A review of data-driven modelling in drinking water treatment

There are significant opportunities to optimize drinking water treatment and water resource management using data-driven models. Modelling can help define complex system behaviour, such as water quality and environmental systems, giving insight into expected outcomes from changing conditions. Many w...

Full description

Saved in:
Bibliographic Details
Published inReviews in environmental science and biotechnology Vol. 20; no. 4; pp. 985 - 1009
Main Authors Aliashrafi, Atefeh, Zhang, Yirao, Groenewegen, Hannah, Peleato, Nicolas M.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1569-1705
1572-9826
DOI10.1007/s11157-021-09592-y

Cover

Abstract There are significant opportunities to optimize drinking water treatment and water resource management using data-driven models. Modelling can help define complex system behaviour, such as water quality and environmental systems, giving insight into expected outcomes from changing conditions. Many water treatment models have been developed, such as predicting treated water quality based on coagulant addition or disinfection by-product formation from chlorination, which can be used to better inform operators of optimal treatment parameters to limit risk and reduce cost. Data-driven models, in particular, present an opportunity to learn relationships from patterns in historical data without the need to pre-define mechanisms or variable interactions. Furthermore, models built on currently monitored data are likely easier to implement since they utilize water quality measures that are already in place. However, data-driven approaches have significant challenges, including increased uncertainty in model validity, challenges in interpreting model behaviour and decision logic, and increased likelihood of incorporating biases from training data. This article presents a review of data-driven model applications in drinking water treatment to highlight opportunities related to protecting source water quality, optimizing treatment processes, and interpreting of sensor data. There is a focus on identifying approaches and algorithms best suited for specific applications and the interpretability of trained models. Successful implementation of data-driven models in critical systems, such as water treatment, requires that models be validated, and a model’s decision-making logic can be identified and scrutinized.
AbstractList There are significant opportunities to optimize drinking water treatment and water resource management using data-driven models. Modelling can help define complex system behaviour, such as water quality and environmental systems, giving insight into expected outcomes from changing conditions. Many water treatment models have been developed, such as predicting treated water quality based on coagulant addition or disinfection by-product formation from chlorination, which can be used to better inform operators of optimal treatment parameters to limit risk and reduce cost. Data-driven models, in particular, present an opportunity to learn relationships from patterns in historical data without the need to pre-define mechanisms or variable interactions. Furthermore, models built on currently monitored data are likely easier to implement since they utilize water quality measures that are already in place. However, data-driven approaches have significant challenges, including increased uncertainty in model validity, challenges in interpreting model behaviour and decision logic, and increased likelihood of incorporating biases from training data. This article presents a review of data-driven model applications in drinking water treatment to highlight opportunities related to protecting source water quality, optimizing treatment processes, and interpreting of sensor data. There is a focus on identifying approaches and algorithms best suited for specific applications and the interpretability of trained models. Successful implementation of data-driven models in critical systems, such as water treatment, requires that models be validated, and a model’s decision-making logic can be identified and scrutinized.
Author Peleato, Nicolas M.
Aliashrafi, Atefeh
Zhang, Yirao
Groenewegen, Hannah
Author_xml – sequence: 1
  givenname: Atefeh
  surname: Aliashrafi
  fullname: Aliashrafi, Atefeh
  organization: School of Engineering, University of British Columbia Okanagan
– sequence: 2
  givenname: Yirao
  surname: Zhang
  fullname: Zhang, Yirao
  organization: School of Engineering, University of British Columbia Okanagan
– sequence: 3
  givenname: Hannah
  surname: Groenewegen
  fullname: Groenewegen, Hannah
  organization: School of Engineering, University of British Columbia Okanagan
– sequence: 4
  givenname: Nicolas M.
  orcidid: 0000-0002-8788-7024
  surname: Peleato
  fullname: Peleato, Nicolas M.
  email: nicolas.peleato@ubc.ca
  organization: School of Engineering, University of British Columbia Okanagan
BookMark eNp9kE9LAzEQxYNUsFW_gKcFL16iSbbJJgcPpfgPCl70HNLNbEndzdYkbem3N7WC0ENPMzx-b-bxRmjgew8I3VByTwmpHiKllFeYMIqJ4orh3RkaZoVhJZkY7HehMK0Iv0CjGJckk0KJIXqcFAE2DrZF3xTWJINtcBvwRddbaFvnF4XzRdb8137fmgShSAFM6sCnK3TemDbC9d-8RJ_PTx_TVzx7f3mbTma4LjlLWFWKl0rQ2hBZWg5lwyjIuQHBSmtZw5QxktXzxkJV1ypL0oKSc6Eo47Yy5SW6O9xdhf57DTHpzsU65zMe-nXUTJSCj-lY8IzeHqHLfh18TqcZV1RWXLI9xQ5UHfoYAzR6FVxnwk5ToveN6kOjOvekfxvVu2ySR6baJZNc71Mwrj1tLQ_WmP_4BYT_VCdcP18FjSM
CitedBy_id crossref_primary_10_1016_j_jwpe_2024_105662
crossref_primary_10_3390_agriengineering6020103
crossref_primary_10_1002_wer_10960
crossref_primary_10_3390_w17010097
crossref_primary_10_3390_su16156598
crossref_primary_10_1016_j_watres_2024_121499
crossref_primary_10_3390_ijerph20136216
crossref_primary_10_1021_acsestengg_2c00073
crossref_primary_10_1016_j_jwpe_2025_107511
crossref_primary_10_1016_j_chemosphere_2024_141791
crossref_primary_10_1016_j_dche_2024_100202
crossref_primary_10_1016_j_watres_2023_120736
crossref_primary_10_1039_D4EW00329B
crossref_primary_10_3390_min13010029
crossref_primary_10_3390_pr12091824
crossref_primary_10_3390_w15142572
crossref_primary_10_1016_j_hal_2022_102273
crossref_primary_10_2166_wst_2022_115
crossref_primary_10_1017_wat_2024_5
crossref_primary_10_1016_j_jece_2024_114481
crossref_primary_10_2166_ws_2023_328
crossref_primary_10_1016_j_cej_2025_161055
crossref_primary_10_1016_j_watres_2023_120075
crossref_primary_10_1371_journal_pwat_0000040
Cites_doi 10.1016/j.neunet.2009.11.009
10.1007/s11356-019-06049-2
10.1016/S1364-8152(03)00163-4
10.1007/978-1-4939-0539-3_2
10.1002/j.1554-7531.2015.tb00138.x
10.3390/w10111566
10.1016/j.envsoft.2017.01.023
10.1017/CBO9781139045452.016
10.3390/w10091148
10.1016/j.jes.2016.03.030
10.1007/s11157-011-9243-x
10.1002/2014WR016527
10.1142/S1469026815500133
10.1002/2016WR020197
10.1016/j.watres.2020.115902
10.5004/dwt.2020.24144
10.1016/j.jes.2017.04.021
10.1016/j.agwat.2020.106303
10.1016/j.pce.2011.07.037
10.1029/96WR03529
10.2166/ws.2006.782
10.1016/S0169-7439(97)00032-4
10.1017/CBO9780511973000
10.1016/j.watres.2017.07.035
10.1016/j.scitotenv.2018.02.140
10.1016/j.scitotenv.2003.05.001
10.1016/j.watres.2019.115349
10.1016/j.envsoft.2008.03.008
10.1002/j.1551-8833.2010.tb10152.x
10.1016/j.watres.2014.09.001
10.1016/j.engappai.2008.03.015
10.3390/rs11141674
10.1038/s41524-017-0060-9
10.1016/j.watres.2012.12.032
10.1111/j.1747-6593.2011.00258.x
10.1007/s12665-014-3784-6
10.1016/j.chemosphere.2013.12.087
10.1007/978-3-319-10247-4
10.1039/C5EW00285K
10.1007/s10270-008-0106-z
10.1007/s12403-014-0145-3
10.1007/978-3-319-94463-0
10.1016/j.asoc.2013.01.027
10.1016/j.ecoinf.2015.12.004
10.1007/s00477-020-01776-2
10.1016/j.watres.2013.10.060
10.1039/C3AY41160E
10.1016/j.scitotenv.2019.07.246
10.1038/s42254-021-00314-5
10.1016/j.envsoft.2011.06.004
10.2166/ws.2019.057
10.1016/j.marpolbul.2006.04.003
10.2166/ws.2018.016
10.1002/2017WR021470
10.2166/aqua.1999.0013
10.1016/j.watres.2011.08.066
10.1016/j.jenvman.2014.04.017
10.1029/2018WR023370
10.1111/bjet.12858
10.1063/1.5116183
10.1139/l00-053
10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
10.1007/BF01874902
10.2166/ws.2015.186
10.1061/(ASCE)WR.1943-5452.0000163
10.1002/hyp.9459
10.1016/j.watres.2014.01.053
10.1016/j.envsoft.2010.02.003
10.1016/j.watres.2009.09.036
10.1016/j.watres.2018.02.052
10.3303/CET1333051
10.1145/3236009
10.1016/j.chemosphere.2021.130064
10.1007/s11356-020-09689-x
10.2166/ws.2018.173
10.1201/b13102
10.3390/w11050910
10.1016/j.chemosphere.2020.125999
10.1016/j.compchemeng.2019.04.003
10.1109/TNN.2011.2163169
10.2166/aqua.2011.086
10.1016/j.proeng.2014.02.045
10.1002/env.1045
10.1111/j.1751-5823.2003.tb00192.x
10.1016/j.bspc.2014.12.005
10.1016/j.crme.2019.11.009
10.1016/j.ejor.2014.06.033
10.1016/j.jher.2013.04.003
10.1007/s11269-018-2092-4
10.1080/713827180
10.1016/j.jcp.2018.10.045
10.3390/su11072058
10.2166/ws.2011.028
10.1016/j.jenvman.2017.11.049
10.1016/j.watres.2012.03.002
10.1109/TNNLS.2015.2479223
10.1039/C8EW00821C
10.1016/j.jhydrol.2020.124989
10.1016/j.envsoft.2015.10.012
10.1080/19942060.2009.11015267
10.1021/acs.est.7b03589
10.1080/10402381.2016.1263694
10.1021/acs.chemmater.0c01907
10.2214/AJR.18.20224
10.1080/1573062X.2019.1637002
10.1007/978-1-4419-9326-7_11
10.1023/A:1010933404324
10.1057/9781137379283
10.3390/ijerph15071322
10.2166/aqua.2014.033
10.1007/978-3-642-61068-4_7
10.1016/j.compchemeng.2020.106834
10.1016/j.chemosphere.2011.01.018
10.1007/s11269-019-02317-5
10.1007/BF00175355
10.1111/j.1461-0248.2004.00603.x
10.1016/j.watres.2017.08.020
10.1016/j.chemolab.2012.03.014
10.1021/es405606t
10.1145/3447814
10.1016/j.watres.2019.115454
10.1039/C3EM00573A
10.1007/s13201-017-0541-5
10.1016/j.jenvman.2013.11.035
10.1016/j.scitotenv.2010.05.040
10.1016/j.jenvman.2017.03.024
10.1016/S1364-8152(99)00007-9
10.1007/s13762-018-1896-3
10.1016/j.ecolmodel.2004.07.021
10.1016/j.ecolmodel.2006.11.033
10.1002/clen.201000234
10.1007/s11356-014-2716-z
10.1016/S0954-1810(97)00010-1
10.1016/j.watres.2015.02.040
10.1007/s11269-015-0918-x
10.2134/jeq2018.04.0132
10.1103/PhysRevE.94.012214
10.1021/acs.est.6b04267
10.1021/es3014024
10.1038/nmeth.4370
10.1007/s10661-011-2091-x
10.1016/j.watres.2010.04.009
10.1016/j.envsoft.2016.02.008
10.1109/CVPR.2015.7298640
10.24963/ijcai.2017/371
10.1109/ISKE.2017.8258814
10.1155/2012/846321
10.1145/2939672.2939778
10.22034/gjesm.2018.04.005
10.1139/f99-040
10.1093/oso/9780198538493.001.0001
10.1109/DSAA.2018.00018
10.1007/978-3-642-33299-9_1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID AAYXX
CITATION
3V.
