Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review
High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks. The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism. Multitudino...
Saved in:
Cover
Loading…
Abstract | High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks. The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism. Multitudinous kinetic models have been developed to describe the kinetic process. However, these kinetic models were deduced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps (RCSs), which sometimes lead to confusion during application. The kinetic analysis procedures using these kinetic models, as well as the key kinetic parameters, are unclear for many researchers who are unfamiliar with this field. These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys. Thus, this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption, surface penetration, diffusion of hydrogen, nucleation and growth, and chemical reaction processes. The analysis procedures of kinetic experimental data are expounded, as well as the effects of temperature, hydrogen pressure, and particle radius. The applications of the kinetic models for different hydrogen storage alloys are also introduced. |
---|---|
AbstractList | High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks. The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism. Multitudinous kinetic models have been developed to describe the kinetic process. However, these kinetic models were deduced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps (RCSs), which sometimes lead to confusion during application. The kinetic analysis procedures using these kinetic models, as well as the key kinetic parameters, are unclear for many researchers who are unfamiliar with this field. These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys. Thus, this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption, surface penetration, diffusion of hydrogen, nucleation and growth, and chemical reaction processes. The analysis procedures of kinetic experimental data are expounded, as well as the effects of temperature, hydrogen pressure, and particle radius. The applications of the kinetic models for different hydrogen storage alloys are also introduced. High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks. The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kin-etic mechanism. Multitudinous kinetic models have been developed to describe the kinetic process. However, these kinetic models were de-duced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps (RCSs), which sometimes lead to confusion during application. The kinetic analysis procedures using these kinetic models, as well as the key kinetic paramet-ers, are unclear for many researchers who are unfamiliar with this field. These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys. Thus, this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption, surface penetration, diffusion of hydrogen, nucle-ation and growth, and chemical reaction processes. The analysis procedures of kinetic experimental data are expounded, as well as the effects of temperature, hydrogen pressure, and particle radius. The applications of the kinetic models for different hydrogen storage alloys are also in-troduced. |
Author | Li, Qian Jiang, Bin Wang, Jingfeng Luo, Qun Chen, Yu’an Pan, Fusheng Lin, Xi |
AuthorAffiliation | National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China;State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China%State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China |
AuthorAffiliation_xml | – name: National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China;State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China%State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China |
Author_xml | – sequence: 1 givenname: Qian surname: Li fullname: Li, Qian email: cquliqian@cqu.edu.cn organization: National Engineering Research Center for Magnesium Alloys, Chongqing University, State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University – sequence: 2 givenname: Xi surname: Lin fullname: Lin, Xi organization: School of Materials Science and Engineering, Shanghai Jiao Tong University – sequence: 3 givenname: Qun surname: Luo fullname: Luo, Qun organization: State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University – sequence: 4 givenname: Yu’an surname: Chen fullname: Chen, Yu’an organization: National Engineering Research Center for Magnesium Alloys, Chongqing University – sequence: 5 givenname: Jingfeng surname: Wang fullname: Wang, Jingfeng organization: National Engineering Research Center for Magnesium Alloys, Chongqing University – sequence: 6 givenname: Bin surname: Jiang fullname: Jiang, Bin organization: National Engineering Research Center for Magnesium Alloys, Chongqing University – sequence: 7 givenname: Fusheng surname: Pan fullname: Pan, Fusheng organization: National Engineering Research Center for Magnesium Alloys, Chongqing University |
BookMark | eNp9kE1LAzEQhoMo2FZ_gLcFj7Kaj22y8VaKX1jw0oO3kM3OtltrUpOtbf-9WVdaEPSUGXjeyczTR8fWWUDoguBrgrG4CYRywlJMSUoZE2l-hHok5zIlmL0ex5qLLM2ElKeoH8ICYy4EFj2kn2sLTW1C4qqkmUMy35XezcAmugjOr5raxdKWSQn7duWdgRDgO7PnQ-O8nkGil0u3C7fJKPHwWcPmDJ1Uehng_OcdoOn93XT8mE5eHp7Go0lq2JA2qcSVoUJrUujCGFyJIeGcU9BZvMxkDCquQZsCilhLWVYyJ7LMYgO0yHI2QFfd2I22lbYztXBrb-OHqli8LcrttlBAMaU46mKRvuzoeMvHGkJzwKmkmGOWcxEp0VHGuxA8VMrUjW4dNF7XS0WwauWrTr6K8lUrX7XbkF_Jla_ftd_9m6FdJkTWzsAfdvo79AUtPppQ |
CitedBy_id | crossref_primary_10_1016_j_jmst_2023_11_074 crossref_primary_10_1016_j_matre_2023_100246 crossref_primary_10_1016_j_jallcom_2022_164169 crossref_primary_10_1016_j_matre_2023_100247 crossref_primary_10_1016_j_msea_2022_143513 crossref_primary_10_1016_j_jmrt_2023_08_310 crossref_primary_10_1016_j_jmst_2023_06_045 crossref_primary_10_1016_j_ijhydene_2022_11_306 crossref_primary_10_1016_j_jmst_2022_07_009 crossref_primary_10_1016_j_jmst_2023_09_024 crossref_primary_10_1021_acs_jpcc_2c07370 crossref_primary_10_1016_j_jallcom_2023_173163 crossref_primary_10_1016_j_jmst_2024_05_084 crossref_primary_10_1016_j_jmst_2023_09_021 crossref_primary_10_1016_j_jmst_2023_10_015 crossref_primary_10_1016_j_jallcom_2023_171672 crossref_primary_10_3390_app14209348 crossref_primary_10_1007_s12598_023_02594_5 crossref_primary_10_1016_j_actamat_2023_118812 crossref_primary_10_1016_j_jmst_2023_02_021 crossref_primary_10_1016_j_jmst_2022_04_036 crossref_primary_10_1016_j_jmst_2024_04_035 crossref_primary_10_1016_j_jmst_2022_07_022 crossref_primary_10_1016_j_jmst_2023_03_063 crossref_primary_10_1016_j_jallcom_2025_178741 crossref_primary_10_1016_j_matchar_2022_112613 crossref_primary_10_1016_j_actamat_2024_119773 crossref_primary_10_1016_j_ijhydene_2022_03_201 crossref_primary_10_1016_j_jmst_2023_01_005 crossref_primary_10_1016_j_jmst_2023_11_055 crossref_primary_10_1002_jctb_7002 crossref_primary_10_1016_j_jmst_2021_10_004 crossref_primary_10_1016_j_mssp_2024_109225 crossref_primary_10_1016_j_jmst_2024_03_018 crossref_primary_10_1016_j_mtadv_2023_100387 crossref_primary_10_1016_j_jmst_2022_12_014 crossref_primary_10_1007_s12613_022_2529_x crossref_primary_10_1016_j_jmst_2024_12_050 crossref_primary_10_1007_s12613_022_2577_2 crossref_primary_10_1016_j_matcom_2024_09_018 crossref_primary_10_1002_cphc_202400521 crossref_primary_10_1016_j_jmst_2023_09_040 crossref_primary_10_1021_acssuschemeng_4c06311 crossref_primary_10_1016_j_ijhydene_2024_01_127 crossref_primary_10_1016_j_matchar_2024_114022 crossref_primary_10_1016_j_ijhydene_2022_08_156 crossref_primary_10_1016_j_cej_2023_144943 crossref_primary_10_1016_j_jmst_2023_01_012 crossref_primary_10_1007_s10853_023_09291_9 crossref_primary_10_1016_j_jmst_2023_06_034 crossref_primary_10_1016_S1003_6326_23_66347_2 crossref_primary_10_1016_j_mseb_2023_117072 crossref_primary_10_1007_s12598_024_02839_x crossref_primary_10_1016_j_jmst_2022_04_012 crossref_primary_10_1016_j_jmst_2023_02_043 crossref_primary_10_1016_j_jmst_2022_07_049 crossref_primary_10_1016_j_jmst_2022_07_044 crossref_primary_10_1016_j_marstruc_2024_103684 crossref_primary_10_1016_j_cej_2023_144143 crossref_primary_10_1016_j_ijhydene_2025_02_262 crossref_primary_10_1016_j_ijhydene_2023_03_100 crossref_primary_10_1016_j_jma_2024_12_020 crossref_primary_10_1016_j_jmst_2022_12_077 crossref_primary_10_1016_j_rser_2025_115332 crossref_primary_10_1016_j_seppur_2024_128350 crossref_primary_10_3390_en15217979 crossref_primary_10_1016_j_jmst_2021_09_060 crossref_primary_10_1016_j_jmst_2021_09_061 crossref_primary_10_1016_j_jmst_2023_07_057 crossref_primary_10_1016_j_jmst_2023_07_058 crossref_primary_10_1016_j_jallcom_2024_175668 crossref_primary_10_1007_s40195_022_01518_z crossref_primary_10_1016_j_ijhydene_2024_05_227 crossref_primary_10_1016_j_jmst_2023_07_051 crossref_primary_10_1007_s12613_021_2303_5 crossref_primary_10_1007_s12613_023_2800_9 crossref_primary_10_1016_j_jmst_2022_12_067 crossref_primary_10_1016_j_ijhydene_2023_09_088 crossref_primary_10_1016_j_ijhydene_2024_11_113 crossref_primary_10_1016_j_jmst_2023_10_058 crossref_primary_10_1016_j_jma_2023_07_011 crossref_primary_10_1016_j_apenergy_2025_125346 