Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review

High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks. The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism. Multitudino...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of minerals, metallurgy and materials Vol. 29; no. 1; pp. 32 - 48
Main Authors Li, Qian, Lin, Xi, Luo, Qun, Chen, Yu’an, Wang, Jingfeng, Jiang, Bin, Pan, Fusheng
Format Journal Article
LanguageEnglish
Published Beijing University of Science and Technology Beijing 01.01.2022
Springer Nature B.V
National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China%State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks. The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism. Multitudinous kinetic models have been developed to describe the kinetic process. However, these kinetic models were deduced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps (RCSs), which sometimes lead to confusion during application. The kinetic analysis procedures using these kinetic models, as well as the key kinetic parameters, are unclear for many researchers who are unfamiliar with this field. These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys. Thus, this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption, surface penetration, diffusion of hydrogen, nucleation and growth, and chemical reaction processes. The analysis procedures of kinetic experimental data are expounded, as well as the effects of temperature, hydrogen pressure, and particle radius. The applications of the kinetic models for different hydrogen storage alloys are also introduced.
AbstractList High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks. The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism. Multitudinous kinetic models have been developed to describe the kinetic process. However, these kinetic models were deduced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps (RCSs), which sometimes lead to confusion during application. The kinetic analysis procedures using these kinetic models, as well as the key kinetic parameters, are unclear for many researchers who are unfamiliar with this field. These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys. Thus, this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption, surface penetration, diffusion of hydrogen, nucleation and growth, and chemical reaction processes. The analysis procedures of kinetic experimental data are expounded, as well as the effects of temperature, hydrogen pressure, and particle radius. The applications of the kinetic models for different hydrogen storage alloys are also introduced.
High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks. The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kin-etic mechanism. Multitudinous kinetic models have been developed to describe the kinetic process. However, these kinetic models were de-duced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps (RCSs), which sometimes lead to confusion during application. The kinetic analysis procedures using these kinetic models, as well as the key kinetic paramet-ers, are unclear for many researchers who are unfamiliar with this field. These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys. Thus, this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption, surface penetration, diffusion of hydrogen, nucle-ation and growth, and chemical reaction processes. The analysis procedures of kinetic experimental data are expounded, as well as the effects of temperature, hydrogen pressure, and particle radius. The applications of the kinetic models for different hydrogen storage alloys are also in-troduced.
Author Li, Qian
Jiang, Bin
Wang, Jingfeng
Luo, Qun
Chen, Yu’an
Pan, Fusheng
Lin, Xi
AuthorAffiliation National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China;State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China%State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
AuthorAffiliation_xml – name: National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China;State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China%State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
Author_xml – sequence: 1
  givenname: Qian
  surname: Li
  fullname: Li, Qian
  email: cquliqian@cqu.edu.cn
  organization: National Engineering Research Center for Magnesium Alloys, Chongqing University, State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University
– sequence: 2
  givenname: Xi
  surname: Lin
  fullname: Lin, Xi
  organization: School of Materials Science and Engineering, Shanghai Jiao Tong University
– sequence: 3
  givenname: Qun
  surname: Luo
  fullname: Luo, Qun
  organization: State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University
– sequence: 4
  givenname: Yu’an
  surname: Chen
  fullname: Chen, Yu’an
  organization: National Engineering Research Center for Magnesium Alloys, Chongqing University
– sequence: 5
  givenname: Jingfeng
  surname: Wang
  fullname: Wang, Jingfeng
  organization: National Engineering Research Center for Magnesium Alloys, Chongqing University
– sequence: 6
  givenname: Bin
  surname: Jiang
  fullname: Jiang, Bin
  organization: National Engineering Research Center for Magnesium Alloys, Chongqing University
– sequence: 7
  givenname: Fusheng
  surname: Pan
  fullname: Pan, Fusheng
  organization: National Engineering Research Center for Magnesium Alloys, Chongqing University
BookMark eNp9kE1LAzEQhoMo2FZ_gLcFj7Kaj22y8VaKX1jw0oO3kM3OtltrUpOtbf-9WVdaEPSUGXjeyczTR8fWWUDoguBrgrG4CYRywlJMSUoZE2l-hHok5zIlmL0ex5qLLM2ElKeoH8ICYy4EFj2kn2sLTW1C4qqkmUMy35XezcAmugjOr5raxdKWSQn7duWdgRDgO7PnQ-O8nkGil0u3C7fJKPHwWcPmDJ1Uehng_OcdoOn93XT8mE5eHp7Go0lq2JA2qcSVoUJrUujCGFyJIeGcU9BZvMxkDCquQZsCilhLWVYyJ7LMYgO0yHI2QFfd2I22lbYztXBrb-OHqli8LcrttlBAMaU46mKRvuzoeMvHGkJzwKmkmGOWcxEp0VHGuxA8VMrUjW4dNF7XS0WwauWrTr6K8lUrX7XbkF_Jla_ftd_9m6FdJkTWzsAfdvo79AUtPppQ
CitedBy_id crossref_primary_10_1016_j_jmst_2023_11_074
crossref_primary_10_1016_j_matre_2023_100246
crossref_primary_10_1016_j_jallcom_2022_164169
crossref_primary_10_1016_j_matre_2023_100247
crossref_primary_10_1016_j_msea_2022_143513
crossref_primary_10_1016_j_jmrt_2023_08_310
crossref_primary_10_1016_j_jmst_2023_06_045
crossref_primary_10_1016_j_ijhydene_2022_11_306
crossref_primary_10_1016_j_jmst_2022_07_009
crossref_primary_10_1016_j_jmst_2023_09_024
crossref_primary_10_1021_acs_jpcc_2c07370
crossref_primary_10_1016_j_jallcom_2023_173163
crossref_primary_10_1016_j_jmst_2024_05_084
crossref_primary_10_1016_j_jmst_2023_09_021
crossref_primary_10_1016_j_jmst_2023_10_015
crossref_primary_10_1016_j_jallcom_2023_171672
crossref_primary_10_3390_app14209348
crossref_primary_10_1007_s12598_023_02594_5
crossref_primary_10_1016_j_actamat_2023_118812
crossref_primary_10_1016_j_jmst_2023_02_021
crossref_primary_10_1016_j_jmst_2022_04_036
crossref_primary_10_1016_j_jmst_2024_04_035
crossref_primary_10_1016_j_jmst_2022_07_022
crossref_primary_10_1016_j_jmst_2023_03_063
crossref_primary_10_1016_j_jallcom_2025_178741
crossref_primary_10_1016_j_matchar_2022_112613
crossref_primary_10_1016_j_actamat_2024_119773
crossref_primary_10_1016_j_ijhydene_2022_03_201
crossref_primary_10_1016_j_jmst_2023_01_005
crossref_primary_10_1016_j_jmst_2023_11_055
crossref_primary_10_1002_jctb_7002
crossref_primary_10_1016_j_jmst_2021_10_004
crossref_primary_10_1016_j_mssp_2024_109225
crossref_primary_10_1016_j_jmst_2024_03_018
crossref_primary_10_1016_j_mtadv_2023_100387
crossref_primary_10_1016_j_jmst_2022_12_014
crossref_primary_10_1007_s12613_022_2529_x
crossref_primary_10_1016_j_jmst_2024_12_050
crossref_primary_10_1007_s12613_022_2577_2
crossref_primary_10_1016_j_matcom_2024_09_018
crossref_primary_10_1002_cphc_202400521
crossref_primary_10_1016_j_jmst_2023_09_040
crossref_primary_10_1021_acssuschemeng_4c06311
crossref_primary_10_1016_j_ijhydene_2024_01_127
crossref_primary_10_1016_j_matchar_2024_114022
crossref_primary_10_1016_j_ijhydene_2022_08_156
crossref_primary_10_1016_j_cej_2023_144943
crossref_primary_10_1016_j_jmst_2023_01_012
crossref_primary_10_1007_s10853_023_09291_9
crossref_primary_10_1016_j_jmst_2023_06_034
crossref_primary_10_1016_S1003_6326_23_66347_2
crossref_primary_10_1016_j_mseb_2023_117072
crossref_primary_10_1007_s12598_024_02839_x
crossref_primary_10_1016_j_jmst_2022_04_012
crossref_primary_10_1016_j_jmst_2023_02_043
crossref_primary_10_1016_j_jmst_2022_07_049
crossref_primary_10_1016_j_jmst_2022_07_044
crossref_primary_10_1016_j_marstruc_2024_103684
crossref_primary_10_1016_j_cej_2023_144143
crossref_primary_10_1016_j_ijhydene_2025_02_262
crossref_primary_10_1016_j_ijhydene_2023_03_100
crossref_primary_10_1016_j_jma_2024_12_020
crossref_primary_10_1016_j_jmst_2022_12_077
crossref_primary_10_1016_j_rser_2025_115332
crossref_primary_10_1016_j_seppur_2024_128350
crossref_primary_10_3390_en15217979
crossref_primary_10_1016_j_jmst_2021_09_060
crossref_primary_10_1016_j_jmst_2021_09_061
crossref_primary_10_1016_j_jmst_2023_07_057
crossref_primary_10_1016_j_jmst_2023_07_058
crossref_primary_10_1016_j_jallcom_2024_175668
crossref_primary_10_1007_s40195_022_01518_z
crossref_primary_10_1016_j_ijhydene_2024_05_227
crossref_primary_10_1016_j_jmst_2023_07_051
crossref_primary_10_1007_s12613_021_2303_5
crossref_primary_10_1007_s12613_023_2800_9
crossref_primary_10_1016_j_jmst_2022_12_067
crossref_primary_10_1016_j_ijhydene_2023_09_088
crossref_primary_10_1016_j_ijhydene_2024_11_113
crossref_primary_10_1016_j_jmst_2023_10_058
crossref_primary_10_1016_j_jma_2023_07_011
crossref_primary_10_1016_j_apenergy_2025_125346
crossref_primary_10_1016_j_cej_2024_153489
crossref_primary_10_1016_j_ijhydene_2023_06_210
crossref_primary_10_1016_j_jmst_2023_07_048
crossref_primary_10_1063_5_0188819
crossref_primary_10_1016_j_jmst_2022_07_060
crossref_primary_10_1016_j_jallcom_2024_175412
crossref_primary_10_1016_j_jmst_2024_09_050
crossref_primary_10_1007_s13399_023_04062_7
crossref_primary_10_1016_j_jmrt_2025_02_104
crossref_primary_10_1007_s10853_022_07063_5
crossref_primary_10_3390_ma15228004
crossref_primary_10_1016_j_ijhydene_2022_07_068
crossref_primary_10_1016_j_jmst_2022_02_050
crossref_primary_10_1016_j_mtla_2023_101846
crossref_primary_10_1016_j_porgcoat_2022_106871
crossref_primary_10_1016_S1003_6326_24_66566_0
crossref_primary_10_1002_batt_202100417
crossref_primary_10_1016_j_jmst_2022_12_053
crossref_primary_10_1016_j_mtcomm_2024_109380
crossref_primary_10_1039_D3NJ04280D
crossref_primary_10_1016_j_ijhydene_2022_07_057
crossref_primary_10_1002_adfm_202406639
crossref_primary_10_1016_j_ijhydene_2024_06_055
crossref_primary_10_1016_j_matchemphys_2024_130010
crossref_primary_10_1016_j_jma_2022_06_017
crossref_primary_10_1016_j_jmst_2023_07_022
crossref_primary_10_1016_j_actamat_2025_120746
crossref_primary_10_1016_j_fuel_2022_124829
crossref_primary_10_1016_j_jmst_2023_03_040
crossref_primary_10_1007_s12613_021_2391_2
crossref_primary_10_1016_j_jmst_2023_08_058
crossref_primary_10_1007_s12613_022_2523_3
crossref_primary_10_1021_acsomega_2c01085
crossref_primary_10_1515_pac_2023_1134
crossref_primary_10_1016_j_jmst_2022_10_029
crossref_primary_10_1016_j_mtcomm_2022_103568
crossref_primary_10_1021_acs_energyfuels_4c01138
crossref_primary_10_1016_j_jmst_2024_10_024
crossref_primary_10_1016_j_jallcom_2022_167392
crossref_primary_10_1007_s12613_022_2414_7
crossref_primary_10_1016_j_jmst_2023_07_013
crossref_primary_10_1007_s40195_022_01428_0
crossref_primary_10_1016_j_jmst_2022_02_039
crossref_primary_10_1007_s12274_024_6876_y
crossref_primary_10_1016_j_jmst_2023_08_046
crossref_primary_10_1016_j_cej_2024_150623
crossref_primary_10_1016_j_jmst_2023_04_051
crossref_primary_10_1016_j_jmst_2024_06_030
crossref_primary_10_1016_j_jmst_2022_02_046
crossref_primary_10_1016_j_ijhydene_2023_07_329
crossref_primary_10_1016_j_jmst_2022_02_048
crossref_primary_10_1016_j_jma_2023_08_009
crossref_primary_10_1016_j_est_2023_108165
crossref_primary_10_1016_j_jmst_2022_02_042
crossref_primary_10_1016_j_jmst_2023_12_040
crossref_primary_10_1039_D4TA00722K
crossref_primary_10_1016_j_ijhydene_2023_08_243
crossref_primary_10_1016_j_jmst_2023_03_010
crossref_primary_10_1016_j_jmst_2023_08_035
crossref_primary_10_1016_j_ijhydene_2022_03_163
crossref_primary_10_1016_j_jmst_2022_06_021
crossref_primary_10_1016_j_jmst_2023_12_014
crossref_primary_10_1016_j_matchemphys_2024_129918
crossref_primary_10_1016_j_jmst_2023_12_011
crossref_primary_10_1016_j_jallcom_2023_170951
crossref_primary_10_1016_j_jmst_2024_10_041
crossref_primary_10_1016_j_est_2023_107417
crossref_primary_10_1016_j_jmst_2022_06_010
crossref_primary_10_1016_j_apenergy_2024_124134
crossref_primary_10_1016_j_jmst_2022_10_015
crossref_primary_10_1016_j_jallcom_2024_173612
crossref_primary_10_1007_s12613_022_2449_9
crossref_primary_10_1016_j_jcis_2024_12_043
crossref_primary_10_1016_j_jmst_2024_10_056
crossref_primary_10_1016_j_ijhydene_2022_07_005
crossref_primary_10_1016_j_jmst_2022_09_039
crossref_primary_10_1016_j_jpcs_2024_112028
crossref_primary_10_1016_j_vacuum_2023_111858
crossref_primary_10_1016_j_jmst_2022_11_044
crossref_primary_10_1016_j_ijhydene_2023_03_329
crossref_primary_10_1016_j_jmst_2023_05_070
crossref_primary_10_1016_j_jmst_2022_03_032
crossref_primary_10_1016_j_jmst_2023_01_027
crossref_primary_10_1016_j_jmst_2023_08_019
crossref_primary_10_1016_j_jallcom_2022_168605
crossref_primary_10_1016_j_jmst_2022_03_039
crossref_primary_10_1016_j_jmst_2022_10_068
crossref_primary_10_1016_j_jmst_2023_08_011
crossref_primary_10_1021_acs_jpcc_3c02650
crossref_primary_10_1155_er_6300225
crossref_primary_10_1016_j_ijhydene_2023_12_038
crossref_primary_10_1021_acsami_4c19590
crossref_primary_10_1016_j_ijhydene_2024_08_172
crossref_primary_10_1016_j_jmst_2023_11_042
crossref_primary_10_21597_jist_1271619
crossref_primary_10_1021_acsami_2c06642
crossref_primary_10_1016_j_ijhydene_2023_08_311
crossref_primary_10_1016_j_jpcs_2022_111153
crossref_primary_10_1007_s12613_022_2510_8
crossref_primary_10_1007_s12613_022_2519_z
crossref_primary_10_1016_j_jma_2022_09_012
crossref_primary_10_1016_j_ijhydene_2022_09_013
crossref_primary_10_3390_en15218322
crossref_primary_10_1007_s12598_023_02365_2
crossref_primary_10_1016_j_msea_2024_147413
crossref_primary_10_1016_j_jmst_2022_08_019
crossref_primary_10_1007_s12613_023_2619_4
crossref_primary_10_1016_j_jmst_2022_03_040
crossref_primary_10_1016_j_jmst_2022_02_008
crossref_primary_10_1016_j_jmst_2024_01_009
crossref_primary_10_1007_s12613_022_2485_5
crossref_primary_10_1016_j_jmst_2023_10_009
crossref_primary_10_1016_j_jmst_2021_12_011
crossref_primary_10_1016_j_jmst_2023_12_055
crossref_primary_10_1016_j_jma_2022_09_028
crossref_primary_10_1016_j_jmst_2024_02_013
crossref_primary_10_1016_j_jmst_2023_09_005
crossref_primary_10_1016_j_jmst_2023_11_017
crossref_primary_10_1007_s40195_024_01709_w
crossref_primary_10_1016_j_ijhydene_2023_12_134
crossref_primary_10_1016_j_jmst_2022_08_047
crossref_primary_10_1016_j_jmst_2022_03_020
crossref_primary_10_1016_j_jmst_2023_11_022
crossref_primary_10_1007_s12598_022_02105_y
crossref_primary_10_1016_j_jre_2024_12_010
crossref_primary_10_1016_j_jmst_2022_10_057
crossref_primary_10_1016_j_jmst_2022_10_059
crossref_primary_10_1007_s12613_021_2372_5
crossref_primary_10_1016_j_ijhydene_2023_12_020
crossref_primary_10_1002_ente_202200088
crossref_primary_10_1016_j_ijhydene_2022_12_083
crossref_primary_10_1016_j_jmst_2022_04_057
crossref_primary_10_1016_j_jmst_2023_11_025
Cites_doi 10.1016/j.apenergy.2019.04.181
10.1016/j.energy.2019.02.033
10.1016/0925-8388(94)90791-9
10.1016/j.ijhydene.2004.01.007
10.1016/S0925-8388(01)01917-X
10.1016/j.ijhydene.2016.08.018
10.1016/j.renene.2019.01.106
10.1016/j.fusengdes.2018.11.006
10.1002/jps.2600630103
10.1039/D0DT03627G
10.1016/j.ijhydene.2007.09.006
10.1016/S0925-8388(96)02413-9
10.1016/j.ijhydene.2006.11.022
10.1016/j.intermet.2008.02.009
10.1007/978-0-85729-221-6
10.1016/0022-5088(83)90255-2
10.1016/S0022-5088(06)80006-8
10.1016/j.ijhydene.2017.06.137
10.1007/s10973-012-2783-7
10.1016/0360-3199(92)90169-W
10.1002/zaac.19271630102
10.1016/B978-008044019-4/50022-2
10.1016/j.intermet.2013.11.024
10.1021/acs.cgd.6b00187
10.1016/0360-3199(95)00109-3
10.1016/S0925-8388(00)00708-8
10.1038/srep15385
10.1016/S0925-8388(99)00202-9
10.1016/0360-3199(82)90069-6
10.1039/C8TA06668J
10.1016/j.ijhydene.2015.08.076
10.1149/1.1837085
10.1007/s12613-019-1846-1
10.1088/1674-1056/ab9289
10.1016/j.jpowsour.2014.05.066
10.1039/tf9484400796
10.1016/j.jallcom.2017.12.283
10.1016/j.ijhydene.2008.04.042
10.1007/s12598-021-01764-7
10.1016/0022-5088(83)90262-X
10.1016/j.cej.2020.127844
10.1016/j.jma.2019.06.006
10.13182/FST95-A30607
10.1016/j.ijhydene.2016.04.083
10.1007/s12613-020-2019-y
10.1524/zpch.1977.104.4-6.229
10.1016/S0022-5088(06)80009-3
10.1016/j.ijhydene.2020.09.144
10.1021/ja806565t
10.1016/j.apenergy.2011.06.015
10.1016/j.jallcom.2016.05.286
10.1016/j.cej.2020.126115
10.1016/S1875-5372(13)60018-1
10.1016/j.jallcom.2020.158163
10.1016/0360-3199(93)E0011-9
10.1016/j.jma.2020.02.029
10.1063/1.1731812
10.1088/1361-6528/aabcf3
10.1016/0022-5088(76)90182-X
10.1016/0022-5088(89)90536-5
10.1016/0022-5088(83)90253-9
10.1016/j.jma.2020.04.002
10.1016/j.renene.2020.02.035
10.1016/j.ijhydene.2004.04.006
10.1016/j.jallcom.2020.154865
10.1016/j.jallcom.2003.08.108
10.1016/j.ijhydene.2010.05.073
10.1016/j.scriptamat.2016.09.011
10.1016/j.ijhydene.2012.02.117
10.1016/S0925-8388(99)00592-7
10.1016/j.jmst.2018.01.007
10.1016/j.ijhydene.2013.05.027
10.1016/0925-8388(93)90262-L
10.1016/0022-5088(83)90254-0
10.1016/j.ijhydene.2019.06.191
10.1016/j.ijhydene.2019.04.281
10.1016/j.ijhydene.2016.07.077
10.1016/0360-3199(95)00111-5
10.1016/j.jallcom.2005.03.010
10.1016/j.jma.2020.02.003
10.1007/s12613-019-1913-7
10.1016/S0925-8388(96)03070-8
10.1016/j.applthermaleng.2019.114129
10.1016/S0925-8388(98)00565-9
10.1016/S0360-0564(08)60563-5
10.1016/j.ijhydene.2019.07.247
10.1016/j.intermet.2004.03.024
10.1016/j.jma.2018.12.001
10.1016/j.ijhydene.2020.07.062
10.1016/j.ijhydene.2020.05.144
10.1016/j.ijhydene.2019.11.035
10.1021/jp062746a
10.1016/j.ijhydene.2015.11.068
10.1016/j.ijhydene.2018.10.055
10.1016/j.jallcom.2013.11.159
10.1016/j.jallcom.2003.09.031
10.1002/er.2980
10.1016/j.ijhydene.2019.01.148
10.1016/j.ijhydene.2009.06.075
10.1016/j.matlet.2015.08.116
10.1023/A:1014556109351
10.1007/s12613-020-1972-9
10.1016/j.jallcom.2010.07.016
10.1680/jnaen.18.00019
10.1007/s12598-021-01769-2
10.1016/j.jmst.2021.04.044
10.1016/j.enconman.2019.112328
10.1016/j.rser.2017.05.132
10.1007/s12598-018-1087-x
10.1021/jp500439n
10.1016/j.jallcom.2020.154402
10.1016/j.ijhydene.2014.07.016
10.1016/j.ijhydene.2009.10.004
10.1016/j.ijhydene.2003.10.002
10.1007/s12613-019-1880-z
10.1016/j.ijhydene.2011.06.145
10.1016/0022-1902(78)80147-X
10.1016/S0925-8388(99)00268-6
10.1016/0925-8388(93)90571-4
10.1016/j.jma.2018.05.007
10.1016/j.intermet.2006.10.004
10.1016/S0360-3199(97)00050-5
10.1016/j.apenergy.2020.115682
ContentType Journal Article
Copyright University of Science and Technology Beijing 2022
University of Science and Technology Beijing 2022.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: University of Science and Technology Beijing 2022
– notice: University of Science and Technology Beijing 2022.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
HCIFZ
KB.