7QO
7ST
7WY
7WZ
7XB
87Z
88A
88I
8AO
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
K60
K6~
L.-
L6V
LK8
M0C
M2P
M7P
M7S
P64
PATMY
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11157-021-09592-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Environment Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Biological Science Collection
ABI/INFORM Global
Science Database
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
AGRICOLA

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1572-9826
EndPage 1009
ExternalDocumentID 10_1007_s11157_021_09592_y
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-2019-05449
  funderid: http://dx.doi.org/10.13039/501100000038
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5VS
67M
67Z
6NX
7WY
7XC
88A
88I
8AO
8FE
8FG
8FH
8FL
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L6V
L8X
LAK
LK8
LLZTM
M0C
M0L
M2P
M4Y
M7P
M7S
MA-
ML.
ML0
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
Y6R
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z7Z
ZMTXR
~02
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7QO
7ST
7XB
8FD
8FK
ABRTQ
C1K
FR3
L.-
P64
PKEHL
PQEST
PQGLB
PQUKI
Q9U
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c352t-97953961ca083d5e3f21e8bae623dd2f29aa82cbfde7cc9dd28de98b69125d7a3
IEDL.DBID U2A
ISSN 1569-1705
IngestDate Fri Sep 05 10:22:38 EDT 2025
Fri Jul 25 18:52:37 EDT 2025
Tue Jul 01 03:06:29 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Fri Feb 21 02:47:35 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Drinking water
Data-driven modelling
Artificial intelligence
Water quality
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-97953961ca083d5e3f21e8bae623dd2f29aa82cbfde7cc9dd28de98b69125d7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8788-7024
PQID 2591875825
PQPubID 54332
PageCount 25
ParticipantIDs proquest_miscellaneous_2636541465
proquest_journals_2591875825
crossref_primary_10_1007_s11157_021_09592_y
crossref_citationtrail_10_1007_s11157_021_09592_y
springer_journals_10_1007_s11157_021_09592_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211200
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Reviews in environmental science and biotechnology
PublicationTitleAbbrev Rev Environ Sci Biotechnol
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Burchard-Levine, Liu, Vince (CR21) 2014; 143
Bro (CR18) 1997; 38
CR38
Trueman, MacIsaac, Stoddart, Gagnon (CR142) 2016; 2
Li, Peleato (CR82) 2021
CR34
Bikmukhametov, Jäschke (CR12) 2020; 138
Quade, Abel, Shafi (CR117) 2016; 94
Abba, Pham, Saini (CR1) 2020
CR155
Sanchez, Skeriotis, Miller (CR129) 2013; 47
Marton, Sánchez, Carlos, Martorell (CR89) 2013; 33
Goodfellow, Bengio, Courville (CR51) 2016
Wang, Murdock, Kauwe (CR148) 2020; 32
Sadiq, Rodriguez (CR127) 2004; 321
Murray, Ghazali, McBean (CR103) 2012; 138
Zhang, Ling (CR159) 2018; 4
Wagner, Plewa (CR146) 2017; 58
Brooks, Corsi, Fienen, Carvin (CR20) 2016; 76
Deng, Wang (CR32) 2017; 196
Li, Zou, An (CR81) 2016; 50
CR48
Zheng, Maier, Wu (CR161) 2018; 54
Brookes, Carey, Hamilton (CR19) 2014; 48
Gagnon, Grandjean, Thibault (CR46) 1997; 11
Wang (CR149) 2016; 16
Bridgeman, Bieroza, Baker (CR16) 2011; 10
Bridgeman, Jefferson, Parsons (CR17) 2009; 3
Farnham, Lall (CR41) 2015; 76
Eggimann, Mutzner, Wani (CR36) 2017; 51
Baxter, Stanley, Zhang (CR9) 1999; 48
Pifer, Fairey (CR113) 2012; 46
Shutova, Baker, Bridgeman, Henderson (CR131) 2014; 54
Chen, Chen, Zhou (CR26) 2020; 171
Barzegar, Aalami, Adamowski (CR8) 2020; 34
Delpla, Florea, Rodriguez (CR31) 2019; 33
Hosseini-Asl, Zurada, Nasraoui (CR62) 2016; 27
Li, Liu, Li (CR80) 2013; 27
Wang, Yao, Wang (CR151) 2019; 693
Guo, Lintern, Webb (CR54) 2019; 55
Keskin, Düğenci, Kaçaroğlu (CR72) 2015; 73
Rosé, McLaughlin, Liu, Koedinger (CR125) 2019; 50
Humphrey, Maier, Wu (CR64) 2017; 92
Wikle (CR153) 2003; 71
Peiris, Hallé, Budman (CR109) 2010; 44
Mohri, Rostamizadeh, Talwalkar (CR97) 2018
Cordoba, Tuhovčák, Tauš (CR27) 2014; 70
Dogo, Nwulu, Twala, Aigbavboa (CR33) 2019; 16
Fenton, Neil (CR42) 2012
CR57
Ellison (CR39) 2004; 7
CR137
Breiman (CR15) 2001; 45
Snee (CR133) 1977; 19
Zhou, Wang, Xiao (CR162) 2018; 10
Liu, Wang, Sangaiah (CR84) 2019; 11
Thoe, Gold, Griesbach (CR139) 2014; 67
Tinelli, Juran (CR140) 2019; 19
Avila, Horn, Moriarty (CR6) 2018; 206
Huang, Zhang, Arhonditsis (CR63) 2020; 181
Soyupak, Kilic, Karadirek, Muhammetoglu (CR134) 2011; 60
Murphy, Stedmon, Graeber, Bro (CR102) 2013; 5
Hamilton, Waso, Reyneke (CR55) 2018; 47
JohnR (CR76) 1994
Tomperi, Leiviskä (CR141) 2019; 19
Zhang, Zhang, Yang (CR158) 2003; 17
CR152
Maier, Dandy (CR86) 1996; 32
Rojas (CR123) 1996
Tesoriero, Gronberg, Juckem (CR138) 2017; 53
Razavi, Tolson (CR120) 2011; 22
CR69
Yang, Peleato, Legge, Andrews (CR156) 2019; 5
García, Luengo, Herrera (CR47) 2015
Gomes, Souza, Pontes (CR50) 2015; 14
Aghel, Rezaei, Mohadesi (CR4) 2019; 16
Mohammed, Hameed, Seidu (CR96) 2018; 628–629
CR61
Kulkarni, Chellam (CR78) 2010; 408
Wang, Shen, Zhu, Jiang (CR150) 2020; 173
McKay, Korak, Erickson (CR93) 2018; 52
Zou, Lin, Xu (CR163) 2019; 33
Qi, Zhang, Ma (CR115) 2012
Banadkooki, Ehteram, Panahi (CR7) 2020; 587
Lin, Dai, Zheng (CR83) 2020; 248
Pu, Ding, Chao (CR114) 2019; 11
Yu, Yin, Wang (CR157) 2018; 10
Debnath, Majumder, Pal (CR30) 2015; 29
Oliker, Ostfeld (CR106) 2014; 51
Sharpless, Blough (CR130) 2014; 16
Aggarwal, Aggarwal (CR3) 2018
Mulia, Tay, Roopsekhar, Tkalich (CR99) 2013; 7
Abbaspour, Schulin, Schläppi, Flühler (CR2) 1996; 1
CR75
Wu, Lo (CR154) 2008; 21
Murphy, Bro, Stedmon, Coble, Lead, Baker (CR101) 2014
Rokach, Maimon (CR124) 2015
Chen, Chen, Xu (CR25) 2020; 240
Guidotti, Monreale, Ruggieri (CR53) 2019; 51
Bishop (CR14) 1995
Chen, Westerhoff (CR23) 2010; 44
Gokgoz, Subasi (CR49) 2015; 18
Maier, Dandy (CR85) 2000; 15
Pianosi, Beven, Freer (CR112) 2016; 79
El Hasadi, Padding (CR37) 2019; 9
Qin, Chiang (CR116) 2019; 126
May, Dandy, Maier, Nixon (CR91) 2008; 23
Krzywinski, Altman (CR77) 2017; 14
Meyers, Kapelan, Keedwell (CR95) 2017; 124
Perelman, Arad, Housh, Ostfeld (CR111) 2012; 46
CR126
Maier, Jain, Dandy, Sudheer (CR87) 2010; 25
Khataee, Kasiri (CR73) 2011; 39
CR122
Razavi, Gupta (CR119) 2015; 51
CR121
Heibati, Stedmon, Stenroth (CR60) 2017; 125
O’Reilly, Bezuidenhout, Bezuidenhout (CR107) 2018; 18
Stidson, Gray, McPhail (CR136) 2012; 26
De’ath G, Fabricius KE (CR29) 2000; 81
Maier, Morgan, Chow (CR88) 2004; 19
Biondi, Freni, Iacobellis (CR13) 2012; 42–44
Ferretto, Tedetti, Guigue (CR43) 2014; 107
Tyralis, Papacharalampous, Langousis (CR143) 2019; 11
Wan, Cai, Li (CR147) 2014; 133
D’Souza, Kumar (CR35) 2010; 102
Lee, Lee (CR79) 2018; 15
Griffiths, Andrews (CR52) 2011; 11
Dahan, Cohen, Rokach, Maimon, Dahan, Cohen, Rokach, Maimon (CR28) 2014
Juntunen, Liukkonen, Lehtola, Hiltunen (CR68) 2013; 13
Matilainen, Gjessing, Lahtinen (CR90) 2011; 83
Jagupilla, Vaccari, Miskewitz (CR65) 2015; 87
Montáns, Chinesta, Gómez-Bombarelli, Kutz (CR98) 2019; 347
Oliker, Ostfeld (CR105) 2014; 64
Sahoo, Ray, Wade (CR128) 2005; 183
Peleato, Legge, Andrews (CR110) 2018; 136
Jin, Cai, Jiang, Liu (CR67) 2019; 26
Panidhapu, Li, Aliashrafi, Peleato (CR108) 2020; 170
Jia, Willard, Karpatne (CR66) 2021; 2
Flach (CR45) 2012
Kim, Parnichkun (CR74) 2017; 7
Mei, Liao, Zhu (CR94) 2014; 21
Finlay (CR44) 2014
Raissi, Perdikaris, Karniadakis (CR118) 2019; 378
Chen, Hou (CR24) 2006; 6
Handelman, Kok, Chandra (CR56) 2019; 212
May, Maier, Dandy (CR92) 2010; 23
CR104
Everaert, Bennetsen, Goethals (CR40) 2016; 32
Murphy (CR100) 2012
Aguilera, Fernández, Fernández (CR5) 2011; 26
Kabir, Tesfamariam, Francisque, Sadiq (CR70) 2015; 240
Uusitalo (CR144) 2007; 203
Chau (CR22) 2006; 52
Harris, Graham (CR58) 2017; 33
Singh, Gupta (CR132) 2012; 114
Stedmon, Seredyńska-Sobecka, Boe-Hansen (CR135) 2011; 45
Karniadakis, Kevrekidis, Lu (CR71) 2021; 3
Zhang, Deng, Rusch (CR160) 2015; 7
van der Aalst, Rubin, Verbeek (CR145) 2010; 9
Heddam, Bermad, Dechemi (CR59) 2012; 184
Baxter, Zhang, Stanley (CR10) 2001; 28
Bieroza, Baker, Bridgeman (CR11) 2011; 22
P Kulkarni (9592_CR78) 2010; 408
S Lee (9592_CR79) 2018; 15
HR Maier (9592_CR86) 1996; 32
9592_CR104
9592_CR34
L Perelman (9592_CR111) 2012; 46
A Debnath (9592_CR30) 2015; 29
G O’Reilly (9592_CR107) 2018; 18
9592_CR38
D Wang (9592_CR149) 2016; 16
CK Wikle (9592_CR153) 2003; 71
H Lin (9592_CR83) 2020; 248
H Dahan (9592_CR28) 2014
A Burchard-Levine (9592_CR21) 2014; 143
NP Sanchez (9592_CR129) 2013; 47
RJ May (9592_CR92) 2010; 23
S Razavi (9592_CR120) 2011; 22
W Brooks (9592_CR20) 2016; 76
CD D’Souza (9592_CR35) 2010; 102
A Panidhapu (9592_CR108) 2020; 170
I Marton (9592_CR89) 2013; 33
HR Maier (9592_CR88) 2004; 19
J Bridgeman (9592_CR17) 2009; 3
DJ Farnham (9592_CR41) 2015; 76
S García (9592_CR47) 2015
D Biondi (9592_CR13) 2012; 42–44
GS Handelman (9592_CR56) 2019; 212
J Bridgeman (9592_CR16) 2011; 10
CM Sharpless (9592_CR130) 2014; 16
KP Singh (9592_CR132) 2012; 114
9592_CR48
K JohnR (9592_CR76) 1994
G Meyers (9592_CR95) 2017; 124
KR Murphy (9592_CR102) 2013; 5
C-L Chen (9592_CR24) 2006; 6
X-Y Zou (9592_CR163) 2019; 33
D Guo (9592_CR54) 2019; 55
LS Gomes (9592_CR50) 2015; 14
AD Pifer (9592_CR113) 2012; 46
N Fenton (9592_CR42) 2012
E Hosseini-Asl (9592_CR62) 2016; 27
9592_CR121
S Soyupak (9592_CR134) 2011; 60
GE Karniadakis (9592_CR71) 2021; 3
R Bro (9592_CR18) 1997; 38
R Avila (9592_CR6) 2018; 206
9592_CR122
YMF El Hasadi (9592_CR37) 2019; 9
KA Hamilton (9592_CR55) 2018; 47
9592_CR126
G Kabir (9592_CR70) 2015; 240
H Chen (9592_CR25) 2020; 240
Y Shutova (9592_CR131) 2014; 54
TE Keskin (9592_CR72) 2015; 73
SJ Qin (9592_CR116) 2019; 126
RJ May (9592_CR91) 2008; 23
FB Banadkooki (9592_CR7) 2020; 587
X Jia (9592_CR66) 2021; 2
S Tinelli (9592_CR140) 2019; 19
SCK Jagupilla (9592_CR65) 2015; 87
H Mohammed (9592_CR96) 2018; 628–629
B Chen (9592_CR23) 2010; 44
T Jin (9592_CR67) 2019; 26
M Heibati (9592_CR60) 2017; 125
CM Kim (9592_CR74) 2017; 7
CP Rosé (9592_CR125) 2019; 50
S Eggimann (9592_CR36) 2017; 51
P Liu (9592_CR84) 2019; 11
WMP van der Aalst (9592_CR145) 2010; 9
RT Stidson (9592_CR136) 2012; 26
9592_CR137
ED Wagner (9592_CR146) 2017; 58
P Wang (9592_CR151) 2019; 693
W Deng (9592_CR32) 2017; 196
