: e_1_3_2_57_2 doi: 10.1107/S0021889811038970 – ident: e_1_3_2_9_2 doi: 10.1016/S0022-0728(99)00146-1 – ident: e_1_3_2_29_2 doi: 10.1002/aenm.201602055 – ident: e_1_3_2_39_2 doi: 10.1038/ncomms4585 – ident: e_1_3_2_69_2 doi: 10.1021/acs.chemmater.6b03227 – ident: e_1_3_2_47_2 doi: 10.1346/CCMN.1986.0340503 – ident: e_1_3_2_32_2 doi: 10.1002/ejic.200390011 – ident: e_1_3_2_71_2 doi: 10.1021/acs.chemmater.7b00374 – ident: e_1_3_2_78_2 doi: 10.1016/j.jct.2010.09.008 – ident: e_1_3_2_6_2 doi: 10.1021/cr030203g – ident: e_1_3_2_11_2 doi: 10.1021/cm9016497 – ident: e_1_3_2_25_2 doi: 10.1002/anie.201412202 – ident: e_1_3_2_58_2 doi: 10.1149/2.0641503jes – ident: e_1_3_2_37_2 doi: 10.1063/1.1696792 – ident: e_1_3_2_30_2 doi: 10.1002/anie.201902009 – ident: e_1_3_2_86_2 doi: 10.1021/acs.jpcb.5b00339 – ident: e_1_3_2_13_2 doi: 10.1021/acs.chemmater.5b02342 – ident: e_1_3_2_23_2 doi: 10.1039/C6RA22816J – ident: e_1_3_2_61_2 doi: 10.1016/B978-0-12-386984-5.10009-6 – ident: e_1_3_2_72_2 doi: 10.1002/adem.201500129 – ident: e_1_3_2_31_2 doi: 10.1038/s41557-018-0019-6 – ident: e_1_3_2_43_2 doi: 10.1021/acsenergylett.6b00145 – ident: e_1_3_2_53_2 doi: 10.1021/jp0686893 – ident: e_1_3_2_12_2 doi: 10.1039/C5CC04947D – ident: e_1_3_2_36_2 doi: 10.1146/annurev.pc.15.100164.001103 – ident: e_1_3_2_51_2 doi: 10.1093/nar/gkx312 – ident: e_1_3_2_75_2 – ident: e_1_3_2_74_2 doi: 10.1126/science.aab1595 – ident: e_1_3_2_84_2 doi: 10.1021/acs.jpclett.0c02682 – ident: e_1_3_2_5_2 doi: 10.1021/acs.chemrev.6b00614 – ident: e_1_3_2_62_2 doi: 10.1039/C6RA11052E – ident: e_1_3_2_54_2 doi: 10.1063/1.466711 – ident: e_1_3_2_79_2 doi: 10.1021/j100075a026 – ident: e_1_3_2_73_2 doi: 10.1021/jp061624f – ident: e_1_3_2_45_2 doi: 10.1039/C9EE01699F – ident: e_1_3_2_68_2 doi: 10.3390/ma10010075 – ident: e_1_3_2_40_2 doi: 10.1021/j100080a011 – ident: e_1_3_2_20_2 doi: 10.1021/acs.nanolett.5b01109 – ident: e_1_3_2_28_2 doi: 10.1021/acsenergylett.6b00356 – ident: e_1_3_2_16_2 doi: 10.1016/j.jcis.2004.05.028 – ident: e_1_3_2_48_2 doi: 10.1021/ja9621760 – ident: e_1_3_2_42_2 doi: 10.1021/cm0715489 – reference: 34618557 - Science. 2021 Oct 8;374(6564):156 |
SSID | ssj0009593 |
Score | 2.7145598 |
Snippet | Divalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the abundance of these elements and their lower... Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance... Efficient, rechargeable Mg and Ca batteriesDivalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the... Efficient, rechargeable Mg and Ca batteries Divalent rechargeable metal batteries such as those based on magnesium and calcium are of interest because of the... |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 172 |
SubjectTerms | Abundance Calcium Charge transfer Dendrites Electrolytic cells Flux density Kinetics Lithium Lithium-ion batteries Magnesium Metal ions Metals Rechargeable batteries Science & Technology - Other Topics Sheaths Side reactions Solvation |
Title | Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34618574 https://www.proquest.com/docview/2638082453 https://www.proquest.com/docview/2580692142 https://www.osti.gov/biblio/1980726 |
Volume | 374 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZykZfytrdsnZDgz10BAdfZMd-TLeFUNgYrGV5M5Ist6FtXGLnofsp_bU7ulZhC2x7McaSL-T7cs7R0bkg9J6JsAIpRwO5rRkQwmnAwpgHUZUXAlQuj5hcKH75ms3Oyek8nfd6917U0rpjI_7zj3kl_4MqXANcZZbsPyDrHgoX4BzwhSMgDMe_wvh7c609qsNWytTL4Uo0Xm7lUKjEqHZYLeCtctP_RsjcR6ZqasISWXtha9p2qmzEqqbKga6qJwnZPQJsWrEaXoEl2tmoeGPIWpkABqrb9PGgdtGLEx1jYEMOzG2e_2HWrJUHFlTo3dqlDZ2qIIP5gjYuQIi2VzaXyE9g-2Ec3t_E8iKYioXvxohNHJ3WQlr0hrJrZBwmvmxOdAsfQ0KwPYknbCPd9Od3JeC1rRQjyi6SQheq9ihxe6M4kZBMFsMiD9rQxSjaoUdoJ4YlCMjQncnJp5PpRklnUyzKS8Oy79tFT-wTNkyefgOie_tyRpk1Z0_RnlmP4Ikm1z7qieUBeqw7lN4doH0DWIuPTYHyD89Q43iHNe_wJu-w4R22vMOKd9jxDkveYck77PEOa95hyztsefccnU8_n32cBaZxR8DBnu-Cgo7rKOMMrPm0SgmrojCv0pqxMOJ1VGd1zscsGrMsZ1T2SxOs4BSmiIokIhFF8gL1l81SvEIYFDlhglVgJxM4TSihBYvSOqYkr_JEDNDI_rYlN1XtZXOV61KtbuOsNLiUBpcBOnY33OqCLtunHkqw5GVZUJnLyDPelVGRh-M4G6Aji2FpZEJbxqDOwKgmaTJA79wwSGy5DUeXolnDnDQPs0KWOhyglxp79yWWMq-3jhyi3Ye_zxHqd6u1eAN2ccfeGoL-ArvYwLw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solvation+sheath+reorganization+enables+divalent+metal+batteries+with+fast+interfacial+charge+transfer+kinetics&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Hou%2C+Singyuk&rft.au=Ji%2C+Xiao&rft.au=Gaskell%2C+Karen&rft.au=Wang%2C+Peng-Fei&rft.date=2021-10-08&rft.eissn=1095-9203&rft.volume=374&rft.issue=6564&rft.spage=172&rft_id=info:doi/10.1126%2Fscience.abg3954&rft_id=info%3Apmid%2F34618574&rft.externalDocID=34618574 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |