A review of data-driven modelling in drinking water treatment
There are significant opportunities to optimize drinking water treatment and water resource management using data-driven models. Modelling can help define complex system behaviour, such as water quality and environmental systems, giving insight into expected outcomes from changing conditions. Many w...
Saved in:
Published in | Reviews in environmental science and biotechnology Vol. 20; no. 4; pp. 985 - 1009 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1569-1705 1572-9826 |
DOI | 10.1007/s11157-021-09592-y |
Cover
Abstract | There are significant opportunities to optimize drinking water treatment and water resource management using data-driven models. Modelling can help define complex system behaviour, such as water quality and environmental systems, giving insight into expected outcomes from changing conditions. Many water treatment models have been developed, such as predicting treated water quality based on coagulant addition or disinfection by-product formation from chlorination, which can be used to better inform operators of optimal treatment parameters to limit risk and reduce cost. Data-driven models, in particular, present an opportunity to learn relationships from patterns in historical data without the need to pre-define mechanisms or variable interactions. Furthermore, models built on currently monitored data are likely easier to implement since they utilize water quality measures that are already in place. However, data-driven approaches have significant challenges, including increased uncertainty in model validity, challenges in interpreting model behaviour and decision logic, and increased likelihood of incorporating biases from training data. This article presents a review of data-driven model applications in drinking water treatment to highlight opportunities related to protecting source water quality, optimizing treatment processes, and interpreting of sensor data. There is a focus on identifying approaches and algorithms best suited for specific applications and the interpretability of trained models. Successful implementation of data-driven models in critical systems, such as water treatment, requires that models be validated, and a model’s decision-making logic can be identified and scrutinized. |
---|---|
AbstractList | There are significant opportunities to optimize drinking water treatment and water resource management using data-driven models. Modelling can help define complex system behaviour, such as water quality and environmental systems, giving insight into expected outcomes from changing conditions. Many water treatment models have been developed, such as predicting treated water quality based on coagulant addition or disinfection by-product formation from chlorination, which can be used to better inform operators of optimal treatment parameters to limit risk and reduce cost. Data-driven models, in particular, present an opportunity to learn relationships from patterns in historical data without the need to pre-define mechanisms or variable interactions. Furthermore, models built on currently monitored data are likely easier to implement since they utilize water quality measures that are already in place. However, data-driven approaches have significant challenges, including increased uncertainty in model validity, challenges in interpreting model behaviour and decision logic, and increased likelihood of incorporating biases from training data. This article presents a review of data-driven model applications in drinking water treatment to highlight opportunities related to protecting source water quality, optimizing treatment processes, and interpreting of sensor data. There is a focus on identifying approaches and algorithms best suited for specific applications and the interpretability of trained models. Successful implementation of data-driven models in critical systems, such as water treatment, requires that models be validated, and a model’s decision-making logic can be identified and scrutinized. |
Author | Peleato, Nicolas M. Aliashrafi, Atefeh Zhang, Yirao Groenewegen, Hannah |
Author_xml | – sequence: 1 givenname: Atefeh surname: Aliashrafi fullname: Aliashrafi, Atefeh organization: School of Engineering, University of British Columbia Okanagan – sequence: 2 givenname: Yirao surname: Zhang fullname: Zhang, Yirao organization: School of Engineering, University of British Columbia Okanagan – sequence: 3 givenname: Hannah surname: Groenewegen fullname: Groenewegen, Hannah organization: School of Engineering, University of British Columbia Okanagan – sequence: 4 givenname: Nicolas M. orcidid: 0000-0002-8788-7024 surname: Peleato fullname: Peleato, Nicolas M. email: nicolas.peleato@ubc.ca organization: School of Engineering, University of British Columbia Okanagan |
BookMark | eNp9kE9LAzEQxYNUsFW_gKcFL16iSbbJJgcPpfgPCl70HNLNbEndzdYkbem3N7WC0ENPMzx-b-bxRmjgew8I3VByTwmpHiKllFeYMIqJ4orh3RkaZoVhJZkY7HehMK0Iv0CjGJckk0KJIXqcFAE2DrZF3xTWJINtcBvwRddbaFvnF4XzRdb8137fmgShSAFM6sCnK3TemDbC9d-8RJ_PTx_TVzx7f3mbTma4LjlLWFWKl0rQ2hBZWg5lwyjIuQHBSmtZw5QxktXzxkJV1ypL0oKSc6Eo47Yy5SW6O9xdhf57DTHpzsU65zMe-nXUTJSCj-lY8IzeHqHLfh18TqcZV1RWXLI9xQ5UHfoYAzR6FVxnwk5ToveN6kOjOvekfxvVu2ySR6baJZNc71Mwrj1tLQ_WmP_4BYT_VCdcP18FjSM |
CitedBy_id | crossref_primary_10_1016_j_jwpe_2024_105662 crossref_primary_10_3390_agriengineering6020103 crossref_primary_10_1002_wer_10960 crossref_primary_10_3390_w17010097 crossref_primary_10_3390_su16156598 crossref_primary_10_1016_j_watres_2024_121499 crossref_primary_10_3390_ijerph20136216 crossref_primary_10_1021_acsestengg_2c00073 crossref_primary_10_1016_j_jwpe_2025_107511 crossref_primary_10_1016_j_chemosphere_2024_141791 crossref_primary_10_1016_j_dche_2024_100202 crossref_primary_10_1016_j_watres_2023_120736 crossref_primary_10_1039_D4EW00329B crossref_primary_10_3390_min13010029 crossref_primary_10_3390_pr12091824 crossref_primary_10_3390_w15142572 crossref_primary_10_1016_j_hal_2022_102273 crossref_primary_10_2166_wst_2022_115 crossref_primary_10_1017_wat_2024_5 crossref_primary_10_1016_j_jece_2024_114481 crossref_primary_10_2166_ws_2023_328 crossref_primary_10_1016_j_cej_2025_161055 crossref_primary_10_1016_j_watres_2023_120075 crossref_primary_10_1371_journal_pwat_0000040 |
Cites_doi | 10.1016/j.neunet.2009.11.009 10.1007/s11356-019-06049-2 10.1016/S1364-8152(03)00163-4 10.1007/978-1-4939-0539-3_2 10.1002/j.1554-7531.2015.tb00138.x 10.3390/w10111566 10.1016/j.envsoft.2017.01.023 10.1017/CBO9781139045452.016 10.3390/w10091148 10.1016/j.jes.2016.03.030 10.1007/s11157-011-9243-x 10.1002/2014WR016527 10.1142/S1469026815500133 10.1002/2016WR020197 10.1016/j.watres.2020.115902 10.5004/dwt.2020.24144 10.1016/j.jes.2017.04.021 10.1016/j.agwat.2020.106303 10.1016/j.pce.2011.07.037 10.1029/96WR03529 10.2166/ws.2006.782 10.1016/S0169-7439(97)00032-4 10.1017/CBO9780511973000 10.1016/j.watres.2017.07.035 10.1016/j.scitotenv.2018.02.140 10.1016/j.scitotenv.2003.05.001 10.1016/j.watres.2019.115349 10.1016/j.envsoft.2008.03.008 10.1002/j.1551-8833.2010.tb10152.x 10.1016/j.watres.2014.09.001 10.1016/j.engappai.2008.03.015 10.3390/rs11141674 10.1038/s41524-017-0060-9 10.1016/j.watres.2012.12.032 10.1111/j.1747-6593.2011.00258.x 10.1007/s12665-014-3784-6 10.1016/j.chemosphere.2013.12.087 10.1007/978-3-319-10247-4 10.1039/C5EW00285K 10.1007/s10270-008-0106-z 10.1007/s12403-014-0145-3 10.1007/978-3-319-94463-0 10.1016/j.asoc.2013.01.027 10.1016/j.ecoinf.2015.12.004 10.1007/s00477-020-01776-2 10.1016/j.watres.2013.10.060 10.1039/C3AY41160E 10.1016/j.scitotenv.2019.07.246 10.1038/s42254-021-00314-5 10.1016/j.envsoft.2011.06.004 10.2166/ws.2019.057 10.1016/j.marpolbul.2006.04.003 10.2166/ws.2018.016 10.1002/2017WR021470 10.2166/aqua.1999.0013 10.1016/j.watres.2011.08.066 10.1016/j.jenvman.2014.04.017 10.1029/2018WR023370 10.1111/bjet.12858 10.1063/1.5116183 10.1139/l00-053 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2 10.1007/BF01874902 10.2166/ws.2015.186 10.1061/(ASCE)WR.1943-5452.0000163 10.1002/hyp.9459 10.1016/j.watres.2014.01.053 10.1016/j.envsoft.2010.02.003 10.1016/j.watres.2009.09.036 10.1016/j.watres.2018.02.052 10.3303/CET1333051 10.1145/3236009 10.1016/j.chemosphere.2021.130064 10.1007/s11356-020-09689-x 10.2166/ws.2018.173 10.1201/b13102 10.3390/w11050910 10.1016/j.chemosphere.2020.125999 10.1016/j.compchemeng.2019.04.003 10.1109/TNN.2011.2163169 10.2166/aqua.2011.086 10.1016/j.proeng.2014.02.045 10.1002/env.1045 10.1111/j.1751-5823.2003.tb00192.x 10.1016/j.bspc.2014.12.005 10.1016/j.crme.2019.11.009 10.1016/j.ejor.2014.06.033 10.1016/j.jher.2013.04.003 10.1007/s11269-018-2092-4 10.1080/713827180 10.1016/j.jcp.2018.10.045 10.3390/su11072058 10.2166/ws.2011.028 10.1016/j.jenvman.2017.11.049 10.1016/j.watres.2012.03.002 10.1109/TNNLS.2015.2479223 10.1039/C8EW00821C 10.1016/j.jhydrol.2020.124989 10.1016/j.envsoft.2015.10.012 10.1080/19942060.2009.11015267 10.1021/acs.est.7b03589 10.1080/10402381.2016.1263694 10.1021/acs.chemmater.0c01907 10.2214/AJR.18.20224 10.1080/1573062X.2019.1637002 10.1007/978-1-4419-9326-7_11 10.1023/A:1010933404324 10.1057/9781137379283 10.3390/ijerph15071322 10.2166/aqua.2014.033 10.1007/978-3-642-61068-4_7 10.1016/j.compchemeng.2020.106834 10.1016/j.chemosphere.2011.01.018 10.1007/s11269-019-02317-5 10.1007/BF00175355 10.1111/j.1461-0248.2004.00603.x 10.1016/j.watres.2017.08.020 10.1016/j.chemolab.2012.03.014 10.1021/es405606t 10.1145/3447814 10.1016/j.watres.2019.115454 10.1039/C3EM00573A 10.1007/s13201-017-0541-5 10.1016/j.jenvman.2013.11.035 10.1016/j.scitotenv.2010.05.040 10.1016/j.jenvman.2017.03.024 10.1016/S1364-8152(99)00007-9 10.1007/s13762-018-1896-3 10.1016/j.ecolmodel.2004.07.021 10.1016/j.ecolmodel.2006.11.033 10.1002/clen.201000234 10.1007/s11356-014-2716-z 10.1016/S0954-1810(97)00010-1 10.1016/j.watres.2015.02.040 10.1007/s11269-015-0918-x 10.2134/jeq2018.04.0132 10.1103/PhysRevE.94.012214 10.1021/acs.est.6b04267 10.1021/es3014024 10.1038/nmeth.4370 10.1007/s10661-011-2091-x 10.1016/j.watres.2010.04.009 10.1016/j.envsoft.2016.02.008 10.1109/CVPR.2015.7298640 10.24963/ijcai.2017/371 10.1109/ISKE.2017.8258814 10.1155/2012/846321 10.1145/2939672.2939778 10.22034/gjesm.2018.04.005 10.1139/f99-040 10.1093/oso/9780198538493.001.0001 10.1109/DSAA.2018.00018 10.1007/978-3-642-33299-9_1 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