I Goodfellow (9592_CR51) 2016
CW Baxter (9592_CR10) 2001; 28
BF Trueman (9592_CR142) 2016; 2
R Rojas (9592_CR123) 1996
P Juntunen (9592_CR68) 2013; 13
G McKay (9592_CR93) 2018; 52
G Everaert (9592_CR40) 2016; 32
R Wan (9592_CR147) 2014; 133
CC Aggarwal (9592_CR3) 2018
L Uusitalo (9592_CR144) 2007; 203
E Gokgoz (9592_CR49) 2015; 18
De’ath G, Fabricius KE (9592_CR29) 2000; 81
F Zheng (9592_CR161) 2018; 54
M Krzywinski (9592_CR77) 2017; 14
KC Abbaspour (9592_CR2) 1996; 1
F Pu (9592_CR114) 2019; 11
T Bikmukhametov (9592_CR12) 2020; 138
Y Qi (9592_CR115) 2012
RD Snee (9592_CR133) 1977; 19
D Wang (9592_CR150) 2020; 173
KP Murphy (9592_CR100) 2012
L Rokach (9592_CR124) 2015
YZ Yang (9592_CR156) 2019; 5
FJ Montáns (9592_CR98) 2019; 347
J Tomperi (9592_CR141) 2019; 19
F Pianosi (9592_CR112) 2016; 79
S Zhang (9592_CR158) 2003; 17
9592_CR75
K Mei (9592_CR94) 2014; 21
GAC Cordoba (9592_CR27) 2014; 70
NM Peleato (9592_CR110) 2018; 136
H Tyralis (9592_CR143) 2019; 11
9592_CR152
AY-T Wang (9592_CR148) 2020; 32
CW Baxter (9592_CR9) 1999; 48
EM Dogo (9592_CR33) 2019; 16
9592_CR155
N Oliker (9592_CR106) 2014; 51
B Aghel (9592_CR4) 2019; 16
N Oliker (9592_CR105) 2014; 64
M Raissi (9592_CR118) 2019; 378
SI Abba (9592_CR1) 2020
K Chau (9592_CR22) 2006; 52
TD Harris (9592_CR58) 2017; 33
KR Murphy (9592_CR101) 2014
HR Maier (9592_CR87) 2010; 25
CM Bishop (9592_CR14) 1995
KA Griffiths (9592_CR52) 2011; 11
AM Ellison (9592_CR39) 2004; 7
M Quade (9592_CR117) 2016; 94
PA Aguilera (9592_CR5) 2011; 26
M Mohri (9592_CR97) 2018
JD Brookes (9592_CR19) 2014; 48
9592_CR57
J Zhou (9592_CR162) 2018; 10
GB Sahoo (9592_CR128) 2005; 183
J Huang (9592_CR63) 2020; 181
R Guidotti (9592_CR53) 2019; 51
J Li (9592_CR80) 2013; 27
CA Stedmon (9592_CR135) 2011; 45
R Barzegar (9592_CR8) 2020; 34
K Chen (9592_CR26) 2020; 171
I Delpla (9592_CR31) 2019; 33
Z Li (9592_CR82) 2021
W Thoe (9592_CR139) 2014; 67
S Razavi (9592_CR119) 2015; 51
S Finlay (9592_CR44) 2014
A Matilainen (9592_CR90) 2011; 83
Z Zhang (9592_CR160) 2015; 7
AR Khataee (9592_CR73) 2011; 39
R Li (9592_CR81) 2016; 50
GB Humphrey (9592_CR64) 2017; 92
R Sadiq (9592_CR127) 2004; 321
AJ Tesoriero (9592_CR138) 2017; 53
9592_CR69
S Murray (9592_CR103) 2012; 138
L Breiman (9592_CR15) 2001; 45
N Ferretto (9592_CR43) 2014; 107
RH Peiris (9592_CR109) 2010; 44
S Heddam (9592_CR59) 2012; 184
IE Mulia (9592_CR99) 2013; 7
C Gagnon (9592_CR46) 1997; 11
Y Zhang (9592_CR159) 2018; 4
M Bieroza (9592_CR11) 2011; 22
HR Maier (9592_CR85) 2000; 15
G-D Wu (9592_CR154) 2008; 21
9592_CR61
Q Yu (9592_CR157) 2018; 10
P Flach (9592_CR45) 2012
References_xml – volume: 23
  start-page: 283
  year: 2010
  end-page: 294
  ident: CR92
  article-title: Data splitting for artificial neural networks using SOM-based stratified sampling
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2009.11.009
– year: 2015
  ident: CR124
  publication-title: Data mining with decision trees: theory and applications
– volume: 26
  start-page: 30374
  year: 2019
  end-page: 30385
  ident: CR67
  article-title: A data-driven model for real-time water quality prediction and early warning by an integration method
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-06049-2
– volume: 19
  start-page: 485
  year: 2004
  end-page: 494
  ident: CR88
  article-title: Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(03)00163-4
– start-page: 15
  year: 2014
  end-page: 20
  ident: CR28
  article-title: Proactive data mining: a general approach and algorithmic framework
  publication-title: Proactive Data Mining with Decision Trees
  doi: 10.1007/978-1-4939-0539-3_2
– volume: 87
  start-page: 26
  year: 2015
  end-page: 34
  ident: CR65
  article-title: Symbolic regression of upstream, stormwater, and tributary E. Coli concentrations using river flows
  publication-title: Water Environ Res
  doi: 10.1002/j.1554-7531.2015.tb00138.x
– volume: 10
  start-page: 1566
  year: 2018
  ident: CR157
  article-title: Adaptive detection method for organic contamination events in water distribution systems using the UV-Vis spectrum based on semi-supervised learning
  publication-title: Water
  doi: 10.3390/w10111566
– volume: 92
  start-page: 82
  year: 2017
  end-page: 106
  ident: CR64
  article-title: Improved validation framework and R-package for artificial neural network models
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2017.01.023
– start-page: 339
  year: 2014
  end-page: 375
  ident: CR101
  article-title: Chemometric analysis of organic matter fluorescence
  publication-title: Aquatic Organic Matter Fluorescence
  doi: 10.1017/CBO9781139045452.016
– volume: 10
  start-page: 1148
  year: 2018
  ident: CR162
  article-title: Water quality prediction method based on IGRA and LSTM
  publication-title: Water
  doi: 10.3390/w10091148
– volume: 50
  start-page: 87
  year: 2016
  end-page: 92
  ident: CR81
  article-title: Water quality assessment in Qu River based on fuzzy water pollution index method
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2016.03.030
– volume: 10
  start-page: 277
  year: 2011
  ident: CR16
  article-title: The application of fluorescence spectroscopy to organic matter characterisation in drinking water treatment
  publication-title: Rev Environ Sci Biotechnol
  doi: 10.1007/s11157-011-9243-x
– volume: 51
  start-page: 3070
  year: 2015
  end-page: 3092
  ident: CR119
  article-title: What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in Earth and Environmental systems models
  publication-title: Water Resour Res
  doi: 10.1002/2014WR016527
– volume: 14
  start-page: 1550013
  year: 2015
  ident: CR50
  article-title: Coagulant dosage determination in a water treatment plant using dynamic neural network models
  publication-title: Int J Comp Intel Appl
  doi: 10.1142/S1469026815500133
– volume: 53
  start-page: 7316
  year: 2017
  end-page: 7331
  ident: CR138
  article-title: Predicting redox-sensitive contaminant concentrations in groundwater using random forest classification
  publication-title: Water Resour Res
  doi: 10.1002/2016WR020197
– volume: 181
  year: 2020
  ident: CR63
  article-title: The magnitude and drivers of harmful algal blooms in China’s lakes and reservoirs: a national-scale characterization
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.115902
– volume: 173
  start-page: 133
  year: 2020
  end-page: 141
  ident: CR150
  article-title: Model predictive control for chlorine dosing of drinking water treatment based on support vector machine model
  publication-title: DWT
  doi: 10.5004/dwt.2020.24144
– ident: CR121
– volume: 58
  start-page: 64
  year: 2017
  end-page: 76
  ident: CR146
  article-title: CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: an updated review
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2017.04.021
– volume: 19
  start-page: 415
  year: 1977
  end-page: 428
  ident: CR133
  article-title: Validation of regression models: methods and examples
  publication-title: Null
– volume: 240
  year: 2020
  ident: CR25
  article-title: A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2020.106303
– volume: 42–44
  start-page: 70
  year: 2012
  end-page: 76
  ident: CR13
  article-title: Validation of hydrological models: conceptual basis, methodological approaches and a proposal for a code of practice
  publication-title: Phys Chem Earth Parts A/b/c
  doi: 10.1016/j.pce.2011.07.037
– volume: 32
  start-page: 1013
  year: 1996
  end-page: 1022
  ident: CR86
  article-title: The use of artificial neural networks for the prediction of water quality parameters
  publication-title: Water Resour Res
  doi: 10.1029/96WR03529
– volume: 6
  start-page: 97
  year: 2006
  end-page: 104
  ident: CR24
  article-title: Fuzzy model identification and control system design for coagulation chemical dosing of potable water
  publication-title: Water Supply
  doi: 10.2166/ws.2006.782
– volume: 38
  start-page: 149
  year: 1997
  end-page: 171
  ident: CR18
  article-title: PARAFAC. Tutorial and applications
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/S0169-7439(97)00032-4
– year: 2012
  ident: CR45
  publication-title: Machine learning: the art and science of algorithms that make sense of data
  doi: 10.1017/CBO9780511973000
– volume: 124
  start-page: 67
  year: 2017
  end-page: 76
  ident: CR95
  article-title: Short-term forecasting of turbidity in trunk main networks
  publication-title: Water Res
  doi: 10.1016/j.watres.2017.07.035
– volume: 628–629
  start-page: 1178
  year: 2018
  end-page: 1190
  ident: CR96
  article-title: Comparative predictive modelling of the occurrence of faecal indicator bacteria in a drinking water source in Norway
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.02.140
– ident: CR57
– volume: 321
  start-page: 21
  year: 2004
  end-page: 46
  ident: CR127
  article-title: Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2003.05.001
– volume: 170
  year: 2020
  ident: CR108
  article-title: Integration of weather conditions for predicting microbial water quality using Bayesian Belief Networks
  publication-title: Water Res
  doi: 10.1016/j.watres.2019.115349
– volume: 23
  start-page: 1289
  year: 2008
  end-page: 1299
  ident: CR91
  article-title: Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2008.03.008
– volume: 102
  start-page: 92
  year: 2010
  end-page: 106
  ident: CR35
  article-title: Comparison of ANN models for predicting water quality in distribution systems
  publication-title: J AWWA
  doi: 10.1002/j.1551-8833.2010.tb10152.x
– volume: 67
  start-page: 105
  year: 2014
  end-page: 117
  ident: CR139
  article-title: Predicting water quality at Santa Monica Beach: evaluation of five different models for public notification of unsafe swimming conditions
  publication-title: Water Res
  doi: 10.1016/j.watres.2014.09.001
– volume: 21
  start-page: 1189
  year: 2008
  end-page: 1195
  ident: CR154
  article-title: Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network-based fuzzy inference system
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2008.03.015
– volume: 11
  start-page: 1674
