Ab initio calculation of energy levels of trivalent lanthanide ions

The energy levels of Ln 3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f–f transitions in Ln 3+ complexes using group theory and simple semiempirical models: Russell–Saunders scheme for spin–orbit coupling, ligand-field theory for th...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 20; no. 21; pp. 14564 - 14577
Main Authors Freidzon, Alexandra Ya, Kurbatov, Ilia A., Vovna, Vitaliy I.
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The energy levels of Ln 3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f–f transitions in Ln 3+ complexes using group theory and simple semiempirical models: Russell–Saunders scheme for spin–orbit coupling, ligand-field theory for the splitting of the electronic levels, and Judd–Ofelt parameterization for reproducing the intensity of f–f transitions. Nevertheless, a fully ab initio computational scheme employing no empirical parameterization and suitable for any asymmetrical environment of Ln 3+ would be instructive. Here we present such a scheme based on the multireference SA-CASSCF/XMCQPDT2/SO-CASSCF (state-averaged complete active space SCF, quasi-degenerate perturbation theory, and spin–orbit CASSCF) approach for trivalent lanthanide ions from Ce 3+ (4f 1 ) to Yb 3+ (4f 13 ). To achieve the most accurate results, we analyse the factors that influence the accuracy of the calculation: basis set size, state averaging scheme, effect of the low-spin states on the energy gap between the high-spin states ( e.g. , effect of triplets on the septet–quintet gaps in f 6 or f 8 configurations), and radial and angular correlations in the 4f shell. Our calculated energy levels agree well with the experimental values. We have shown that low-lying highest-spin and second-highest spin states are reproduced very well, while for higher-lying states the accuracy of the calculation decreases. The procedure was verified by calculating optical emission spectra of NaYF 4 :Eu,Tb; YAG:Eu,Tb; and Tb(acac) 3 bpm (bpm is 2,2′-bipyridine, acac is acetylacetonate, and YAG is yttrium aluminium garnet). For these compounds ligand-field induced electric-dipole transition intensities were calculated.
AbstractList The energy levels of Ln3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f-f transitions in Ln3+ complexes using group theory and simple semiempirical models: Russell-Saunders scheme for spin-orbit coupling, ligand-field theory for the splitting of the electronic levels, and Judd-Ofelt parameterization for reproducing the intensity of f-f transitions. Nevertheless, a fully ab initio computational scheme employing no empirical parameterization and suitable for any asymmetrical environment of Ln3+ would be instructive. Here we present such a scheme based on the multireference SA-CASSCF/XMCQPDT2/SO-CASSCF (state-averaged complete active space SCF, quasi-degenerate perturbation theory, and spin-orbit CASSCF) approach for trivalent lanthanide ions from Ce3+ (4f1) to Yb3+ (4f13). To achieve the most accurate results, we analyse the factors that influence the accuracy of the calculation: basis set size, state averaging scheme, effect of the low-spin states on the energy gap between the high-spin states (e.g., effect of triplets on the septet-quintet gaps in f6 or f8 configurations), and radial and angular correlations in the 4f shell. Our calculated energy levels agree well with the experimental values. We have shown that low-lying highest-spin and second-highest spin states are reproduced very well, while for higher-lying states the accuracy of the calculation decreases. The procedure was verified by calculating optical emission spectra of NaYF4:Eu,Tb; YAG:Eu,Tb; and Tb(acac)3bpm (bpm is 2,2'-bipyridine, acac is acetylacetonate, and YAG is yttrium aluminium garnet). For these compounds ligand-field induced electric-dipole transition intensities were calculated.