crossref_primary_10_1016_j_cej_2024_153489 crossref_primary_10_1016_j_ijhydene_2023_06_210 crossref_primary_10_1016_j_jmst_2023_07_048 crossref_primary_10_1063_5_0188819 crossref_primary_10_1016_j_jmst_2022_07_060 crossref_primary_10_1016_j_jallcom_2024_175412 crossref_primary_10_1016_j_jmst_2024_09_050 crossref_primary_10_1007_s13399_023_04062_7 crossref_primary_10_1016_j_jmrt_2025_02_104 crossref_primary_10_1007_s10853_022_07063_5 crossref_primary_10_3390_ma15228004 crossref_primary_10_1016_j_ijhydene_2022_07_068 crossref_primary_10_1016_j_jmst_2022_02_050 crossref_primary_10_1016_j_mtla_2023_101846 crossref_primary_10_1016_j_porgcoat_2022_106871 crossref_primary_10_1016_S1003_6326_24_66566_0 crossref_primary_10_1002_batt_202100417 crossref_primary_10_1016_j_jmst_2022_12_053 crossref_primary_10_1016_j_mtcomm_2024_109380 crossref_primary_10_1039_D3NJ04280D crossref_primary_10_1016_j_ijhydene_2022_07_057 crossref_primary_10_1002_adfm_202406639 crossref_primary_10_1016_j_ijhydene_2024_06_055 crossref_primary_10_1016_j_matchemphys_2024_130010 crossref_primary_10_1016_j_jma_2022_06_017 crossref_primary_10_1016_j_jmst_2023_07_022 crossref_primary_10_1016_j_actamat_2025_120746 crossref_primary_10_1016_j_fuel_2022_124829 crossref_primary_10_1016_j_jmst_2023_03_040 crossref_primary_10_1007_s12613_021_2391_2 crossref_primary_10_1016_j_jmst_2023_08_058 crossref_primary_10_1007_s12613_022_2523_3 crossref_primary_10_1021_acsomega_2c01085 crossref_primary_10_1515_pac_2023_1134 crossref_primary_10_1016_j_jmst_2022_10_029 crossref_primary_10_1016_j_mtcomm_2022_103568 crossref_primary_10_1021_acs_energyfuels_4c01138 crossref_primary_10_1016_j_jmst_2024_10_024 crossref_primary_10_1016_j_jallcom_2022_167392 crossref_primary_10_1007_s12613_022_2414_7 crossref_primary_10_1016_j_jmst_2023_07_013 crossref_primary_10_1007_s40195_022_01428_0 crossref_primary_10_1016_j_jmst_2022_02_039 crossref_primary_10_1007_s12274_024_6876_y crossref_primary_10_1016_j_jmst_2023_08_046 crossref_primary_10_1016_j_cej_2024_150623 crossref_primary_10_1016_j_jmst_2023_04_051 crossref_primary_10_1016_j_jmst_2024_06_030 crossref_primary_10_1016_j_jmst_2022_02_046 crossref_primary_10_1016_j_ijhydene_2023_07_329 crossref_primary_10_1016_j_jmst_2022_02_048 crossref_primary_10_1016_j_jma_2023_08_009 crossref_primary_10_1016_j_est_2023_108165 crossref_primary_10_1016_j_jmst_2022_02_042 crossref_primary_10_1016_j_jmst_2023_12_040 crossref_primary_10_1039_D4TA00722K crossref_primary_10_1016_j_ijhydene_2023_08_243 crossref_primary_10_1016_j_jmst_2023_03_010 crossref_primary_10_1016_j_jmst_2023_08_035 crossref_primary_10_1016_j_ijhydene_2022_03_163 crossref_primary_10_1016_j_jmst_2022_06_021 crossref_primary_10_1016_j_jmst_2023_12_014 crossref_primary_10_1016_j_matchemphys_2024_129918 crossref_primary_10_1016_j_jmst_2023_12_011 crossref_primary_10_1016_j_jallcom_2023_170951 crossref_primary_10_1016_j_jmst_2024_10_041 crossref_primary_10_1016_j_est_2023_107417 crossref_primary_10_1016_j_jmst_2022_06_010 crossref_primary_10_1016_j_apenergy_2024_124134 crossref_primary_10_1016_j_jmst_2022_10_015 crossref_primary_10_1016_j_jallcom_2024_173612 crossref_primary_10_1007_s12613_022_2449_9 crossref_primary_10_1016_j_jcis_2024_12_043 crossref_primary_10_1016_j_jmst_2024_10_056 crossref_primary_10_1016_j_ijhydene_2022_07_005 crossref_primary_10_1016_j_jmst_2022_09_039 crossref_primary_10_1016_j_jpcs_2024_112028 crossref_primary_10_1016_j_vacuum_2023_111858 crossref_primary_10_1016_j_jmst_2022_11_044 crossref_primary_10_1016_j_ijhydene_2023_03_329 crossref_primary_10_1016_j_jmst_2023_05_070 crossref_primary_10_1016_j_jmst_2022_03_032 crossref_primary_10_1016_j_jmst_2023_01_027 crossref_primary_10_1016_j_jmst_2023_08_019 crossref_primary_10_1016_j_jallcom_2022_168605 crossref_primary_10_1016_j_jmst_2022_03_039 crossref_primary_10_1016_j_jmst_2022_10_068 crossref_primary_10_1016_j_jmst_2023_08_011 crossref_primary_10_1021_acs_jpcc_3c02650 crossref_primary_10_1155_er_6300225 crossref_primary_10_1016_j_ijhydene_2023_12_038 crossref_primary_10_1021_acsami_4c19590 crossref_primary_10_1016_j_ijhydene_2024_08_172 crossref_primary_10_1016_j_jmst_2023_11_042 crossref_primary_10_21597_jist_1271619 crossref_primary_10_1021_acsami_2c06642 crossref_primary_10_1016_j_ijhydene_2023_08_311 crossref_primary_10_1016_j_jpcs_2022_111153 crossref_primary_10_1007_s12613_022_2510_8 crossref_primary_10_1007_s12613_022_2519_z crossref_primary_10_1016_j_jma_2022_09_012 crossref_primary_10_1016_j_ijhydene_2022_09_013 crossref_primary_10_3390_en15218322 crossref_primary_10_1007_s12598_023_02365_2 crossref_primary_10_1016_j_msea_2024_147413 crossref_primary_10_1016_j_jmst_2022_08_019 crossref_primary_10_1007_s12613_023_2619_4 crossref_primary_10_1016_j_jmst_2022_03_040 crossref_primary_10_1016_j_jmst_2022_02_008 crossref_primary_10_1016_j_jmst_2024_01_009 crossref_primary_10_1007_s12613_022_2485_5 crossref_primary_10_1016_j_jmst_2023_10_009 crossref_primary_10_1016_j_jmst_2021_12_011 crossref_primary_10_1016_j_jmst_2023_12_055 crossref_primary_10_1016_j_jma_2022_09_028 crossref_primary_10_1016_j_jmst_2024_02_013 crossref_primary_10_1016_j_jmst_2023_09_005 crossref_primary_10_1016_j_jmst_2023_11_017 crossref_primary_10_1007_s40195_024_01709_w crossref_primary_10_1016_j_ijhydene_2023_12_134 crossref_primary_10_1016_j_jmst_2022_08_047 crossref_primary_10_1016_j_jmst_2022_03_020 crossref_primary_10_1016_j_jmst_2023_11_022 crossref_primary_10_1007_s12598_022_02105_y crossref_primary_10_1016_j_jre_2024_12_010 crossref_primary_10_1016_j_jmst_2022_10_057 crossref_primary_10_1016_j_jmst_2022_10_059 crossref_primary_10_1007_s12613_021_2372_5 crossref_primary_10_1016_j_ijhydene_2023_12_020 crossref_primary_10_1002_ente_202200088 crossref_primary_10_1016_j_ijhydene_2022_12_083 crossref_primary_10_1016_j_jmst_2022_04_057 crossref_primary_10_1016_j_jmst_2023_11_025 |
Cites_doi | 10.1016/j.apenergy.2019.04.181 10.1016/j.energy.2019.02.033 10.1016/0925-8388(94)90791-9 10.1016/j.ijhydene.2004.01.007 10.1016/S0925-8388(01)01917-X 10.1016/j.ijhydene.2016.08.018 10.1016/j.renene.2019.01.106 10.1016/j.fusengdes.2018.11.006 10.1002/jps.2600630103 10.1039/D0DT03627G 10.1016/j.ijhydene.2007.09.006 10.1016/S0925-8388(96)02413-9 10.1016/j.ijhydene.2006.11.022 10.1016/j.intermet.2008.02.009 10.1007/978-0-85729-221-6 10.1016/0022-5088(83)90255-2 10.1016/S0022-5088(06)80006-8 10.1016/j.ijhydene.2017.06.137 10.1007/s10973-012-2783-7 10.1016/0360-3199(92)90169-W 10.1002/zaac.19271630102 10.1016/B978-008044019-4/50022-2 10.1016/j.intermet.2013.11.024 10.1021/acs.cgd.6b00187 10.1016/0360-3199(95)00109-3 10.1016/S0925-8388(00)00708-8 10.1038/srep15385 10.1016/S0925-8388(99)00202-9 10.1016/0360-3199(82)90069-6 10.1039/C8TA06668J 10.1016/j.ijhydene.2015.08.076 10.1149/1.1837085 10.1007/s12613-019-1846-1 10.1088/1674-1056/ab9289 10.1016/j.jpowsour.2014.05.066 10.1039/tf9484400796 10.1016/j.jallcom.2017.12.283 10.1016/j.ijhydene.2008.04.042 10.1007/s12598-021-01764-7 10.1016/0022-5088(83)90262-X 10.1016/j.cej.2020.127844 10.1016/j.jma.2019.06.006 10.13182/FST95-A30607 10.1016/j.ijhydene.2016.04.083 10.1007/s12613-020-2019-y 10.1524/zpch.1977.104.4-6.229 10.1016/S0022-5088(06)80009-3 10.1016/j.ijhydene.2020.09.144 10.1021/ja806565t 10.1016/j.apenergy.2011.06.015 10.1016/j.jallcom.2016.05.286 10.1016/j.cej.2020.126115 10.1016/S1875-5372(13)60018-1 10.1016/j.jallcom.2020.158163 10.1016/0360-3199(93)E0011-9 10.1016/j.jma.2020.02.029 10.1063/1.1731812 10.1088/1361-6528/aabcf3 10.1016/0022-5088(76)90182-X 10.1016/0022-5088(89)90536-5 10.1016/0022-5088(83)90253-9 10.1016/j.jma.2020.04.002 10.1016/j.renene.2020.02.035 10.1016/j.ijhydene.2004.04.006 10.1016/j.jallcom.2020.154865 10.1016/j.jallcom.2003.08.108 10.1016/j.ijhydene.2010.05.073 10.1016/j.scriptamat.2016.09.011 10.1016/j.ijhydene.2012.02.117 10.1016/S0925-8388(99)00592-7 10.1016/j.jmst.2018.01.007 10.1016/j.ijhydene.2013.05.027 10.1016/0925-8388(93)90262-L 10.1016/0022-5088(83)90254-0 10.1016/j.ijhydene.2019.06.191 10.1016/j.ijhydene.2019.04.281 10.1016/j.ijhydene.2016.07.077 10.1016/0360-3199(95)00111-5 10.1016/j.jallcom.2005.03.010 10.1016/j.jma.2020.02.003 10.1007/s12613-019-1913-7 10.1016/S0925-8388(96)03070-8 10.1016/j.applthermaleng.2019.114129 10.1016/S0925-8388(98)00565-9 10.1016/S0360-0564(08)60563-5 10.1016/j.ijhydene.2019.07.247 10.1016/j.intermet.2004.03.024 10.1016/j.jma.2018.12.001 10.1016/j.ijhydene.2020.07.062 10.1016/j.ijhydene.2020.05.144 10.1016/j.ijhydene.2019.11.035 10.1021/jp062746a 10.1016/j.ijhydene.2015.11.068 10.1016/j.ijhydene.2018.10.055 10.1016/j.jallcom.2013.11.159 10.1016/j.jallcom.2003.09.031 10.1002/er.2980 10.1016/j.ijhydene.2019.01.148 10.1016/j.ijhydene.2009.06.075 10.1016/j.matlet.2015.08.116 10.1023/A:1014556109351 10.1007/s12613-020-1972-9 10.1016/j.jallcom.2010.07.016 10.1680/jnaen.18.00019 10.1007/s12598-021-01769-2 10.1016/j.jmst.2021.04.044 10.1016/j.enconman.2019.112328 10.1016/j.rser.2017.05.132 10.1007/s12598-018-1087-x 10.1021/jp500439n 10.1016/j.jallcom.2020.154402 10.1016/j.ijhydene.2014.07.016 10.1016/j.ijhydene.2009.10.004 10.1016/j.ijhydene.2003.10.002 10.1007/s12613-019-1880-z 10.1016/j.ijhydene.2011.06.145 10.1016/0022-1902(78)80147-X 10.1016/S0925-8388(99)00268-6 10.1016/0925-8388(93)90571-4 10.1016/j.jma.2018.05.007 10.1016/j.intermet.2006.10.004 10.1016/S0360-3199(97)00050-5 10.1016/j.apenergy.2020.115682 |