  year: 2019
  ident: CR114
  article-title: Water-quality classification of inland lakes using landsat8 images by convolutional neural networks
  publication-title: Remote Sens
  doi: 10.3390/rs11141674
– volume: 4
  start-page: 1
  year: 2018
  end-page: 8
  ident: CR159
  article-title: A strategy to apply machine learning to small datasets in materials science
  publication-title: Npj Comput Mater
  doi: 10.1038/s41524-017-0060-9
– ident: CR126
– volume: 47
  start-page: 1679
  year: 2013
  end-page: 1690
  ident: CR129
  article-title: Assessment of dissolved organic matter fluorescence PARAFAC components before and after coagulation–filtration in a full scale water treatment plant
  publication-title: Water Res
  doi: 10.1016/j.watres.2012.12.032
– volume: 26
  start-page: 7
  year: 2012
  end-page: 18
  ident: CR136
  article-title: Development and use of modelling techniques for real-time bathing water quality predictions
  publication-title: Water Environ J
  doi: 10.1111/j.1747-6593.2011.00258.x
– volume: 73
  start-page: 5333
  year: 2015
  end-page: 5347
  ident: CR72
  article-title: Prediction of water pollution sources using artificial neural networks in the study areas of Sivas, Karabük and Bartın (Turkey)
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-014-3784-6
– volume: 107
  start-page: 344
  year: 2014
  end-page: 353
  ident: CR43
  article-title: Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation–emission matrices and parallel factor analysis
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.12.087
– year: 2015
  ident: CR47
  publication-title: Data Preprocessing in Data Mining
  doi: 10.1007/978-3-319-10247-4
– volume: 2
  start-page: 383
  year: 2016
  end-page: 389
  ident: CR142
  article-title: Prediction of disinfection by-product formation in drinking water via fluorescence spectroscopy
  publication-title: Environ Sci Water Res Technol
  doi: 10.1039/C5EW00285K
– volume: 9
  start-page: 87
  year: 2010
  end-page: 111
  ident: CR145
  article-title: Process mining: a two-step approach to balance between underfitting and overfitting
  publication-title: Softw Syst Model
  doi: 10.1007/s10270-008-0106-z
– volume: 7
  start-page: 255
  year: 2015
  end-page: 263
  ident: CR160
  article-title: Modeling fecal coliform bacteria levels at gulf coast beaches
  publication-title: Water Qual Expo Health
  doi: 10.1007/s12403-014-0145-3
– start-page: 1
  year: 2018
  end-page: 52
  ident: CR3
  article-title: An introduction to neural networks
  publication-title: Neural networks and deep learning: a textbook
  doi: 10.1007/978-3-319-94463-0
– volume: 13
  start-page: 3191
  year: 2013
  end-page: 3196
  ident: CR68
  article-title: Cluster analysis by self-organizing maps: an application to the modelling of water quality in a treatment process
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2013.01.027
– volume: 32
  start-page: 1
  year: 2016
  end-page: 6
  ident: CR40
  article-title: An applicability index for reliable and applicable decision trees in water quality modelling
  publication-title: Eco Inform
  doi: 10.1016/j.ecoinf.2015.12.004
– volume: 34
  start-page: 415
  year: 2020
  end-page: 433
  ident: CR8
  article-title: Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-020-01776-2
– ident: CR137
– volume: 51
  start-page: 234
  year: 2014
  end-page: 245
  ident: CR106
  article-title: A coupled classification – evolutionary optimization model for contamination event detection in water distribution systems
  publication-title: Water Res
  doi: 10.1016/j.watres.2013.10.060
– volume: 5
  start-page: 6557
  year: 2013
  end-page: 6566
  ident: CR102
  article-title: Fluorescence spectroscopy and multi-way techniques
  publication-title: Parafac Anal Methods
  doi: 10.1039/C3AY41160E
– volume: 693
  year: 2019
  ident: CR151
  article-title: Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.07.246
– volume: 3
  start-page: 422
  year: 2021
  end-page: 440
  ident: CR71
  article-title: Physics-informed machine learning
  publication-title: Nat Rev Phys
  doi: 10.1038/s42254-021-00314-5
– volume: 26
  start-page: 1376
  year: 2011
  end-page: 1388
  ident: CR5
  article-title: Bayesian networks in environmental modelling
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2011.06.004
– volume: 19
  start-page: 1785
  year: 2019
  end-page: 1792
  ident: CR140
  article-title: Artificial intelligence-based monitoring system of water quality parameters for early detection of non-specific bio-contamination in water distribution systems
  publication-title: Water Supply
  doi: 10.2166/ws.2019.057
– volume: 52
  start-page: 726
  year: 2006
  end-page: 733
  ident: CR22
  article-title: A review on integration of artificial intelligence into water quality modelling
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2006.04.003
– volume: 18
  start-page: 1869
  year: 2018
  end-page: 1887
  ident: CR107
  article-title: Artificial neural networks: applications in the drinking water sector
  publication-title: Water Supply
  doi: 10.2166/ws.2018.016
– ident: CR69
– volume: 54
  start-page: 1013
  year: 2018
  end-page: 1030
  ident: CR161
  article-title: On lack of robustness in hydrological model development due to absence of guidelines for selecting calibration and evaluation data: demonstration for data-driven models
  publication-title: Water Resour Res
  doi: 10.1002/2017WR021470
– year: 1995
  ident: CR14
  publication-title: Neural networks for pattern recognition
– volume: 48
  start-page: 129
  year: 1999
  end-page: 136
  ident: CR9
  article-title: Development of a full-scale artificial neural network model for the removal of natural organic matter by enhanced coagulation
  publication-title: J Water Supply Res Technol AQUA
  doi: 10.2166/aqua.1999.0013
– ident: CR38
– volume: 45
  start-page: 6030
  year: 2011
  end-page: 6038
  ident: CR135
  article-title: A potential approach for monitoring drinking water quality from groundwater systems using organic matter fluorescence as an early warning for contamination events
  publication-title: Water Res
  doi: 10.1016/j.watres.2011.08.066
– volume: 143
  start-page: 8
  year: 2014
  end-page: 16
  ident: CR21
  article-title: A hybrid evolutionary data driven model for river water quality early warning
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2014.04.017
– volume: 55
  start-page: 112
  year: 2019
  end-page: 129
  ident: CR54
  article-title: Key factors affecting temporal variability in stream water quality
  publication-title: Water Resour Res
  doi: 10.1029/2018WR023370
– year: 2016
  ident: CR51
  publication-title: Deep Learning
– volume: 50
  start-page: 2943
  year: 2019
  end-page: 2958
  ident: CR125
  article-title: Explanatory learner models: why machine learning (alone) is not the answer
  publication-title: Br J Edu Technol
  doi: 10.1111/bjet.12858
– volume: 9
  year: 2019
  ident: CR37
  article-title: Solving fluid flow problems using semi-supervised symbolic regression on sparse data
  publication-title: AIP Adv
  doi: 10.1063/1.5116183
– volume: 28
  start-page: 26
  year: 2001
  end-page: 35
  ident: CR10
  article-title: Drinking water quality and treatment: the use of artificial neural networks
  publication-title: Can J Civ Eng
  doi: 10.1139/l00-053
– volume: 81
  start-page: 3178
  year: 2000
  end-page: 3192
  ident: CR29
  article-title: Classification and regression trees: a powerful yet simple technique for ecological data analysis
  publication-title: Ecology
  doi: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
– volume: 1
  start-page: 151
  year: 1996
  end-page: 158
  ident: CR2
  article-title: A Bayesian approach for incorporating uncertainty and data worth in environmental projects
  publication-title: Environ Model Assess
  doi: 10.1007/BF01874902
– volume: 16
  start-page: 746
  year: 2016
  end-page: 755
  ident: CR149
  article-title: Research on raw water quality assessment oriented to drinking water treatment based on the SVM model
  publication-title: Water Supply
  doi: 10.2166/ws.2015.186
– volume: 138
  start-page: 63
  year: 2012
  end-page: 70
  ident: CR103
  article-title: Real-time water quality monitoring: assessment of multisensor data using Bayesian belief networks
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)WR.1943-5452.0000163
– volume: 27
  start-page: 3502
  year: 2013
  end-page: 3510
  ident: CR80
  article-title: Monitoring and modeling dissolved oxygen dynamics through continuous longitudinal sampling: a case study in wen-rui tang river, wenzhou, china
  publication-title: Hydrol Process
  doi: 10.1002/hyp.9459
– volume: 54
  start-page: 159
  year: 2014
  end-page: 169
  ident: CR131
  article-title: Spectroscopic characterisation of dissolved organic matter changes in drinking water treatment: from PARAFAC analysis to online monitoring wavelengths
  publication-title: Water Res
  doi: 10.1016/j.watres.2014.01.053
– volume: 25
  start-page: 891
  year: 2010
  end-page: 909
  ident: CR87
  article-title: Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2010.02.003
– volume: 44
  start-page: 185
  year: 2010
  end-page: 194
  ident: CR109
  article-title: Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices
  publication-title: Water Res
  doi: 10.1016/j.watres.2009.09.036
– volume: 136
  start-page: 84
  year: 2018
  end-page: 94
  ident: CR110
  article-title: Neural networks for dimensionality reduction of fluorescence spectra and prediction of drinking water disinfection by-products
  publication-title: Water Res
  doi: 10.1016/j.watres.2018.02.052
– volume: 33
  start-page: 301
  year: 2013
  end-page: 306
  ident: CR89
  article-title: Application of data driven methods for condition monitoring maintenance
  publication-title: Chem Eng Trans
  doi: 10.3303/CET1333051
– volume: 51
  start-page: 1
  year: 2019
  end-page: 42
  ident: CR53
  article-title: A survey of methods for explaining black box models
  publication-title: ACM Comput Surv
  doi: 10.1145/3236009
– year: 2021