DBID | AAYXX CITATION 3V. 7QO 7ST 7WY 7WZ 7XB 87Z 88A 88I 8AO 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI C1K CCPQU DWQXO FR3 FRNLG F~G GNUQQ HCIFZ K60 K6~ L.- L6V LK8 M0C M2P M7P M7S P64 PATMY PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7S9 L.6 |
DOI | 10.1007/s11157-021-09592-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Environment Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Biological Science Collection ABI/INFORM Global Science Database Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts Environmental Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest Business Collection Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1572-9826 |
EndPage | 1009 |
ExternalDocumentID | 10_1007_s11157_021_09592_y |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: RGPIN-2019-05449 funderid: http://dx.doi.org/10.13039/501100000038 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29P 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5VS 67M 67Z 6NX 7WY 7XC 88A 88I 8AO 8FE 8FG 8FH 8FL 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L6V L8X LAK LK8 LLZTM M0C M0L M2P M4Y M7P M7S MA- ML. ML0 N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS PYCSY Q2X QOS R89 R9I RIG RNI ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 Y6R YLTOR Z45 Z5O Z7U Z7V Z7W Z7Y Z7Z ZMTXR ~02 ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7QO 7ST 7XB 8FD 8FK ABRTQ C1K FR3 L.- P64 PKEHL PQEST PQGLB PQUKI Q9U SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c352t-97953961ca083d5e3f21e8bae623dd2f29aa82cbfde7cc9dd28de98b69125d7a3 |
IEDL.DBID | U2A |
ISSN | 1569-1705 |
IngestDate | Fri Sep 05 10:22:38 EDT 2025 Fri Jul 25 18:52:37 EDT 2025 Tue Jul 01 03:06:29 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Fri Feb 21 02:47:35 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | Drinking water Data-driven modelling Artificial intelligence Water quality Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-97953961ca083d5e3f21e8bae623dd2f29aa82cbfde7cc9dd28de98b69125d7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8788-7024 |
PQID | 2591875825 |
PQPubID | 54332 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_2636541465 proquest_journals_2591875825 crossref_primary_10_1007_s11157_021_09592_y crossref_citationtrail_10_1007_s11157_021_09592_y springer_journals_10_1007_s11157_021_09592_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211200 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211200 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Reviews in environmental science and biotechnology |
PublicationTitleAbbrev | Rev Environ Sci Biotechnol |
PublicationYear | 2021 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Burchard-Levine, Liu, Vince (CR21) 2014; 143 Bro (CR18) 1997; 38 CR38 Trueman, MacIsaac, Stoddart, Gagnon (CR142) 2016; 2 Li, Peleato (CR82) 2021 CR34 Bikmukhametov, Jäschke (CR12) 2020; 138 Quade, Abel, Shafi (CR117) 2016; 94 Abba, Pham, Saini (CR1) 2020 CR155 Sanchez, Skeriotis, Miller (CR129) 2013; 47 Marton, Sánchez, Carlos, Martorell (CR89) 2013; 33 Goodfellow, Bengio, Courville (CR51) 2016 Wang, Murdock, Kauwe (CR148) 2020; 32 Sadiq, Rodriguez (CR127) 2004; 321 Murray, Ghazali, McBean (CR103) 2012; 138 Zhang, Ling (CR159) 2018; 4 Wagner, Plewa (CR146) 2017; 58 Brooks, Corsi, Fienen, Carvin (CR20) 2016; 76 Deng, Wang (CR32) 2017; 196 Li, Zou, An (CR81) 2016; 50 CR48 Zheng, Maier, Wu (CR161) 2018; 54 Brookes, Carey, Hamilton (CR19) 2014; 48 Gagnon, Grandjean, Thibault (CR46) 1997; 11 Wang (CR149) 2016; 16 Bridgeman, Bieroza, Baker (CR16) 2011; 10 Bridgeman, Jefferson, Parsons (CR17) 2009; 3 Farnham, Lall (CR41) 2015; 76 Eggimann, Mutzner, Wani (CR36) 2017; 51 Baxter, Stanley, Zhang (CR9) 1999; 48 Pifer, Fairey (CR113) 2012; 46 Shutova, Baker, Bridgeman, Henderson (CR131) 2014; 54 Chen, Chen, Zhou (CR26) 2020; 171 Barzegar, Aalami, Adamowski (CR8) 2020; 34 Delpla, Florea, Rodriguez (CR31) 2019; 33 Hosseini-Asl, Zurada, Nasraoui (CR62) 2016; 27 Li, Liu, Li (CR80) 2013; 27 Wang, Yao, Wang (CR151) 2019; 693 Guo, Lintern, Webb (CR54) 2019; 55 Keskin, Düğenci, Kaçaroğlu (CR72) 2015; 73 Rosé, McLaughlin, Liu, Koedinger (CR125) 2019; 50 Humphrey, Maier, Wu (CR64) 2017; 92 Wikle (CR153) 2003; 71 Peiris, Hallé, Budman (CR109) 2010; 44 Mohri, Rostamizadeh, Talwalkar (CR97) 2018 Cordoba, Tuhovčák, Tauš (CR27) 2014; 70 Dogo, Nwulu, Twala, Aigbavboa (CR33) 2019; 16 Fenton, Neil (CR42) 2012 CR57 Ellison (CR39) 2004; 7 CR137 Breiman (CR15) 2001; 45 Snee (CR133) 1977; 19 Zhou, Wang, Xiao (CR162) 2018; 10 Liu, Wang, Sangaiah (CR84) 2019; 11 Thoe, Gold, Griesbach (CR139) 2014; 67 Tinelli, Juran (CR140) 2019; 19 Avila, Horn, Moriarty (CR6) 2018; 206 Huang, Zhang, Arhonditsis (CR63) 2020; 181 Soyupak, Kilic, Karadirek, Muhammetoglu (CR134) 2011; 60 Murphy, Stedmon, Graeber, Bro (CR102) 2013; 5 Hamilton, Waso, Reyneke (CR55) 2018; 47 JohnR (CR76) 1994 Tomperi, Leiviskä (CR141) 2019; 19 Zhang, Zhang, Yang (CR158) 2003; 17 CR152 Maier, Dandy (CR86) 1996; 32 Rojas (CR123) 1996 Tesoriero, Gronberg, Juckem (CR138) 2017; 53 Razavi, Tolson (CR120) 2011; 22 CR69 Yang, Peleato, Legge, Andrews (CR156) 2019; 5 García, Luengo, Herrera (CR47) 2015 Gomes, Souza, Pontes (CR50) 2015; 14 Aghel, Rezaei, Mohadesi (CR4) 2019; 16 Mohammed, Hameed, Seidu (CR96) 2018; 628–629 CR61 Kulkarni, Chellam (CR78) 2010; 408 Wang, Shen, Zhu, Jiang (CR150) 2020; 173 McKay, Korak, Erickson (CR93) 2018; 52 Zou, Lin, Xu (CR163) 2019; 33 Qi, Zhang, Ma (CR115) 2012 Banadkooki, Ehteram, Panahi (CR7) 2020; 587 Lin, Dai, Zheng (CR83) 2020; 248 Pu, Ding, Chao (CR114) 2019; 11 Yu, Yin, Wang (CR157) 2018; 10 Debnath, Majumder, Pal (CR30) 2015; 29 Oliker, Ostfeld (CR106) 2014; 51 Sharpless, Blough (CR130) 2014; 16 Aggarwal, Aggarwal (CR3) 2018 Mulia, Tay, Roopsekhar, Tkalich (CR99) 2013; 7 Abbaspour, Schulin, Schläppi, Flühler (CR2) 1996; 1 CR75 Wu, Lo (CR154) 2008; 21 Murphy, Bro, Stedmon, Coble, Lead, Baker (CR101) 2014 Rokach, Maimon (CR124) 2015 Chen, Chen, Xu (CR25) 2020; 240 Guidotti, Monreale, Ruggieri (CR53) 2019; 51 Bishop (CR14) 1995 Chen, Westerhoff (CR23) 2010; 44 Gokgoz, Subasi (CR49) 2015; 18 Maier, Dandy (CR85) 2000; 15 Pianosi, Beven, Freer (CR112) 2016; 79 El Hasadi, Padding (CR37) 2019; 9 Qin, Chiang (CR116) 2019; 126 May, Dandy, Maier, Nixon (CR91) 2008; 23 Krzywinski, Altman (CR77) 2017; 14 Meyers, Kapelan, Keedwell (CR95) 2017; 124 Perelman, Arad, Housh, Ostfeld (CR111) 2012; 46 CR126 Maier, Jain, Dandy, Sudheer (CR87) 2010; 25 Khataee, Kasiri (CR73) 2011; 39 CR122 Razavi, Gupta (CR119) 2015; 51 CR121 Heibati, Stedmon, Stenroth (CR60) 2017; 125 O’Reilly, Bezuidenhout, Bezuidenhout (CR107) 2018; 18 Stidson, Gray, McPhail (CR136) 2012; 26 De’ath G, Fabricius KE (CR29) 2000; 81 Maier, Morgan, Chow (CR88) 2004; 19 Biondi, Freni, Iacobellis (CR13) 2012; 42–44 Ferretto, Tedetti, Guigue (CR43) 2014; 107 Tyralis, Papacharalampous, Langousis (CR143) 2019; 11 Wan, Cai, Li (CR147) 2014; 133 D’Souza, Kumar (CR35) 2010; 102 Lee, Lee (CR79) 2018; 15 Griffiths, Andrews (CR52) 2011; 11 Dahan, Cohen, Rokach, Maimon, Dahan, Cohen, Rokach, Maimon (CR28) 2014 Juntunen, Liukkonen, Lehtola, Hiltunen (CR68) 2013; 13 Matilainen, Gjessing, Lahtinen (CR90) 2011; 83 Jagupilla, Vaccari, Miskewitz (CR65) 2015; 87 Montáns, Chinesta, Gómez-Bombarelli, Kutz (CR98) 2019; 347 Oliker, Ostfeld (CR105) 2014; 64 Sahoo, Ray, Wade (CR128) 2005; 183 Peleato, Legge, Andrews (CR110) 2018; 136 Jin, Cai, Jiang, Liu (CR67) 2019; 26 Panidhapu, Li, Aliashrafi, Peleato (CR108) 2020; 170 Jia, Willard, Karpatne (CR66) 2021; 2 Flach (CR45) 2012 Kim, Parnichkun (CR74) 2017; 7 Mei, Liao, Zhu (CR94) 2014; 21 Finlay (CR44) 2014 Raissi, Perdikaris, Karniadakis (CR118) 2019; 378 Chen, Hou (CR24) 2006; 6 Handelman, Kok, Chandra (CR56) 2019; 212 May, Maier, Dandy (CR92) 2010; 23 CR104 Everaert, Bennetsen, Goethals (CR40) 2016; 32 Murphy (CR100) 2012 Aguilera, Fernández, Fernández (CR5) 2011; 26 Kabir, Tesfamariam, Francisque, Sadiq (CR70) 2015; 240 Uusitalo (CR144) 2007; 203 Chau (CR22) 2006; 52 Harris, Graham (CR58) 2017; 33 Singh, Gupta (CR132) 2012; 114 Stedmon, Seredyńska-Sobecka, Boe-Hansen (CR135) 2011; 45 Karniadakis, Kevrekidis, Lu (CR71) 2021; 3 Zhang, Deng, Rusch (CR160) 2015; 7 van der Aalst, Rubin, Verbeek (CR145) 2010; 9 Heddam, Bermad, Dechemi (CR59) 2012; 184 Baxter, Zhang, Stanley (CR10) 2001; 28 Bieroza, Baker, Bridgeman (CR11) 2011; 22 P Kulkarni (9592_CR78) 2010; 408 S Lee (9592_CR79) 2018; 15 HR Maier (9592_CR86) 1996; 32 9592_CR104 9592_CR34 L Perelman (9592_CR111) 2012; 46 A Debnath (9592_CR30) 2015; 29 G O’Reilly (9592_CR107) 2018; 18 9592_CR38 D Wang (9592_CR149) 2016; 16 CK Wikle (9592_CR153) 2003; 71 H Lin (9592_CR83) 2020; 248 H Dahan (9592_CR28) 2014 A Burchard-Levine (9592_CR21) 2014; 143 NP Sanchez (9592_CR129) 2013; 47 RJ May (9592_CR92) 2010; 23 S Razavi (9592_CR120) 2011; 22 W Brooks (9592_CR20) 2016; 76 CD D’Souza (9592_CR35) 2010; 102 A Panidhapu (9592_CR108) 2020; 170 I Marton (9592_CR89) 2013; 33 HR Maier (9592_CR88) 2004; 19 J Bridgeman (9592_CR17) 2009; 3 DJ Farnham (9592_CR41) 2015; 76 S García (9592_CR47) 2015 D Biondi (9592_CR13) 2012; 42–44 GS Handelman (9592_CR56) 2019; 212 J Bridgeman (9592_CR16) 2011; 10 CM Sharpless (9592_CR130) 2014; 16 KP Singh (9592_CR132) 2012; 114 9592_CR48 K JohnR (9592_CR76) 1994 G Meyers (9592_CR95) 2017; 124 KR Murphy (9592_CR102) 2013; 5 C-L Chen (9592_CR24) 2006; 6 X-Y Zou (9592_CR163) 2019; 33 D Guo (9592_CR54) 2019; 55 LS