The energy levels of Ln3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f-f transitions in Ln3+ complexes using group theory and simple semiempirical models: Russell-Saunders scheme for spin-orbit coupling, ligand-field theory for the splitting of the electronic levels, and Judd-Ofelt parameterization for reproducing the intensity of f-f transitions. Nevertheless, a fully ab initio computational scheme employing no empirical parameterization and suitable for any asymmetrical environment of Ln3+ would be instructive. Here we present such a scheme based on the multireference SA-CASSCF/XMCQPDT2/SO-CASSCF (state-averaged complete active space SCF, quasi-degenerate perturbation theory, and spin-orbit CASSCF) approach for trivalent lanthanide ions from Ce3+ (4f1) to Yb3+ (4f13). To achieve the most accurate results, we analyse the factors that influence the accuracy of the calculation: basis set size, state averaging scheme, effect of the low-spin states on the energy gap between the high-spin states (e.g., effect of triplets on the septet-quintet gaps in f6 or f8 configurations), and radial and angular correlations in the 4f shell. Our calculated energy levels agree well with the experimental values. We have shown that low-lying highest-spin and second-highest spin states are reproduced very well, while for higher-lying states the accuracy of the calculation decreases. The procedure was verified by calculating optical emission spectra of NaYF4:Eu,Tb; YAG:Eu,Tb; and Tb(acac)3bpm (bpm is 2,2'-bipyridine, acac is acetylacetonate, and YAG is yttrium aluminium garnet). For these compounds ligand-field induced electric-dipole transition intensities were calculated.The energy levels of Ln3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f-f transitions in Ln3+ complexes using group theory and simple semiempirical models: Russell-Saunders scheme for spin-orbit coupling, ligand-field theory for the splitting of the electronic levels, and Judd-Ofelt parameterization for reproducing the intensity of f-f transitions. Nevertheless, a fully ab initio computational scheme employing no empirical parameterization and suitable for any asymmetrical environment of Ln3+ would be instructive. Here we present such a scheme based on the multireference SA-CASSCF/XMCQPDT2/SO-CASSCF (state-averaged complete active space SCF, quasi-degenerate perturbation theory, and spin-orbit CASSCF) approach for trivalent lanthanide ions from Ce3+ (4f1) to Yb3+ (4f13). To achieve the most accurate results, we analyse the factors that influence the accuracy of the calculation: basis set size, state averaging scheme, effect of the low-spin states on the energy gap between the high-spin states (e.g., effect of triplets on the septet-quintet gaps in f6 or f8 configurations), and radial and angular correlations in the 4f shell. Our calculated energy levels agree well with the experimental values. We have shown that low-lying highest-spin and second-highest spin states are reproduced very well, while for higher-lying states the accuracy of the calculation decreases. The procedure was verified by calculating optical emission spectra of NaYF4:Eu,Tb; YAG:Eu,Tb; and Tb(acac)3bpm (bpm is 2,2'-bipyridine, acac is acetylacetonate, and YAG is yttrium aluminium garnet). For these compounds ligand-field induced electric-dipole transition intensities were calculated.
The energy levels of Ln 3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f–f transitions in Ln 3+ complexes using group theory and simple semiempirical models: Russell–Saunders scheme for spin–orbit coupling, ligand-field theory for the splitting of the electronic levels, and Judd–Ofelt parameterization for reproducing the intensity of f–f transitions. Nevertheless, a fully ab initio computational scheme employing no empirical parameterization and suitable for any asymmetrical environment of Ln 3+ would be instructive. Here we present such a scheme based on the multireference SA-CASSCF/XMCQPDT2/SO-CASSCF (state-averaged complete active space SCF, quasi-degenerate perturbation theory, and spin–orbit CASSCF) approach for trivalent lanthanide ions from Ce 3+ (4f 1 ) to Yb 3+ (4f 13 ). To achieve the most accurate results, we analyse the factors that influence the accuracy of the calculation: basis set size, state averaging scheme, effect of the low-spin states on the energy gap between the high-spin states ( e.g. , effect of triplets on the septet–quintet gaps in f 6 or f 8 configurations), and radial and angular correlations in the 4f shell. Our calculated energy levels agree well with the experimental values. We have shown that low-lying highest-spin and second-highest spin states are reproduced very well, while for higher-lying states the accuracy of the calculation decreases. The procedure was verified by calculating optical emission spectra of NaYF 4 :Eu,Tb; YAG:Eu,Tb; and Tb(acac) 3 bpm (bpm is 2,2′-bipyridine, acac is acetylacetonate, and YAG is yttrium aluminium garnet). For these compounds ligand-field induced electric-dipole transition intensities were calculated.