  ident: CR82
  article-title: Comparison of dimensionality reduction techniques for cross-source transfer of fluorescence contaminant detection models
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130064
– year: 2020
  ident: CR1
  article-title: Implementation of data intelligence models coupled with ensemble machine learning for prediction of water quality index
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-09689-x
– volume: 19
  start-page: 1187
  year: 2019
  end-page: 1194
  ident: CR141
  article-title: Utilizing variable selection methods in modelling potable water quality
  publication-title: Water Supply
  doi: 10.2166/ws.2018.173
– year: 2012
  ident: CR42
  publication-title: Risk Assessment and Decision Analysis with Bayesian Networks
  doi: 10.1201/b13102
– volume: 11
  start-page: 910
  year: 2019
  ident: CR143
  article-title: A brief review of random forests for water scientists and practitioners and their recent history in water resources
  publication-title: Water
  doi: 10.3390/w11050910
– volume: 248
  year: 2020
  ident: CR83
  article-title: Radial basis function artificial neural network able to accurately predict disinfection by-product levels in tap water: taking haloacetic acids as a case study
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.125999
– volume: 126
  start-page: 465
  year: 2019
  end-page: 473
  ident: CR116
  article-title: Advances and opportunities in machine learning for process data analytics
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2019.04.003
– ident: CR61
– volume: 22
  start-page: 1588
  year: 2011
  end-page: 1598
  ident: CR120
  article-title: A new formulation for feedforward neural networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2163169
– volume: 60
  start-page: 51
  year: 2011
  end-page: 60
  ident: CR134
  article-title: On the usage of artificial neural networks in chlorine control applications for water distribution networks with high quality water
  publication-title: J Water Supply Res Technol AQUA
  doi: 10.2166/aqua.2011.086
– volume: 70
  start-page: 399
  year: 2014
  end-page: 408
  ident: CR27
  article-title: Using artificial neural network models to assess water quality in water distribution networks
  publication-title: Proc Eng
  doi: 10.1016/j.proeng.2014.02.045
– volume: 22
  start-page: 256
  year: 2011
  end-page: 270
  ident: CR11
  article-title: Classification and calibration of organic matter fluorescence data with multiway analysis methods and artificial neural networks: an operational tool for improved drinking water treatment
  publication-title: Environmetrics
  doi: 10.1002/env.1045
– volume: 71
  start-page: 181
  year: 2003
  end-page: 199
  ident: CR153
  article-title: Hierarchical models in environmental science
  publication-title: Int Stat Rev
  doi: 10.1111/j.1751-5823.2003.tb00192.x
– volume: 18
  start-page: 138
  year: 2015
  end-page: 144
  ident: CR49
  article-title: Comparison of decision tree algorithms for EMG signal classification using DWT
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2014.12.005
– volume: 347
  start-page: 845
  year: 2019
  end-page: 855
  ident: CR98
  article-title: Data-driven modeling and learning in science and engineering
  publication-title: Comptes Rendus Mécanique
  doi: 10.1016/j.crme.2019.11.009
– volume: 240
  start-page: 220
  year: 2015
  end-page: 234
  ident: CR70
  article-title: Evaluating risk of water mains failure using a Bayesian belief network model
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2014.06.033
– volume: 7
  start-page: 279
  year: 2013
  end-page: 299
  ident: CR99
  article-title: Hybrid ANN–GA model for predicting turbidity and chlorophyll-a concentrations
  publication-title: J Hydro-Environ Res
  doi: 10.1016/j.jher.2013.04.003
– volume: 33
  start-page: 129
  year: 2019
  ident: CR31
  article-title: Drinking water source monitoring using early warning systems based on data mining techniques
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-018-2092-4
– ident: CR75
– volume: 17
  start-page: 375
  year: 2003
  end-page: 381
  ident: CR158
  article-title: Data preparation for data mining
  publication-title: Appl Artif Intell
  doi: 10.1080/713827180
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: CR118
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2018.10.045
– volume: 11
  start-page: 2058
  year: 2019
  ident: CR84
  article-title: Analysis and prediction of water quality using LSTM deep neural networks in IoT environment
  publication-title: Sustainability
  doi: 10.3390/su11072058
– year: 2018
  ident: CR97
  publication-title: Foundations of machine learning
– volume: 11
  start-page: 605
  year: 2011
  end-page: 611
  ident: CR52
  article-title: The application of artificial neural networks for the optimization of coagulant dosage
  publication-title: Water Supply
  doi: 10.2166/ws.2011.028
– year: 2012
  ident: CR100
  publication-title: Machine learning: a probabilistic perspective
– volume: 206
  start-page: 910
  year: 2018
  end-page: 919
  ident: CR6
  article-title: Evaluating statistical model performance in water quality prediction
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2017.11.049
– volume: 46
  start-page: 2927
  year: 2012
  end-page: 2936
  ident: CR113
  article-title: Improving on SUVA254 using fluorescence-PARAFAC analysis and asymmetric flow-field flow fractionation for assessing disinfection byproduct formation and control
  publication-title: Water Res
  doi: 10.1016/j.watres.2012.03.002
– volume: 27
  start-page: 2486
  year: 2016
  end-page: 2498
  ident: CR62
  article-title: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2479223
– volume: 5
  start-page: 315
  year: 2019
  end-page: 324
  ident: CR156
  article-title: Fluorescence excitation emission matrices for rapid detection of polycyclic aromatic hydrocarbons and pesticides in surface waters
  publication-title: Environ Sci Water Res Technol
  doi: 10.1039/C8EW00821C
– volume: 587
  year: 2020
  ident: CR7
  article-title: Estimation of total dissolved solids (TDS) using new hybrid machine learning models
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.124989
– volume: 76
  start-page: 81
  year: 2016
  end-page: 94
  ident: CR20
  article-title: Predicting recreational water quality advisories: a comparison of statistical methods
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2015.10.012
– volume: 3
  start-page: 220
  year: 2009
  end-page: 241
  ident: CR17
  article-title: Computational fluid dynamics modelling of flocculation in water treatment: a review
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2009.11015267
– volume: 52
  start-page: 406
  year: 2018
  end-page: 414
  ident: CR93
  article-title: The case against charge transfer interactions in dissolved organic matter photophysics
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b03589
– ident: CR122
– volume: 33
  start-page: 32
  year: 2017
  end-page: 48
  ident: CR58
  article-title: Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset
  publication-title: Lake Reser Manage
  doi: 10.1080/10402381.2016.1263694
– volume: 32
  start-page: 4954
  year: 2020
  end-page: 4965
  ident: CR148
  article-title: Machine learning for materials scientists: an introductory guide toward best practices
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.0c01907
– volume: 212
  start-page: 38
  year: 2019
  end-page: 43
  ident: CR56
  article-title: Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.18.20224
– volume: 16
  start-page: 235
  year: 2019
  end-page: 248
  ident: CR33
  article-title: A survey of machine learning methods applied to anomaly detection on drinking-water quality data
  publication-title: Urban Water Journal
  doi: 10.1080/1573062X.2019.1637002
– start-page: 307
  year: 2012
  end-page: 323
  ident: CR115
  article-title: Random Forest for Bioinformatics
  publication-title: Ensemble Machine Learning: Methods and Applications
  doi: 10.1007/978-1-4419-9326-7_11
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR15
  article-title: Random Forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– year: 2014
  ident: CR44
  publication-title: Predictive analytics, data mining and big data: myths
  doi: 10.1057/9781137379283
– volume: 15
  start-page: 1322
  year: 2018
  ident: CR79
  article-title: Improved prediction of harmful algal blooms in four major south Korea’s rivers using deep learning models
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph15071322
– volume: 64
  start-page: 558
  year: 2014
  end-page: 566
  ident: CR105
  article-title: Comparison of two multivariate classification models for contamination event detection in water quality time series
  publication-title: J Water Supply Res Technol AQUA
  doi: 10.2166/aqua.2014.033
– start-page: 149
  year: 1996
  end-page: 182
  ident: CR123
  article-title: The Backpropagation Algorithm
  publication-title: Neural Networks
  doi: 10.1007/978-3-642-61068-4_7
– volume: 138
  year: 2020
  ident: CR12
  article-title: Combining machine learning and process engineering physics towards enhanced accuracy and explainability of data-driven models
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2020.106834
– volume: 83
  start-page: 1431
  year: 2011
  end-page: 1442
  ident: CR90
  article-title: An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.01.018
– volume: 33
  start-page: 4569
  year: 2019
  end-page: 4581
  ident: CR163
  article-title: A novel event detection model for water distribution systems based on data-driven estimation and support vector machine classification
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-019-02317-5
– ident: CR152
– year: 1994
  ident: CR76
  article-title: Genetic programming as a means for programming computers by natural selection
  publication-title: Stat Comput
  doi: 10.1007/BF00175355
– volume: 7
  start-page: 509
  year: 2004
  end-page: 520
  ident: CR39
  article-title: Bayesian inference in ecology
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2004.00603.x