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s12613-021-2337-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Materials Science Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1869-103X
EndPage 48
ExternalDocumentID bjkjdxxb_e202201003
10_1007_s12613_021_2337_8
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
1N0
1~5
2B.
2C0
2KG
2LR
2VQ
30V
4.4
406
408
40D
4G.
67Z
7-5
71M
8RM
92H
92I
96X
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CAJEB
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
OZT
P2P
P9N
PCBAR
PDBOC
PT4
Q--
R9I
RIG
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
D1I
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
4A8
93N
PMFND
PSX
ID FETCH-LOGICAL-c352t-90fc27aa1babcc0f7516662ea4126c43ef6aeacbeb43e99df9819d443ee2b483
IEDL.DBID U2A
ISSN 1674-4799
IngestDate Thu May 29 04:07:33 EDT 2025
Fri Jul 25 10:52:34 EDT 2025
Tue Jul 01 01:18:45 EDT 2025
Thu Apr 24 23:13:53 EDT 2025
Fri Feb 21 02:46:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords metal hydrides
kinetic models
hydrogen desorption process
hydrogen absorption process
hydrogen storage
metal?hydrides
hydrogen?storage
hydrogen?desorption?process
hydrogen?absorption?process
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-90fc27aa1babcc0f7516662ea4126c43ef6aeacbeb43e99df9819d443ee2b483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2920603867
PQPubID 2043631
PageCount 17
ParticipantIDs wanfang_journals_bjkjdxxb_e202201003
proquest_journals_2920603867
crossref_citationtrail_10_1007_s12613_021_2337_8
crossref_primary_10_1007_s12613_021_2337_8
springer_journals_10_1007_s12613_021_2337_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle International journal of minerals, metallurgy and materials
PublicationTitleAbbrev Int J Miner Metall Mater
PublicationTitle_FL International Journal of Minerals, Metallurgy and Materials
PublicationYear 2022
Publisher University of Science and Technology Beijing
Springer Nature B.V
National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China%State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
Publisher_xml – name: University of Science and Technology Beijing
– name: Springer Nature B.V
– name: National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
– name: State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China%State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
References Wang, Wang, Chen, Lei, Wang (CR50) 1996; 21
Zhu, Zhang, Lü (CR11) 2020; 27
Chou, Li, Lin, Jiang, Xu (CR20) 2005; 30
Jander (CR18) 1927; 163
Lu, Zhu, Wang, Li, Ouyang, Liu (CR102) 2014; 39
Ginstling, Brounshtein (CR41) 1950; 23
Muthukumar, Satheesh, Linder, Mertz, Groll (CR80) 2009; 34
Bloch, Mintz (CR35) 1997; 253–254
Pan, Wu, Li (CR25) 2011; 36
Yao, Jiang, Liu, Wu, Chou, Lyu, Li (CR97) 2020; 8
Bershadsky, Klyuch, Ron (CR63) 1995; 20
Ismail, Yahya, Sazelee, Ali, Yap, Mustafa (CR99) 2020; 8
Liang, Huot, Boily, Van Neste, Schulz (CR127) 2000; 297
Ramesh, Murti, Reddy, Rama Rao, Das (CR64) 1994; 205
Song, She, Chen, Pan (CR36) 2020; 8
Carstensen (CR48) 1974; 63
CR49
Nam, Ko, Ju (CR53) 2012; 89
Kohno, Tsuruta, Kanda (CR120) 1996; 143
CR43
Nahm, Kim, Hong, Lee (CR57) 1992; 17
Jurczyk, Rajewski, Majchrzycki, Wójcik (CR86) 1999; 290
Li, Guo, Jiang, Li, Li (CR92) 2020; 153
Shriniwasan, Tien, Tanniru, Tatiparti (CR74) 2018; 742
Li, Jiang, Chou, Lin, Zhan, Xu, Lu, Zhang (CR26) 2005; 399
Jiang, Wang, Zhu (CR37) 2021; 40
Chou, Luo, Li, Zhang (CR44) 2014; 47
Liang, Huot, Boily, Schulz (CR68) 2000; 305
Zhang, Zhang, Gao, Wei, Zhai, Cai (CR30) 2020; 45
Si, Zhang, Feng, Ding, Li (CR13) 2021; 40
Chou, Xu (CR33) 2007; 15
Li, Gu, Li, Zhang (CR114) 2017; 127
Kong, Du, Wang, Li, Wu (CR65) 2012; 41
Akiba, Nomura, Ono, Suda (CR69) 1982; 7
Ouyang, Yang, Zhu, Liu, Dong, Sun, Zou, Yao (CR105) 2014; 118
CR51
Liu, Chen, Wang, Li (CR108) 2014; 267
Vega, Leiva, Leal Neto, Silva, Silva, Ishikawa, Kiminami, Botta (CR16) 2020; 45
Li, Zhu, Yang, Zhang, Chen, Li (CR119) 2015; 40
Liu, Zhong, Luo, Gao, Pan, Wang (CR72) 2009; 131
Zhang, Li, Cai, Qi, Guo, Zhao (CR56) 2019; 138
Sun, Zhang, Li, Guo, Wang, Jiang (CR10) 2019; 26
Sakintuna, Lamari-Darkrim, Hirscher (CR1) 2007; 32
Wang, Wang, Lei, Chen, Wang (CR12) 1996; 21
Li, Chou, Lin, Jiang, Zhan (CR66) 2004; 29
Penzhorn, Sirch, Perevezentsev, Borisenko (CR70) 1995; 28
Cao, Ouyang, Wang, Liu, Sun, Felderhoff, Zhu (CR19) 2016; 41
Yang, Hou, Yu, Zhang (CR31) 2021; 50
Wang, Suda (CR83) 1993; 191
Lu, Yu, Lu, Song, Wu, Zheng, Yuan, Zhang (CR125) 2021; 40
Pang, Li (CR14) 2016; 41
Kandavel, Bhat, Rougier, Aymard, Nazri, Tarascon (CR87) 2008; 33
Khawam, Flanagan (CR34) 2006; 110
Wang, Wang, Huang, Yang, Wu, Zheng, Wu, Zhang (CR54) 2019; 173
Oh, Kim, Nahm, Sim (CR58) 1998; 278
Han, Lee (CR121) 1987; 131
Ismail, Zhao, Yu, Dou (CR128) 2012; 37
Lin, Zhu, Leng, Yang, Lyu, Li (CR52) 2019; 250
Park, Jung, Jeong, Kang, Lee, Park, Park (CR5) 2020; 45
Ulmer, Dieterich, Pohl, Dittmeyer, Linder, Fichtner (CR91) 2017; 42
Li, Chou, Xu, Lin, Jiang, Zhan (CR103) 2005; 387
Kou, He, Luo, Tang, Huang, Wang, Bao, Xue, Pei, Liu (CR17) 2019; 138
Trivedi, Nune (CR112) 2019; 8
Li, Cheng, Miao, Wang, Kuang, Han (CR3) 2020; 27
Bershadsky, Josephy, Ron (CR71) 1991; 172–174
Luo, Gu, Liu, Zhang, Liu, Li (CR29) 2018; 6
Carter (CR42) 1961; 34
He, Lü, Ding, Yan (CR8) 2021; 28
Yong, Guo, Yuan, Qi, Zhao, Zhang (CR116) 2019; 44
Shen, Liang, Shao, Sun, Liu, Zhai (CR9) 2021; 28
An, Pan, Luo, Zhang, Zhang, Li (CR24) 2010; 506
Crank (CR45) 1979
Khan, Zou, Zeng, Ding (CR118) 2018; 43
Jiang, Leng, Meng, Chou, Li (CR124) 2013; 37
CR4
CR6
Aharoni, Tompkins (CR40) 1970; 21
CR7
Mungole, Balasubramaniam (CR59) 1998; 23
Ruiz, Castro, Peretti, Visintin (CR88) 2010; 35
Kesavan, Ramaprabhu, Rama Rao, Das (CR93) 1996; 244
CR89
Shriniwasan, Goswami, Tien, Tanniru, Ebrahimi, Tatiparti (CR81) 2015; 40
Xie, Shi, Wang, Luo, Li, Chou (CR113) 2022; 97
Pang, Sun, Gu, Chou, Wang, Li (CR28) 2016; 16
Broom (CR39) 2011
Jat, Parida, Nuwad, Agarwal, Kulkarni (CR61) 2013; 112
Xu, Chen, Wang, Lei, Wang (CR90) 2002; 337
Long, Zou, Chen, Zeng, Ding (CR104) 2014; 615
CR84
Liang, Huot, Boily, Van Neste, Schulz (CR67) 1999; 291
Christian (CR47) 2002
Koh, Goudy, Huang, Zhou (CR78) 1989; 153
Zarynow, Goudy, Schweibenz, Clay (CR79) 1991; 172–174
Lin, Zhang, Wang, Ouyang, Zhu, Li, Wang, Zhu (CR123) 2016; 685
Jai-Young, Park, Pyun (CR62) 1983; 89
Sun, Wang, Wang, Liu, Peng (CR106) 2019; 44
Luo, Li, Li, Liu, Shao, Li (CR27) 2019; 7
Wu, Luo, Chen, Gu, Chou, Wang, Li (CR117) 2016; 41
Zhang, Wei, Zhang, Yuan, Gao, Qi, Ren (CR32) 2020; 45
Liang (CR115) 2004; 370
CR15
Cui, Li, Chou, Chen, Lin, Xu (CR23) 2008; 16
Balasubramaniam, Mungole, Rai (CR85) 1993; 196
Kempen, Sommer, Mittemeijer (CR46) 2002; 37
CR98
Meena, Singh, Sharma, Jain (CR100) 2018; 6
CR95
Wei, Lim, Tseng, Chan (CR2) 2017; 79
Shriniwasan, Tien, Tanniru, Ebrahimi, Tatiparti (CR111) 2015; 161
Liu, Chen, Wang, Yang (CR82) 2018; 34
Stander (CR109) 1977; 104
Lan, Zeng, Jiong, Huang, Liu, Hua, Guo (CR126) 2019; 44
Wang, Li, Ding, Wan, Yu, Wang (CR94) 2016; 41
Yang, Wang, Xia, Li, Liang, Zhang (CR55) 2019; 44
Rudman (CR38) 1983; 89
Boser (CR76) 1976; 46
Ouyang, Cao, Wang, Liu, Sun, Zhang, Zhu (CR107) 2013; 38
Zhang, Yan, Xia, Zhou, Lu, Yu, Yu, Peng (CR96) 2021; 9
Mintz, Gavra, Hadari (CR110) 1978; 40
Miyamoto, Yamaji, Nakata (CR75) 1983; 89
Goodell, Rudman (CR77) 1983; 89
Li, Chou, Lin, Jiang, Zhan (CR21) 2004; 29
Luo, An, Pan, Zhang, Zhang, Li (CR22) 2010; 35
CR101
Zhong, Liu, Gao, Wang, Miao, Pan (CR73) 2008; 33
Li, Lin, Chou, Jiang, Zhan (CR60) 2004; 12
Li, Saita, Saito, Akiyama (CR122) 2004; 372
XY Cui (2337_CR23) 2008; 16
T Yang (2337_CR55) 2019; 44
P Muthukumar (2337_CR80) 2009; 34
LER Vega (2337_CR16) 2020; 45
A Zarynow (2337_CR79) 1991; 172–174
FC Ruiz (2337_CR88) 2010; 35
2337_CR89