Gomes (9592_CR50) 2015; 14 AD Pifer (9592_CR113) 2012; 46 N Fenton (9592_CR42) 2012 E Hosseini-Asl (9592_CR62) 2016; 27 9592_CR121 S Soyupak (9592_CR134) 2011; 60 GE Karniadakis (9592_CR71) 2021; 3 R Bro (9592_CR18) 1997; 38 R Avila (9592_CR6) 2018; 206 9592_CR122 YMF El Hasadi (9592_CR37) 2019; 9 KA Hamilton (9592_CR55) 2018; 47 9592_CR126 G Kabir (9592_CR70) 2015; 240 H Chen (9592_CR25) 2020; 240 Y Shutova (9592_CR131) 2014; 54 TE Keskin (9592_CR72) 2015; 73 SJ Qin (9592_CR116) 2019; 126 RJ May (9592_CR91) 2008; 23 FB Banadkooki (9592_CR7) 2020; 587 X Jia (9592_CR66) 2021; 2 S Tinelli (9592_CR140) 2019; 19 SCK Jagupilla (9592_CR65) 2015; 87 H Mohammed (9592_CR96) 2018; 628–629 B Chen (9592_CR23) 2010; 44 T Jin (9592_CR67) 2019; 26 M Heibati (9592_CR60) 2017; 125 CM Kim (9592_CR74) 2017; 7 CP Rosé (9592_CR125) 2019; 50 S Eggimann (9592_CR36) 2017; 51 P Liu (9592_CR84) 2019; 11 WMP van der Aalst (9592_CR145) 2010; 9 RT Stidson (9592_CR136) 2012; 26 9592_CR137 ED Wagner (9592_CR146) 2017; 58 P Wang (9592_CR151) 2019; 693 W Deng (9592_CR32) 2017; 196 I Goodfellow (9592_CR51) 2016 CW Baxter (9592_CR10) 2001; 28 BF Trueman (9592_CR142) 2016; 2 R Rojas (9592_CR123) 1996 P Juntunen (9592_CR68) 2013; 13 G McKay (9592_CR93) 2018; 52 G Everaert (9592_CR40) 2016; 32 R Wan (9592_CR147) 2014; 133 CC Aggarwal (9592_CR3) 2018 L Uusitalo (9592_CR144) 2007; 203 E Gokgoz (9592_CR49) 2015; 18 De’ath G, Fabricius KE (9592_CR29) 2000; 81 F Zheng (9592_CR161) 2018; 54 M Krzywinski (9592_CR77) 2017; 14 KC Abbaspour (9592_CR2) 1996; 1 F Pu (9592_CR114) 2019; 11 T Bikmukhametov (9592_CR12) 2020; 138 Y Qi (9592_CR115) 2012 RD Snee (9592_CR133) 1977; 19 D Wang (9592_CR150) 2020; 173 KP Murphy (9592_CR100) 2012 L Rokach (9592_CR124) 2015 YZ Yang (9592_CR156) 2019; 5 FJ Montáns (9592_CR98) 2019; 347 J Tomperi (9592_CR141) 2019; 19 F Pianosi (9592_CR112) 2016; 79 S Zhang (9592_CR158) 2003; 17 9592_CR75 K Mei (9592_CR94) 2014; 21 GAC Cordoba (9592_CR27) 2014; 70 NM Peleato (9592_CR110) 2018; 136 H Tyralis (9592_CR143) 2019; 11 9592_CR152 AY-T Wang (9592_CR148) 2020; 32 CW Baxter (9592_CR9) 1999; 48 EM Dogo (9592_CR33) 2019; 16 9592_CR155 N Oliker (9592_CR106) 2014; 51 B Aghel (9592_CR4) 2019; 16 N Oliker (9592_CR105) 2014; 64 M Raissi (9592_CR118) 2019; 378 SI Abba (9592_CR1) 2020 K Chau (9592_CR22) 2006; 52 TD Harris (9592_CR58) 2017; 33 KR Murphy (9592_CR101) 2014 HR Maier (9592_CR87) 2010; 25 CM Bishop (9592_CR14) 1995 KA Griffiths (9592_CR52) 2011; 11 AM Ellison (9592_CR39) 2004; 7 M Quade (9592_CR117) 2016; 94 PA Aguilera (9592_CR5) 2011; 26 M Mohri (9592_CR97) 2018 JD Brookes (9592_CR19) 2014; 48 9592_CR57 J Zhou (9592_CR162) 2018; 10 GB Sahoo (9592_CR128) 2005; 183 J Huang (9592_CR63) 2020; 181 R Guidotti (9592_CR53) 2019; 51 J Li (9592_CR80) 2013; 27 CA Stedmon (9592_CR135) 2011; 45 R Barzegar (9592_CR8) 2020; 34 K Chen (9592_CR26) 2020; 171 I Delpla (9592_CR31) 2019; 33 Z Li (9592_CR82) 2021 W Thoe (9592_CR139) 2014; 67 S Razavi (9592_CR119) 2015; 51 S Finlay (9592_CR44) 2014 A Matilainen (9592_CR90) 2011; 83 Z Zhang (9592_CR160) 2015; 7 AR Khataee (9592_CR73) 2011; 39 R Li (9592_CR81) 2016; 50 GB Humphrey (9592_CR64) 2017; 92 R Sadiq (9592_CR127) 2004; 321 AJ Tesoriero (9592_CR138) 2017; 53 9592_CR69 S Murray (9592_CR103) 2012; 138 L Breiman (9592_CR15) 2001; 45 N Ferretto (9592_CR43) 2014; 107 RH Peiris (9592_CR109) 2010; 44 S Heddam (9592_CR59) 2012; 184 IE Mulia (9592_CR99) 2013; 7 C Gagnon (9592_CR46) 1997; 11 Y Zhang (9592_CR159) 2018; 4 M Bieroza (9592_CR11) 2011; 22 HR Maier (9592_CR85) 2000; 15 G-D Wu (9592_CR154) 2008; 21 9592_CR61 Q Yu (9592_CR157) 2018; 10 P Flach (9592_CR45) 2012 |
References_xml | – volume: 23 start-page: 283 year: 2010 end-page: 294 ident: CR92 article-title: Data splitting for artificial neural networks using SOM-based stratified sampling publication-title: Neural Netw doi: 10.1016/j.neunet.2009.11.009 – year: 2015 ident: CR124 publication-title: Data mining with decision trees: theory and applications – volume: 26 start-page: 30374 year: 2019 end-page: 30385 ident: CR67 article-title: A data-driven model for real-time water quality prediction and early warning by an integration method publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-06049-2 – volume: 19 start-page: 485 year: 2004 end-page: 494 ident: CR88 article-title: Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters publication-title: Environ Model Softw doi: 10.1016/S1364-8152(03)00163-4 – start-page: 15 year: 2014 end-page: 20 ident: CR28 article-title: Proactive data mining: a general approach and algorithmic framework publication-title: Proactive Data Mining with Decision Trees doi: 10.1007/978-1-4939-0539-3_2 – volume: 87 start-page: 26 year: 2015 end-page: 34 ident: CR65 article-title: Symbolic regression of upstream, stormwater, and tributary E. Coli concentrations using river flows publication-title: Water Environ Res doi: 10.1002/j.1554-7531.2015.tb00138.x – volume: 10 start-page: 1566 year: 2018 ident: CR157 article-title: Adaptive detection method for organic contamination events in water distribution systems using the UV-Vis spectrum based on semi-supervised learning publication-title: Water doi: 10.3390/w10111566 – volume: 92 start-page: 82 year: 2017 end-page: 106 ident: CR64 article-title: Improved validation framework and R-package for artificial neural network models publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2017.01.023 – start-page: 339 year: 2014 end-page: 375 ident: CR101 article-title: Chemometric analysis of organic matter fluorescence publication-title: Aquatic Organic Matter Fluorescence doi: 10.1017/CBO9781139045452.016 – volume: 10 start-page: 1148 year: 2018 ident: CR162 article-title: Water quality prediction method based on IGRA and LSTM publication-title: Water doi: 10.3390/w10091148 – volume: 50 start-page: 87 year: 2016 end-page: 92 ident: CR81 article-title: Water quality assessment in Qu River based on fuzzy water pollution index method publication-title: J Environ Sci doi: 10.1016/j.jes.2016.03.030 – volume: 10 start-page: 277 year: 2011 ident: CR16 article-title: The application of fluorescence spectroscopy to organic matter characterisation in drinking water treatment publication-title: Rev Environ Sci Biotechnol doi: 10.1007/s11157-011-9243-x – volume: 51 start-page: 3070 year: 2015 end-page: 3092 ident: CR119 article-title: What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in Earth and Environmental systems models publication-title: Water Resour Res doi: 10.1002/2014WR016527 – volume: 14 start-page: 1550013 year: 2015 ident: CR50 article-title: Coagulant dosage determination in a water treatment plant using dynamic neural network models publication-title: Int J Comp Intel Appl doi: 10.1142/S1469026815500133 – volume: 53 start-page: 7316 year: 2017 end-page: 7331 ident: CR138 article-title: Predicting redox-sensitive contaminant concentrations in groundwater using random forest classification publication-title: Water Resour Res doi: 10.1002/2016WR020197 – volume: 181 year: 2020 ident: CR63 article-title: The magnitude and drivers of harmful algal blooms in China’s lakes and reservoirs: a national-scale characterization publication-title: Water Res doi: 10.1016/j.watres.2020.115902 – volume: 173 start-page: 133 year: 2020 end-page: 141 ident: CR150 article-title: Model predictive control for chlorine dosing of drinking water treatment based on support vector machine model publication-title: DWT doi: 10.5004/dwt.2020.24144 – ident: CR121 – volume: 58 start-page: 64 year: 2017 end-page: 76 ident: CR146 article-title: CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: an updated review publication-title: J Environ Sci doi: 10.1016/j.jes.2017.04.021 – volume: 19 start-page: 415 year: 1977 end-page: 428 ident: CR133 article-title: Validation of regression models: methods and examples publication-title: Null – volume: 240 year: 2020 ident: CR25 article-title: A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources publication-title: Agric Water Manag doi: 10.1016/j.agwat.2020.106303 – volume: 42–44 start-page: 70 year: 2012 end-page: 76 ident: CR13 article-title: Validation of hydrological models: conceptual basis, methodological approaches and a proposal for a code of practice publication-title: Phys Chem Earth Parts A/b/c doi: 10.1016/j.pce.2011.07.037 – volume: 32 start-page: 1013 year: 1996 end-page: 1022 ident: CR86 article-title: The use of artificial neural networks for the prediction of water quality parameters publication-title: Water Resour Res doi: 10.1029/96WR03529 – volume: 6 start-page: 97 year: 2006 end-page: 104 ident: CR24 article-title: Fuzzy model identification and control system design for coagulation chemical dosing of potable water publication-title: Water Supply doi: 10.2166/ws.2006.782 – volume: 38 start-page: 149 year: 1997 end-page: 171 ident: CR18 article-title: PARAFAC. Tutorial and applications publication-title: Chemom Intell Lab Syst doi: 10.1016/S0169-7439(97)00032-4 – year: 2012 ident: CR45 publication-title: Machine learning: the art and science of algorithms that make sense of data doi: 10.1017/CBO9780511973000 – volume: 124 start-page: 67 year: 2017 end-page: 76 ident: CR95 article-title: Short-term forecasting of turbidity in trunk main networks publication-title: Water Res doi: 10.1016/j.watres.2017.07.035 – volume: 628–629 start-page: 1178 year: 2018 end-page: 1190 ident: CR96 article-title: Comparative predictive modelling of the occurrence of faecal indicator bacteria in a drinking water source in Norway publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.02.140 – ident: CR57 – volume: 321 start-page: 21 year: 2004 end-page: 46 ident: CR127 article-title: Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2003.05.001 – volume: 170 year: 2020 ident: CR108 article-title: Integration of weather conditions for predicting microbial water