– volume: 125
  start-page: 1
  year: 2017
  end-page: 10
  ident: CR60
  article-title: Assessment of drinking water quality at the tap using fluorescence spectroscopy
  publication-title: Water Res
  doi: 10.1016/j.watres.2017.08.020
– volume: 114
  start-page: 122
  year: 2012
  end-page: 131
  ident: CR132
  article-title: Artificial intelligence based modeling for predicting the disinfection by-products in water
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2012.03.014
– ident: CR104
– volume: 48
  start-page: 2099
  year: 2014
  end-page: 2101
  ident: CR19
  article-title: Emerging challenges for the drinking water industry
  publication-title: Environ Sci Technol
  doi: 10.1021/es405606t
– volume: 2
  start-page: 1
  year: 2021
  end-page: 26
  ident: CR66
  article-title: Physics-guided machine learning for scientific discovery: an application in simulating lake temperature profiles
  publication-title: ACM/IMS Trans Data Sci
  doi: 10.1145/3447814
– volume: 171
  year: 2020
  ident: CR26
  article-title: Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data
  publication-title: Water Res
  doi: 10.1016/j.watres.2019.115454
– volume: 16
  start-page: 654
  year: 2014
  end-page: 671
  ident: CR130
  article-title: The importance of charge-transfer interactions in determining chromophoric dissolved organic matter (CDOM) optical and photochemical properties
  publication-title: Environ Sci Process Impacts
  doi: 10.1039/C3EM00573A
– volume: 7
  start-page: 3885
  year: 2017
  end-page: 3902
  ident: CR74
  article-title: Prediction of settled water turbidity and optimal coagulant dosage in drinking water treatment plant using a hybrid model of k-means clustering and adaptive neuro-fuzzy inference system
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-017-0541-5
– ident: CR48
– volume: 133
  start-page: 1
  year: 2014
  end-page: 11
  ident: CR147
  article-title: Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2013.11.035
– volume: 408
  start-page: 4202
  year: 2010
  end-page: 4210
  ident: CR78
  article-title: Disinfection by-product formation following chlorination of drinking water: artificial neural network models and changes in speciation with treatment
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2010.05.040
– volume: 196
  start-page: 365
  year: 2017
  end-page: 375
  ident: CR32
  article-title: A novel water quality data analysis framework based on time-series data mining
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2017.03.024
– volume: 15
  start-page: 101
  year: 2000
  end-page: 124
  ident: CR85
  article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(99)00007-9
– volume: 16
  start-page: 4823
  year: 2019
  end-page: 4832
  ident: CR4
  article-title: Modeling and prediction of water quality parameters using a hybrid particle swarm optimization–neural fuzzy approach
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-018-1896-3
– volume: 183
  start-page: 29
  year: 2005
  end-page: 46
  ident: CR128
  article-title: Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2004.07.021
– ident: CR155
– volume: 203
  start-page: 312
  year: 2007
  end-page: 318
  ident: CR144
  article-title: Advantages and challenges of Bayesian networks in environmental modelling
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2006.11.033
– volume: 39
  start-page: 742
  year: 2011
  end-page: 749
  ident: CR73
  article-title: Modeling of biological water and wastewater treatment processes using artificial neural networks
  publication-title: Clean: Soil, Air, Water
  doi: 10.1002/clen.201000234
– volume: 21
  start-page: 8036
  year: 2014
  end-page: 8051
  ident: CR94
  article-title: Evaluation of spatial-temporal variations and trends in surface water quality across a rural-suburban-urban interface
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-014-2716-z
– volume: 11
  start-page: 401
  year: 1997
  end-page: 404
  ident: CR46
  article-title: Modelling of coagulant dosage in a water treatment plant
  publication-title: Artif Intell Eng
  doi: 10.1016/S0954-1810(97)00010-1
– volume: 76
  start-page: 143
  year: 2015
  end-page: 159
  ident: CR41
  article-title: Predictive statistical models linking antecedent meteorological conditions and waterway bacterial contamination in urban waterways
  publication-title: Water Res
  doi: 10.1016/j.watres.2015.02.040
– volume: 29
  start-page: 1907
  year: 2015
  end-page: 1919
  ident: CR30
  article-title: A cognitive approach in selection of source for water treatment plant based on climatic impact
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-015-0918-x
– volume: 47
  start-page: 1006
  year: 2018
  end-page: 1023
  ident: CR55
  article-title: Cryptosporidium and Giardia in wastewater and surface water environments
  publication-title: J Environ Qual
  doi: 10.2134/jeq2018.04.0132
– volume: 94
  year: 2016
  ident: CR117
  article-title: Prediction of dynamical systems by symbolic regression
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.94.012214
– volume: 51
  start-page: 2538
  year: 2017
  end-page: 2553
  ident: CR36
  article-title: The Potential of knowing more: a review of data-driven urban water management
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.6b04267
– ident: CR34
– volume: 46
  start-page: 8212
  year: 2012
  end-page: 8219
  ident: CR111
  article-title: Event detection in water distribution systems from multivariate water quality time series
  publication-title: Environ Sci Technol
  doi: 10.1021/es3014024
– volume: 14
  start-page: 757
  year: 2017
  end-page: 758
  ident: CR77
  article-title: Classification and regression trees
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4370
– volume: 184
  start-page: 1953
  year: 2012
  end-page: 1971
  ident: CR59
  article-title: ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-011-2091-x
– volume: 44
  start-page: 3755
  year: 2010
  end-page: 3762
  ident: CR23
  article-title: Predicting disinfection by-product formation potential in water
  publication-title: Water Res
  doi: 10.1016/j.watres.2010.04.009
– volume: 79
  start-page: 214
  year: 2016
  end-page: 232
  ident: CR112
  article-title: Sensitivity analysis of environmental models: a systematic review with practical workflow
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2016.02.008
– volume: 18
  start-page: 138
  year: 2015
  ident: 9592_CR49
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2014.12.005
– volume: 33
  start-page: 129
  year: 2019
  ident: 9592_CR31
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-018-2092-4
– volume: 50
  start-page: 2943
  year: 2019
  ident: 9592_CR125
  publication-title: Br J Edu Technol
  doi: 10.1111/bjet.12858
– volume: 14
  start-page: 757
  year: 2017
  ident: 9592_CR77
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4370
– volume: 136
  start-page: 84
  year: 2018
  ident: 9592_CR110
  publication-title: Water Res
  doi: 10.1016/j.watres.2018.02.052
– volume: 45
  start-page: 5
  year: 2001
  ident: 9592_CR15
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume-title: Deep Learning
  year: 2016
  ident: 9592_CR51
– volume: 25
  start-page: 891
  year: 2010
  ident: 9592_CR87
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2010.02.003
– volume: 321
  start-page: 21
  year: 2004
  ident: 9592_CR127
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2003.05.001
– volume: 32
  start-page: 4954
  year: 2020
  ident: 9592_CR148
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.0c01907
– volume: 212
  start-page: 38
  year: 2019
  ident: 9592_CR56
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.18.20224
– ident: 9592_CR104
  doi: 10.1109/CVPR.2015.7298640
– volume: 5
  start-page: 6557
  year: 2013
  ident: 9592_CR102
  publication-title: Parafac Anal Methods
  doi: 10.1039/C3AY41160E
– ident: 9592_CR126
  doi: 10.24963/ijcai.2017/371
– volume: 7
  start-page: 509
  year: 2004
  ident: 9592_CR39
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2004.00603.x
– volume: 11
  start-page: 910
  year: 2019
  ident: 9592_CR143
  publication-title: Water
  doi: 10.3390/w11050910
– volume: 33
  start-page: 4569
  year: 2019
  ident: 9592_CR163
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-019-02317-5
– volume: 58
  start-page: 64
  year: 2017
  ident: 9592_CR146
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2017.04.021
– volume: 4
  start-page: 1
  year: 2018
  ident: 9592_CR159
  publication-title: Npj Comput Mater
  doi: 10.1038/s41524-017-0060-9
– volume: 32
  start-page: 1013
  year: 1996
  ident: 9592_CR86
  publication-title: Water Resour Res
  doi: 10.1029/96WR03529
– volume: 67
  start-page: 105
  year: 2014
  ident: 9592_CR139
  publication-title: Water Res
  doi: 10.1016/j.watres.2014.09.001
– volume: 9
  year: 2019
  ident: 9592_CR37
  publication-title: AIP Adv
  doi: 10.1063/1.5116183
– volume: 5
  start-page: 315
  year: 2019
  ident: 9592_CR156
  publication-title: Environ Sci Water Res Technol
  doi: 10.1039/C8EW00821C
– volume: 203
  start-page: 312
  year: 2007
  ident: 9592_CR144
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2006.11.033
– volume: 44
  start-page: 185
  year: 2010
  ident: 9592_CR109
  publication-title: Water Res
  doi: 10.1016/j.watres.2009.09.036
– start-page: 1
  volume-title: Neural networks and deep learning: a textbook
  year: 2018
  ident: 9592_CR3
  doi: 10.1007/978-3-319-94463-0
– volume: 3
  start-page: 220
  year: 2009
  ident: 9592_CR17
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2009.11015267
– volume: 171
  year: 2020
  ident: 9592_CR26
  publication-title: Water Res
  doi: 10.1016/j.watres.2019.115454
– volume: 55
  start-page: 112
  year: 2019
  ident: 9592_CR54
  publication-title: Water Resour Res
  doi: 10.1029/2018WR023370
– volume-title: Data mining with decision trees: theory and applications
  year: 2015
  ident: 9592_CR124
– volume-title: Foundations of machine learning
  year: 2018
  ident: 9592_CR97
– volume: 102
  start-page: 92
  year: 2010