ContentType | Journal Article |
Copyright | University of Science and Technology Beijing 2022 University of Science and Technology Beijing 2022. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: University of Science and Technology Beijing 2022 – notice: University of Science and Technology Beijing 2022. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO HCIFZ KB. PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s12613-021-2337-8 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1869-103X |
EndPage | 48 |
ExternalDocumentID | bjkjdxxb_e202201003 10_1007_s12613_021_2337_8 |
GroupedDBID | --K -EM -SB -S~ 06D 0R~ 0VY 188 1B1 1N0 1~5 2B. 2C0 2KG 2LR 2VQ 30V 4.4 406 408 40D 4G. 67Z 7-5 71M 8RM 92H 92I 96X AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAXUO AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BENPR BGLVJ BGNMA BHPHI BKSAR CAG CAJEB CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HMJXF HRMNR HVGLF HZ~ IKXTQ IWAJR IXD J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y NPVJJ NQJWS NU0 O9- O9J OZT P2P P9N PCBAR PDBOC PT4 Q-- R9I RIG ROL RSV S1Z S27 S3B SCL SCM SDG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UGNYK UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 WK8 Z5O Z7R Z7V Z7X Z7Y Z7Z Z85 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ D1I DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 4A8 93N PMFND PSX |
ID | FETCH-LOGICAL-c352t-90fc27aa1babcc0f7516662ea4126c43ef6aeacbeb43e99df9819d443ee2b483 |
IEDL.DBID | U2A |
ISSN | 1674-4799 |
IngestDate | Thu May 29 04:07:33 EDT 2025 Fri Jul 25 10:52:34 EDT 2025 Tue Jul 01 01:18:45 EDT 2025 Thu Apr 24 23:13:53 EDT 2025 Fri Feb 21 02:46:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | metal hydrides kinetic models hydrogen desorption process hydrogen absorption process hydrogen storage metal?hydrides hydrogen?storage hydrogen?desorption?process hydrogen?absorption?process |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-90fc27aa1babcc0f7516662ea4126c43ef6aeacbeb43e99df9819d443ee2b483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2920603867 |
PQPubID | 2043631 |
PageCount | 17 |
ParticipantIDs | wanfang_journals_bjkjdxxb_e202201003 proquest_journals_2920603867 crossref_citationtrail_10_1007_s12613_021_2337_8 crossref_primary_10_1007_s12613_021_2337_8 springer_journals_10_1007_s12613_021_2337_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 2022-01-00 20220101 2022 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | International journal of minerals, metallurgy and materials |
PublicationTitleAbbrev | Int J Miner Metall Mater |
PublicationTitle_FL | International Journal of Minerals, Metallurgy and Materials |
PublicationYear | 2022 |
Publisher | University of Science and Technology Beijing Springer Nature B.V National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China%State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China |
Publisher_xml | – name: University of Science and Technology Beijing – name: Springer Nature B.V – name: National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China – name: State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China%State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering,Shanghai University, Shanghai 200444, China%National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China |
References | Wang, Wang, Chen, Lei, Wang (CR50) 1996; 21 Zhu, Zhang, Lü (CR11) 2020; 27 Chou, Li, Lin, Jiang, Xu (CR20) 2005; 30 Jander (CR18) 1927; 163 Lu, Zhu, Wang, Li, Ouyang, Liu (CR102) 2014; 39 Ginstling, Brounshtein (CR41) 1950; 23 Muthukumar, Satheesh, Linder, Mertz, Groll (CR80) 2009; 34 Bloch, Mintz (CR35) 1997; 253–254 Pan, Wu, Li (CR25) 2011; 36 Yao, Jiang, Liu, Wu, Chou, Lyu, Li (CR97) 2020; 8 Bershadsky, Klyuch, Ron (CR63) 1995; 20 Ismail, Yahya, Sazelee, Ali, Yap, Mustafa (CR99) 2020; 8 Liang, Huot, Boily, Van Neste, Schulz (CR127) 2000; 297 Ramesh, Murti, Reddy, Rama Rao, Das (CR64) 1994; 205 Song, She, Chen, Pan (CR36) 2020; 8 Carstensen (CR48) 1974; 63 CR49 Nam, Ko, Ju (CR53) 2012; 89 Kohno, Tsuruta, Kanda (CR120) 1996; 143 CR43 Nahm, Kim, Hong, Lee (CR57) 1992; 17 Jurczyk, Rajewski, Majchrzycki, Wójcik (CR86) 1999; 290 Li, Guo, Jiang, Li, Li (CR92) 2020; 153 Shriniwasan, Tien, Tanniru, Tatiparti (CR74) 2018; 742 Li, Jiang, Chou, Lin, Zhan, Xu, Lu, Zhang (CR26) 2005; 399 Jiang, Wang, Zhu (CR37) 2021; 40 Chou, Luo, Li, Zhang (CR44) 2014; 47 Liang, Huot, Boily, Schulz (CR68) 2000; 305 Zhang, Zhang, Gao, Wei, Zhai, Cai (CR30) 2020; 45 Si, Zhang, Feng, Ding, Li (CR13) 2021; 40 Chou, Xu (CR33) 2007; 15 Li, Gu, Li, Zhang (CR114) 2017; 127 Kong, Du, Wang, Li, Wu (CR65) 2012; 41 Akiba, Nomura, Ono, Suda (CR69) 1982; 7 Ouyang, Yang, Zhu, Liu, Dong, Sun, Zou, Yao (CR105) 2014; 118 CR51 Liu, Chen, Wang, Li (CR108) 2014; 267 Vega, Leiva, Leal Neto, Silva, Silva, Ishikawa, Kiminami, Botta (CR16) 2020; 45 Li, Zhu, Yang, Zhang, Chen, Li (CR119) 2015; 40 Liu, Zhong, Luo, Gao, Pan, Wang (CR72) 2009; 131 Zhang, Li, Cai, Qi, Guo, Zhao (CR56) 2019; 138 Sun, Zhang, Li, Guo, Wang, Jiang (CR10) 2019; 26 Sakintuna, Lamari-Darkrim, Hirscher (CR1) 2007; 32 Wang, Wang, Lei, Chen, Wang (CR12) 1996; 21 Li, Chou, Lin, Jiang, Zhan (CR66) 2004; 29 Penzhorn, Sirch, Perevezentsev, Borisenko (CR70) 1995; 28 Cao, Ouyang, Wang, Liu, Sun, Felderhoff, Zhu (CR19) 2016; 41 Yang, Hou, Yu, Zhang (CR31) 2021; 50 Wang, Suda (CR83) 1993; 191 Lu, Yu, Lu, Song, Wu, Zheng, Yuan, Zhang (CR125) 2021; 40 Pang, Li (CR14) 2016; 41 Kandavel, Bhat, Rougier, Aymard, Nazri, Tarascon (CR87) 2008; 33 Khawam, Flanagan (CR34) 2006; 110 Wang, Wang, Huang, Yang, Wu, Zheng, Wu, Zhang (CR54) 2019; 173 Oh, Kim, Nahm, Sim (CR58) 1998; 278 Han, Lee (CR121) 1987; 131 Ismail, Zhao, Yu, Dou (CR128) 2012; 37 Lin, Zhu, Leng, Yang, Lyu, Li (CR52) 2019; 250 Park, Jung, Jeong, Kang, Lee, Park, Park (CR5) 2020; 45 Ulmer, Dieterich, Pohl, Dittmeyer, Linder, Fichtner (CR91) 2017; 42 Li, Chou, Xu, Lin, Jiang, Zhan (CR103) 2005; 387 Kou, He, Luo, Tang, Huang, Wang, Bao, Xue, Pei, Liu (CR17) 2019; 138 Trivedi, Nune (CR112) 2019; 8 Li, Cheng, Miao, Wang, Kuang, Han (CR3) 2020; 27 Bershadsky, Josephy, Ron (CR71) 1991; 172–174 Luo, Gu, Liu, Zhang, Liu, Li (CR29) 2018; 6 Carter (CR42) 1961; 34 He, Lü, Ding, Yan (CR8) 2021; 28 Yong, Guo, Yuan, Qi, Zhao, Zhang (CR116) 2019; 44 Shen, Liang, Shao, Sun, Liu, Zhai (CR9) 2021; 28 An, Pan, Luo, Zhang, Zhang, Li (CR24) 2010; 506 Crank (CR45) 1979 Khan, Zou, Zeng, Ding (CR118) 2018; 43 Jiang, Leng, Meng, Chou, Li (CR124) 2013; 37 CR4 CR6 Aharoni, Tompkins (CR40) 1970; 21 CR7 Mungole, Balasubramaniam (CR59) 1998; 23 Ruiz, Castro, Peretti, Visintin (CR88) 2010; 35 Kesavan, Ramaprabhu, Rama Rao, Das (CR93) 1996; 244 CR89 Shriniwasan, Goswami, Tien, Tanniru, Ebrahimi, Tatiparti (CR81) 2015; 40 Xie, Shi, Wang, Luo, Li, Chou (CR113) 2022; 97 Pang, Sun, Gu, Chou, Wang, Li (CR28) 2016; 16 Broom (CR39) 2011 Jat, Parida, Nuwad, Agarwal, Kulkarni (CR61) 2013; 112 Xu, Chen, Wang, Lei, Wang (CR90) 2002; 337 Long, Zou, Chen, Zeng, Ding (CR104) 2014; 615 CR84 Liang, Huot, Boily, Van Neste, Schulz (CR67) 1999; 291 Christian (CR47) 2002 Koh, Goudy, Huang, Zhou (CR78) 1989; 153 Zarynow, Goudy, Schweibenz, Clay (CR79) 1991; 172–174 Lin, Zhang, Wang, Ouyang, Zhu, Li, Wang, Zhu (CR123) 2016; 685 Jai-Young, Park, Pyun (CR62) 1983; 89 Sun, Wang, Wang, Liu, Peng (CR106) 2019; 44 Luo, Li, Li, Liu, Shao, Li (CR27) 2019; 7 Wu, Luo, Chen, Gu, Chou, Wang, Li (CR117) 2016; 41 Zhang, Wei, Zhang, Yuan, Gao, Qi, Ren (CR32) 2020; 45 Liang (CR115) 2004; 370 CR15 Cui, Li, Chou, Chen, Lin, Xu (CR23) 2008; 16 Balasubramaniam, Mungole, Rai (CR85) 1993; 196 Kempen, Sommer, Mittemeijer (CR46) 2002; 37 CR98 Meena, Singh, Sharma, Jain (CR100) 2018; 6 CR95 Wei, Lim, Tseng, Chan (CR2) 2017; 79 Shriniwasan, Tien, Tanniru, Ebrahimi, Tatiparti (CR111) 2015; 161 Liu, Chen, Wang, Yang (CR82) 2018; 34 Stander (CR109) 1977; 104 Lan, Zeng, Jiong, Huang, Liu, Hua, Guo (CR126) 2019; 44 Wang, Li, Ding, Wan, Yu, Wang (CR94) 2016; 41 Yang, Wang, Xia, Li, Liang, Zhang (CR55) 2019; 44 Rudman (CR38) 1983; 89 Boser (CR76) 1976; 46 Ouyang, Cao, Wang, Liu, Sun, Zhang, Zhu (CR107) 2013; 38 Zhang, Yan, Xia, Zhou, Lu, Yu, Yu, Peng (CR96) 2021; 9 Mintz, Gavra, Hadari (CR110) 1978; 40 Miyamoto, Yamaji, Nakata (CR75) 1983; 89 Goodell, Rudman (CR77) 1983; 89 Li, Chou, Lin, Jiang, Zhan (CR21) 2004; 29 Luo, An, Pan, Zhang, Zhang, Li (CR22) 2010; 35 CR101 Zhong, Liu, Gao, Wang, Miao, Pan (CR73) 2008; 33 Li, Lin, Chou, Jiang, Zhan (CR60) 2004; 12 Li, Saita, Saito, Akiyama (CR122) 2004; 372 XY Cui (2337_CR23) 2008; 16 T Yang (2337_CR55) 2019; 44 P Muthukumar (2337_CR80) 2009; 34 LER Vega (2337_CR16) 2020; 45 A Zarynow (2337_CR79) 1991; 172–174 FC Ruiz (2337_CR88) 2010; 35 2337_CR89 L Jai-Young (2337_CR62) 1983; 89 M Miyamoto (2337_CR75) 1983; 89 2337_CR84 A Ginstling (2337_CR41) 1950; 23 S Long (2337_CR104) 2014; 615 XL Yang (2337_CR31) 2021; 50 O Boser (2337_CR76) 1976; 46 E Bershadsky (2337_CR63) 1995; 20 KC Chou (2337_CR44) 2014; 47 CS Park (2337_CR5) 2020; 45 