quality using Bayesian Belief Networks publication-title: Water Res doi: 10.1016/j.watres.2019.115349 – volume: 23 start-page: 1289 year: 2008 end-page: 1299 ident: CR91 article-title: Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2008.03.008 – volume: 102 start-page: 92 year: 2010 end-page: 106 ident: CR35 article-title: Comparison of ANN models for predicting water quality in distribution systems publication-title: J AWWA doi: 10.1002/j.1551-8833.2010.tb10152.x – volume: 67 start-page: 105 year: 2014 end-page: 117 ident: CR139 article-title: Predicting water quality at Santa Monica Beach: evaluation of five different models for public notification of unsafe swimming conditions publication-title: Water Res doi: 10.1016/j.watres.2014.09.001 – volume: 21 start-page: 1189 year: 2008 end-page: 1195 ident: CR154 article-title: Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network-based fuzzy inference system publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2008.03.015 – volume: 11 start-page: 1674 year: 2019 ident: CR114 article-title: Water-quality classification of inland lakes using landsat8 images by convolutional neural networks publication-title: Remote Sens doi: 10.3390/rs11141674 – volume: 4 start-page: 1 year: 2018 end-page: 8 ident: CR159 article-title: A strategy to apply machine learning to small datasets in materials science publication-title: Npj Comput Mater doi: 10.1038/s41524-017-0060-9 – ident: CR126 – volume: 47 start-page: 1679 year: 2013 end-page: 1690 ident: CR129 article-title: Assessment of dissolved organic matter fluorescence PARAFAC components before and after coagulation–filtration in a full scale water treatment plant publication-title: Water Res doi: 10.1016/j.watres.2012.12.032 – volume: 26 start-page: 7 year: 2012 end-page: 18 ident: CR136 article-title: Development and use of modelling techniques for real-time bathing water quality predictions publication-title: Water Environ J doi: 10.1111/j.1747-6593.2011.00258.x – volume: 73 start-page: 5333 year: 2015 end-page: 5347 ident: CR72 article-title: Prediction of water pollution sources using artificial neural networks in the study areas of Sivas, Karabük and Bartın (Turkey) publication-title: Environ Earth Sci doi: 10.1007/s12665-014-3784-6 – volume: 107 start-page: 344 year: 2014 end-page: 353 ident: CR43 article-title: Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation–emission matrices and parallel factor analysis publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.12.087 – year: 2015 ident: CR47 publication-title: Data Preprocessing in Data Mining doi: 10.1007/978-3-319-10247-4 – volume: 2 start-page: 383 year: 2016 end-page: 389 ident: CR142 article-title: Prediction of disinfection by-product formation in drinking water via fluorescence spectroscopy publication-title: Environ Sci Water Res Technol doi: 10.1039/C5EW00285K – volume: 9 start-page: 87 year: 2010 end-page: 111 ident: CR145 article-title: Process mining: a two-step approach to balance between underfitting and overfitting publication-title: Softw Syst Model doi: 10.1007/s10270-008-0106-z – volume: 7 start-page: 255 year: 2015 end-page: 263 ident: CR160 article-title: Modeling fecal coliform bacteria levels at gulf coast beaches publication-title: Water Qual Expo Health doi: 10.1007/s12403-014-0145-3 – start-page: 1 year: 2018 end-page: 52 ident: CR3 article-title: An introduction to neural networks publication-title: Neural networks and deep learning: a textbook doi: 10.1007/978-3-319-94463-0 – volume: 13 start-page: 3191 year: 2013 end-page: 3196 ident: CR68 article-title: Cluster analysis by self-organizing maps: an application to the modelling of water quality in a treatment process publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2013.01.027 – volume: 32 start-page: 1 year: 2016 end-page: 6 ident: CR40 article-title: An applicability index for reliable and applicable decision trees in water quality modelling publication-title: Eco Inform doi: 10.1016/j.ecoinf.2015.12.004 – volume: 34 start-page: 415 year: 2020 end-page: 433 ident: CR8 article-title: Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-020-01776-2 – ident: CR137 – volume: 51 start-page: 234 year: 2014 end-page: 245 ident: CR106 article-title: A coupled classification – evolutionary optimization model for contamination event detection in water distribution systems publication-title: Water Res doi: 10.1016/j.watres.2013.10.060 – volume: 5 start-page: 6557 year: 2013 end-page: 6566 ident: CR102 article-title: Fluorescence spectroscopy and multi-way techniques publication-title: Parafac Anal Methods doi: 10.1039/C3AY41160E – volume: 693 year: 2019 ident: CR151 article-title: Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.07.246 – volume: 3 start-page: 422 year: 2021 end-page: 440 ident: CR71 article-title: Physics-informed machine learning publication-title: Nat Rev Phys doi: 10.1038/s42254-021-00314-5 – volume: 26 start-page: 1376 year: 2011 end-page: 1388 ident: CR5 article-title: Bayesian networks in environmental modelling publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2011.06.004 – volume: 19 start-page: 1785 year: 2019 end-page: 1792 ident: CR140 article-title: Artificial intelligence-based monitoring system of water quality parameters for early detection of non-specific bio-contamination in water distribution systems publication-title: Water Supply doi: 10.2166/ws.2019.057 – volume: 52 start-page: 726 year: 2006 end-page: 733 ident: CR22 article-title: A review on integration of artificial intelligence into water quality modelling publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2006.04.003 – volume: 18 start-page: 1869 year: 2018 end-page: 1887 ident: CR107 article-title: Artificial neural networks: applications in the drinking water sector publication-title: Water Supply doi: 10.2166/ws.2018.016 – ident: CR69 – volume: 54 start-page: 1013 year: 2018 end-page: 1030 ident: CR161 article-title: On lack of robustness in hydrological model development due to absence of guidelines for selecting calibration and evaluation data: demonstration for data-driven models publication-title: Water Resour Res doi: 10.1002/2017WR021470 – year: 1995 ident: CR14 publication-title: Neural networks for pattern recognition – volume: 48 start-page: 129 year: 1999 end-page: 136 ident: CR9 article-title: Development of a full-scale artificial neural network model for the removal of natural organic matter by enhanced coagulation publication-title: J Water Supply Res Technol AQUA doi: 10.2166/aqua.1999.0013 – ident: CR38 – volume: 45 start-page: 6030 year: 2011 end-page: 6038 ident: CR135 article-title: A potential approach for monitoring drinking water quality from groundwater systems using organic matter fluorescence as an early warning for contamination events publication-title: Water Res doi: 10.1016/j.watres.2011.08.066 – volume: 143 start-page: 8 year: 2014 end-page: 16 ident: CR21 article-title: A hybrid evolutionary data driven model for river water quality early warning publication-title: J Environ Manage doi: 10.1016/j.jenvman.2014.04.017 – volume: 55 start-page: 112 year: 2019 end-page: 129 ident: CR54 article-title: Key factors affecting temporal variability in stream water quality publication-title: Water Resour Res doi: 10.1029/2018WR023370 – year: 2016 ident: CR51 publication-title: Deep Learning – volume: 50 start-page: 2943 year: 2019 end-page: 2958 ident: CR125 article-title: Explanatory learner models: why machine learning (alone) is not the answer publication-title: Br J Edu Technol doi: 10.1111/bjet.12858 – volume: 9 year: 2019 ident: CR37 article-title: Solving fluid flow problems using semi-supervised symbolic regression on sparse data publication-title: AIP Adv doi: 10.1063/1.5116183 – volume: 28 start-page: 26 year: 2001 end-page: 35 ident: CR10 article-title: Drinking water quality and treatment: the use of artificial neural networks publication-title: Can J Civ Eng doi: 10.1139/l00-053 – volume: 81 start-page: 3178 year: 2000 end-page: 3192 ident: CR29 article-title: Classification and regression trees: a powerful yet simple technique for ecological data analysis publication-title: Ecology doi: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2 – volume: 1 start-page: 151 year: 1996 end-page: 158 ident: CR2 article-title: A Bayesian approach for incorporating uncertainty and data worth in environmental projects publication-title: Environ Model Assess doi: 10.1007/BF01874902 – volume: 16 start-page: 746 year: 2016 end-page: 755 ident: CR149 article-title: Research on raw water quality assessment oriented to drinking water treatment based on the SVM model publication-title: Water Supply doi: 10.2166/ws.2015.186 – volume: 138 start-page: 63 year: 2012 end-page: 70 ident: CR103 article-title: Real-time water quality monitoring: assessment of multisensor data using Bayesian belief networks publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)WR.1943-5452.0000163 – volume: 27 start-page: 3502 year: 2013 end-page: 3510 ident: CR80 article-title: Monitoring and modeling dissolved oxygen dynamics through continuous longitudinal sampling: a case study in wen-rui tang river, wenzhou, china publication-title: Hydrol Process doi: 10.1002/hyp.9459 – volume: 54 start-page: 159 year: 2014 end-page: 169 ident: CR131 article-title: Spectroscopic characterisation of dissolved organic matter changes in drinking water treatment: from PARAFAC analysis to online monitoring wavelengths publication-title: Water Res doi: 10.1016/j.watres.2014.01.053 – volume: 25 start-page: 891 year: 2010 end-page: 909 ident: CR87 article-title: Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2010.02.003 – volume: 44 start-page: 185 year: 2010 end-page: 194 ident: CR109 article-title: Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices publication-title: Water Res doi: 