  ident: 9592_CR35
  publication-title: J AWWA
  doi: 10.1002/j.1551-8833.2010.tb10152.x
– volume: 27
  start-page: 3502
  year: 2013
  ident: 9592_CR80
  publication-title: Hydrol Process
  doi: 10.1002/hyp.9459
– ident: 9592_CR152
  doi: 10.1109/ISKE.2017.8258814
– volume: 126
  start-page: 465
  year: 2019
  ident: 9592_CR116
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2019.04.003
– volume: 76
  start-page: 81
  year: 2016
  ident: 9592_CR20
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2015.10.012
– volume: 7
  start-page: 255
  year: 2015
  ident: 9592_CR160
  publication-title: Water Qual Expo Health
  doi: 10.1007/s12403-014-0145-3
– year: 2020
  ident: 9592_CR1
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-09689-x
– volume: 28
  start-page: 26
  year: 2001
  ident: 9592_CR10
  publication-title: Can J Civ Eng
  doi: 10.1139/l00-053
– volume: 48
  start-page: 2099
  year: 2014
  ident: 9592_CR19
  publication-title: Environ Sci Technol
  doi: 10.1021/es405606t
– volume-title: Risk Assessment and Decision Analysis with Bayesian Networks
  year: 2012
  ident: 9592_CR42
  doi: 10.1201/b13102
– volume-title: Data Preprocessing in Data Mining
  year: 2015
  ident: 9592_CR47
  doi: 10.1007/978-3-319-10247-4
– volume: 14
  start-page: 1550013
  year: 2015
  ident: 9592_CR50
  publication-title: Int J Comp Intel Appl
  doi: 10.1142/S1469026815500133
– volume: 17
  start-page: 375
  year: 2003
  ident: 9592_CR158
  publication-title: Appl Artif Intell
  doi: 10.1080/713827180
– volume: 87
  start-page: 26
  year: 2015
  ident: 9592_CR65
  publication-title: Water Environ Res
  doi: 10.1002/j.1554-7531.2015.tb00138.x
– start-page: 307
  volume-title: Ensemble Machine Learning: Methods and Applications
  year: 2012
  ident: 9592_CR115
  doi: 10.1007/978-1-4419-9326-7_11
– volume: 11
  start-page: 2058
  year: 2019
  ident: 9592_CR84
  publication-title: Sustainability
  doi: 10.3390/su11072058
– volume: 125
  start-page: 1
  year: 2017
  ident: 9592_CR60
  publication-title: Water Res
  doi: 10.1016/j.watres.2017.08.020
– volume: 19
  start-page: 1187
  year: 2019
  ident: 9592_CR141
  publication-title: Water Supply
  doi: 10.2166/ws.2018.173
– volume: 15
  start-page: 101
  year: 2000
  ident: 9592_CR85
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(99)00007-9
– volume: 6
  start-page: 97
  year: 2006
  ident: 9592_CR24
  publication-title: Water Supply
  doi: 10.2166/ws.2006.782
– volume: 23
  start-page: 1289
  year: 2008
  ident: 9592_CR91
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2008.03.008
– volume: 9
  start-page: 87
  year: 2010
  ident: 9592_CR145
  publication-title: Softw Syst Model
  doi: 10.1007/s10270-008-0106-z
– volume: 183
  start-page: 29
  year: 2005
  ident: 9592_CR128
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2004.07.021
– start-page: 15
  volume-title: Proactive Data Mining with Decision Trees
  year: 2014
  ident: 9592_CR28
  doi: 10.1007/978-1-4939-0539-3_2
– volume: 46
  start-page: 8212
  year: 2012
  ident: 9592_CR111
  publication-title: Environ Sci Technol
  doi: 10.1021/es3014024
– volume: 34
  start-page: 415
  year: 2020
  ident: 9592_CR8
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-020-01776-2
– volume: 378
  start-page: 686
  year: 2019
  ident: 9592_CR118
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2018.10.045
– volume: 33
  start-page: 32
  year: 2017
  ident: 9592_CR58
  publication-title: Lake Reser Manage
  doi: 10.1080/10402381.2016.1263694
– volume: 33
  start-page: 301
  year: 2013
  ident: 9592_CR89
  publication-title: Chem Eng Trans
  doi: 10.3303/CET1333051
– volume: 587
  year: 2020
  ident: 9592_CR7
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.124989
– volume: 21
  start-page: 1189
  year: 2008
  ident: 9592_CR154
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2008.03.015
– volume: 45
  start-page: 6030
  year: 2011
  ident: 9592_CR135
  publication-title: Water Res
  doi: 10.1016/j.watres.2011.08.066
– volume: 42–44
  start-page: 70
  year: 2012
  ident: 9592_CR13
  publication-title: Phys Chem Earth Parts A/b/c
  doi: 10.1016/j.pce.2011.07.037
– volume: 107
  start-page: 344
  year: 2014
  ident: 9592_CR43
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.12.087
– volume: 21
  start-page: 8036
  year: 2014
  ident: 9592_CR94
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-014-2716-z
– volume: 16
  start-page: 654
  year: 2014
  ident: 9592_CR130
  publication-title: Environ Sci Process Impacts
  doi: 10.1039/C3EM00573A
– volume: 23
  start-page: 283
  year: 2010
  ident: 9592_CR92
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2009.11.009
– ident: 9592_CR137
– volume: 52
  start-page: 406
  year: 2018
  ident: 9592_CR93
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b03589
– volume: 51
  start-page: 3070
  year: 2015
  ident: 9592_CR119
  publication-title: Water Resour Res
  doi: 10.1002/2014WR016527
– ident: 9592_CR69
  doi: 10.1155/2012/846321
– volume: 16
  start-page: 746
  year: 2016
  ident: 9592_CR149
  publication-title: Water Supply
  doi: 10.2166/ws.2015.186
– volume-title: Predictive analytics, data mining and big data: myths
  year: 2014
  ident: 9592_CR44
  doi: 10.1057/9781137379283
– volume: 26
  start-page: 30374
  year: 2019
  ident: 9592_CR67
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-06049-2
– volume: 60
  start-page: 51
  year: 2011
  ident: 9592_CR134
  publication-title: J Water Supply Res Technol AQUA
  doi: 10.2166/aqua.2011.086
– volume: 26
  start-page: 7
  year: 2012
  ident: 9592_CR136
  publication-title: Water Environ J
  doi: 10.1111/j.1747-6593.2011.00258.x
– volume: 22
  start-page: 256
  year: 2011
  ident: 9592_CR11
  publication-title: Environmetrics
  doi: 10.1002/env.1045
– volume: 29
  start-page: 1907
  year: 2015
  ident: 9592_CR30
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-015-0918-x
– volume: 10
  start-page: 1148
  year: 2018
  ident: 9592_CR162
  publication-title: Water
  doi: 10.3390/w10091148
– volume: 133
  start-page: 1
  year: 2014
  ident: 9592_CR147
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2013.11.035
– volume: 11
  start-page: 401
  year: 1997
  ident: 9592_CR46
  publication-title: Artif Intell Eng
  doi: 10.1016/S0954-1810(97)00010-1
– year: 1994
  ident: 9592_CR76
  publication-title: Stat Comput
  doi: 10.1007/BF00175355
– volume: 248
  year: 2020
  ident: 9592_CR83
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.125999
– volume: 184
  start-page: 1953
  year: 2012
  ident: 9592_CR59
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-011-2091-x
– volume: 92
  start-page: 82
  year: 2017
  ident: 9592_CR64
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2017.01.023
– volume: 173
  start-page: 133
  year: 2020
  ident: 9592_CR150
  publication-title: DWT
  doi: 10.5004/dwt.2020.24144
– volume: 73
  start-page: 5333
  year: 2015
  ident: 9592_CR72
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-014-3784-6
– volume: 51
  start-page: 1
  year: 2019
  ident: 9592_CR53
  publication-title: ACM Comput Surv
  doi: 10.1145/3236009
– volume: 10
  start-page: 277
  year: 2011
  ident: 9592_CR16
  publication-title: Rev Environ Sci Biotechnol
  doi: 10.1007/s11157-011-9243-x
– volume: 114
  start-page: 122
  year: 2012
  ident: 9592_CR132
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2012.03.014
– volume: 2
  start-page: 383
  year: 2016
  ident: 9592_CR142
  publication-title: Environ Sci Water Res Technol
  doi: 10.1039/C5EW00285K
– volume: 7
  start-page: 3885
  year: 2017
  ident: 9592_CR74
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-017-0541-5
– volume: 15
  start-page: 1322
  year: 2018
  ident: 9592_CR79
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph15071322
– volume: 1
  start-page: 151
  year: 1996
  ident: 9592_CR2
  publication-title: Environ Model Assess
  doi: 10.1007/BF01874902
– volume: 628–629
  start-page: 1178
  year: 2018
  ident: 9592_CR96
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.02.140
– volume: 347
  start-page: 845
  year: 2019
  ident: 9592_CR98
  publication-title: Comptes Rendus Mécanique
  doi: 10.1016/j.crme.2019.11.009
– volume: 46
  start-page: 2927
  year: 2012
  ident: 9592_CR113
  publication-title: Water Res
  doi: 10.1016/j.watres.2012.03.002
– volume: 7
  start-page: 279
  year: 2013
  ident: 9592_CR99
  publication-title: J Hydro-Environ Res
  doi: 10.1016/j.jher.2013.04.003
– volume: 53
  start-page: 7316
  year: 2017
  ident: 9592_CR138
  publication-title: Water Resour Res
  doi: 10.1002/2016WR020197
– ident: 9592_CR34
– volume: 50
  start-page: 87
  year: 2016
  ident: 9592_CR81
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2016.03.030
– volume: 16
  start-page: 4823
  year: 2019
  ident: 9592_CR4
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-018-1896-3
– volume: 18
  start-page: 1869
  year: 2018
  ident: 9592_CR107
  publication-title: Water Supply
  doi: 10.2166/ws.2018.016
– year: 2021
  ident: 9592_CR82
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130064
– volume: 19
  start-page: 1785
  year: 2019
  ident: 9592_CR140
  publication-title: Water Supply
  doi: 10.2166/ws.2019.057
– ident: 9592_CR57
– volume: 39
  start-page: 742
  year: 2011
  ident: 9592_CR73
  publication-title: Clean: Soil, Air, Water
  doi: 10.1002/clen.201000234
– volume: 71
  start-page: 181
  year: 2003
  ident: 9592_CR153
  publication-title: Int Stat Rev
  doi: 10.1111/j.1751-5823.2003.tb00192.x
– volume: 76
  start-page: 143
  year: 2015
  ident: 9592_CR41
  publication-title: Water Res
  doi: 10.1016/j.watres.2015.02.040
– volume: 47
  start-page: 1679
  year: 2013
  ident: 9592_CR129
  publication-title: Water Res
  doi: 10.1016/j.watres.2012.12.032
– volume: 48
  start-page: 129
  year: 1999
  ident: 9592_CR9
  publication-title: J Water Supply Res Technol AQUA
  doi: 10.2166/aqua.1999.0013
– volume: 143
  start-page: 8
  year: 2014
  ident: 9592_CR21
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2014.04.017
– volume: 79
  start-page: 214
  year: 2016