WC He (2337_CR8) 2021; 28 2337_CR15 YF Liu (2337_CR72) 2009; 131 CM Stander (2337_CR109) 1977; 104 K Zhong (2337_CR73) 2008; 33 S Shriniwasan (2337_CR74) 2018; 742 2337_CR98 LQ Li (2337_CR122) 2004; 372 S Shriniwasan (2337_CR81) 2015; 40 JW Oh (2337_CR58) 1998; 278 XY Shen (2337_CR9) 2021; 28 2337_CR95 KB Wu (2337_CR117) 2016; 41 JS Han (2337_CR121) 1987; 131 PD Goodell (2337_CR77) 1983; 89 P Meena (2337_CR100) 2018; 6 RE Carter (2337_CR42) 1961; 34 XF Zhu (2337_CR11) 2020; 27 H Yong (2337_CR116) 2019; 44 RD Penzhorn (2337_CR70) 1995; 28 J Nam (2337_CR53) 2012; 89 F Wang (2337_CR94) 2016; 41 XL Wang (2337_CR83) 1993; 191 M Jurczyk (2337_CR86) 1999; 290 ZY Lu (2337_CR125) 2021; 40 W Jiang (2337_CR37) 2021; 40 X Lin (2337_CR52) 2019; 250 YS Lu (2337_CR102) 2014; 39 CS Wang (2337_CR12) 1996; 21 Y Li (2337_CR3) 2020; 27 R Balasubramaniam (2337_CR85) 1993; 196 Q Li (2337_CR21) 2004; 29 A Khawam (2337_CR34) 2006; 110 D Wang (2337_CR54) 2019; 173 JT Carstensen (2337_CR48) 1974; 63 JG Li (2337_CR92) 2020; 153 M Ismail (2337_CR99) 2020; 8 YP Pang (2337_CR28) 2016; 16 JT Koh (2337_CR78) 1989; 153 XH Wang (2337_CR50) 1996; 21 Q Li (2337_CR103) 2005; 387 Q Li (2337_CR26) 2005; 399 Q Luo (2337_CR29) 2018; 6 J Zhang (2337_CR96) 2021; 9 M Kandavel (2337_CR87) 2008; 33 KS Nahm (2337_CR57) 1992; 17 2337_CR49 MM Sun (2337_CR10) 2019; 26 KC Chou (2337_CR33) 2007; 15 2337_CR43 YH Zhang (2337_CR30) 2020; 45 TZ Si (2337_CR13) 2021; 40 Q Luo (2337_CR27) 2019; 7 LZ Ouyang (2337_CR107) 2013; 38 PS Rudman (2337_CR38) 1983; 89 Y Li (2337_CR114) 2017; 127 ZQ Lan (2337_CR126) 2019; 44 HQ Kou (2337_CR17) 2019; 138 XH An (2337_CR24) 2010; 506 Q Luo (2337_CR22) 2010; 35 U Ulmer (2337_CR91) 2017; 42 G Liang (2337_CR127) 2000; 297 B Sakintuna (2337_CR1) 2007; 32 2337_CR51 MN Mungole (2337_CR59) 1998; 23 XC Kong (2337_CR65) 2012; 41 MH Mintz (2337_CR110) 1978; 40 E Bershadsky (2337_CR71) 1991; 172–174 T Liu (2337_CR108) 2014; 267 T Kohno (2337_CR120) 1996; 143 KC Chou (2337_CR20) 2005; 30 Y Sun (2337_CR106) 2019; 44 YP Pang (2337_CR14) 2016; 41 JF Song (2337_CR36) 2020; 8 J Crank (2337_CR45) 1979 JW Christian (2337_CR47) 2002 JJ Jiang (2337_CR124) 2013; 37 M Ismail (2337_CR128) 2012; 37 TR Kesavan (2337_CR93) 1996; 244 G Liang (2337_CR67) 1999; 291 LZ Ouyang (2337_CR105) 2014; 118 TC Xie (2337_CR113) 2022; 97 S Shriniwasan (2337_CR111) 2015; 161 C Aharoni (2337_CR40) 1970; 21 2337_CR4 ATW Kempen (2337_CR46) 2002; 37 PY Yao (2337_CR97) 2020; 8 RA Jat (2337_CR61) 2013; 112 2337_CR7 2337_CR6 GL Liu (2337_CR82) 2018; 34 YH Zhang (2337_CR56) 2019; 138 Q Li (2337_CR66) 2004; 29 R Ramesh (2337_CR64) 1994; 205 HJ Lin (2337_CR123) 2016; 685 W Jander (2337_CR18) 1927; 163 D Khan (2337_CR118) 2018; 43 Q Li (2337_CR60) 2004; 12 P Trivedi (2337_CR112) 2019; 8 YB Pan (2337_CR25) 2011; 36 MH Li (2337_CR119) 2015; 40 2337_CR101 ZJ Cao (2337_CR19) 2016; 41 J Bloch (2337_CR35) 1997; 253–254 G Liang (2337_CR115) 2004; 370 TY Wei (2337_CR2) 2017; 79 YH Xu (2337_CR90) 2002; 337 G Liang (2337_CR68) 2000; 305 E Akiba (2337_CR69) 1982; 7 YH Zhang (2337_CR32) 2020; 45 DP Broom (2337_CR39) 2011 |
References_xml | – volume: 112 start-page: 37 issue: 1 year: 2013 ident: CR61 article-title: Hydrogen sorption—desorption studies on ZrCo—hydrogen system publication-title: J. Therm. Anal. Calorim. – volume: 399 start-page: 101 issue: 1–2 year: 2005 ident: CR26 article-title: Effect of hydrogen pressure on hydriding kinetics in the Mg Ag Ni-H (x = 0.05, 0.1) system publication-title: J. Alloys Compd. – year: 1979 ident: CR45 publication-title: The Mathematics of Diffusion – volume: 32 start-page: 1121 issue: 9 year: 2007 ident: CR1 article-title: Metal hydride materials for solid hydrogen storage: A review publication-title: Int. J. Hydrogen Energy – volume: 21 start-page: 479 issue: 6 year: 1996 ident: CR50 article-title: The hydriding kinetics of MlNi —II. Experimental results publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 117 issue: 2 year: 2019 ident: CR112 article-title: Bioactivity, cytocompatibility and effect of cells on degradation behavior of Mg—2Zn—2Gd alloy publication-title: Nanomater. Energy – volume: 8 start-page: 461 issue: 2 year: 2020 ident: CR97 article-title: Catalytic effect of Ni@rGO on the hydrogen storage properties of MgH publication-title: J. Magnesium Alloys – ident: CR51 – volume: 685 start-page: 272 year: 2016 ident: CR123 article-title: Controlling nanocrystallization and hydrogen storage property of Mg-based amorphous alloy via a gas-solid reaction publication-title: J. Alloys Compd. – volume: 20 start-page: 29 issue: 1 year: 1995 ident: CR63 article-title: Hydrogen absorption and desorption kinetics of TiFe Ni H publication-title: Int. J. Hydrogen Energy – volume: 42 start-page: 20103 issue: 31 year: 2017 ident: CR91 article-title: Study of the structural, thermodynamic and cyclic effects of vanadium and titanium substitution in laves-phase AB hydrogen storage alloys publication-title: Int. J. Hydrogen Energy – volume: 104 start-page: 229 issue: 4–6 year: 1977 ident: CR109 article-title: Kinetics of formation of magnesium hydride from magnesium and hydrogen publication-title: Z. Phys. Chem. – volume: 127 start-page: 102 year: 2017 ident: CR114 article-title: synchrotron X-ray diffraction investigation on hydrogen-induced decomposition of long period stacking ordered structure in Mg-Ni-Y system publication-title: Scripta Mater. – volume: 89 start-page: 111 issue: 1 year: 1983 ident: CR75 article-title: Reaction kinetics of LaNi publication-title: J. Less Common Met. – volume: 79 start-page: 1122 year: 2017 ident: CR2 article-title: A review on the characterization of hydrogen in hydrogen storage materials publication-title: Renewable Sustainable Energy Rev. – ident: CR101 – volume: 23 start-page: 1327 year: 1950 ident: CR41 article-title: Concerning the diffusion kinetics of reactions in spherical particles publication-title: J. Appl. Chem. USSR – volume: 34 start-page: 2010 issue: 6 year: 1961 ident: CR42 article-title: Kinetic model for solid-state reactions publication-title: J. Chem. Phys. – volume: 37 start-page: 1321 issue: 7 year: 2002 ident: CR46 article-title: Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth publication-title: J. Mater. Sci. – volume: 97 start-page: 147 year: 2022 ident: CR113 article-title: Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg—Zn—La/Ce system publication-title: J. Mater. Sci. Technol. – volume: 41 start-page: 17421 issue: 39 year: 2016 ident: CR94 article-title: Effect of catalytic Ni coating with different depositing time on the hydrogen storage properties of ZrCo alloy publication-title: Int. J. Hydrogen Energy – volume: 36 start-page: 12892 issue: 20 year: 2011 ident: CR25 article-title: Modeling and analyzing the hydriding kinetics of Mg—LaNi composites by Chou model publication-title: Int. J. Hydrogen Energy – volume: 41 start-page: 1725 issue: 3 year: 2016 ident: CR117 article-title: Phase equilibria of Ce—Mg—Ni ternary system at 673 K and hydrogen storage properties of selected alloy publication-title: Int. J. Hydrogen Energy – volume: 191 start-page: 5 issue: 1 year: 1993 ident: CR83 article-title: Effects of Al-substitution on hydriding reaction rates of LaNi Alx publication-title: J. Alloys Compd. – volume: 44 start-page: 16765 issue: 31 year: 2019 ident: CR116 article-title: Improved hydrogen storage kinetics and thermodynamics of RE—Mg-based alloy by co-doping Ce—Y publication-title: Int. J. Hydrogen Energy – volume: 27 start-page: 472 issue: 4 year: 2020 ident: CR11 article-title: Kinetics of carbonated decomposition of hydrogarnet with different silica saturation coefficients publication-title: Int. J. Miner. Metall. Mater. – volume: 370 start-page: 123 issue: 1–2 year: 2004 ident: CR115 article-title: Synthesis and hydrogen storage properties of Mg-based alloys publication-title: J. Alloys Compd. – volume: 29 start-page: 1383 issue: 13 year: 2004 ident: CR21 article-title: Influence of the initial hydrogen pressure on the hydriding kinetics of the Mg Al Ni ( = 0, 0.1) alloys publication-title: Int. J. Hydrogen Energy – volume: 40 start-page: 765 issue: 5 year: 1978 ident: CR110 article-title: Kinetic study of the reaction between hydrogen and magnesium, catalyzed by addition of indium publication-title: J. Inorg. Nucl. Chem. – volume: 33 start-page: 3754 issue: 14 year: 2008 ident: CR87 article-title: Improvement of hydrogen storage properties of the AB Laves phase alloys for automotive application publication-title: Int. J. Hydrogen Energy – volume: 40 start-page: 995 issue: 4 year: 2021 ident: CR13 article-title: Enhancing hydrogen sorption in MgH by controlling particle size and contact of Ni catalysts publication-title: Rare Met. – volume: 40 start-page: 13518 issue: 39 year: 2015 ident: CR81 article-title: Contributions of multiple phenomena towards hydrogenation: A case of Mg publication-title: J. Alloys Compd. – volume: 46 start-page: 91 issue: 1 year: 1976 ident: CR76 article-title: Hydrogen sorption in LaNi publication-title: J. Less Common Met. – volume: 143 start-page: L198 issue: 9 year: 1996 ident: CR120 article-title: The hydrogen storage properties of new Mg Ni alloy publication-title: J. Electrochem. Soc. – volume: 29 start-page: 843 issue: 8 year: 2004 ident: CR66 article-title: Hydrogen absorption and desorption kinetics of Ag—Mg—Ni alloys publication-title: Int. J. Hydrogen Energy – volume: 267 start-page: 69 year: 2014 ident: CR108 article-title: Enhanced hydrogen storage properties of magnesium by the synergic catalytic effect of TiH and TiH nanoparticles at room temperature publication-title: J. Power Sources – ident: CR89 – volume: 45 start-page: 21588 issue: 41 year: 2020 ident: CR30 article-title: Improved hydrogen storage kinetics of Mg-based alloys by substituting La with Sm publication-title: Int. J. Hydrogen Energy – volume: 173 start-page: 443 year: 2019 ident: CR54 article-title: Design optimization and sensitivity analysis of the radiation mini-channel metal hydride reactor publication-title: Energy – volume: 7 start-page: 787 issue: 10 year: 1982 ident: CR69 article-title: Kinetics of the reaction between Mg—Ni alloys and H publication-title: Int. J. Hydrogen Energy – volume: 615 start-page: S684 year: 2014 ident: CR104 article-title: A comparison study of Mg—Y O and Mg—Y hydrogen storage composite powders prepared through arc plasma method publication-title: J. Alloys Compd. – volume: 297 start-page: 261 issue: 1–2 year: 2000 ident: CR127 article-title: Hydrogen storage in mechanically milled Mg—LaNi and MgH —LaNi composites publication-title: J. Alloys Compd. – volume: 35 start-page: 9879 issue: 18 year: 2010 ident: CR88 article-title: Study of the different Zr Ni phases of Zr-based AB materials publication-title: Int. J. Hydrogen Energy – volume: 244 start-page: 164 issue: 1–2 year: 1996 ident: CR93 article-title: Hydrogen absorption and kinetic studies in Zr Ho Fe publication-title: J. Alloys Compd. – volume: 8 start-page: 832 issue: 3 year: 2020 ident: CR99 article-title: The effect of K SiF on the MgH hydrogen storage properties publication-title: J. Magnesium Alloys – ident: CR6 – volume: 41 start-page: 1899 issue: 11 year: 2012 ident: CR65 article-title: Kinetics of hydrogen absorption for Ti V Cr alloy powder publication-title: Rare Met. Mater. Eng. – volume: 40 start-page: 3195 issue: 11 year: 2021 ident: CR125 article-title: Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH publication-title: Rare Met. – volume: 37 start-page: 8395 issue: 10 year: 2012 ident: CR128 article-title: Improved hydrogen storage performance of MgH —NaAlH composite by addition of TiF publication-title: Int. J. Hydrogen Energy – volume: 30 start-page: 301 issue: 3 year: 2005 ident: CR20 article-title: Kinetics of absorption and desorption of hydrogen in alloy powder publication-title: Int. J. Hydrogen Energy – volume: 41 start-page: 18072 issue: 40 year: 2016 ident: CR14 article-title: A review on kinetic models and corresponding analysis methods for hydrogen storage materials publication-title: Int. J. Hydrogen Energy – volume: 28 start-page: 981 issue: 6 year: 2021 ident: CR8 article-title: Oxidation pathway and kinetics of titania slag powders during cooling process in air publication-title: Int. J. Miner. Metall. Mater. – volume: 38 start-page: 8881 issue: 21 year: 2013 ident: CR107 article-title: Dual-tuning effect of In on the thermodynamic and kinetic properties of Mg Ni dehydrogenation publication-title: Int. J. Hydrogen Energy – volume: 23 start-page: 349 issue: 5 year: 1998 ident: CR59 article-title: Hydrogen desorption kinetics in MmNi Al —H system publication-title: Int. J. Hydrogen Energy – volume: 37 start-page: 726 issue: 7 year: 2013 ident: CR124 article-title: Hydrogen storage characterization of Mg Ni Ce /5 wt.% Graphite synthesized by mechanical milling and subsequent microwave sintering publication-title: Int. J. Energy Res. – volume: 250 start-page: 1065 year: 2019 ident: CR52 article-title: Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank publication-title: Appl. Energy – volume: 45 start-page: 2084 issue: 3 year: 2020 ident: CR16 article-title: Improved ball milling method for the synthesis of nanocrystal-line TiFe compound ready to absorb hydrogen publication-title: Int. J. Hydrogen Energy – volume: 387 start-page: 86 issue: 1–2 year: 2005 ident: CR103 article-title: Determination and interpretation of the hydriding and dehydriding kinetics in mechanically alloyed LaNiMg composite publication-title: J. Alloys Compd. – volume: 28 start-page: 201 issue: 2 year: 2021 ident: CR9 article-title: Extraction and kinetic analysis of Pb and Sr from the leaching residue of zinc oxide ore publication-title: Int. J. Miner. Metall. Mater. – volume: 7 start-page: 58 issue: 1 year: 2019 ident: CR27 article-title: Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism publication-title: J. Magnesium Alloys – volume: 33 start-page: 149 issue: 1 year: 2008 ident: CR73 article-title: Electrochemical kinetic performance of V—Ti—based hydrogen storage alloy electrode with different particle sizes publication-title: Int. J. Hydrogen Energy – volume: 45 start-page: 27434 issue: 51 year: 2020 ident: CR5 article-title: Development of hydrogen storage reactor using composite of metal hydride materials with ENG publication-title: Int. J. Hydrogen Energy – volume: 34 start-page: 1699 issue: 9 year: 2018 ident: CR82 article-title: Experimental and computational investigations of LaNi Al ( = 0, 0.25, 0.5, 0.75 and 1.0) tritium-storage alloys publication-title: J. Mater. Sci. Technol. – ident: CR49 – volume: 172–174 start-page: 1036 year: 1991 ident: CR71 article-title: Investigation of kinetics and structural changes in TiFe Ni after prolonged cycling publication-title: J. Less Common Met. – volume: 8 start-page: 1 issue: 1 year: 2020 ident: CR36 article-title: Latest research advances on magnesium and magnesium alloys worldwide publication-title: J. Magnesium Alloys – ident: CR4 – volume: 15 start-page: 767 issue: 5–6 year: 2007 ident: CR33 article-title: A new model for hydriding and dehydriding reactions in intermetallics publication-title: Intermetallics – volume: 161 start-page: 271 year: 2015 ident: CR111 article-title: Transition from interfacial to diffusional growth during hydrogenation of Mg publication-title: Mater. Lett. – volume: 110 start-page: 17315 issue: 35 year: 2006 ident: CR34 article-title: Solid-state kinetic models: Basics and mathematical fundamentals publication-title: J. Phys. Chem. B – volume: 196 start-page: 63 issue: 1–2 year: 1993 ident: CR85 article-title: Hydriding properties of MmNi system with aluminium, manganese and tin substitutions publication-title: J. Alloys Compd. – volume: 131 start-page: 1862 issue: 5 year: 2009 ident: CR72 article-title: Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li—Mg—N—H system publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 391 issue: 3 year: 2020 ident: CR3 article-title: Nd—Mg—Ni alloy electrodes modified by reduced graphene oxide with improved electrochemical kinetics publication-title: Int. J. Miner. Metall. Mater. – volume: 278 start-page: 270 issue: 1–2 year: 1998 ident: CR58 article-title: The hydriding kinetics of LaNi Al with hydrogen publication-title: J. Alloys Compd. – ident: CR84 – volume: 16 start-page: 662 issue: 5 year: 2008 ident: CR23 article-title: A comparative study on the hydriding kinetics of Zr-based AB hydrogen storage alloys publication-title: Intermetallics – volume: 47 start-page: 17 year: 2014 ident: CR44 article-title: Influence of the density of oxide on oxidation kinetics publication-title: Intermetallics – volume: 12 start-page: 1293 issue: 12 year: 2004 ident: CR60 article-title: Hydriding kinetics of the La Ni Mg —H system prepared by hydriding combustion synthesis publication-title: Intermetallics – volume: 305 start-page: 239 issue: 1–2 year: 2000 ident: CR68 article-title: Hydrogen desorption kinetics of a mechanically milled MgH +5at.