10.1016/j.watres.2009.09.036 – volume: 136 start-page: 84 year: 2018 end-page: 94 ident: CR110 article-title: Neural networks for dimensionality reduction of fluorescence spectra and prediction of drinking water disinfection by-products publication-title: Water Res doi: 10.1016/j.watres.2018.02.052 – volume: 33 start-page: 301 year: 2013 end-page: 306 ident: CR89 article-title: Application of data driven methods for condition monitoring maintenance publication-title: Chem Eng Trans doi: 10.3303/CET1333051 – volume: 51 start-page: 1 year: 2019 end-page: 42 ident: CR53 article-title: A survey of methods for explaining black box models publication-title: ACM Comput Surv doi: 10.1145/3236009 – year: 2021 ident: CR82 article-title: Comparison of dimensionality reduction techniques for cross-source transfer of fluorescence contaminant detection models publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130064 – year: 2020 ident: CR1 article-title: Implementation of data intelligence models coupled with ensemble machine learning for prediction of water quality index publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-09689-x – volume: 19 start-page: 1187 year: 2019 end-page: 1194 ident: CR141 article-title: Utilizing variable selection methods in modelling potable water quality publication-title: Water Supply doi: 10.2166/ws.2018.173 – year: 2012 ident: CR42 publication-title: Risk Assessment and Decision Analysis with Bayesian Networks doi: 10.1201/b13102 – volume: 11 start-page: 910 year: 2019 ident: CR143 article-title: A brief review of random forests for water scientists and practitioners and their recent history in water resources publication-title: Water doi: 10.3390/w11050910 – volume: 248 year: 2020 ident: CR83 article-title: Radial basis function artificial neural network able to accurately predict disinfection by-product levels in tap water: taking haloacetic acids as a case study publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.125999 – volume: 126 start-page: 465 year: 2019 end-page: 473 ident: CR116 article-title: Advances and opportunities in machine learning for process data analytics publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2019.04.003 – ident: CR61 – volume: 22 start-page: 1588 year: 2011 end-page: 1598 ident: CR120 article-title: A new formulation for feedforward neural networks publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2163169 – volume: 60 start-page: 51 year: 2011 end-page: 60 ident: CR134 article-title: On the usage of artificial neural networks in chlorine control applications for water distribution networks with high quality water publication-title: J Water Supply Res Technol AQUA doi: 10.2166/aqua.2011.086 – volume: 70 start-page: 399 year: 2014 end-page: 408 ident: CR27 article-title: Using artificial neural network models to assess water quality in water distribution networks publication-title: Proc Eng doi: 10.1016/j.proeng.2014.02.045 – volume: 22 start-page: 256 year: 2011 end-page: 270 ident: CR11 article-title: Classification and calibration of organic matter fluorescence data with multiway analysis methods and artificial neural networks: an operational tool for improved drinking water treatment publication-title: Environmetrics doi: 10.1002/env.1045 – volume: 71 start-page: 181 year: 2003 end-page: 199 ident: CR153 article-title: Hierarchical models in environmental science publication-title: Int Stat Rev doi: 10.1111/j.1751-5823.2003.tb00192.x – volume: 18 start-page: 138 year: 2015 end-page: 144 ident: CR49 article-title: Comparison of decision tree algorithms for EMG signal classification using DWT publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2014.12.005 – volume: 347 start-page: 845 year: 2019 end-page: 855 ident: CR98 article-title: Data-driven modeling and learning in science and engineering publication-title: Comptes Rendus Mécanique doi: 10.1016/j.crme.2019.11.009 – volume: 240 start-page: 220 year: 2015 end-page: 234 ident: CR70 article-title: Evaluating risk of water mains failure using a Bayesian belief network model publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2014.06.033 – volume: 7 start-page: 279 year: 2013 end-page: 299 ident: CR99 article-title: Hybrid ANN–GA model for predicting turbidity and chlorophyll-a concentrations publication-title: J Hydro-Environ Res doi: 10.1016/j.jher.2013.04.003 – volume: 33 start-page: 129 year: 2019 ident: CR31 article-title: Drinking water source monitoring using early warning systems based on data mining techniques publication-title: Water Resour Manag doi: 10.1007/s11269-018-2092-4 – ident: CR75 – volume: 17 start-page: 375 year: 2003 end-page: 381 ident: CR158 article-title: Data preparation for data mining publication-title: Appl Artif Intell doi: 10.1080/713827180 – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: CR118 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J Comput Phys doi: 10.1016/j.jcp.2018.10.045 – volume: 11 start-page: 2058 year: 2019 ident: CR84 article-title: Analysis and prediction of water quality using LSTM deep neural networks in IoT environment publication-title: Sustainability doi: 10.3390/su11072058 – year: 2018 ident: CR97 publication-title: Foundations of machine learning – volume: 11 start-page: 605 year: 2011 end-page: 611 ident: CR52 article-title: The application of artificial neural networks for the optimization of coagulant dosage publication-title: Water Supply doi: 10.2166/ws.2011.028 – year: 2012 ident: CR100 publication-title: Machine learning: a probabilistic perspective – volume: 206 start-page: 910 year: 2018 end-page: 919 ident: CR6 article-title: Evaluating statistical model performance in water quality prediction publication-title: J Environ Manage doi: 10.1016/j.jenvman.2017.11.049 – volume: 46 start-page: 2927 year: 2012 end-page: 2936 ident: CR113 article-title: Improving on SUVA254 using fluorescence-PARAFAC analysis and asymmetric flow-field flow fractionation for assessing disinfection byproduct formation and control publication-title: Water Res doi: 10.1016/j.watres.2012.03.002 – volume: 27 start-page: 2486 year: 2016 end-page: 2498 ident: CR62 article-title: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2479223 – volume: 5 start-page: 315 year: 2019 end-page: 324 ident: CR156 article-title: Fluorescence excitation emission matrices for rapid detection of polycyclic aromatic hydrocarbons and pesticides in surface waters publication-title: Environ Sci Water Res Technol doi: 10.1039/C8EW00821C – volume: 587 year: 2020 ident: CR7 article-title: Estimation of total dissolved solids (TDS) using new hybrid machine learning models publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.124989 – volume: 76 start-page: 81 year: 2016 end-page: 94 ident: CR20 article-title: Predicting recreational water quality advisories: a comparison of statistical methods publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2015.10.012 – volume: 3 start-page: 220 year: 2009 end-page: 241 ident: CR17 article-title: Computational fluid dynamics modelling of flocculation in water treatment: a review publication-title: Eng Appl Comput Fluid Mech doi: 10.1080/19942060.2009.11015267 – volume: 52 start-page: 406 year: 2018 end-page: 414 ident: CR93 article-title: The case against charge transfer interactions in dissolved organic matter photophysics publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b03589 – ident: CR122 – volume: 33 start-page: 32 year: 2017 end-page: 48 ident: CR58 article-title: Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset publication-title: Lake Reser Manage doi: 10.1080/10402381.2016.1263694 – volume: 32 start-page: 4954 year: 2020 end-page: 4965 ident: CR148 article-title: Machine learning for materials scientists: an introductory guide toward best practices publication-title: Chem Mater doi: 10.1021/acs.chemmater.0c01907 – volume: 212 start-page: 38 year: 2019 end-page: 43 ident: CR56 article-title: Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods publication-title: Am J Roentgenol doi: 10.2214/AJR.18.20224 – volume: 16 start-page: 235 year: 2019 end-page: 248 ident: CR33 article-title: A survey of machine learning methods applied to anomaly detection on drinking-water quality data publication-title: Urban Water Journal doi: 10.1080/1573062X.2019.1637002 – start-page: 307 year: 2012 end-page: 323 ident: CR115 article-title: Random Forest for Bioinformatics publication-title: Ensemble Machine Learning: Methods and Applications doi: 10.1007/978-1-4419-9326-7_11 – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR15 article-title: Random Forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – year: 2014 ident: CR44 publication-title: Predictive analytics, data mining and big data: myths doi: 10.1057/9781137379283 – volume: 15 start-page: 1322 year: 2018 ident: CR79 article-title: Improved prediction of harmful algal blooms in four major south Korea’s rivers using deep learning models publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph15071322 – volume: 64 start-page: 558 year: 2014 end-page: 566 ident: CR105 article-title: Comparison of two multivariate classification models for contamination event detection in water quality time series publication-title: J Water Supply Res Technol AQUA doi: 10.2166/aqua.2014.033 – start-page: 149 year: 1996 end-page: 182 ident: CR123 article-title: The Backpropagation Algorithm publication-title: Neural Networks doi: 10.1007/978-3-642-61068-4_7 – volume: 138 year: 2020 ident: CR12 article-title: Combining machine learning and process engineering physics towards enhanced accuracy and explainability of data-driven models publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2020.106834 – volume: 83 start-page: 1431 year: 2011 end-page: 1442 ident: CR90 article-title: An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.01.018 – volume: 33 