L Jai-Young (2337_CR62) 1983; 89
M Miyamoto (2337_CR75) 1983; 89
2337_CR84
A Ginstling (2337_CR41) 1950; 23
S Long (2337_CR104) 2014; 615
XL Yang (2337_CR31) 2021; 50
O Boser (2337_CR76) 1976; 46
E Bershadsky (2337_CR63) 1995; 20
KC Chou (2337_CR44) 2014; 47
CS Park (2337_CR5) 2020; 45
WC He (2337_CR8) 2021; 28
2337_CR15
YF Liu (2337_CR72) 2009; 131
CM Stander (2337_CR109) 1977; 104
K Zhong (2337_CR73) 2008; 33
S Shriniwasan (2337_CR74) 2018; 742
2337_CR98
LQ Li (2337_CR122) 2004; 372
S Shriniwasan (2337_CR81) 2015; 40
JW Oh (2337_CR58) 1998; 278
XY Shen (2337_CR9) 2021; 28
2337_CR95
KB Wu (2337_CR117) 2016; 41
JS Han (2337_CR121) 1987; 131
PD Goodell (2337_CR77) 1983; 89
P Meena (2337_CR100) 2018; 6
RE Carter (2337_CR42) 1961; 34
XF Zhu (2337_CR11) 2020; 27
H Yong (2337_CR116) 2019; 44
RD Penzhorn (2337_CR70) 1995; 28
J Nam (2337_CR53) 2012; 89
F Wang (2337_CR94) 2016; 41
XL Wang (2337_CR83) 1993; 191
M Jurczyk (2337_CR86) 1999; 290
ZY Lu (2337_CR125) 2021; 40
W Jiang (2337_CR37) 2021; 40
X Lin (2337_CR52) 2019; 250
YS Lu (2337_CR102) 2014; 39
CS Wang (2337_CR12) 1996; 21
Y Li (2337_CR3) 2020; 27
R Balasubramaniam (2337_CR85) 1993; 196
Q Li (2337_CR21) 2004; 29
A Khawam (2337_CR34) 2006; 110
D Wang (2337_CR54) 2019; 173
JT Carstensen (2337_CR48) 1974; 63
JG Li (2337_CR92) 2020; 153
M Ismail (2337_CR99) 2020; 8
YP Pang (2337_CR28) 2016; 16
JT Koh (2337_CR78) 1989; 153
XH Wang (2337_CR50) 1996; 21
Q Li (2337_CR103) 2005; 387
Q Li (2337_CR26) 2005; 399
Q Luo (2337_CR29) 2018; 6
J Zhang (2337_CR96) 2021; 9
M Kandavel (2337_CR87) 2008; 33
KS Nahm (2337_CR57) 1992; 17
2337_CR49
MM Sun (2337_CR10) 2019; 26
KC Chou (2337_CR33) 2007; 15
2337_CR43
YH Zhang (2337_CR30) 2020; 45
TZ Si (2337_CR13) 2021; 40
Q Luo (2337_CR27) 2019; 7
LZ Ouyang (2337_CR107) 2013; 38
PS Rudman (2337_CR38) 1983; 89
Y Li (2337_CR114) 2017; 127
ZQ Lan (2337_CR126) 2019; 44
HQ Kou (2337_CR17) 2019; 138
XH An (2337_CR24) 2010; 506
Q Luo (2337_CR22) 2010; 35
U Ulmer (2337_CR91) 2017; 42
G Liang (2337_CR127) 2000; 297
B Sakintuna (2337_CR1) 2007; 32
2337_CR51
MN Mungole (2337_CR59) 1998; 23
XC Kong (2337_CR65) 2012; 41
MH Mintz (2337_CR110) 1978; 40
E Bershadsky (2337_CR71) 1991; 172–174
T Liu (2337_CR108) 2014; 267
T Kohno (2337_CR120) 1996; 143
KC Chou (2337_CR20) 2005; 30
Y Sun (2337_CR106) 2019; 44
YP Pang (2337_CR14) 2016; 41
JF Song (2337_CR36) 2020; 8
J Crank (2337_CR45) 1979
JW Christian (2337_CR47) 2002
JJ Jiang (2337_CR124) 2013; 37
M Ismail (2337_CR128) 2012; 37
TR Kesavan (2337_CR93) 1996; 244
G Liang (2337_CR67) 1999; 291
LZ Ouyang (2337_CR105) 2014; 118
TC Xie (2337_CR113) 2022; 97
S Shriniwasan (2337_CR111) 2015; 161
C Aharoni (2337_CR40) 1970; 21
2337_CR4
ATW Kempen (2337_CR46) 2002; 37
PY Yao (2337_CR97) 2020; 8
RA Jat (2337_CR61) 2013; 112
2337_CR7
2337_CR6
GL Liu (2337_CR82) 2018; 34
YH Zhang (2337_CR56) 2019; 138
Q Li (2337_CR66) 2004; 29
R Ramesh (2337_CR64) 1994; 205
HJ Lin (2337_CR123) 2016; 685
W Jander (2337_CR18) 1927; 163
D Khan (2337_CR118) 2018; 43
Q Li (2337_CR60) 2004; 12
P Trivedi (2337_CR112) 2019; 8
YB Pan (2337_CR25) 2011; 36
MH Li (2337_CR119) 2015; 40
2337_CR101
ZJ Cao (2337_CR19) 2016; 41
J Bloch (2337_CR35) 1997; 253–254
G Liang (2337_CR115) 2004; 370
TY Wei (2337_CR2) 2017; 79
YH Xu (2337_CR90) 2002; 337
G Liang (2337_CR68) 2000; 305
E Akiba (2337_CR69) 1982; 7
YH Zhang (2337_CR32) 2020; 45
DP Broom (2337_CR39) 2011
References_xml – volume: 112
  start-page: 37
  issue: 1
  year: 2013
  ident: CR61
  article-title: Hydrogen sorption—desorption studies on ZrCo—hydrogen system
  publication-title: J. Therm. Anal. Calorim.
– volume: 399
  start-page: 101
  issue: 1–2
  year: 2005
  ident: CR26
  article-title: Effect of hydrogen pressure on hydriding kinetics in the Mg Ag Ni-H (x = 0.05, 0.1) system
  publication-title: J. Alloys Compd.
– year: 1979
  ident: CR45
  publication-title: The Mathematics of Diffusion
– volume: 32
  start-page: 1121
  issue: 9
  year: 2007
  ident: CR1
  article-title: Metal hydride materials for solid hydrogen storage: A review
  publication-title: Int. J. Hydrogen Energy
– volume: 21
  start-page: 479
  issue: 6
  year: 1996
  ident: CR50
  article-title: The hydriding kinetics of MlNi —II. Experimental results
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 117
  issue: 2
  year: 2019
  ident: CR112
  article-title: Bioactivity, cytocompatibility and effect of cells on degradation behavior of Mg—2Zn—2Gd alloy
  publication-title: Nanomater. Energy
– volume: 8
  start-page: 461
  issue: 2
  year: 2020
  ident: CR97
  article-title: Catalytic effect of Ni@rGO on the hydrogen storage properties of MgH
  publication-title: J. Magnesium Alloys
– ident: CR51
– volume: 685
  start-page: 272
  year: 2016
  ident: CR123
  article-title: Controlling nanocrystallization and hydrogen storage property of Mg-based amorphous alloy via a gas-solid reaction
  publication-title: J. Alloys Compd.
– volume: 20
  start-page: 29
  issue: 1
  year: 1995
  ident: CR63
  article-title: Hydrogen absorption and desorption kinetics of TiFe Ni H
  publication-title: Int. J. Hydrogen Energy
– volume: 42
  start-page: 20103
  issue: 31
  year: 2017
  ident: CR91
  article-title: Study of the structural, thermodynamic and cyclic effects of vanadium and titanium substitution in laves-phase AB hydrogen storage alloys
  publication-title: Int. J. Hydrogen Energy
– volume: 104
  start-page: 229
  issue: 4–6
  year: 1977
  ident: CR109
  article-title: Kinetics of formation of magnesium hydride from magnesium and hydrogen
  publication-title: Z. Phys. Chem.
– volume: 127
  start-page: 102
  year: 2017
  ident: CR114
  article-title: synchrotron X-ray diffraction investigation on hydrogen-induced decomposition of long period stacking ordered structure in Mg-Ni-Y system
  publication-title: Scripta Mater.
– volume: 89
  start-page: 111
  issue: 1
  year: 1983
  ident: CR75
  article-title: Reaction kinetics of LaNi
  publication-title: J. Less Common Met.
– volume: 79
  start-page: 1122
  year: 2017
  ident: CR2
  article-title: A review on the characterization of hydrogen in hydrogen storage materials
  publication-title: Renewable Sustainable Energy Rev.
– ident: CR101
– volume: 23
  start-page: 1327
  year: 1950
  ident: CR41
  article-title: Concerning the diffusion kinetics of reactions in spherical particles
  publication-title: J. Appl. Chem. USSR
– volume: 34
  start-page: 2010
  issue: 6
  year: 1961
  ident: CR42
  article-title: Kinetic model for solid-state reactions
  publication-title: J. Chem. Phys.
– volume: 37
  start-page: 1321
  issue: 7
  year: 2002
  ident: CR46
  article-title: Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth
  publication-title: J. Mater. Sci.
– volume: 97
  start-page: 147
  year: 2022
  ident: CR113
  article-title: Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg—Zn—La/Ce system
  publication-title: J. Mater. Sci. Technol.
– volume: 41
  start-page: 17421
  issue: 39
  year: 2016
  ident: CR94
  article-title: Effect of catalytic Ni coating with different depositing time on the hydrogen storage properties of ZrCo alloy
  publication-title: Int. J. Hydrogen Energy
– volume: 36
  start-page: 12892
  issue: 20
  year: 2011
  ident: CR25
  article-title: Modeling and analyzing the hydriding kinetics of Mg—LaNi composites by Chou model
  publication-title: Int. J. Hydrogen Energy
– volume: 41
  start-page: 1725
  issue: 3
  year: 2016
  ident: CR117
  article-title: Phase equilibria of Ce—Mg—Ni ternary system at 673 K and hydrogen storage properties of selected alloy
  publication-title: Int. J. Hydrogen Energy
– volume: 191
  start-page: 5
  issue: 1
  year: 1993
  ident: CR83
  article-title: Effects of Al-substitution on hydriding reaction rates of LaNi Alx
  publication-title: J. Alloys Compd.