%V nanocomposite publication-title: J. Alloys Compd. – volume: 290 start-page: 262 issue: 1–2 year: 1999 ident: CR86 article-title: Mechanically alloyed MmNi -type materials for metal hydride electrodes publication-title: J. Alloys Compd. – volume: 89 start-page: 93 issue: 1 year: 1983 ident: CR38 article-title: Hydriding and dehydriding kinetics publication-title: J. Less Common Met. – volume: 153 start-page: 89 issue: 1 year: 1989 ident: CR78 article-title: A comparison of the hydriding and dehydriding kinetics of LaNI hydride publication-title: J. Less Common Met. – volume: 9 start-page: 647 issue: 2 year: 2021 ident: CR96 article-title: Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride publication-title: J. Magnesium Alloys – volume: 163 start-page: 1 issue: 1 year: 1927 ident: CR18 article-title: Reaktionen im festen Zustande Bei höheren Temperaturen. Reaktionsgeschwindigkeiten endotherm verlaufender Umsetzungen publication-title: Z. Anorg. Allg. Chem. – volume: 40 start-page: 3337 issue: 12 year: 2021 ident: CR37 article-title: AlH as a hydrogen storage material: Recent advances, prospects and challenges publication-title: Rare Met. – ident: CR15 – volume: 118 start-page: 7808 issue: 15 year: 2014 ident: CR105 article-title: Enhanced hydrogen storage kinetics and stability by synergistic effects of formed CeH and Ni in CeH —MgH —Ni nanocomposites publication-title: J. Phys. Chem. C – volume: 26 start-page: 1247 issue: 10 year: 2019 ident: CR10 article-title: Gasification kinetics of bulk coke in the CO /CO/H /H O/N system simulating the atmosphere in the industrial blast furnace publication-title: Int. J. Miner. Metall. Mater. – volume: 205 start-page: 211 issue: 1–2 year: 1994 ident: CR64 article-title: The kinetics of hydrogen absorption in Zr Ho Co ( = 0.4, 0.6 and 0.8) alloys publication-title: J. Alloys Compd. – volume: 89 start-page: 164 issue: 1 year: 2012 ident: CR53 article-title: Three-dimensional modeling and simulation of hydrogen absorption in metal hydride hydrogen storage vessels publication-title: Appl. Energy – volume: 742 start-page: 1002 year: 2018 ident: CR74 article-title: On the parameters of Johnson-Mehl-Avrami-Kolmogorov equation for the hydride growth mechanisms: A case of MgH publication-title: J. Alloys Compd. – volume: 16 start-page: 2404 issue: 4 year: 2016 ident: CR28 article-title: Comprehensive determination of kinetic parameters in solid-state phase transitions: An extended jonhson—mehlavrami—kolomogorov model with analytical solutions publication-title: Cryst. Growth Des. – volume: 506 start-page: 63 issue: 1 year: 2010 ident: CR24 article-title: Application of a new kinetic model for the hydriding kinetics of LaNi Alx (0 ≤ ≤ 1.0) alloys publication-title: J. Alloys Compd. – volume: 291 start-page: 295 issue: 1–2 year: 1999 ident: CR67 article-title: Hydrogen storage properties of the mechanically milled MgH —V nanocomposite publication-title: J. Alloys Compd. – volume: 28 start-page: 1399 issue: 3P2 year: 1995 ident: CR70 article-title: Hydrogen sorption rate by intermetallic compounds suitable for tritium storage publication-title: Fusion Technol. – ident: CR95 – volume: 89 start-page: 163 issue: 1 year: 1983 ident: CR62 article-title: The activation processes and hydriding kinetics of FeTi publication-title: J. Less Common Met. – ident: CR43 – volume: 45 start-page: 33832 issue: 58 year: 2020 ident: CR32 article-title: Effect of milling duration on hydrogen storage thermodynamics and kinetics of Mg-based alloy publication-title: Int. J. Hydrogen Energy – volume: 35 start-page: 7842 issue: 15 year: 2010 ident: CR22 article-title: The hydriding kinetics of Mg-Ni based hydrogen storage alloys: A comparative study on Chou model and Jander model publication-title: Int. J. Hydrogen Energy – year: 2011 ident: CR39 publication-title: Hydrogen Storage Materials: The Characterisation of Their Storage Properties – volume: 138 start-page: 68 year: 2019 ident: CR17 article-title: Effects of ball milling on hydrogen sorption properties and microstructure of ZrCo alloy publication-title: Fusion Eng. Des. – volume: 131 start-page: 109 issue: 1–2 year: 1987 ident: CR121 article-title: A study of the hydriding kinetics of Mg Ni publication-title: J. Less Common Met. – volume: 153 start-page: 1140 year: 2020 ident: CR92 article-title: Hydrogen storage performances, kinetics and microstructure of Ti Cr Fe Mn Al alloy by Al substituting for Fe publication-title: Renew. Energy – volume: 6 start-page: 23308 issue: 46 year: 2018 ident: CR29 article-title: Achieving superior cycling stability by forming NdH —Mg—Mg Ni nanocomposites publication-title: J. Mater. Chem. A – volume: 44 start-page: 23179 issue: 41 year: 2019 ident: CR106 article-title: Hydrogen storage properties of ultrahigh pressure Mg NiY alloys with a superfine LPSO structure publication-title: Int. J. Hydrogen Energy – volume: 41 start-page: 11242 issue: 26 year: 2016 ident: CR19 article-title: Development of ZrFeV alloys for hybrid hydrogen storage system publication-title: Int. J. Hydrogen Energy – volume: 172–174 start-page: 1009 year: 1991 ident: CR79 article-title: The effect of the partial replacement of nickelin LaNi hydride with iron, cobalt, and copper on absorption and desorption kinetics publication-title: J. Less Common Met. – volume: 44 start-page: 6728 issue: 13 year: 2019 ident: CR55 article-title: Characterization of microstructure, hydrogen storage kinetics and thermodynamics of a melt-spun Mg Y Ni alloy publication-title: Int. J. Hydrogen Energy – ident: CR98 – volume: 138 start-page: 263 year: 2019 ident: CR56 article-title: Improved hydrogen storage performances of Mg—Y—Ni—Cu alloys by melt spinning publication-title: Renew. Energy – volume: 63 start-page: 1 issue: 1 year: 1974 ident: CR48 article-title: Stability of solids and solid dosage forms publication-title: J. Pharm. Sci. – volume: 89 start-page: 117 issue: 1 year: 1983 ident: CR77 article-title: Hydriding and dehydriding rates of the LaNi —H system publication-title: J. Less Common Met. – volume: 17 start-page: 333 issue: 5 year: 1992 ident: CR57 article-title: The reaction kinetics of hydrogen storage in LaNi publication-title: Int. J. Hydrogen Energy – volume: 372 start-page: 218 issue: 1–2 year: 2004 ident: CR122 article-title: Effect of synthesis temperature on the hydriding behaviors of Mg—Ni—Cu ternary hydrogen storage alloys synthesized by hydriding combustion synthesis publication-title: J. Alloys Compd. – volume: 50 start-page: 1797 issue: 5 year: 2021 ident: CR31 article-title: Improvement of the hydrogen storage characteristics of MgH with a flake Ni nano-catalyst composite publication-title: Dalton Trans. – volume: 44 start-page: 24849 issue: 45 year: 2019 ident: CR126 article-title: Synthetical catalysis of nickel and graphene on enhanced hydrogen storage properties of magnesium publication-title: Int. J. Hydrogen Energy – volume: 39 start-page: 14033 issue: 26 year: 2014 ident: CR102 article-title: Reversible de-/hydriding characteristics of a novel Mg In Ni alloy publication-title: Int. J. Hydrogen Energy – volume: 21 start-page: 1 year: 1970 ident: CR40 article-title: Kinetics of adsorption and desorption and the elovich equation publication-title: Adv. Catal. – volume: 21 start-page: 471 issue: 6 year: 1996 ident: CR12 article-title: The hydriding kinetics of MlNi —I. Development of the model publication-title: Int. J. Hydrogen Energy – start-page: 797 year: 2002 ident: CR47 article-title: Eutectoidal transformations publication-title: The Theory of Transformations in Metals and Alloys – volume: 40 start-page: 13949 issue: 40 year: 2015 ident: CR119 article-title: Enhanced electrochemical hydrogen storage properties of Mg NiH by coating with nano-nickel publication-title: Int. J. Hydrogen Energy – volume: 34 start-page: 7253 issue: 17 year: 2009 ident: CR80 article-title: Studies on hydriding kinetics of some La-based metal hydride alloys publication-title: Int. J. Hydrogen Energy – volume: 253–254 start-page: 529 year: 1997 ident: CR35 article-title: Kinetics and mechanisms of metal hydrides formation—A review publication-title: J. Alloys Compd. – ident: CR7 – volume: 43 start-page: 22391 issue: 49 year: 2018 ident: CR118 article-title: Hydrogen storage properties of nanocrystalline Mg Ni prepared from compressed 2MgH —Ni powder publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 318 issue: 3 year: 2018 ident: CR100 article-title: Role of NiMn Al Co Fe alloy on dehydrogenation kinetics of MgH publication-title: J. Magnesium Alloys – volume: 337 start-page: 214 issue: 1–2 year: 2002 ident: CR90 article-title: The cycle life and surface properties of Ti-based AB metal hydride electrodes publication-title: J. Alloys Compd. – volume: 250 start-page: 1065 year: 2019 ident: 2337_CR52 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.04.181 – volume: 173 start-page: 443 year: 2019 ident: 2337_CR54 publication-title: Energy doi: 10.1016/j.energy.2019.02.033 – volume: 205 start-page: 211 issue: 1–2 year: 1994 ident: 2337_CR64 publication-title: J. Alloys Compd. doi: 10.1016/0925-8388(94)90791-9 – volume: 29 start-page: 1383 issue: 13 year: 2004 ident: 2337_CR21 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2004.01.007 – volume: 337 start-page: 214 issue: 1–2 year: 2002 ident: 2337_CR90 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(01)01917-X – volume: 41 start-page: 18072 issue: 40 year: 2016 ident: 2337_CR14 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.08.018 – volume: 138 start-page: 263 year: 2019 ident: 2337_CR56 publication-title: Renew. Energy doi: 10.1016/j.renene.2019.01.106 – volume: 138 start-page: 68 year: 2019 ident: 2337_CR17 publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2018.11.006 – volume: 23 start-page: 1327 year: 1950 ident: 2337_CR41 publication-title: J. Appl. Chem. USSR – volume: 63 start-page: 1 issue: 1 year: 1974 ident: 2337_CR48 publication-title: J. Pharm. Sci. doi: 10.1002/jps.2600630103 – volume: 50 start-page: 1797 issue: 5 year: 2021 ident: 2337_CR31 publication-title: Dalton Trans. doi: 10.1039/D0DT03627G – volume: 33 start-page: 149 issue: 1 year: 2008 ident: 2337_CR73 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2007.09.006 – volume: 244 start-page: 164 issue: 1–2 year: 1996 ident: 2337_CR93 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(96)02413-9 – volume: 32 start-page: 1121 issue: 9 year: 2007 ident: 2337_CR1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.11.022 – volume: 16 start-page: 662 issue: 5 year: 2008 ident: 2337_CR23 publication-title: Intermetallics doi: 10.1016/j.intermet.2008.02.009 – volume-title: Hydrogen Storage Materials: The Characterisation of Their Storage Properties year: 2011 ident: 2337_CR39 doi: 10.1007/978-0-85729-221-6 – volume: 89 start-page: 117 issue: 1 year: 1983 ident: 2337_CR77 publication-title: J. Less Common Met. doi: 10.1016/0022-5088(83)90255-2 – volume: 172–174 start-page: 1009 year: 1991 ident: 2337_CR79 publication-title: J. Less Common Met. doi: 10.1016/S0022-5088(06)80006-8 – volume: 42 start-page: 20103 issue: 31 year: 2017 ident: 2337_CR91 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.06.137 – volume: 112 start-page: 37 issue: 1 year: 2013 ident: 2337_CR61 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-012-2783-7 – volume: 131 start-page: 109 issue: 1–2 year: 1987 ident: 2337_CR121 publication-title: J. Less Common Met. – volume: 17 start-page: 333 issue: 5 year: 1992 ident: 2337_CR57 publication-title: Int. J. Hydrogen Energy doi: 10.1016/0360-3199(92)90169-W – volume: 163 start-page: 1 issue: 1 year: 1927 ident: 2337_CR18 publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.19271630102 – start-page: 797 volume-title: The Theory of Transformations in Metals and Alloys year: 2002 ident: 2337_CR47 doi: 10.1016/B978-008044019-4/50022-2 – volume: 47 start-page: 17 year: 2014 ident: 2337_CR44 publication-title: Intermetallics doi: 10.1016/j.intermet.2013.11.024 – volume: 16 start-page: 2404 issue: 4 year: 2016 ident: 2337_CR28 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b00187 – volume-title: The Mathematics of Diffusion year: 1979 ident: 2337_CR45 – volume: 21 start-page: 471 issue: 6 year: 1996 ident: 2337_CR12 publication-title: Int. J. Hydrogen Energy doi: 10.1016/0360-3199(95)00109-3 – volume: 305 start-page: 239 issue: 1–2 year: 2000 ident: 2337_CR68 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(00)00708-8 – ident: 2337_CR101 doi: 10.1038/srep15385 – volume: 290 start-page: 262 issue: 1–2 year: 1999 ident: 2337_CR86 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(99)00202-9 – volume: 7 start-page: 787 issue: 10 year: 1982 ident: 2337_CR69 publication-title: Int. J. Hydrogen Energy doi: 10.1016/0360-3199(82)90069-6 – volume: 6 start-page: 23308 issue: 46 year: 2018 ident: 2337_CR29 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA06668J – volume: 40 start-page: 13949 issue: 40 year: 2015 ident: 2337_CR119 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.08.076 – volume: 143 start-page: L198 issue: 9 year: 1996 ident: 2337_CR120 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1837085 – volume: 26 start-page: 1247 issue: 10 year: 2019 ident: 2337_CR10 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-019-1846-1 – ident: 2337_CR95 doi: 10.1088/1674-1056/ab9289 – volume: 267 start-page: 69 year: 2014 ident: 2337_CR108 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.05.066 – ident: 2337_CR43 doi: 10.1039/tf9484400796 – volume: 742 start-page: 1002 year: 2018 ident: 2337_CR74 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.12.283 – volume: 33 start-page: 3754 issue: 14 year: 2008 ident: 2337_CR87 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.04.042 – volume: 40 start-page: 3195 issue: 11 year: 2021 ident: 2337_CR125 publication-title: Rare Met. doi: 10.1007/s12598-021-01764-7 – volume: 89 start-page: 163 issue: 1 year: 1983 ident: 2337_CR62 publication-title: J. Less Common Met. doi: 10.1016/0022-5088(83)90262-X – ident: 2337_CR49 doi: 10.1016/j.cej.2020.127844 – volume: 8 start-page: 461 issue: 2 year: 2020 ident: 2337_CR97 publication-title: J. Magnesium Alloys doi: 10.1016/j.jma.2019.06.006 – volume: 28 start-page: 1399 issue: 3P2 year: 1995 ident: 2337_CR70 publication-title: Fusion Technol. doi: 10.13182/FST95-A30607 – volume: 41 start-page: 11242 issue: 26 year: 2016 ident: 2337_CR19 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.04.083 – volume: 28 start-page: 981 issue: 6 year: 2021 ident: 2337_CR8 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-020-2019-y – volume: 104 start-page: 229 issue: 4–6 year: 1977 ident: 2337_CR109 publication-title: Z. Phys. Chem. doi: 10.1524/zpch.1977.104.4-6.229 – volume: 172–174 start-page: 1036 year: 1991 ident: 2337_CR71 publication-title: J. Less Common Met. doi: 10.1016/S0022-5088(06)80009-3 – volume: 45 start-page: 33832 issue: 58 year: 2020 ident: 2337_CR32 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.09.144 – volume: 131 start-page: 1862 issue: 5 year: 2009 ident: 2337_CR72 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja806565t – volume: 89 start-page: 164 issue: 1 year: 2012 ident: 2337_CR53 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.06.015 – volume: 685 start-page: 272 year: 2016 ident: 2337_CR123 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.05.286 – ident: 2337_CR6 doi: 10.1016/j.cej.2020.126115 – volume: 41 start-page: 1899 issue: 11 year: 2012 ident: 2337_CR65 publication-title: Rare Met. Mater. Eng. doi: 10.1016/S1875-5372(13)60018-1 – ident: 2337_CR84 doi: 10.1016/j.jallcom.2020.158163 – volume: 20 start-page: 29 issue: 1 year: 1995 ident: 2337_CR63 publication-title: Int. J. Hydrogen Energy doi: 10.1016/0360-3199(93)E0011-9 – volume: 9 start-page: 647 issue: 2 year: 2021 ident: 2337_CR96 publication-title: J. Magnesium Alloys doi: 10.1016/j.jma.2020.02.029 – volume: 34 start-page: 2010 issue: 6 year: 1961 ident: 2337_CR42 publication-title: J. Chem. Phys. doi: 10.1063/1.1731812 – volume: 387 start-page: 86 issue: 1–2 year: 2005 ident: 2337_CR103 publication-title: J. Alloys Compd. – ident: 2337_CR15 doi: 10.1088/1361-6528/aabcf3 – volume: 46 start-page: 91 issue: 1 year: 1976 ident: 2337_CR76 publication-title: J. Less Common Met. doi: 10.1016/0022-5088(76)90182-X – volume: 153 start-page: 89 issue: 1 year: 1989 ident: 2337_CR78 publication-title: J. Less Common Met. doi: 10.1016/0022-5088(89)90536-5 – volume: 89 start-page: 93 issue: 1 year: 1983 ident: 2337_CR38 publication-title: J. Less Common Met. doi: 10.1016/0022-5088(83)90253-9 – volume: 8 start-page: 832 issue: 3 year: 2020 ident: 2337_CR99 publication-title: J. Magnesium Alloys doi: 10.1016/j.jma.2020.04.002 – volume: 153 start-page: 1140 year: 2020 ident: 2337_CR92 publication-title: Renew. Energy doi: 10.1016/j.renene.2020.02.035 – volume: 30 start-page: 301 issue: 3 year: 2005 ident: 2337_CR20 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2004.04.006 – ident: 2337_CR98 doi: 10.1016/j.jallcom.2020.154865 – volume: 40 start-page: 13518 issue: 39 year: 2015 ident: 2337_CR81 publication-title: J. Alloys Compd. – volume: 372 start-page: 218 issue: 1–2 year: 2004 ident: 2337_CR122 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2003.08.108 – volume: 35 start-page: 7842 issue: 15 year: 2010 ident: 2337_CR22 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.05.073 – volume: 127 start-page: 102 year: 2017 ident: 2337_CR114 publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2016.09.011 – volume: 37 start-page: 8395 issue: 10 year: 2012 ident: 2337_CR128 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.02.117 – volume: 297 start-page: 261 issue: 1–2 year: 2000 ident: 2337_CR127 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(99)00592-7 – volume: 34 start-page: 1699 issue: 9 year: 2018 ident: 2337_CR82 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.01.007 – volume: 38 start-page: 8881 issue: 21 year: 2013 ident: 2337_CR107 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.05.027 – volume: 191 start-page: 5 issue: 1 year: 1993 ident: 2337_CR83 publication-title: J. Alloys Compd. doi: 10.1016/0925-8388(93)90262-L – volume: 89 start-page: 111 issue: 1 year: 1983 ident: 2337_CR75 publication-title: J. Less Common Met. doi: 10.1016/0022-5088(83)90254-0 – volume: 44 start-page: 23179 issue: 41 year: 2019 ident: 2337_CR106 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.06.191 – volume: 44 start-page: 16765 issue: 31 year: 2019 ident: 2337_CR116 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.04.281 – volume: 41 start-page: 17421 issue: 39 year: 2016 ident: 2337_CR94 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.07.077 – volume: 21 start-page: 479 issue: 6 year: 1996 ident: 2337_CR50 publication-title: Int. J. Hydrogen Energy doi: 10.1016/0360-3199(95)00111-5 – volume: 399 start-page: 101 issue: 1–2 year: 2005 ident: 2337_CR26 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2005.03.010 – volume: 8 start-page: 1 issue: 1 year: 2020 ident: 2337_CR36 publication-title: J. Magnesium Alloys doi: 10.1016/j.jma.2020.02.003 – volume: 27 start-page: 472 issue: 4 year: 2020 ident: 2337_CR11 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-019-1913-7 – volume: 253–254 start-page: 529 year: 1997 ident: 2337_CR35 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(96)03070-8 – ident: 2337_CR51 doi: 10.1016/j.applthermaleng.2019.114129 – volume: 278 start-page: 270 issue: 1–2 year: 1998 ident: 2337_CR58 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(98)00565-9 – volume: 21 start-page: 1 year: 1970 ident: 2337_CR40 