  ident: 9592_CR112
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2016.02.008
– volume: 206
  start-page: 910
  year: 2018
  ident: 9592_CR6
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2017.11.049
– volume: 22
  start-page: 1588
  year: 2011
  ident: 9592_CR120
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2163169
– ident: 9592_CR122
  doi: 10.1145/2939672.2939778
– volume: 70
  start-page: 399
  year: 2014
  ident: 9592_CR27
  publication-title: Proc Eng
  doi: 10.1016/j.proeng.2014.02.045
– volume: 181
  year: 2020
  ident: 9592_CR63
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.115902
– volume: 240
  start-page: 220
  year: 2015
  ident: 9592_CR70
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2014.06.033
– volume: 138
  year: 2020
  ident: 9592_CR12
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2020.106834
– ident: 9592_CR75
– volume: 170
  year: 2020
  ident: 9592_CR108
  publication-title: Water Res
  doi: 10.1016/j.watres.2019.115349
– volume: 81
  start-page: 3178
  year: 2000
  ident: 9592_CR29
  publication-title: Ecology
  doi: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
– ident: 9592_CR38
  doi: 10.22034/gjesm.2018.04.005
– volume: 83
  start-page: 1431
  year: 2011
  ident: 9592_CR90
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.01.018
– volume: 54
  start-page: 159
  year: 2014
  ident: 9592_CR131
  publication-title: Water Res
  doi: 10.1016/j.watres.2014.01.053
– volume: 196
  start-page: 365
  year: 2017
  ident: 9592_CR32
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2017.03.024
– volume: 138
  start-page: 63
  year: 2012
  ident: 9592_CR103
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)WR.1943-5452.0000163
– volume: 27
  start-page: 2486
  year: 2016
  ident: 9592_CR62
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2479223
– volume: 2
  start-page: 1
  year: 2021
  ident: 9592_CR66
  publication-title: ACM/IMS Trans Data Sci
  doi: 10.1145/3447814
– ident: 9592_CR121
  doi: 10.1139/f99-040
– volume: 47
  start-page: 1006
  year: 2018
  ident: 9592_CR55
  publication-title: J Environ Qual
  doi: 10.2134/jeq2018.04.0132
– volume: 94
  year: 2016
  ident: 9592_CR117
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.94.012214
– volume-title: Machine learning: the art and science of algorithms that make sense of data
  year: 2012
  ident: 9592_CR45
  doi: 10.1017/CBO9780511973000
– volume: 38
  start-page: 149
  year: 1997
  ident: 9592_CR18
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/S0169-7439(97)00032-4
– volume: 52
  start-page: 726
  year: 2006
  ident: 9592_CR22
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2006.04.003
– volume: 693
  year: 2019
  ident: 9592_CR151
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.07.246
– volume: 51
  start-page: 2538
  year: 2017
  ident: 9592_CR36
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.6b04267
– volume: 19
  start-page: 485
  year: 2004
  ident: 9592_CR88
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(03)00163-4
– volume: 44
  start-page: 3755
  year: 2010
  ident: 9592_CR23
  publication-title: Water Res
  doi: 10.1016/j.watres.2010.04.009
– volume: 51
  start-page: 234
  year: 2014
  ident: 9592_CR106
  publication-title: Water Res
  doi: 10.1016/j.watres.2013.10.060
– volume-title: Neural networks for pattern recognition
  year: 1995
  ident: 9592_CR14
  doi: 10.1093/oso/9780198538493.001.0001
– volume: 19
  start-page: 415
  year: 1977
  ident: 9592_CR133
  publication-title: Null
– volume: 13
  start-page: 3191
  year: 2013
  ident: 9592_CR68
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2013.01.027
– volume: 54
  start-page: 1013
  year: 2018
  ident: 9592_CR161
  publication-title: Water Resour Res
  doi: 10.1002/2017WR021470
– volume: 124
  start-page: 67
  year: 2017
  ident: 9592_CR95
  publication-title: Water Res
  doi: 10.1016/j.watres.2017.07.035
– volume-title: Machine learning: a probabilistic perspective
  year: 2012
  ident: 9592_CR100
– start-page: 149
  volume-title: Neural Networks
  year: 1996
  ident: 9592_CR123
  doi: 10.1007/978-3-642-61068-4_7
– volume: 64
  start-page: 558
  year: 2014
  ident: 9592_CR105
  publication-title: J Water Supply Res Technol AQUA
  doi: 10.2166/aqua.2014.033
– ident: 9592_CR48
  doi: 10.1109/DSAA.2018.00018
– volume: 16
  start-page: 235
  year: 2019
  ident: 9592_CR33
  publication-title: Urban Water Journal
  doi: 10.1080/1573062X.2019.1637002
– start-page: 339
  volume-title: Aquatic Organic Matter Fluorescence
  year: 2014
  ident: 9592_CR101
  doi: 10.1017/CBO9781139045452.016
– volume: 11
  start-page: 605
  year: 2011
  ident: 9592_CR52
  publication-title: Water Supply
  doi: 10.2166/ws.2011.028
– ident: 9592_CR61
  doi: 10.1007/978-3-642-33299-9_1
– volume: 11
  start-page: 1674
  year: 2019
  ident: 9592_CR114
  publication-title: Remote Sens
  doi: 10.3390/rs11141674
– volume: 3
  start-page: 422
  year: 2021
  ident: 9592_CR71
  publication-title: Nat Rev Phys
  doi: 10.1038/s42254-021-00314-5
– volume: 240
  year: 2020
  ident: 9592_CR25
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2020.106303
– volume: 32
  start-page: 1
  year: 2016
  ident: 9592_CR40
  publication-title: Eco Inform
  doi: 10.1016/j.ecoinf.2015.12.004
– volume: 26
  start-page: 1376
  year: 2011
  ident: 9592_CR5
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2011.06.004
– volume: 10
  start-page: 1566
  year: 2018
  ident: 9592_CR157
  publication-title: Water
  doi: 10.3390/w10111566
– volume: 408
  start-page: 4202
  year: 2010
  ident: 9592_CR78
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2010.05.040
– ident: 9592_CR155
SSID ssj0021696
Score 2.4419062
SecondaryResourceType review_article
Snippet There are significant opportunities to optimize drinking water treatment and water resource management using data-driven models. Modelling can help define...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 985
SubjectTerms Algorithms
Atmospheric Protection/Air Quality Control/Air Pollution
byproducts
chlorination
Coagulants
Complex systems
cost effectiveness
Decision making
Disinfection
Drinking water
Earth and Environmental Science
Environment
Environmental Engineering/Biotechnology
Microbiology
model validation
Modelling
Optimization
Resource management
Review Paper
risk
Treated water
uncertainty
water management
Water quality
Water quality measurements
Water resources management
Water treatment
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aL3oQrRarVSJ402A3233kIFKktXjwZKG3JZsHCLJb-0D6751J010V7DU7m8DMJPNlMg9Cbkw3DHWQC8ZVIFkvB1nk3Ugy28XickGMbkKMtniNR-PeyySaeIfb3IdVbs5Ed1DrUqGP_B5gegDYGi40j9NPhl2j8HXVt9DYJXsBWBrU83T4XF24YCmXXRTFgmHZGJ80s06dwyozDAMU0BPG2eq3YarR5p8HUmd3hkfk0ANG2l9L-JjsmKJJDn6UEWyS1qDOVgNSv13nJ-ShT9epKbS0FGNBmZ7h6UZd_xtMRKfvBYUx1z-BfgHunNEq9PyUjIeDt6cR8_0SmAIYtWAiEVEo4kBJwFU6MqHlgUlzaQDiaM0tF1KmXOVWm0QpAUOpNiLNYwEoRycybJFGURbmjFAprdUwX2pj3pOJFUqCuUuM4iqBC1raJsGGWZnyxcSxp8VHVpdBRgZnwODMMThbtclt9c90XUpjK3VnI4PMb6t5VitBm1xXn2FD4CuHLEy5BJo4dL3NY6C528iunuL_Fc-3r3hB9jmqiwtl6ZDGYrY0lwBIFvmV07pv1FbcBQ
  priority: 102
  providerName: ProQuest
Title A review of data-driven modelling in drinking water treatment
URI https://link.springer.com/article/10.1007/s11157-021-09592-y
https://www.proquest.com/docview/2591875825
https://www.proquest.com/docview/2636541465
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60vehBtFqs1hLBmwa62e4jBw9Vti0KRcRCPS3ZPECQrfSB9N872e5DRQVPC9lJAjOZ5JtkHgAXuuu6ykk4ZdIRtJegLJKuJ6jp2uRyjm-vCa23xdgfTXp3U2-aB4UtCm_34kky26mrYDebF4ZalwJ7d8XoehvqHtruVh0nrF-aWThBFlPk-ZzaZDF5qMzPY3w9jiqM-e1ZNDttBvuwl8NE0t_I9QC2dNqA3U_JAxvQjKoYNSTNlXRxCNd9sglIITNDrAcoVXO7p5Gs6o0NPycvKcG2rGoCeUe0OSelw_kRTAbR0-2I5lUSqETwtKQ84J7LfUcKRFPK065hjg4ToRHYKMUM40KETCZG6UBKjk2h0jxMfI7YRgXCbUItnaX6GIgQxigcLzQ-64nAcCnwkAu0ZDJAsyxsgVMwK5Z5CnFbyeI1rpIfWwbHyOA4Y3C8bsFl2edtk0DjT-p2IYM4V6ZFjBaag2YV2rItOC9_oxrYtw2R6tkKaXw3q2juI81VIbtqiN9nPPkf-Sns2CW3cWhpQ205X-kzhCXLpAPb4WDYgXp_-Hwf4fcmGj88drK1-QEaRt18
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT-MwEB6x5YHlAQG7iHIaiX1irW2c5vADQhxF5aoQAom3rONDQkIptEWof4rfyEyOBpDgjddkYisz4_E39hwA27bl-8ZLJRfaU7ydoizSVqC4a1FxOS-kY0KKtuiF3Zv26W1wOwUvVS4MhVVWNjE31Kav6Yz8H8J0D7E1OjR7D4-cukbR7WrVQqNQizM7fkaXbbh7coTy_SPEcef6sMvLrgJcI9gYcRnJwJehpxWiDxNY3wnPxqmyCASMEU5IpWKhU2dspLXER7GxMk5DiVjARMrHcX_AdJsyWhswfdDpXV5NXDz8uTyfKQglp0I1ZZpOkaxHdW04hUTQ2Zvg4_dbYY1vP1zJ5jvd8TzMlRCV7Rc6tQBTNluE2TeFCxdhqVPnxyFpaSCGv2B3nxXJMKzvGEWfcjMge8ryjjuU-s7uMobP8o4N7BmR7oBNgt1_w8238HIJGlk_s8vAlHLO4HixC0VbRU5qhRtsZLXQEbqEcRO8ilmJLsuXUxeN-6QuvEwMTpDBSc7gZNyEnck3D0Xxji-p1yoZJOVCHia12jVha_IalyDdq6jM9p-QJvTzbuoh0vytZFcP8fmMK1_PuAkz3euL8-T8pHe2Cj8FqU4eSLMGjdHgya4jHBqlG6UOMvj_3Wr_Cv9PG9c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FIiE4VFAakbbAIpUTrBKv48ceKlSRhLRBEQcq9eau9yEhIafNQ1H-Gr-OmbUdAxK55WqPd-WZ2dlvducBcG57YWiCXHKhA8X7Ocoi70WKux4VlwtiOiakaItpPL7pX99Gty34VefCUFhlbRO9oTYzTWfkXYTpAWJrdGi6rgqL-DYYfbp_4NRBim5a63YapYpM7GaN7tvi4mqAsn4vxGj4_fOYVx0GuEbgseQykVEo40ArRCImsqETgU1zZREUGCOckEqlQufO2ERriY9SY2WaxxJxgUlUiOM-gsdJmEhy_NLRl62zh7_pM5uiWHIqWVMl7JRpe1ThhlNwBJ3CCb75e1NskO4_l7N-zxs9h8MKrLLLUrteQMsWR_DsjxKGR9AeNplySFqZisVLuLhkZVoMmzlGcajczMmyMt97h5Lg2Y-C4TPfu4GtEfPO2Tbs_Rhu9sLJNhwUs8K-AqaUcwbHS10s-ipxUivcahOrhU7QOUw7ENTMynRVyJz6afzMmhLMxOAMGZx5BmebDnzYfnNflvHYSX1WyyCrlvQiaxSwA--2r3Ex0g2LKuxshTRx6Puqx0jzsZZdM8T_ZzzZPeNbeILKnn29mk5O4akgzfERNWdwsJyv7GvERcv8jVdABnf71vjfNnYepw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+data-driven+modelling+in+drinking+water+treatment&rft.jtitle=Reviews+in+environmental+science+and+biotechnology&rft.au=Aliashrafi%2C+Atefeh&rft.au=Zhang%2C+Yirao&rft.au=Groenewegen%2C+Hannah&rft.au=Peleato%2C+Nicolas+M.&rft.date=2021-12-01&rft.issn=1569-1705&rft.eissn=1572-9826&rft.volume=20&rft.issue=4&rft.spage=985&rft.epage=1009&rft_id=info:doi/10.1007%2Fs11157-021-09592-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11157_021_09592_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-1705&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-1705&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-1705&client=summon