– volume: 44
  start-page: 16765
  issue: 31
  year: 2019
  ident: CR116
  article-title: Improved hydrogen storage kinetics and thermodynamics of RE—Mg-based alloy by co-doping Ce—Y
  publication-title: Int. J. Hydrogen Energy
– volume: 27
  start-page: 472
  issue: 4
  year: 2020
  ident: CR11
  article-title: Kinetics of carbonated decomposition of hydrogarnet with different silica saturation coefficients
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 370
  start-page: 123
  issue: 1–2
  year: 2004
  ident: CR115
  article-title: Synthesis and hydrogen storage properties of Mg-based alloys
  publication-title: J. Alloys Compd.
– volume: 29
  start-page: 1383
  issue: 13
  year: 2004
  ident: CR21
  article-title: Influence of the initial hydrogen pressure on the hydriding kinetics of the Mg Al Ni ( = 0, 0.1) alloys
  publication-title: Int. J. Hydrogen Energy
– volume: 40
  start-page: 765
  issue: 5
  year: 1978
  ident: CR110
  article-title: Kinetic study of the reaction between hydrogen and magnesium, catalyzed by addition of indium
  publication-title: J. Inorg. Nucl. Chem.
– volume: 33
  start-page: 3754
  issue: 14
  year: 2008
  ident: CR87
  article-title: Improvement of hydrogen storage properties of the AB Laves phase alloys for automotive application
  publication-title: Int. J. Hydrogen Energy
– volume: 40
  start-page: 995
  issue: 4
  year: 2021
  ident: CR13
  article-title: Enhancing hydrogen sorption in MgH by controlling particle size and contact of Ni catalysts
  publication-title: Rare Met.
– volume: 40
  start-page: 13518
  issue: 39
  year: 2015
  ident: CR81
  article-title: Contributions of multiple phenomena towards hydrogenation: A case of Mg
  publication-title: J. Alloys Compd.
– volume: 46
  start-page: 91
  issue: 1
  year: 1976
  ident: CR76
  article-title: Hydrogen sorption in LaNi
  publication-title: J. Less Common Met.
– volume: 143
  start-page: L198
  issue: 9
  year: 1996
  ident: CR120
  article-title: The hydrogen storage properties of new Mg Ni alloy
  publication-title: J. Electrochem. Soc.
– volume: 29
  start-page: 843
  issue: 8
  year: 2004
  ident: CR66
  article-title: Hydrogen absorption and desorption kinetics of Ag—Mg—Ni alloys
  publication-title: Int. J. Hydrogen Energy
– volume: 267
  start-page: 69
  year: 2014
  ident: CR108
  article-title: Enhanced hydrogen storage properties of magnesium by the synergic catalytic effect of TiH and TiH nanoparticles at room temperature
  publication-title: J. Power Sources
– ident: CR89
– volume: 45
  start-page: 21588
  issue: 41
  year: 2020
  ident: CR30
  article-title: Improved hydrogen storage kinetics of Mg-based alloys by substituting La with Sm
  publication-title: Int. J. Hydrogen Energy
– volume: 173
  start-page: 443
  year: 2019
  ident: CR54
  article-title: Design optimization and sensitivity analysis of the radiation mini-channel metal hydride reactor
  publication-title: Energy
– volume: 7
  start-page: 787
  issue: 10
  year: 1982
  ident: CR69
  article-title: Kinetics of the reaction between Mg—Ni alloys and H
  publication-title: Int. J. Hydrogen Energy
– volume: 615
  start-page: S684
  year: 2014
  ident: CR104
  article-title: A comparison study of Mg—Y O and Mg—Y hydrogen storage composite powders prepared through arc plasma method
  publication-title: J. Alloys Compd.
– volume: 297
  start-page: 261
  issue: 1–2
  year: 2000
  ident: CR127
  article-title: Hydrogen storage in mechanically milled Mg—LaNi and MgH —LaNi composites
  publication-title: J. Alloys Compd.
– volume: 35
  start-page: 9879
  issue: 18
  year: 2010
  ident: CR88
  article-title: Study of the different Zr Ni phases of Zr-based AB materials
  publication-title: Int. J. Hydrogen Energy
– volume: 244
  start-page: 164
  issue: 1–2
  year: 1996
  ident: CR93
  article-title: Hydrogen absorption and kinetic studies in Zr Ho Fe
  publication-title: J. Alloys Compd.
– volume: 8
  start-page: 832
  issue: 3
  year: 2020
  ident: CR99
  article-title: The effect of K SiF on the MgH hydrogen storage properties
  publication-title: J. Magnesium Alloys
– ident: CR6
– volume: 41
  start-page: 1899
  issue: 11
  year: 2012
  ident: CR65
  article-title: Kinetics of hydrogen absorption for Ti V Cr alloy powder
  publication-title: Rare Met. Mater. Eng.
– volume: 40
  start-page: 3195
  issue: 11
  year: 2021
  ident: CR125
  article-title: Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH
  publication-title: Rare Met.
– volume: 37
  start-page: 8395
  issue: 10
  year: 2012
  ident: CR128
  article-title: Improved hydrogen storage performance of MgH —NaAlH composite by addition of TiF
  publication-title: Int. J. Hydrogen Energy
– volume: 30
  start-page: 301
  issue: 3
  year: 2005
  ident: CR20
  article-title: Kinetics of absorption and desorption of hydrogen in alloy powder
  publication-title: Int. J. Hydrogen Energy
– volume: 41
  start-page: 18072
  issue: 40
  year: 2016
  ident: CR14
  article-title: A review on kinetic models and corresponding analysis methods for hydrogen storage materials
  publication-title: Int. J. Hydrogen Energy
– volume: 28
  start-page: 981
  issue: 6
  year: 2021
  ident: CR8
  article-title: Oxidation pathway and kinetics of titania slag powders during cooling process in air
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 38
  start-page: 8881
  issue: 21
  year: 2013
  ident: CR107
  article-title: Dual-tuning effect of In on the thermodynamic and kinetic properties of Mg Ni dehydrogenation
  publication-title: Int. J. Hydrogen Energy
– volume: 23
  start-page: 349
  issue: 5
  year: 1998
  ident: CR59
  article-title: Hydrogen desorption kinetics in MmNi Al —H system
  publication-title: Int. J. Hydrogen Energy
– volume: 37
  start-page: 726
  issue: 7
  year: 2013
  ident: CR124
  article-title: Hydrogen storage characterization of Mg Ni Ce /5 wt.% Graphite synthesized by mechanical milling and subsequent microwave sintering
  publication-title: Int. J. Energy Res.
– volume: 250
  start-page: 1065
  year: 2019
  ident: CR52
  article-title: Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank
  publication-title: Appl. Energy
– volume: 45
  start-page: 2084
  issue: 3
  year: 2020
  ident: CR16
  article-title: Improved ball milling method for the synthesis of nanocrystal-line TiFe compound ready to absorb hydrogen
  publication-title: Int. J. Hydrogen Energy
– volume: 387
  start-page: 86
  issue: 1–2
  year: 2005
  ident: CR103
  article-title: Determination and interpretation of the hydriding and dehydriding kinetics in mechanically alloyed LaNiMg composite
  publication-title: J. Alloys Compd.
– volume: 28
  start-page: 201
  issue: 2
  year: 2021
  ident: CR9
  article-title: Extraction and kinetic analysis of Pb and Sr from the leaching residue of zinc oxide ore
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 7
  start-page: 58
  issue: 1
  year: 2019
  ident: CR27
  article-title: Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism
  publication-title: J. Magnesium Alloys
– volume: 33
  start-page: 149
  issue: 1
  year: 2008
  ident: CR73
  article-title: Electrochemical kinetic performance of V—Ti—based hydrogen storage alloy electrode with different particle sizes
  publication-title: Int. J. Hydrogen Energy
– volume: 45
  start-page: 27434
  issue: 51
  year: 2020
  ident: CR5
  article-title: Development of hydrogen storage reactor using composite of metal hydride materials with ENG
  publication-title: Int. J. Hydrogen Energy
– volume: 34
  start-page: 1699
  issue: 9
  year: 2018
  ident: CR82
  article-title: Experimental and computational investigations of LaNi Al ( = 0, 0.25, 0.5, 0.75 and 1.0) tritium-storage alloys
  publication-title: J. Mater. Sci. Technol.
– ident: CR49
– volume: 172–174
  start-page: 1036
  year: 1991
  ident: CR71
  article-title: Investigation of kinetics and structural changes in TiFe Ni after prolonged cycling
  publication-title: J. Less Common Met.
– volume: 8
  start-page: 1
  issue: 1
  year: 2020
  ident: CR36
  article-title: Latest research advances on magnesium and magnesium alloys worldwide
  publication-title: J. Magnesium Alloys
– ident: CR4
– volume: 15
  start-page: 767
  issue: 5–6
  year: 2007
  ident: CR33
  article-title: A new model for hydriding and dehydriding reactions in intermetallics
  publication-title: Intermetallics
– volume: 161
  start-page: 271
  year: 2015
  ident: CR111
  article-title: Transition from interfacial to diffusional growth during hydrogenation of Mg
  publication-title: Mater. Lett.
– volume: 110
  start-page: 17315
  issue: 35
  year: 2006
  ident: CR34
  article-title: Solid-state kinetic models: Basics and mathematical fundamentals
  publication-title: J. Phys. Chem. B
– volume: 196
  start-page: 63
  issue: 1–2
  year: 1993
  ident: CR85
  article-title: Hydriding properties of MmNi system with aluminium, manganese and tin substitutions
  publication-title: J. Alloys Compd.
– volume: 131
  start-page: 1862
  issue: 5
  year: 2009
  ident: CR72
  article-title: Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li—Mg—N—H system
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 391
  issue: 3
  year: 2020
  ident: CR3
  article-title: Nd—Mg—Ni alloy electrodes modified by reduced graphene oxide with improved electrochemical kinetics
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 278
  start-page: 270
  issue: 1–2
  year: 1998
  ident: CR58
  article-title: The hydriding kinetics of LaNi Al with hydrogen
  publication-title: J. Alloys Compd.
– ident: CR84
– volume: 16
  start-page: 662
  issue: 5
  year: 2008
  ident: CR23
  article-title: A comparative study on the hydriding kinetics of Zr-based AB hydrogen storage alloys
  publication-title: Intermetallics
– volume: 47
  start-page: 17
  year: 2014
  ident: CR44
  article-title: Influence of the density of oxide on oxidation kinetics
  publication-title: Intermetallics
– volume: 12
  start-page: 1293
  issue: 12
  year: 2004
  ident: CR60
  article-title: Hydriding kinetics of the La Ni Mg —H system prepared by hydriding combustion synthesis
  publication-title: Intermetallics
– volume: 305
  start-page: 239
  issue: 1–2
  year: 2000
  ident: CR68
  article-title: Hydrogen desorption kinetics of a mechanically milled MgH +5at.%V nanocomposite
  publication-title: J. Alloys Compd.
– volume: 290
  start-page: 262
  issue: 1–2
  year: 1999
  ident: CR86
  article-title: Mechanically alloyed MmNi -type materials for metal hydride electrodes
  publication-title: J. Alloys Compd.
– volume: 89
  start-page: 93
  issue: 1
  year: 1983
  ident: CR38
  article-title: Hydriding and dehydriding kinetics
  publication-title: J. Less Common Met.
– volume: 153
  start-page: 89
  issue: 1
  year: 1989
  ident: CR78
  article-title: A comparison of the hydriding and dehydriding kinetics of LaNI hydride
  publication-title: J. Less Common Met.