publication-title: Adv. Catal. doi: 10.1016/S0360-0564(08)60563-5 – volume: 44 start-page: 24849 issue: 45 year: 2019 ident: 2337_CR126 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.07.247 – volume: 12 start-page: 1293 issue: 12 year: 2004 ident: 2337_CR60 publication-title: Intermetallics doi: 10.1016/j.intermet.2004.03.024 – volume: 7 start-page: 58 issue: 1 year: 2019 ident: 2337_CR27 publication-title: J. Magnesium Alloys doi: 10.1016/j.jma.2018.12.001 – volume: 45 start-page: 27434 issue: 51 year: 2020 ident: 2337_CR5 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.07.062 – volume: 45 start-page: 21588 issue: 41 year: 2020 ident: 2337_CR30 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.05.144 – volume: 45 start-page: 2084 issue: 3 year: 2020 ident: 2337_CR16 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.11.035 – volume: 110 start-page: 17315 issue: 35 year: 2006 ident: 2337_CR34 publication-title: J. Phys. Chem. B doi: 10.1021/jp062746a – volume: 41 start-page: 1725 issue: 3 year: 2016 ident: 2337_CR117 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.11.068 – volume: 43 start-page: 22391 issue: 49 year: 2018 ident: 2337_CR118 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.10.055 – volume: 615 start-page: S684 year: 2014 ident: 2337_CR104 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.11.159 – volume: 370 start-page: 123 issue: 1–2 year: 2004 ident: 2337_CR115 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2003.09.031 – volume: 37 start-page: 726 issue: 7 year: 2013 ident: 2337_CR124 publication-title: Int. J. Energy Res. doi: 10.1002/er.2980 – volume: 44 start-page: 6728 issue: 13 year: 2019 ident: 2337_CR55 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.01.148 – volume: 34 start-page: 7253 issue: 17 year: 2009 ident: 2337_CR80 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.06.075 – volume: 161 start-page: 271 year: 2015 ident: 2337_CR111 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.08.116 – volume: 37 start-page: 1321 issue: 7 year: 2002 ident: 2337_CR46 publication-title: J. Mater. Sci. doi: 10.1023/A:1014556109351 – volume: 28 start-page: 201 issue: 2 year: 2021 ident: 2337_CR9 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-020-1972-9 – volume: 506 start-page: 63 issue: 1 year: 2010 ident: 2337_CR24 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.07.016 – volume: 8 start-page: 117 issue: 2 year: 2019 ident: 2337_CR112 publication-title: Nanomater. Energy doi: 10.1680/jnaen.18.00019 – volume: 40 start-page: 3337 issue: 12 year: 2021 ident: 2337_CR37 publication-title: Rare Met. doi: 10.1007/s12598-021-01769-2 – volume: 97 start-page: 147 year: 2022 ident: 2337_CR113 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.04.044 – ident: 2337_CR4 doi: 10.1016/j.enconman.2019.112328 – volume: 79 start-page: 1122 year: 2017 ident: 2337_CR2 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2017.05.132 – volume: 40 start-page: 995 issue: 4 year: 2021 ident: 2337_CR13 publication-title: Rare Met. doi: 10.1007/s12598-018-1087-x – volume: 118 start-page: 7808 issue: 15 year: 2014 ident: 2337_CR105 publication-title: J. Phys. Chem. C doi: 10.1021/jp500439n – ident: 2337_CR89 doi: 10.1016/j.jallcom.2020.154402 – volume: 39 start-page: 14033 issue: 26 year: 2014 ident: 2337_CR102 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.07.016 – volume: 35 start-page: 9879 issue: 18 year: 2010 ident: 2337_CR88 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.10.004 – volume: 29 start-page: 843 issue: 8 year: 2004 ident: 2337_CR66 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2003.10.002 – volume: 27 start-page: 391 issue: 3 year: 2020 ident: 2337_CR3 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-019-1880-z – volume: 36 start-page: 12892 issue: 20 year: 2011 ident: 2337_CR25 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.06.145 – volume: 40 start-page: 765 issue: 5 year: 1978 ident: 2337_CR110 publication-title: J. Inorg. Nucl. Chem. doi: 10.1016/0022-1902(78)80147-X – volume: 291 start-page: 295 issue: 1–2 year: 1999 ident: 2337_CR67 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(99)00268-6 – volume: 196 start-page: 63 issue: 1–2 year: 1993 ident: 2337_CR85 publication-title: J. Alloys Compd. doi: 10.1016/0925-8388(93)90571-4 – volume: 6 start-page: 318 issue: 3 year: 2018 ident: 2337_CR100 publication-title: J. Magnesium Alloys doi: 10.1016/j.jma.2018.05.007 – volume: 15 start-page: 767 issue: 5–6 year: 2007 ident: 2337_CR33 publication-title: Intermetallics doi: 10.1016/j.intermet.2006.10.004 – volume: 23 start-page: 349 issue: 5 year: 1998 ident: 2337_CR59 publication-title: Int. J. Hydrogen Energy doi: 10.1016/S0360-3199(97)00050-5 – ident: 2337_CR7 doi: 10.1016/j.apenergy.2020.115682 |
SSID | ssj0067707 |
Score | 2.6160412 |
SecondaryResourceType | review_article |
Snippet | High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks. The analysis of the hydrogen... |
SourceID | wanfang proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 32 |
SubjectTerms | Absorption Alloys Ceramics Characterization and Evaluation of Materials Chemical reactions Chemisorption Chemistry and Materials Science Composites Corrosion and Coatings Desorption Glass Hydrogen Hydrogen storage materials Invited Review Materials Science Mathematical models Measurement methods Metallic Materials Natural Materials Nucleation Parameters Pressure effects Storage tanks Surfaces and Interfaces Temperature effects Thin Films Tribology |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu8AB8RSDgXLYCVTRdxsuaCCmCQRCCCRuVZ6ggdqxDQn-PXabtnDZLVGdtHLSz44d24QMWAhijWN6PM7ggKJd6TA4ZzgxyIdAgjwLOdoh7-7j8XN48xK9WIPb3F6rrDGxBGpVSLSRn2FVpdgN0ji5mH46WDUKvau2hMYq6QIEp2mHdC-v7x8eayyOk6QMmMar9mhDYrVfswyeg8MD-jA9Bz4LoPq_ZGrVzcZDWsb15Ibnr39E0GiTbFjdkQ6rxd4iKzrfJut_MgruEH4Lbcy8TAtDQbejbz9qVsAmoVzMi1mJD5TniirddKdVrIAuxzT0eGsSsIaiY_5nfk6HtIpy2SVPo-unq7Fjqyg4EpSrhcNcI_2Ec09wIaVrkgg9hb7mITBAhoE2MQf0FVpAmzFlGCgJKoSO9kWYBnukkxe53ic08QzzhAtzhKC1eJLHPosiJaWRghtlesStGZhJm2EcC118ZG1uZOR5BjzPkOdZ2iMnzZBplV5jGXG_XpXM_mnzrN0XPXJar1T7eMlkA7uYLbGYvE_U97fItI8ByDAwOFj-zkOyhqSVTaZPOovZlz4CLWUhju1W_AVr5uPz priority: 102 providerName: ProQuest |
Title | Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review |
URI | https://link.springer.com/article/10.1007/s12613-021-2337-8 https://www.proquest.com/docview/2920603867 https://d.wanfangdata.com.cn/periodical/bjkjdxxb-e202201003 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5se9GD-MRqLTn0pCzsextvq_SBxSLSQj0tSTZRqmxLW6H990720a0ggqfNspk5zGRnvmQeAWhRF90a0-3xGMUNijSFQXGfYfjoHxyB_sxl-hzyaej3x-7jxJvkddzLItu9CEmmlrosdkOwr2OOloFs0LRWoObh1l3ncY3tsDC_fhCkNdI6u14fG9EilPkbi5_OqESY26BoWsqTKJa87Xid7hEc5nCRhJl-j2FPJidwsNNE8BTYAMe62TKZKYJwjrxv4sUM1wVhfDlbpCaBsCQmsdy-zrPyAJnSbOfrREk0L0TH4jfLOxKSrLDlDEbdzuihb-QXJxgC8dTKoKYSdsCYxRkXwlSBp4ODtmQuCkC4jlQ-Q4PLJccxpbGiiAtiF1-kzd22cw7VZJbICyCBpajFTeThIlCxBPNt6nmxEEpwpmJVB7MQYCTypuL6bovPqGyHrGUeocwjLfOoXYebLck866jx1-RGoZUo_7mWkb5gyzedth_U4bbQVPn5D2atXJnlZD79mMbrNY-krWuOkdC5_BfTK9jXlNmpTAOqq8WXvEacsuJNqLS7vSbUwt7roIPP-87w-aWZrtZvE_fjHA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LThsxcAT0AByqPkCkpdQHuBSt2IezG1eqKkSbBgKcgsTN8hOUVrshSVXyUf3HzuwjSy-5cbO1Hq80Hs_TMwNwKDiKNUXl8ZRAA8WFJhBoZwQpyofEoDzjivyQV9fp4IZf3HZv1-BvkwtDzyobnlgyalsY8pGfUFelNEx6afZ18hBQ1yiKrjYtNCqyGLrFHzTZZl_Ov-H5HsVx__vobBDUXQUCg8rGPBChN3GmVKSVNib0WZciZ7FTPIpTwxPnU4XcSDuNYyGsFyg0LceJizXvJbjtOrzgCQpySkzv_2gYf5plZXY2vesnh5Vogqhlph5aKhQwjQLEAcqF_8Vgq9suw7FlElHuVX73RN71X8HLWlFlpxVlvYY1l7-B7SflC9-CGuKYyjyzwjNUJNn9wk4LpEim9KyYlsyIqdwy65bTSZWY4EqY5Xp6oomMjdErgMXsMztlVUrNDoyeA7m7sJEXudsDlkVeRDrEPTiqSJFRaSy6XWuMN1p56zsQNgiUpi5nTl01fsm2EDPhXCLOJeFc9jrwaQkyqWp5rFq835yKrK_1TLZE2IHj5qTazys2O6wPs12sxz_H9vFRSxdTtjMCJu9W__MjbA5GV5fy8vx6-B62CKxyBu3Dxnz6231A9WiuD0qiZCCf-RL8AxgIILI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xkCp6QEBBhNLiA1xardiHsxsj9RBBIyAt4gASN8tPUKg2URJU8qf4jczsI0ulCokDN1trj1Yz9szYM98YYF9wNGuKyuMpgQcUF5pA4DkjSNE-JAbtGVd0D_n7Ij295uc37ZsFeKqxMEW2ex2SLDENVKUpnx6OrD9sgG_o-FP8MQqQJKrZKquy72Z_8cw2-XF2ggI-iOPez6vj06B6ViAw6G1MAxF6E2dKRVppY0KftSl0FjvFkarhifOpQnWknca2ENYLtJqWY8fFmncSJLsIy5ywx7h_ruNurfnTLCvg2ZTYTzdWoo6i_u-P_7WDjXM7j8cWKKLcq_z2hcHrrcFq5amybrm01mHB5Rvw8UX9wk-g-timOs9s6Bl6kuxuZsdDXJJM6clwXGgjpnLLrJt3RyUywRVz5uMpRxM1G6M0gNnkiHVZianZhKv3YO4WLOXD3G0DyyIvIh0iDY4-UmRUGot22xrjjVbe-haENQOlqeqZ07Maf2RTiZl4LpHnknguOy34Np8yKot5vDZ4t5aKrPb1RNLbXmmYdNKsBd9rSTWfXyG2XwmzGawH9wP7-KiliwnujBOTnTcR3YMPlyc9-evsov8ZVohIeTe0C0vT8YP7gt7SVH8tligD-c5b4hk58SF_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetics+of+the+hydrogen+absorption+and+desorption+processes+of+hydrogen+storage+alloys%3A+A+review&rft.jtitle=%E7%9F%BF%E7%89%A9%E5%86%B6%E9%87%91%E4%B8%8E%E6%9D%90%E6%96%99%E5%AD%A6%E6%8A%A5&rft.au=Qian+Li&rft.au=Xi+Lin&rft.au=Qun+Luo&rft.au=Yu%3Fan+Chen&rft.date=2022&rft.pub=National+Engineering+Research+Center+for+Magnesium+Alloys%2C+Chongqing+University%2C+Chongqing+400044%2C+China&rft.issn=1674-4799&rft.volume=29&rft.issue=1&rft.spage=32&rft.epage=48&rft_id=info:doi/10.1007%2Fs12613-021-2337-8&rft.externalDocID=bjkjdxxb_e202201003 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjkjdxxb-e%2Fbjkjdxxb-e.jpg |