start-page: 4569 year: 2019 end-page: 4581 ident: CR163 article-title: A novel event detection model for water distribution systems based on data-driven estimation and support vector machine classification publication-title: Water Resour Manage doi: 10.1007/s11269-019-02317-5 – ident: CR152 – year: 1994 ident: CR76 article-title: Genetic programming as a means for programming computers by natural selection publication-title: Stat Comput doi: 10.1007/BF00175355 – volume: 7 start-page: 509 year: 2004 end-page: 520 ident: CR39 article-title: Bayesian inference in ecology publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2004.00603.x – volume: 125 start-page: 1 year: 2017 end-page: 10 ident: CR60 article-title: Assessment of drinking water quality at the tap using fluorescence spectroscopy publication-title: Water Res doi: 10.1016/j.watres.2017.08.020 – volume: 114 start-page: 122 year: 2012 end-page: 131 ident: CR132 article-title: Artificial intelligence based modeling for predicting the disinfection by-products in water publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2012.03.014 – ident: CR104 – volume: 48 start-page: 2099 year: 2014 end-page: 2101 ident: CR19 article-title: Emerging challenges for the drinking water industry publication-title: Environ Sci Technol doi: 10.1021/es405606t – volume: 2 start-page: 1 year: 2021 end-page: 26 ident: CR66 article-title: Physics-guided machine learning for scientific discovery: an application in simulating lake temperature profiles publication-title: ACM/IMS Trans Data Sci doi: 10.1145/3447814 – volume: 171 year: 2020 ident: CR26 article-title: Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data publication-title: Water Res doi: 10.1016/j.watres.2019.115454 – volume: 16 start-page: 654 year: 2014 end-page: 671 ident: CR130 article-title: The importance of charge-transfer interactions in determining chromophoric dissolved organic matter (CDOM) optical and photochemical properties publication-title: Environ Sci Process Impacts doi: 10.1039/C3EM00573A – volume: 7 start-page: 3885 year: 2017 end-page: 3902 ident: CR74 article-title: Prediction of settled water turbidity and optimal coagulant dosage in drinking water treatment plant using a hybrid model of k-means clustering and adaptive neuro-fuzzy inference system publication-title: Appl Water Sci doi: 10.1007/s13201-017-0541-5 – ident: CR48 – volume: 133 start-page: 1 year: 2014 end-page: 11 ident: CR147 article-title: Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China publication-title: J Environ Manage doi: 10.1016/j.jenvman.2013.11.035 – volume: 408 start-page: 4202 year: 2010 end-page: 4210 ident: CR78 article-title: Disinfection by-product formation following chlorination of drinking water: artificial neural network models and changes in speciation with treatment publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2010.05.040 – volume: 196 start-page: 365 year: 2017 end-page: 375 ident: CR32 article-title: A novel water quality data analysis framework based on time-series data mining publication-title: J Environ Manage doi: 10.1016/j.jenvman.2017.03.024 – volume: 15 start-page: 101 year: 2000 end-page: 124 ident: CR85 article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications publication-title: Environ Model Softw doi: 10.1016/S1364-8152(99)00007-9 – volume: 16 start-page: 4823 year: 2019 end-page: 4832 ident: CR4 article-title: Modeling and prediction of water quality parameters using a hybrid particle swarm optimization–neural fuzzy approach publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-018-1896-3 – volume: 183 start-page: 29 year: 2005 end-page: 46 ident: CR128 article-title: Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2004.07.021 – ident: CR155 – volume: 203 start-page: 312 year: 2007 end-page: 318 ident: CR144 article-title: Advantages and challenges of Bayesian networks in environmental modelling publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2006.11.033 – volume: 39 start-page: 742 year: 2011 end-page: 749 ident: CR73 article-title: Modeling of biological water and wastewater treatment processes using artificial neural networks publication-title: Clean: Soil, Air, Water doi: 10.1002/clen.201000234 – volume: 21 start-page: 8036 year: 2014 end-page: 8051 ident: CR94 article-title: Evaluation of spatial-temporal variations and trends in surface water quality across a rural-suburban-urban interface publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-014-2716-z – volume: 11 start-page: 401 year: 1997 end-page: 404 ident: CR46 article-title: Modelling of coagulant dosage in a water treatment plant publication-title: Artif Intell Eng doi: 10.1016/S0954-1810(97)00010-1 – volume: 76 start-page: 143 year: 2015 end-page: 159 ident: CR41 article-title: Predictive statistical models linking antecedent meteorological conditions and waterway bacterial contamination in urban waterways publication-title: Water Res doi: 10.1016/j.watres.2015.02.040 – volume: 29 start-page: 1907 year: 2015 end-page: 1919 ident: CR30 article-title: A cognitive approach in selection of source for water treatment plant based on climatic impact publication-title: Water Resour Manag doi: 10.1007/s11269-015-0918-x – volume: 47 start-page: 1006 year: 2018 end-page: 1023 ident: CR55 article-title: Cryptosporidium and Giardia in wastewater and surface water environments publication-title: J Environ Qual doi: 10.2134/jeq2018.04.0132 – volume: 94 year: 2016 ident: CR117 article-title: Prediction of dynamical systems by symbolic regression publication-title: Phys Rev E doi: 10.1103/PhysRevE.94.012214 – volume: 51 start-page: 2538 year: 2017 end-page: 2553 ident: CR36 article-title: The Potential of knowing more: a review of data-driven urban water management publication-title: Environ Sci Technol doi: 10.1021/acs.est.6b04267 – ident: CR34 – volume: 46 start-page: 8212 year: 2012 end-page: 8219 ident: CR111 article-title: Event detection in water distribution systems from multivariate water quality time series publication-title: Environ Sci Technol doi: 10.1021/es3014024 – volume: 14 start-page: 757 year: 2017 end-page: 758 ident: CR77 article-title: Classification and regression trees publication-title: Nat Methods doi: 10.1038/nmeth.4370 – volume: 184 start-page: 1953 year: 2012 end-page: 1971 ident: CR59 article-title: ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study publication-title: Environ Monit Assess doi: 10.1007/s10661-011-2091-x – volume: 44 start-page: 3755 year: 2010 end-page: 3762 ident: CR23 article-title: Predicting disinfection by-product formation potential in water publication-title: Water Res doi: 10.1016/j.watres.2010.04.009 – volume: 79 start-page: 214 year: 2016 end-page: 232 ident: CR112 article-title: Sensitivity analysis of environmental models: a systematic review with practical workflow publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2016.02.008 – volume: 18 start-page: 138 year: 2015 ident: 9592_CR49 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2014.12.005 – volume: 33 start-page: 129 year: 2019 ident: 9592_CR31 publication-title: Water Resour Manag doi: 10.1007/s11269-018-2092-4 – volume: 50 start-page: 2943 year: 2019 ident: 9592_CR125 publication-title: Br J Edu Technol doi: 10.1111/bjet.12858 – volume: 14 start-page: 757 year: 2017 ident: 9592_CR77 publication-title: Nat Methods doi: 10.1038/nmeth.4370 – volume: 136 start-page: 84 year: 2018 ident: 9592_CR110 publication-title: Water Res doi: 10.1016/j.watres.2018.02.052 – volume: 45 start-page: 5 year: 2001 ident: 9592_CR15 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume-title: Deep Learning year: 2016 ident: 9592_CR51 – volume: 25 start-page: 891 year: 2010 ident: 9592_CR87 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2010.02.003 – volume: 321 start-page: 21 year: 2004 ident: 9592_CR127 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2003.05.001 – volume: 32 start-page: 4954 year: 2020 ident: 9592_CR148 publication-title: Chem Mater doi: 10.1021/acs.chemmater.0c01907 – volume: 212 start-page: 38 year: 2019 ident: 9592_CR56 publication-title: Am J Roentgenol doi: 10.2214/AJR.18.20224 – ident: 9592_CR104 doi: 10.1109/CVPR.2015.7298640 – volume: 5 start-page: 6557 year: 2013 ident: 9592_CR102 publication-title: Parafac Anal Methods doi: 10.1039/C3AY41160E – ident: 9592_CR126 doi: 10.24963/ijcai.2017/371 – volume: 7 start-page: 509 year: 2004 ident: 9592_CR39 publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2004.00603.x – volume: 11 start-page: 910 year: 2019 ident: 9592_CR143 publication-title: Water doi: 10.3390/w11050910 – volume: 33 start-page: 4569 year: 2019 ident: 9592_CR163 publication-title: Water Resour Manage doi: 10.1007/s11269-019-02317-5 – volume: 58 start-page: 64 year: 2017 ident: 9592_CR146 publication-title: J Environ Sci doi: 10.1016/j.jes.2017.04.021 – volume: 4 start-page: 1 year: 2018 ident: 9592_CR159 publication-title: Npj Comput Mater doi: 10.1038/s41524-017-0060-9 – volume: 32 start-page: 1013 year: 1996 ident: 9592_CR86 publication-title: Water Resour Res doi: 10.1029/96WR03529 – volume: 67 start-page: 105 year: 2014 ident: 9592_CR139 publication-title: Water Res doi: 10.1016/j.watres.2014.09.001 – volume: 9 year: 2019 ident: 9592_CR37 publication-title: AIP Adv doi: 10.1063/1.5116183 – volume: 5 start-page: 315 year: 2019 ident: 9592_CR156 publication-title: Environ Sci Water Res Technol doi: 10.1039/C8EW00821C – volume: 203 start-page: 312 year: 2007 ident: 9592_CR144 publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2006.11.033 – volume: 44 start-page: 185 year: 2010 ident: 9592_CR109 publication-title: Water Res doi: 10.1016/j.watres.2009.09.036 – start-page: 1 volume-title: Neural networks and deep learning: a textbook year: 2018 ident: 9592_CR3 doi: 10.1007/978-3-319-94463-0 – volume: 3 start-page: 220 year: 2009 ident: 