– volume: 9
  start-page: 647
  issue: 2
  year: 2021
  ident: CR96
  article-title: Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride
  publication-title: J. Magnesium Alloys
– volume: 163
  start-page: 1
  issue: 1
  year: 1927
  ident: CR18
  article-title: Reaktionen im festen Zustande Bei höheren Temperaturen. Reaktionsgeschwindigkeiten endotherm verlaufender Umsetzungen
  publication-title: Z. Anorg. Allg. Chem.
– volume: 40
  start-page: 3337
  issue: 12
  year: 2021
  ident: CR37
  article-title: AlH as a hydrogen storage material: Recent advances, prospects and challenges
  publication-title: Rare Met.
– ident: CR15
– volume: 118
  start-page: 7808
  issue: 15
  year: 2014
  ident: CR105
  article-title: Enhanced hydrogen storage kinetics and stability by synergistic effects of formed CeH and Ni in CeH —MgH —Ni nanocomposites
  publication-title: J. Phys. Chem. C
– volume: 26
  start-page: 1247
  issue: 10
  year: 2019
  ident: CR10
  article-title: Gasification kinetics of bulk coke in the CO /CO/H /H O/N system simulating the atmosphere in the industrial blast furnace
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 205
  start-page: 211
  issue: 1–2
  year: 1994
  ident: CR64
  article-title: The kinetics of hydrogen absorption in Zr Ho Co ( = 0.4, 0.6 and 0.8) alloys
  publication-title: J. Alloys Compd.
– volume: 89
  start-page: 164
  issue: 1
  year: 2012
  ident: CR53
  article-title: Three-dimensional modeling and simulation of hydrogen absorption in metal hydride hydrogen storage vessels
  publication-title: Appl. Energy
– volume: 742
  start-page: 1002
  year: 2018
  ident: CR74
  article-title: On the parameters of Johnson-Mehl-Avrami-Kolmogorov equation for the hydride growth mechanisms: A case of MgH
  publication-title: J. Alloys Compd.
– volume: 16
  start-page: 2404
  issue: 4
  year: 2016
  ident: CR28
  article-title: Comprehensive determination of kinetic parameters in solid-state phase transitions: An extended jonhson—mehlavrami—kolomogorov model with analytical solutions
  publication-title: Cryst. Growth Des.
– volume: 506
  start-page: 63
  issue: 1
  year: 2010
  ident: CR24
  article-title: Application of a new kinetic model for the hydriding kinetics of LaNi Alx (0 ≤ ≤ 1.0) alloys
  publication-title: J. Alloys Compd.
– volume: 291
  start-page: 295
  issue: 1–2
  year: 1999
  ident: CR67
  article-title: Hydrogen storage properties of the mechanically milled MgH —V nanocomposite
  publication-title: J. Alloys Compd.
– volume: 28
  start-page: 1399
  issue: 3P2
  year: 1995
  ident: CR70
  article-title: Hydrogen sorption rate by intermetallic compounds suitable for tritium storage
  publication-title: Fusion Technol.
– ident: CR95
– volume: 89
  start-page: 163
  issue: 1
  year: 1983
  ident: CR62
  article-title: The activation processes and hydriding kinetics of FeTi
  publication-title: J. Less Common Met.
– ident: CR43
– volume: 45
  start-page: 33832
  issue: 58
  year: 2020
  ident: CR32
  article-title: Effect of milling duration on hydrogen storage thermodynamics and kinetics of Mg-based alloy
  publication-title: Int. J. Hydrogen Energy
– volume: 35
  start-page: 7842
  issue: 15
  year: 2010
  ident: CR22
  article-title: The hydriding kinetics of Mg-Ni based hydrogen storage alloys: A comparative study on Chou model and Jander model
  publication-title: Int. J. Hydrogen Energy
– year: 2011
  ident: CR39
  publication-title: Hydrogen Storage Materials: The Characterisation of Their Storage Properties
– volume: 138
  start-page: 68
  year: 2019
  ident: CR17
  article-title: Effects of ball milling on hydrogen sorption properties and microstructure of ZrCo alloy
  publication-title: Fusion Eng. Des.
– volume: 131
  start-page: 109
  issue: 1–2
  year: 1987
  ident: CR121
  article-title: A study of the hydriding kinetics of Mg Ni
  publication-title: J. Less Common Met.
– volume: 153
  start-page: 1140
  year: 2020
  ident: CR92
  article-title: Hydrogen storage performances, kinetics and microstructure of Ti Cr Fe Mn Al alloy by Al substituting for Fe
  publication-title: Renew. Energy
– volume: 6
  start-page: 23308
  issue: 46
  year: 2018
  ident: CR29
  article-title: Achieving superior cycling stability by forming NdH —Mg—Mg Ni nanocomposites
  publication-title: J. Mater. Chem. A
– volume: 44
  start-page: 23179
  issue: 41
  year: 2019
  ident: CR106
  article-title: Hydrogen storage properties of ultrahigh pressure Mg NiY alloys with a superfine LPSO structure
  publication-title: Int. J. Hydrogen Energy
– volume: 41
  start-page: 11242
  issue: 26
  year: 2016
  ident: CR19
  article-title: Development of ZrFeV alloys for hybrid hydrogen storage system
  publication-title: Int. J. Hydrogen Energy
– volume: 172–174
  start-page: 1009
  year: 1991
  ident: CR79
  article-title: The effect of the partial replacement of nickelin LaNi hydride with iron, cobalt, and copper on absorption and desorption kinetics
  publication-title: J. Less Common Met.
– volume: 44
  start-page: 6728
  issue: 13
  year: 2019
  ident: CR55
  article-title: Characterization of microstructure, hydrogen storage kinetics and thermodynamics of a melt-spun Mg Y Ni alloy
  publication-title: Int. J. Hydrogen Energy
– ident: CR98
– volume: 138
  start-page: 263
  year: 2019
  ident: CR56
  article-title: Improved hydrogen storage performances of Mg—Y—Ni—Cu alloys by melt spinning
  publication-title: Renew. Energy
– volume: 63
  start-page: 1
  issue: 1
  year: 1974
  ident: CR48
  article-title: Stability of solids and solid dosage forms
  publication-title: J. Pharm. Sci.
– volume: 89
  start-page: 117
  issue: 1
  year: 1983
  ident: CR77
  article-title: Hydriding and dehydriding rates of the LaNi —H system
  publication-title: J. Less Common Met.
– volume: 17
  start-page: 333
  issue: 5
  year: 1992
  ident: CR57
  article-title: The reaction kinetics of hydrogen storage in LaNi
  publication-title: Int. J. Hydrogen Energy
– volume: 372
  start-page: 218
  issue: 1–2
  year: 2004
  ident: CR122
  article-title: Effect of synthesis temperature on the hydriding behaviors of Mg—Ni—Cu ternary hydrogen storage alloys synthesized by hydriding combustion synthesis
  publication-title: J. Alloys Compd.
– volume: 50
  start-page: 1797
  issue: 5
  year: 2021
  ident: CR31
  article-title: Improvement of the hydrogen storage characteristics of MgH with a flake Ni nano-catalyst composite
  publication-title: Dalton Trans.
– volume: 44
  start-page: 24849
  issue: 45
  year: 2019
  ident: CR126
  article-title: Synthetical catalysis of nickel and graphene on enhanced hydrogen storage properties of magnesium
  publication-title: Int. J. Hydrogen Energy
– volume: 39
  start-page: 14033
  issue: 26
  year: 2014
  ident: CR102
  article-title: Reversible de-/hydriding characteristics of a novel Mg In Ni alloy
  publication-title: Int. J. Hydrogen Energy
– volume: 21
  start-page: 1
  year: 1970
  ident: CR40
  article-title: Kinetics of adsorption and desorption and the elovich equation
  publication-title: Adv. Catal.
– volume: 21
  start-page: 471
  issue: 6
  year: 1996
  ident: CR12
  article-title: The hydriding kinetics of MlNi —I. Development of the model
  publication-title: Int. J. Hydrogen Energy
– start-page: 797
  year: 2002
  ident: CR47
  article-title: Eutectoidal transformations
  publication-title: The Theory of Transformations in Metals and Alloys
– volume: 40
  start-page: 13949
  issue: 40
  year: 2015
  ident: CR119
  article-title: Enhanced electrochemical hydrogen storage properties of Mg NiH by coating with nano-nickel
  publication-title: Int. J. Hydrogen Energy
– volume: 34
  start-page: 7253
  issue: 17
  year: 2009
  ident: CR80
  article-title: Studies on hydriding kinetics of some La-based metal hydride alloys
  publication-title: Int. J. Hydrogen Energy
– volume: 253–254
  start-page: 529
  year: 1997
  ident: CR35
  article-title: Kinetics and mechanisms of metal hydrides formation—A review
  publication-title: J. Alloys Compd.
– ident: CR7
– volume: 43
  start-page: 22391
  issue: 49
  year: 2018
  ident: CR118
  article-title: Hydrogen storage properties of nanocrystalline Mg Ni prepared from compressed 2MgH —Ni powder
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 318
  issue: 3
  year: 2018
  ident: CR100
  article-title: Role of NiMn Al Co Fe alloy on dehydrogenation kinetics of MgH
  publication-title: J. Magnesium Alloys
– volume: 337
  start-page: 214
  issue: 1–2
  year: 2002
  ident: CR90
  article-title: The cycle life and surface properties of Ti-based AB metal hydride electrodes
  publication-title: J. Alloys Compd.
– volume: 250
  start-page: 1065
  year: 2019
  ident: 2337_CR52
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.04.181
– volume: 173
  start-page: 443
  year: 2019
  ident: 2337_CR54
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.033
– volume: 205
  start-page: 211
  issue: 1–2
  year: 1994
  ident: 2337_CR64
  publication-title: J. Alloys Compd.
  doi: 10.1016/0925-8388(94)90791-9
– volume: 29
  start-page: 1383
  issue: 13
  year: 2004
  ident: 2337_CR21
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2004.01.007
– volume: 337
  start-page: 214
  issue: 1–2
  year: 2002
  ident: 2337_CR90
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(01)01917-X
– volume: 41
  start-page: 18072
  issue: 40
  year: 2016
  ident: 2337_CR14
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.08.018
– volume: 138
  start-page: 263
  year: 2019
  ident: 2337_CR56
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.01.106
– volume: 138
  start-page: 68
  year: 2019
  ident: 2337_CR17
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2018.11.006
– volume: 23
  start-page: 1327
  year: 1950
  ident: 2337_CR41
  publication-title: J. Appl. Chem. USSR
– volume: 63
  start-page: 1
  issue: 1
  year: 1974
  ident: 2337_CR48
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.2600630103
– volume: 50
  start-page: 1797
  issue: 5
  year: 2021
  ident: 2337_CR31
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT03627G
– volume: 33
  start-page: 149
  issue: 1
  year: 2008
  ident: 2337_CR73
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.09.006
– volume: 244
  start-page: 164
  issue: 1–2
  year: 1996
  ident: 2337_CR93
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(96)02413-9
– volume: 32
  start-page: 1121
  issue: 9
  year: 2007
  ident: 2337_CR1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.11.022
– volume: 16
  start-page: 662
  issue: 5
  year: 2008
  ident: 2337_CR23
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2008.02.009
– volume-title: Hydrogen Storage Materials: The Characterisation of Their Storage Properties
  year: 2011
  ident: 2337_CR39
  doi: 10.1007/978-0-85729-221-6
– volume: 89
  start-page: 117
  issue: 1
  year: 1983
  ident: 2337_CR77
  publication-title: J. Less Common Met.
  doi: 10.1016/0022-5088(83)90255-2
– volume: 172–174
  start-page: 1009
  year: 1991
  ident: 2337_CR79
  publication-title: J. Less Common Met.
  doi: 10.1016/S0022-5088(06)80006-8
– volume: 42
  start-page: 20103
  issue: 31
  year: 2017
  ident: 2337_CR91
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.06.137
– volume: 112
  start-page: 37
  issue: 1
  year: 2013
  ident: 2337_CR61
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-012-2783-7
– volume: 131
  start-page: 109
  issue: 1–2
  year: 1987
  ident: 2337_CR121
  publication-title: J. Less Common Met.