Author Kurbatov, Ilia A.
Vovna, Vitaliy I.
Freidzon, Alexandra Ya
Author_xml – sequence: 1
  givenname: Alexandra Ya
  orcidid: 0000-0002-7473-7692
  surname: Freidzon
  fullname: Freidzon, Alexandra Ya
  organization: Photochemistry Center, Russian Academy of Sciences, Moscow, Russia, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
– sequence: 2
  givenname: Ilia A.
  orcidid: 0000-0002-4913-8452
  surname: Kurbatov
  fullname: Kurbatov, Ilia A.
  organization: Far Eastern Federal University, Vladivostok, Russia
– sequence: 3
  givenname: Vitaliy I.
  orcidid: 0000-0002-8234-4039
  surname: Vovna
  fullname: Vovna, Vitaliy I.
  organization: Far Eastern Federal University, Vladivostok, Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29766167$$D View this record in MEDLINE/PubMed
BookMark eNpt0F1LwzAUBuAgE-emN_4AKXgjwjRp2qS5HMUvGOiFXpc0PdWMLJ1JOti_N3NzwvAqh_Ccw8s7QgPbWUDoguBbgqm4K3n5igvK2PQInZKM0YnARTbYz5wN0cj7OcaY5ISeoGEqOGOE8VNUTutEWx10lyhpVG9kHG3StQlYcB_rxMAKjN98BKdX0oANiZE2fEqrG0gi9mfouJXGw_nuHaP3h_u38mkye3l8LqeziaJ5GmKQhvG8YYTnQqRFJhRALVspOcFSQVMIVad1I3ihVEMUTjHFkhIpigxAFEDH6Hp7d-m6rx58qBbaKzAxDnS9r-KCKEQmSBrp1QGdd72zMV1UGc-ijI2N0eVO9fUCmmrp9EK6dfVbTwQ3W6Bc572Ddk8IrjbdV3_dR4wPsNLhp87gpDb_rXwDZweEUw
CitedBy_id crossref_primary_10_1016_j_jssc_2024_124727
crossref_primary_10_1021_acs_inorgchem_1c01062
crossref_primary_10_1016_j_jlumin_2020_117675
crossref_primary_10_1039_D4TC04537H
crossref_primary_10_15328_cb1122
crossref_primary_10_1021_acs_jpcc_2c06637
crossref_primary_10_1016_j_ccr_2019_213146
crossref_primary_10_3390_molecules28010048
crossref_primary_10_1016_j_molstruc_2020_128815
crossref_primary_10_1016_j_jlumin_2023_120234
crossref_primary_10_1021_acs_inorgchem_0c00782
crossref_primary_10_1021_acs_jctc_9b00286
crossref_primary_10_1039_D3CP05959F
crossref_primary_10_1016_j_mtcomm_2021_102277
crossref_primary_10_1021_acs_jpca_8b12034
crossref_primary_10_1016_j_cryogenics_2022_103476
crossref_primary_10_1021_acsaom_4c00254
crossref_primary_10_1021_acs_inorgchem_9b02907
crossref_primary_10_1039_C9CP04038B
crossref_primary_10_3390_gels8100617
crossref_primary_10_1016_j_matt_2022_01_001
crossref_primary_10_1016_j_jlumin_2021_118456
crossref_primary_10_1021_acs_jctc_1c00776
crossref_primary_10_1007_s00269_024_01284_7
crossref_primary_10_1016_j_ceramint_2024_06_133
crossref_primary_10_1021_acs_inorgchem_2c01985
crossref_primary_10_1021_jacs_3c01968
crossref_primary_10_1016_j_dyepig_2020_108890
crossref_primary_10_1134_S0022476621020062
crossref_primary_10_2139_ssrn_4178393
crossref_primary_10_1039_D4TC00859F
crossref_primary_10_1016_j_mtcomm_2019_100665
crossref_primary_10_1002_slct_201803182
crossref_primary_10_1021_acs_jpca_9b11683
crossref_primary_10_1016_j_saa_2024_123944
crossref_primary_10_1021_acs_inorgchem_0c02956
crossref_primary_10_1021_acs_inorgchem_8b03354