9592_CR17 publication-title: Eng Appl Comput Fluid Mech doi: 10.1080/19942060.2009.11015267 – volume: 171 year: 2020 ident: 9592_CR26 publication-title: Water Res doi: 10.1016/j.watres.2019.115454 – volume: 55 start-page: 112 year: 2019 ident: 9592_CR54 publication-title: Water Resour Res doi: 10.1029/2018WR023370 – volume-title: Data mining with decision trees: theory and applications year: 2015 ident: 9592_CR124 – volume-title: Foundations of machine learning year: 2018 ident: 9592_CR97 – volume: 102 start-page: 92 year: 2010 ident: 9592_CR35 publication-title: J AWWA doi: 10.1002/j.1551-8833.2010.tb10152.x – volume: 27 start-page: 3502 year: 2013 ident: 9592_CR80 publication-title: Hydrol Process doi: 10.1002/hyp.9459 – ident: 9592_CR152 doi: 10.1109/ISKE.2017.8258814 – volume: 126 start-page: 465 year: 2019 ident: 9592_CR116 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2019.04.003 – volume: 76 start-page: 81 year: 2016 ident: 9592_CR20 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2015.10.012 – volume: 7 start-page: 255 year: 2015 ident: 9592_CR160 publication-title: Water Qual Expo Health doi: 10.1007/s12403-014-0145-3 – year: 2020 ident: 9592_CR1 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-09689-x – volume: 28 start-page: 26 year: 2001 ident: 9592_CR10 publication-title: Can J Civ Eng doi: 10.1139/l00-053 – volume: 48 start-page: 2099 year: 2014 ident: 9592_CR19 publication-title: Environ Sci Technol doi: 10.1021/es405606t – volume-title: Risk Assessment and Decision Analysis with Bayesian Networks year: 2012 ident: 9592_CR42 doi: 10.1201/b13102 – volume-title: Data Preprocessing in Data Mining year: 2015 ident: 9592_CR47 doi: 10.1007/978-3-319-10247-4 – volume: 14 start-page: 1550013 year: 2015 ident: 9592_CR50 publication-title: Int J Comp Intel Appl doi: 10.1142/S1469026815500133 – volume: 17 start-page: 375 year: 2003 ident: 9592_CR158 publication-title: Appl Artif Intell doi: 10.1080/713827180 – volume: 87 start-page: 26 year: 2015 ident: 9592_CR65 publication-title: Water Environ Res doi: 10.1002/j.1554-7531.2015.tb00138.x – start-page: 307 volume-title: Ensemble Machine Learning: Methods and Applications year: 2012 ident: 9592_CR115 doi: 10.1007/978-1-4419-9326-7_11 – volume: 11 start-page: 2058 year: 2019 ident: 9592_CR84 publication-title: Sustainability doi: 10.3390/su11072058 – volume: 125 start-page: 1 year: 2017 ident: 9592_CR60 publication-title: Water Res doi: 10.1016/j.watres.2017.08.020 – volume: 19 start-page: 1187 year: 2019 ident: 9592_CR141 publication-title: Water Supply doi: 10.2166/ws.2018.173 – volume: 15 start-page: 101 year: 2000 ident: 9592_CR85 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(99)00007-9 – volume: 6 start-page: 97 year: 2006 ident: 9592_CR24 publication-title: Water Supply doi: 10.2166/ws.2006.782 – volume: 23 start-page: 1289 year: 2008 ident: 9592_CR91 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2008.03.008 – volume: 9 start-page: 87 year: 2010 ident: 9592_CR145 publication-title: Softw Syst Model doi: 10.1007/s10270-008-0106-z – volume: 183 start-page: 29 year: 2005 ident: 9592_CR128 publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2004.07.021 – start-page: 15 volume-title: Proactive Data Mining with Decision Trees year: 2014 ident: 9592_CR28 doi: 10.1007/978-1-4939-0539-3_2 – volume: 46 start-page: 8212 year: 2012 ident: 9592_CR111 publication-title: Environ Sci Technol doi: 10.1021/es3014024 – volume: 34 start-page: 415 year: 2020 ident: 9592_CR8 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-020-01776-2 – volume: 378 start-page: 686 year: 2019 ident: 9592_CR118 publication-title: J Comput Phys doi: 10.1016/j.jcp.2018.10.045 – volume: 33 start-page: 32 year: 2017 ident: 9592_CR58 publication-title: Lake Reser Manage doi: 10.1080/10402381.2016.1263694 – volume: 33 start-page: 301 year: 2013 ident: 9592_CR89 publication-title: Chem Eng Trans doi: 10.3303/CET1333051 – volume: 587 year: 2020 ident: 9592_CR7 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.124989 – volume: 21 start-page: 1189 year: 2008 ident: 9592_CR154 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2008.03.015 – volume: 45 start-page: 6030 year: 2011 ident: 9592_CR135 publication-title: Water Res doi: 10.1016/j.watres.2011.08.066 – volume: 42–44 start-page: 70 year: 2012 ident: 9592_CR13 publication-title: Phys Chem Earth Parts A/b/c doi: 10.1016/j.pce.2011.07.037 – volume: 107 start-page: 344 year: 2014 ident: 9592_CR43 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.12.087 – volume: 21 start-page: 8036 year: 2014 ident: 9592_CR94 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-014-2716-z – volume: 16 start-page: 654 year: 2014 ident: 9592_CR130 publication-title: Environ Sci Process Impacts doi: 10.1039/C3EM00573A – volume: 23 start-page: 283 year: 2010 ident: 9592_CR92 publication-title: Neural Netw doi: 10.1016/j.neunet.2009.11.009 – ident: 9592_CR137 – volume: 52 start-page: 406 year: 2018 ident: 9592_CR93 publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b03589 – volume: 51 start-page: 3070 year: 2015 ident: 9592_CR119 publication-title: Water Resour Res doi: 10.1002/2014WR016527 – ident: 9592_CR69 doi: 10.1155/2012/846321 – volume: 16 start-page: 746 year: 2016 ident: 9592_CR149 publication-title: Water Supply doi: 10.2166/ws.2015.186 – volume-title: Predictive analytics, data mining and big data: myths year: 2014 ident: 9592_CR44 doi: 10.1057/9781137379283 – volume: 26 start-page: 30374 year: 2019 ident: 9592_CR67 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-06049-2 – volume: 60 start-page: 51 year: 2011 ident: 9592_CR134 publication-title: J Water Supply Res Technol AQUA doi: 10.2166/aqua.2011.086 – volume: 26 start-page: 7 year: 2012 ident: 9592_CR136 publication-title: Water Environ J doi: 10.1111/j.1747-6593.2011.00258.x – volume: 22 start-page: 256 year: 2011 ident: 9592_CR11 publication-title: Environmetrics doi: 10.1002/env.1045 – volume: 29 start-page: 1907 year: 2015 ident: 9592_CR30 publication-title: Water Resour Manag doi: 10.1007/s11269-015-0918-x – volume: 10 start-page: 1148 year: 2018 ident: 9592_CR162 publication-title: Water doi: 10.3390/w10091148 – volume: 133 start-page: 1 year: 2014 ident: 9592_CR147 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2013.11.035 – volume: 11 start-page: 401 year: 1997 ident: 9592_CR46 publication-title: Artif Intell Eng doi: 10.1016/S0954-1810(97)00010-1 – year: 1994 ident: 9592_CR76 publication-title: Stat Comput doi: 10.1007/BF00175355 – volume: 248 year: 2020 ident: 9592_CR83 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.125999 – volume: 184 start-page: 1953 year: 2012 ident: 9592_CR59 publication-title: Environ Monit Assess doi: 10.1007/s10661-011-2091-x – volume: 92 start-page: 82 year: 2017 ident: 9592_CR64 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2017.01.023 – volume: 173 start-page: 133 year: 2020 ident: 9592_CR150 publication-title: DWT doi: 10.5004/dwt.2020.24144 – volume: 73 start-page: 5333 year: 2015 ident: 9592_CR72 publication-title: Environ Earth Sci doi: 10.1007/s12665-014-3784-6 – volume: 51 start-page: 1 year: 2019 ident: 9592_CR53 publication-title: ACM Comput Surv doi: 10.1145/3236009 – volume: 10 start-page: 277 year: 2011 ident: 9592_CR16 publication-title: Rev Environ Sci Biotechnol doi: 10.1007/s11157-011-9243-x – volume: 114 start-page: 122 year: 2012 ident: 9592_CR132 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2012.03.014 – volume: 2 start-page: 383 year: 2016 ident: 9592_CR142 publication-title: Environ Sci Water Res Technol doi: 10.1039/C5EW00285K – volume: 7 start-page: 3885 year: 2017 ident: 9592_CR74 publication-title: Appl Water Sci doi: 10.1007/s13201-017-0541-5 – volume: 15 start-page: 1322 year: 2018 ident: 9592_CR79 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph15071322 – volume: 1 start-page: 151 year: 1996 ident: 9592_CR2 publication-title: Environ Model Assess doi: 10.1007/BF01874902 – volume: 628–629 start-page: 1178 year: 2018 ident: 9592_CR96 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.02.140 – volume: 347 start-page: 845 year: 2019 ident: 9592_CR98 publication-title: Comptes Rendus Mécanique doi: 10.1016/j.crme.2019.11.009 – volume: 46 start-page: 2927 year: 2012 ident: 9592_CR113 publication-title: Water Res doi: 10.1016/j.watres.2012.03.002 – volume: 7 start-page: 279 year: 2013 ident: 9592_CR99 publication-title: J Hydro-Environ Res doi: 10.1016/j.jher.2013.04.003 – volume: 53 start-page: 7316 year: 2017 ident: 9592_CR138 publication-title: Water Resour Res doi: 10.1002/2016WR020197 – ident: 9592_CR34 – volume: 50 start-page: 87 year: 2016 ident: 9592_CR81 publication-title: J Environ Sci doi: 10.1016/j.jes.2016.03.030 – volume: 16 start-page: 4823 year: 2019 ident: 9592_CR4 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-018-1896-3 – volume: 18 start-page: 1869 year: 2018 ident: 9592_CR107 publication-title: Water Supply doi: 10.2166/ws.2018.016 – year: 2021 ident: 9592_CR82 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130064 – volume: 19 start-page: 1785 year: 2019 ident: 9592_CR140 publication-title: Water Supply doi: 10.2166/ws.2019.057 – ident: 9592_CR57 – volume: 39 start-page: 742 year: 2011 ident: 9592_CR73 publication-title: Clean: Soil, Air, Water doi: 10.1002/clen.201000234 – volume: 71 start-page: 181 year: 2003 ident: 9592_CR153 publication-title: Int Stat Rev doi: 10.1111/j.1751-5823.2003.tb00192.x – volume: 76 start-page: 143 year: 2015 ident: 9592_CR41 publication-title: Water Res doi: 10.1016/j.watres.2015.02.040 – volume: 47 start-page: 1679 year: 2013 ident: 9592_CR129 publication-title: Water Res doi: 10.1016/j.watres.2012.12.032 – volume: 48 start-page: 129 year: 1999 ident: 9592_CR9 publication-title: J Water Supply Res Technol AQUA doi: 10.2166/aqua.1999.0013 – volume: 143 start-page: 8 year: 2014 ident: 9592_CR21 