– volume: 17
  start-page: 333
  issue: 5
  year: 1992
  ident: 2337_CR57
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/0360-3199(92)90169-W
– volume: 163
  start-page: 1
  issue: 1
  year: 1927
  ident: 2337_CR18
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.19271630102
– start-page: 797
  volume-title: The Theory of Transformations in Metals and Alloys
  year: 2002
  ident: 2337_CR47
  doi: 10.1016/B978-008044019-4/50022-2
– volume: 47
  start-page: 17
  year: 2014
  ident: 2337_CR44
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2013.11.024
– volume: 16
  start-page: 2404
  issue: 4
  year: 2016
  ident: 2337_CR28
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b00187
– volume-title: The Mathematics of Diffusion
  year: 1979
  ident: 2337_CR45
– volume: 21
  start-page: 471
  issue: 6
  year: 1996
  ident: 2337_CR12
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/0360-3199(95)00109-3
– volume: 305
  start-page: 239
  issue: 1–2
  year: 2000
  ident: 2337_CR68
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(00)00708-8
– ident: 2337_CR101
  doi: 10.1038/srep15385
– volume: 290
  start-page: 262
  issue: 1–2
  year: 1999
  ident: 2337_CR86
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(99)00202-9
– volume: 7
  start-page: 787
  issue: 10
  year: 1982
  ident: 2337_CR69
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/0360-3199(82)90069-6
– volume: 6
  start-page: 23308
  issue: 46
  year: 2018
  ident: 2337_CR29
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA06668J
– volume: 40
  start-page: 13949
  issue: 40
  year: 2015
  ident: 2337_CR119
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.08.076
– volume: 143
  start-page: L198
  issue: 9
  year: 1996
  ident: 2337_CR120
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1837085
– volume: 26
  start-page: 1247
  issue: 10
  year: 2019
  ident: 2337_CR10
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-019-1846-1
– ident: 2337_CR95
  doi: 10.1088/1674-1056/ab9289
– volume: 267
  start-page: 69
  year: 2014
  ident: 2337_CR108
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.05.066
– ident: 2337_CR43
  doi: 10.1039/tf9484400796
– volume: 742
  start-page: 1002
  year: 2018
  ident: 2337_CR74
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.12.283
– volume: 33
  start-page: 3754
  issue: 14
  year: 2008
  ident: 2337_CR87
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.04.042
– volume: 40
  start-page: 3195
  issue: 11
  year: 2021
  ident: 2337_CR125
  publication-title: Rare Met.
  doi: 10.1007/s12598-021-01764-7
– volume: 89
  start-page: 163
  issue: 1
  year: 1983
  ident: 2337_CR62
  publication-title: J. Less Common Met.
  doi: 10.1016/0022-5088(83)90262-X
– ident: 2337_CR49
  doi: 10.1016/j.cej.2020.127844
– volume: 8
  start-page: 461
  issue: 2
  year: 2020
  ident: 2337_CR97
  publication-title: J. Magnesium Alloys
  doi: 10.1016/j.jma.2019.06.006
– volume: 28
  start-page: 1399
  issue: 3P2
  year: 1995
  ident: 2337_CR70
  publication-title: Fusion Technol.
  doi: 10.13182/FST95-A30607
– volume: 41
  start-page: 11242
  issue: 26
  year: 2016
  ident: 2337_CR19
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.04.083
– volume: 28
  start-page: 981
  issue: 6
  year: 2021
  ident: 2337_CR8
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-020-2019-y
– volume: 104
  start-page: 229
  issue: 4–6
  year: 1977
  ident: 2337_CR109
  publication-title: Z. Phys. Chem.
  doi: 10.1524/zpch.1977.104.4-6.229
– volume: 172–174
  start-page: 1036
  year: 1991
  ident: 2337_CR71
  publication-title: J. Less Common Met.
  doi: 10.1016/S0022-5088(06)80009-3
– volume: 45
  start-page: 33832
  issue: 58
  year: 2020
  ident: 2337_CR32
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.09.144
– volume: 131
  start-page: 1862
  issue: 5
  year: 2009
  ident: 2337_CR72
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja806565t
– volume: 89
  start-page: 164
  issue: 1
  year: 2012
  ident: 2337_CR53
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.06.015
– volume: 685
  start-page: 272
  year: 2016
  ident: 2337_CR123
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.05.286
– ident: 2337_CR6
  doi: 10.1016/j.cej.2020.126115
– volume: 41
  start-page: 1899
  issue: 11
  year: 2012
  ident: 2337_CR65
  publication-title: Rare Met. Mater. Eng.
  doi: 10.1016/S1875-5372(13)60018-1
– ident: 2337_CR84
  doi: 10.1016/j.jallcom.2020.158163
– volume: 20
  start-page: 29
  issue: 1
  year: 1995
  ident: 2337_CR63
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/0360-3199(93)E0011-9
– volume: 9
  start-page: 647
  issue: 2
  year: 2021
  ident: 2337_CR96
  publication-title: J. Magnesium Alloys
  doi: 10.1016/j.jma.2020.02.029
– volume: 34
  start-page: 2010
  issue: 6
  year: 1961
  ident: 2337_CR42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1731812
– volume: 387
  start-page: 86
  issue: 1–2
  year: 2005
  ident: 2337_CR103
  publication-title: J. Alloys Compd.
– ident: 2337_CR15
  doi: 10.1088/1361-6528/aabcf3
– volume: 46
  start-page: 91
  issue: 1
  year: 1976
  ident: 2337_CR76
  publication-title: J. Less Common Met.
  doi: 10.1016/0022-5088(76)90182-X
– volume: 153
  start-page: 89
  issue: 1
  year: 1989
  ident: 2337_CR78
  publication-title: J. Less Common Met.
  doi: 10.1016/0022-5088(89)90536-5
– volume: 89
  start-page: 93
  issue: 1
  year: 1983
  ident: 2337_CR38
  publication-title: J. Less Common Met.
  doi: 10.1016/0022-5088(83)90253-9
– volume: 8
  start-page: 832
  issue: 3
  year: 2020
  ident: 2337_CR99
  publication-title: J. Magnesium Alloys
  doi: 10.1016/j.jma.2020.04.002
– volume: 153
  start-page: 1140
  year: 2020
  ident: 2337_CR92
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.02.035
– volume: 30
  start-page: 301
  issue: 3
  year: 2005
  ident: 2337_CR20
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2004.04.006
– ident: 2337_CR98
  doi: 10.1016/j.jallcom.2020.154865
– volume: 40
  start-page: 13518
  issue: 39
  year: 2015
  ident: 2337_CR81
  publication-title: J. Alloys Compd.
– volume: 372
  start-page: 218
  issue: 1–2
  year: 2004
  ident: 2337_CR122
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2003.08.108
– volume: 35
  start-page: 7842
  issue: 15
  year: 2010
  ident: 2337_CR22
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.05.073
– volume: 127
  start-page: 102
  year: 2017
  ident: 2337_CR114
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2016.09.011
– volume: 37
  start-page: 8395
  issue: 10
  year: 2012
  ident: 2337_CR128
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.02.117
– volume: 297
  start-page: 261
  issue: 1–2
  year: 2000
  ident: 2337_CR127
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(99)00592-7
– volume: 34
  start-page: 1699
  issue: 9
  year: 2018
  ident: 2337_CR82
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2018.01.007
– volume: 38
  start-page: 8881
  issue: 21
  year: 2013
  ident: 2337_CR107
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.05.027
– volume: 191
  start-page: 5
  issue: 1
  year: 1993
  ident: 2337_CR83
  publication-title: J. Alloys Compd.
  doi: 10.1016/0925-8388(93)90262-L
– volume: 89
  start-page: 111
  issue: 1
  year: 1983
  ident: 2337_CR75
  publication-title: J. Less Common Met.
  doi: 10.1016/0022-5088(83)90254-0
– volume: 44
  start-page: 23179
  issue: 41
  year: 2019
  ident: 2337_CR106
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.06.191
– volume: 44
  start-page: 16765
  issue: 31
  year: 2019
  ident: 2337_CR116
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.04.281
– volume: 41
  start-page: 17421
  issue: 39
  year: 2016
  ident: 2337_CR94
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.07.077
– volume: 21
  start-page: 479
  issue: 6
  year: 1996
  ident: 2337_CR50
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/0360-3199(95)00111-5
– volume: 399
  start-page: 101
  issue: 1–2
  year: 2005
  ident: 2337_CR26
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2005.03.010
– volume: 8
  start-page: 1
  issue: 1
  year: 2020
  ident: 2337_CR36
  publication-title: J. Magnesium Alloys
  doi: 10.1016/j.jma.2020.02.003
– volume: 27
  start-page: 472
  issue: 4
  year: 2020
  ident: 2337_CR11
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-019-1913-7
– volume: 253–254
  start-page: 529
  year: 1997
  ident: 2337_CR35
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(96)03070-8
– ident: 2337_CR51
  doi: 10.1016/j.applthermaleng.2019.114129
– volume: 278
  start-page: 270
  issue: 1–2
  year: 1998
  ident: 2337_CR58
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(98)00565-9
– volume: 21
  start-page: 1
  year: 1970
  ident: 2337_CR40
  publication-title: Adv. Catal.