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2014.04.017 – volume: 79 start-page: 214 year: 2016 ident: 9592_CR112 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2016.02.008 – volume: 206 start-page: 910 year: 2018 ident: 9592_CR6 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2017.11.049 – volume: 22 start-page: 1588 year: 2011 ident: 9592_CR120 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2163169 – ident: 9592_CR122 doi: 10.1145/2939672.2939778 – volume: 70 start-page: 399 year: 2014 ident: 9592_CR27 publication-title: Proc Eng doi: 10.1016/j.proeng.2014.02.045 – volume: 181 year: 2020 ident: 9592_CR63 publication-title: Water Res doi: 10.1016/j.watres.2020.115902 – volume: 240 start-page: 220 year: 2015 ident: 9592_CR70 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2014.06.033 – volume: 138 year: 2020 ident: 9592_CR12 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2020.106834 – ident: 9592_CR75 – volume: 170 year: 2020 ident: 9592_CR108 publication-title: Water Res doi: 10.1016/j.watres.2019.115349 – volume: 81 start-page: 3178 year: 2000 ident: 9592_CR29 publication-title: Ecology doi: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2 – ident: 9592_CR38 doi: 10.22034/gjesm.2018.04.005 – volume: 83 start-page: 1431 year: 2011 ident: 9592_CR90 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.01.018 – volume: 54 start-page: 159 year: 2014 ident: 9592_CR131 publication-title: Water Res doi: 10.1016/j.watres.2014.01.053 – volume: 196 start-page: 365 year: 2017 ident: 9592_CR32 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2017.03.024 – volume: 138 start-page: 63 year: 2012 ident: 9592_CR103 publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)WR.1943-5452.0000163 – volume: 27 start-page: 2486 year: 2016 ident: 9592_CR62 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2479223 – volume: 2 start-page: 1 year: 2021 ident: 9592_CR66 publication-title: ACM/IMS Trans Data Sci doi: 10.1145/3447814 – ident: 9592_CR121 doi: 10.1139/f99-040 – volume: 47 start-page: 1006 year: 2018 ident: 9592_CR55 publication-title: J Environ Qual doi: 10.2134/jeq2018.04.0132 – volume: 94 year: 2016 ident: 9592_CR117 publication-title: Phys Rev E doi: 10.1103/PhysRevE.94.012214 – volume-title: Machine learning: the art and science of algorithms that make sense of data year: 2012 ident: 9592_CR45 doi: 10.1017/CBO9780511973000 – volume: 38 start-page: 149 year: 1997 ident: 9592_CR18 publication-title: Chemom Intell Lab Syst doi: 10.1016/S0169-7439(97)00032-4 – volume: 52 start-page: 726 year: 2006 ident: 9592_CR22 publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2006.04.003 – volume: 693 year: 2019 ident: 9592_CR151 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.07.246 – volume: 51 start-page: 2538 year: 2017 ident: 9592_CR36 publication-title: Environ Sci Technol doi: 10.1021/acs.est.6b04267 – volume: 19 start-page: 485 year: 2004 ident: 9592_CR88 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(03)00163-4 – volume: 44 start-page: 3755 year: 2010 ident: 9592_CR23 publication-title: Water Res doi: 10.1016/j.watres.2010.04.009 – volume: 51 start-page: 234 year: 2014 ident: 9592_CR106 publication-title: Water Res doi: 10.1016/j.watres.2013.10.060 – volume-title: Neural networks for pattern recognition year: 1995 ident: 9592_CR14 doi: 10.1093/oso/9780198538493.001.0001 – volume: 19 start-page: 415 year: 1977 ident: 9592_CR133 publication-title: Null – volume: 13 start-page: 3191 year: 2013 ident: 9592_CR68 publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2013.01.027 – volume: 54 start-page: 1013 year: 2018 ident: 9592_CR161 publication-title: Water Resour Res doi: 10.1002/2017WR021470 – volume: 124 start-page: 67 year: 2017 ident: 9592_CR95 publication-title: Water Res doi: 10.1016/j.watres.2017.07.035 – volume-title: Machine learning: a probabilistic perspective year: 2012 ident: 9592_CR100 – start-page: 149 volume-title: Neural Networks year: 1996 ident: 9592_CR123 doi: 10.1007/978-3-642-61068-4_7 – volume: 64 start-page: 558 year: 2014 ident: 9592_CR105 publication-title: J Water Supply Res Technol AQUA doi: 10.2166/aqua.2014.033 – ident: 9592_CR48 doi: 10.1109/DSAA.2018.00018 – volume: 16 start-page: 235 year: 2019 ident: 9592_CR33 publication-title: Urban Water Journal doi: 10.1080/1573062X.2019.1637002 – start-page: 339 volume-title: Aquatic Organic Matter Fluorescence year: 2014 ident: 9592_CR101 doi: 10.1017/CBO9781139045452.016 – volume: 11 start-page: 605 year: 2011 ident: 9592_CR52 publication-title: Water Supply doi: 10.2166/ws.2011.028 – ident: 9592_CR61 doi: 10.1007/978-3-642-33299-9_1 – volume: 11 start-page: 1674 year: 2019 ident: 9592_CR114 publication-title: Remote Sens doi: 10.3390/rs11141674 – volume: 3 start-page: 422 year: 2021 ident: 9592_CR71 publication-title: Nat Rev Phys doi: 10.1038/s42254-021-00314-5 – volume: 240 year: 2020 ident: 9592_CR25 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2020.106303 – volume: 32 start-page: 1 year: 2016 ident: 9592_CR40 publication-title: Eco Inform doi: 10.1016/j.ecoinf.2015.12.004 – volume: 26 start-page: 1376 year: 2011 ident: 9592_CR5 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2011.06.004 – volume: 10 start-page: 1566 year: 2018 ident: 9592_CR157 publication-title: Water doi: 10.3390/w10111566 – volume: 408 start-page: 4202 year: 2010 ident: 9592_CR78 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2010.05.040 – ident: 9592_CR155 |
SSID | ssj0021696 |
Score | 2.4419062 |
SecondaryResourceType | review_article |
Snippet | There are significant opportunities to optimize drinking water treatment and water resource management using data-driven models. Modelling can help define... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 985 |
SubjectTerms | Algorithms Atmospheric Protection/Air Quality Control/Air Pollution byproducts chlorination Coagulants Complex systems cost effectiveness Decision making Disinfection Drinking water Earth and Environmental Science Environment Environmental Engineering/Biotechnology Microbiology model validation Modelling Optimization Resource management Review Paper risk Treated water uncertainty water management Water quality Water quality measurements Water resources management Water treatment |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aL3oQrRarVSJ402A3233kIFKktXjwZKG3JZsHCLJb-0D6751J010V7DU7m8DMJPNlMg9Cbkw3DHWQC8ZVIFkvB1nk3Ugy28XickGMbkKMtniNR-PeyySaeIfb3IdVbs5Ed1DrUqGP_B5gegDYGi40j9NPhl2j8HXVt9DYJXsBWBrU83T4XF24YCmXXRTFgmHZGJ80s06dwyozDAMU0BPG2eq3YarR5p8HUmd3hkfk0ANG2l9L-JjsmKJJDn6UEWyS1qDOVgNSv13nJ-ShT9epKbS0FGNBmZ7h6UZd_xtMRKfvBYUx1z-BfgHunNEq9PyUjIeDt6cR8_0SmAIYtWAiEVEo4kBJwFU6MqHlgUlzaQDiaM0tF1KmXOVWm0QpAUOpNiLNYwEoRycybJFGURbmjFAprdUwX2pj3pOJFUqCuUuM4iqBC1raJsGGWZnyxcSxp8VHVpdBRgZnwODMMThbtclt9c90XUpjK3VnI4PMb6t5VitBm1xXn2FD4CuHLEy5BJo4dL3NY6C528iunuL_Fc-3r3hB9jmqiwtl6ZDGYrY0lwBIFvmV07pv1FbcBQ priority: 102 providerName: ProQuest |
Title | A review of data-driven modelling in drinking water treatment |
URI | https://link.springer.com/article/10.1007/s11157-021-09592-y https://www.proquest.com/docview/2591875825 https://www.proquest.com/docview/2636541465 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60vehBtFqs1hLBmwa62e4jBw9Vti0KRcRCPS3ZPECQrfSB9N872e5DRQVPC9lJAjOZ5JtkHgAXuuu6ykk4ZdIRtJegLJKuJ6jp2uRyjm-vCa23xdgfTXp3U2-aB4UtCm_34kky26mrYDebF4ZalwJ7d8XoehvqHtruVh0nrF-aWThBFlPk-ZzaZDF5qMzPY3w9jiqM-e1ZNDttBvuwl8NE0t_I9QC2dNqA3U_JAxvQjKoYNSTNlXRxCNd9sglIITNDrAcoVXO7p5Gs6o0NPycvKcG2rGoCeUe0OSelw_kRTAbR0-2I5lUSqETwtKQ84J7LfUcKRFPK065hjg4ToRHYKMUM40KETCZG6UBKjk2h0jxMfI7YRgXCbUItnaX6GIgQxigcLzQ-64nAcCnwkAu0ZDJAsyxsgVMwK5Z5CnFbyeI1rpIfWwbHyOA4Y3C8bsFl2edtk0DjT-p2IYM4V6ZFjBaag2YV2rItOC9_oxrYtw2R6tkKaXw3q2juI81VIbtqiN9nPPkf-Sns2CW3cWhpQ205X-kzhCXLpAPb4WDYgXp_-Hwf4fcmGj88drK1-QEaRt18 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT-MwEB6x5YHlAQG7iHIaiX1irW2c5vADQhxF5aoQAom3rONDQkIptEWof4rfyEyOBpDgjddkYisz4_E39hwA27bl-8ZLJRfaU7ydoizSVqC4a1FxOS-kY0KKtuiF3Zv26W1wOwUvVS4MhVVWNjE31Kav6Yz8H8J0D7E1OjR7D4-cukbR7WrVQqNQizM7fkaXbbh7coTy_SPEcef6sMvLrgJcI9gYcRnJwJehpxWiDxNY3wnPxqmyCASMEU5IpWKhU2dspLXER7GxMk5DiVjARMrHcX_AdJsyWhswfdDpXV5NXDz8uTyfKQglp0I1ZZpOkaxHdW04hUTQ2Zvg4_dbYY1vP1zJ5jvd8TzMlRCV7Rc6tQBTNluE2TeFCxdhqVPnxyFpaSCGv2B3nxXJMKzvGEWfcjMge8ryjjuU-s7uMobP8o4N7BmR7oBNgt1_w8238HIJGlk_s8vAlHLO4HixC0VbRU5qhRtsZLXQEbqEcRO8ilmJLsuXUxeN-6QuvEwMTpDBSc7gZNyEnck3D0Xxji-p1yoZJOVCHia12jVha_IalyDdq6jM9p-QJvTzbuoh0vytZFcP8fmMK1_PuAkz3euL8-T8pHe2Cj8FqU4eSLMGjdHgya4jHBqlG6UOMvj_3Wr_Cv9PG9c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FIiE4VFAakbbAIpUTrBKv48ceKlSRhLRBEQcq9eau9yEhIafNQ1H-Gr-OmbUdAxK55WqPd-WZ2dlvducBcG57YWiCXHKhA8X7Ocoi70WKux4VlwtiOiakaItpPL7pX99Gty34VefCUFhlbRO9oTYzTWfkXYTpAWJrdGi6rgqL-DYYfbp_4NRBim5a63YapYpM7GaN7tvi4mqAsn4vxGj4_fOYVx0GuEbgseQykVEo40ArRCImsqETgU1zZREUGCOckEqlQufO2ERriY9SY2WaxxJxgUlUiOM-gsdJmEhy_NLRl62zh7_pM5uiWHIqWVMl7JRpe1ThhlNwBJ3CCb75e1NskO4_l7N-zxs9h8MKrLLLUrteQMsWR_DsjxKGR9AeNplySFqZisVLuLhkZVoMmzlGcajczMmyMt97h5Lg2Y-C4TPfu4GtEfPO2Tbs_Rhu9sLJNhwUs8K-AqaUcwbHS10s-ipxUivcahOrhU7QOUw7ENTMynRVyJz6afzMmhLMxOAMGZx5BmebDnzYfnNflvHYSX1WyyCrlvQiaxSwA--2r3Ex0g2LKuxshTRx6Puqx0jzsZZdM8T_ZzzZPeNbeILKnn29mk5O4akgzfERNWdwsJyv7GvERcv8jVdABnf71vjfNnYepw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+data-driven+modelling+in+drinking+water+treatment&rft.jtitle=Reviews+in+environmental+science+and+biotechnology&rft.au=Aliashrafi%2C+Atefeh&rft.au=Zhang%2C+Yirao&rft.au=Groenewegen%2C+Hannah&rft.au=Peleato%2C+Nicolas+M.&rft.date=2021-12-01&rft.issn=1569-1705&rft.eissn=1572-9826&rft.volume=20&rft.issue=4&rft.spage=985&rft.epage=1009&rft_id=info:doi/10.1007%2Fs11157-021-09592-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11157_021_09592_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-1705&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-1705&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-1705&client=summon |