  doi: 10.1016/S0360-0564(08)60563-5
– volume: 44
  start-page: 24849
  issue: 45
  year: 2019
  ident: 2337_CR126
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.07.247
– volume: 12
  start-page: 1293
  issue: 12
  year: 2004
  ident: 2337_CR60
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2004.03.024
– volume: 7
  start-page: 58
  issue: 1
  year: 2019
  ident: 2337_CR27
  publication-title: J. Magnesium Alloys
  doi: 10.1016/j.jma.2018.12.001
– volume: 45
  start-page: 27434
  issue: 51
  year: 2020
  ident: 2337_CR5
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.07.062
– volume: 45
  start-page: 21588
  issue: 41
  year: 2020
  ident: 2337_CR30
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.05.144
– volume: 45
  start-page: 2084
  issue: 3
  year: 2020
  ident: 2337_CR16
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.11.035
– volume: 110
  start-page: 17315
  issue: 35
  year: 2006
  ident: 2337_CR34
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp062746a
– volume: 41
  start-page: 1725
  issue: 3
  year: 2016
  ident: 2337_CR117
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.11.068
– volume: 43
  start-page: 22391
  issue: 49
  year: 2018
  ident: 2337_CR118
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.10.055
– volume: 615
  start-page: S684
  year: 2014
  ident: 2337_CR104
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.11.159
– volume: 370
  start-page: 123
  issue: 1–2
  year: 2004
  ident: 2337_CR115
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2003.09.031
– volume: 37
  start-page: 726
  issue: 7
  year: 2013
  ident: 2337_CR124
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.2980
– volume: 44
  start-page: 6728
  issue: 13
  year: 2019
  ident: 2337_CR55
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.01.148
– volume: 34
  start-page: 7253
  issue: 17
  year: 2009
  ident: 2337_CR80
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.06.075
– volume: 161
  start-page: 271
  year: 2015
  ident: 2337_CR111
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.08.116
– volume: 37
  start-page: 1321
  issue: 7
  year: 2002
  ident: 2337_CR46
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1014556109351
– volume: 28
  start-page: 201
  issue: 2
  year: 2021
  ident: 2337_CR9
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-020-1972-9
– volume: 506
  start-page: 63
  issue: 1
  year: 2010
  ident: 2337_CR24
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.07.016
– volume: 8
  start-page: 117
  issue: 2
  year: 2019
  ident: 2337_CR112
  publication-title: Nanomater. Energy
  doi: 10.1680/jnaen.18.00019
– volume: 40
  start-page: 3337
  issue: 12
  year: 2021
  ident: 2337_CR37
  publication-title: Rare Met.
  doi: 10.1007/s12598-021-01769-2
– volume: 97
  start-page: 147
  year: 2022
  ident: 2337_CR113
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.04.044
– ident: 2337_CR4
  doi: 10.1016/j.enconman.2019.112328
– volume: 79
  start-page: 1122
  year: 2017
  ident: 2337_CR2
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2017.05.132
– volume: 40
  start-page: 995
  issue: 4
  year: 2021
  ident: 2337_CR13
  publication-title: Rare Met.
  doi: 10.1007/s12598-018-1087-x
– volume: 118
  start-page: 7808
  issue: 15
  year: 2014
  ident: 2337_CR105
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp500439n
– ident: 2337_CR89
  doi: 10.1016/j.jallcom.2020.154402
– volume: 39
  start-page: 14033
  issue: 26
  year: 2014
  ident: 2337_CR102
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.07.016
– volume: 35
  start-page: 9879
  issue: 18
  year: 2010
  ident: 2337_CR88
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.10.004
– volume: 29
  start-page: 843
  issue: 8
  year: 2004
  ident: 2337_CR66
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2003.10.002
– volume: 27
  start-page: 391
  issue: 3
  year: 2020
  ident: 2337_CR3
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-019-1880-z
– volume: 36
  start-page: 12892
  issue: 20
  year: 2011
  ident: 2337_CR25
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.06.145
– volume: 40
  start-page: 765
  issue: 5
  year: 1978
  ident: 2337_CR110
  publication-title: J. Inorg. Nucl. Chem.
  doi: 10.1016/0022-1902(78)80147-X
– volume: 291
  start-page: 295
  issue: 1–2
  year: 1999
  ident: 2337_CR67
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(99)00268-6
– volume: 196
  start-page: 63
  issue: 1–2
  year: 1993
  ident: 2337_CR85
  publication-title: J. Alloys Compd.
  doi: 10.1016/0925-8388(93)90571-4
– volume: 6
  start-page: 318
  issue: 3
  year: 2018
  ident: 2337_CR100
  publication-title: J. Magnesium Alloys
  doi: 10.1016/j.jma.2018.05.007
– volume: 15
  start-page: 767
  issue: 5–6
  year: 2007
  ident: 2337_CR33
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2006.10.004
– volume: 23
  start-page: 349
  issue: 5
  year: 1998
  ident: 2337_CR59
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/S0360-3199(97)00050-5
– ident: 2337_CR7
  doi: 10.1016/j.apenergy.2020.115682
SSID ssj0067707
Score 2.6160412
SecondaryResourceType review_article
Snippet High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks. The analysis of the hydrogen...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 32
SubjectTerms Absorption
Alloys
Ceramics
Characterization and Evaluation of Materials
Chemical reactions
Chemisorption
Chemistry and Materials Science
Composites
Corrosion and Coatings
Desorption
Glass
Hydrogen
Hydrogen storage materials
Invited Review
Materials Science
Mathematical models
Measurement methods
Metallic Materials
Natural Materials
Nucleation
Parameters
Pressure effects
Storage tanks
Surfaces and Interfaces
Temperature effects
Thin Films
Tribology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu8AB8RSDgXLYCVTRdxsuaCCmCQRCCCRuVZ6ggdqxDQn-PXabtnDZLVGdtHLSz44d24QMWAhijWN6PM7ggKJd6TA4ZzgxyIdAgjwLOdoh7-7j8XN48xK9WIPb3F6rrDGxBGpVSLSRn2FVpdgN0ji5mH46WDUKvau2hMYq6QIEp2mHdC-v7x8eayyOk6QMmMar9mhDYrVfswyeg8MD-jA9Bz4LoPq_ZGrVzcZDWsb15Ibnr39E0GiTbFjdkQ6rxd4iKzrfJut_MgruEH4Lbcy8TAtDQbejbz9qVsAmoVzMi1mJD5TniirddKdVrIAuxzT0eGsSsIaiY_5nfk6HtIpy2SVPo-unq7Fjqyg4EpSrhcNcI_2Ec09wIaVrkgg9hb7mITBAhoE2MQf0FVpAmzFlGCgJKoSO9kWYBnukkxe53ic08QzzhAtzhKC1eJLHPosiJaWRghtlesStGZhJm2EcC118ZG1uZOR5BjzPkOdZ2iMnzZBplV5jGXG_XpXM_mnzrN0XPXJar1T7eMlkA7uYLbGYvE_U97fItI8ByDAwOFj-zkOyhqSVTaZPOovZlz4CLWUhju1W_AVr5uPz
  priority: 102
  providerName: ProQuest
Title Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review
URI https://link.springer.com/article/10.1007/s12613-021-2337-8
https://www.proquest.com/docview/2920603867
https://d.wanfangdata.com.cn/periodical/bjkjdxxb-e202201003
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5se9GD-MRqLTn0pCzsextvq_SBxSLSQj0tSTZRqmxLW6H990720a0ggqfNspk5zGRnvmQeAWhRF90a0-3xGMUNijSFQXGfYfjoHxyB_sxl-hzyaej3x-7jxJvkddzLItu9CEmmlrosdkOwr2OOloFs0LRWoObh1l3ncY3tsDC_fhCkNdI6u14fG9EilPkbi5_OqESY26BoWsqTKJa87Xid7hEc5nCRhJl-j2FPJidwsNNE8BTYAMe62TKZKYJwjrxv4sUM1wVhfDlbpCaBsCQmsdy-zrPyAJnSbOfrREk0L0TH4jfLOxKSrLDlDEbdzuihb-QXJxgC8dTKoKYSdsCYxRkXwlSBp4ODtmQuCkC4jlQ-Q4PLJccxpbGiiAtiF1-kzd22cw7VZJbICyCBpajFTeThIlCxBPNt6nmxEEpwpmJVB7MQYCTypuL6bovPqGyHrGUeocwjLfOoXYebLck866jx1-RGoZUo_7mWkb5gyzedth_U4bbQVPn5D2atXJnlZD79mMbrNY-krWuOkdC5_BfTK9jXlNmpTAOqq8WXvEacsuJNqLS7vSbUwt7roIPP-87w-aWZrtZvE_fjHA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LThsxcAT0AByqPkCkpdQHuBSt2IezG1eqKkSbBgKcgsTN8hOUVrshSVXyUf3HzuwjSy-5cbO1Hq80Hs_TMwNwKDiKNUXl8ZRAA8WFJhBoZwQpyofEoDzjivyQV9fp4IZf3HZv1-BvkwtDzyobnlgyalsY8pGfUFelNEx6afZ18hBQ1yiKrjYtNCqyGLrFHzTZZl_Ov-H5HsVx__vobBDUXQUCg8rGPBChN3GmVKSVNib0WZciZ7FTPIpTwxPnU4XcSDuNYyGsFyg0LceJizXvJbjtOrzgCQpySkzv_2gYf5plZXY2vesnh5Vogqhlph5aKhQwjQLEAcqF_8Vgq9suw7FlElHuVX73RN71X8HLWlFlpxVlvYY1l7-B7SflC9-CGuKYyjyzwjNUJNn9wk4LpEim9KyYlsyIqdwy65bTSZWY4EqY5Xp6oomMjdErgMXsMztlVUrNDoyeA7m7sJEXudsDlkVeRDrEPTiqSJFRaSy6XWuMN1p56zsQNgiUpi5nTl01fsm2EDPhXCLOJeFc9jrwaQkyqWp5rFq835yKrK_1TLZE2IHj5qTazys2O6wPs12sxz_H9vFRSxdTtjMCJu9W__MjbA5GV5fy8vx6-B62CKxyBu3Dxnz6231A9WiuD0qiZCCf-RL8AxgIILI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xkCp6QEBBhNLiA1xardiHsxsj9RBBIyAt4gASN8tPUKg2URJU8qf4jczsI0ulCokDN1trj1Yz9szYM98YYF9wNGuKyuMpgQcUF5pA4DkjSNE-JAbtGVd0D_n7Ij295uc37ZsFeKqxMEW2ex2SLDENVKUpnx6OrD9sgG_o-FP8MQqQJKrZKquy72Z_8cw2-XF2ggI-iOPez6vj06B6ViAw6G1MAxF6E2dKRVppY0KftSl0FjvFkarhifOpQnWknca2ENYLtJqWY8fFmncSJLsIy5ywx7h_ruNurfnTLCvg2ZTYTzdWoo6i_u-P_7WDjXM7j8cWKKLcq_z2hcHrrcFq5amybrm01mHB5Rvw8UX9wk-g-timOs9s6Bl6kuxuZsdDXJJM6clwXGgjpnLLrJt3RyUywRVz5uMpRxM1G6M0gNnkiHVZianZhKv3YO4WLOXD3G0DyyIvIh0iDY4-UmRUGot22xrjjVbe-haENQOlqeqZ07Maf2RTiZl4LpHnknguOy34Np8yKot5vDZ4t5aKrPb1RNLbXmmYdNKsBd9rSTWfXyG2XwmzGawH9wP7-KiliwnujBOTnTcR3YMPlyc9-evsov8ZVohIeTe0C0vT8YP7gt7SVH8tligD-c5b4hk58SF_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetics+of+the+hydrogen+absorption+and+desorption+processes+of+hydrogen+storage+alloys%3A+A+review&rft.jtitle=%E7%9F%BF%E7%89%A9%E5%86%B6%E9%87%91%E4%B8%8E%E6%9D%90%E6%96%99%E5%AD%A6%E6%8A%A5&rft.au=Qian+Li&rft.au=Xi+Lin&rft.au=Qun+Luo&rft.au=Yu%3Fan+Chen&rft.date=2022&rft.pub=National+Engineering+Research+Center+for+Magnesium+Alloys%2C+Chongqing+University%2C+Chongqing+400044%2C+China&rft.issn=1674-4799&rft.volume=29&rft.issue=1&rft.spage=32&rft.epage=48&rft_id=info:doi/10.1007%2Fs12613-021-2337-8&rft.externalDocID=bjkjdxxb_e202201003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjkjdxxb-e%2Fbjkjdxxb-e.jpg