Cites_doi 10.1088/0953-4075/34/12/307
10.5185/amlett.2014.amwc1033
10.1021/cr010287y
10.1063/1.3592148
10.1016/j.jnoncrysol.2008.09.022
10.1146/annurev.physchem.49.1.233
10.1016/S0166-1280(01)00751-5
10.1103/PhysRevA.64.042502
10.1016/j.mseb.2013.10.008
10.1007/BF00528565
10.1070/RC2002v071n05ABEH000717
10.1021/ic701805t
10.1063/1.4790166
10.1016/j.solener.2011.06.007
10.1080/00268978700101361
10.1021/cr2001383
10.1063/1.3359854
10.1021/jp4098809
10.1016/S0009-2614(98)00120-1
10.1063/1.2137315
10.1021/acs.jpca.6b07258
10.1063/1.4932388
10.1007/978-3-642-40766-6
10.1016/j.cplett.2010.03.003
10.1021/ic302735j
10.1016/j.solener.2011.07.014
10.1063/1.481136
10.1039/C0AN00808G
10.1007/978-3-642-57890-8
10.1021/ct200597h
10.1021/ba-1967-0071.ch008
10.1039/C6DT03734H
10.1039/C4TB01206B
10.1088/0953-4075/34/4/310
10.1063/1.432708
10.1021/ct100478d
10.1063/1.4827638
10.1021/ic049920z
10.1063/1.3596699
10.1039/C5DT00549C
10.1016/j.jlumin.2013.08.066
10.1007/BF01112983
10.1039/c2dt30650f
10.1016/S0166-1280(98)00167-5
10.1002/jcc.540141112
10.1098/rsta.2012.0476
10.1063/1.3276157
10.1021/ic048951r
10.1063/1.2353829
10.1063/1.4862495
10.1007/s40145-016-0208-y
10.1088/0953-4075/33/18/312
10.1063/1.3583367
10.1103/PhysRev.127.750
10.1021/acs.jpcc.7b01902
10.1139/v95-080
10.1016/j.jlumin.2012.10.035
10.1007/BF00528018
10.1063/1.1784778
10.1021/jp509492e
10.1016/j.ccr.2015.02.015
10.1063/1.438197
10.1021/acs.inorgchem.6b00244
10.1063/1.3039794
10.1016/j.nuclphysa.2015.06.017
10.1016/j.cplett.2011.01.077
10.1080/0144235032000101743
10.1016/S0010-8545(99)00054-5
10.1063/1.2404666
10.1038/283281a0
10.1103/PhysRevA.57.1721
10.1063/1.2920188
10.1039/C3DT53512F
10.1021/ic060149x
10.1002/app.20771
10.1039/FT9969201835
10.1063/1.461987
10.1021/ar100129p
10.1021/ic00114a036
10.1002/adom.201600556
10.1364/OL.41.005708
10.1063/1.456066
10.1039/C6CP02325H
10.1016/S0254-0584(01)00299-1
10.1021/jp9049507
10.1364/OL.41.001189
10.1016/0022-2852(87)90287-6
10.1039/C6CP05284C
10.1007/s00214-014-1517-2
10.1063/1.1753928
10.1007/s11172-015-1066-4
10.3184/003685005783238435
10.1021/ct400865b
10.1039/C4CP02260B
10.1016/j.ica.2013.04.006
10.1016/0009-2614(92)85581-T
10.1039/c0nj00969e
10.1016/j.saa.2016.12.004
10.1021/jp111303a
10.1063/1.1337864
10.1039/b406082m
10.1063/1.1701366
10.1002/jcc.10098
10.1007/s00214-012-1230-y
10.1016/S0022-2313(96)00126-3
10.1016/j.chemphys.2011.06.032
10.1007/978-3-642-40364-4
10.1063/1.466809
10.1021/j100002a023
10.1021/jp100607y
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/C7CP08366A
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 14577
ExternalDocumentID 29766167
10_1039_C7CP08366A
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c352t-90d675d6175992849ceebafaa710aced89cb2bd978ccd1c02030a31a984ee98e3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 13:22:36 EDT 2025
Mon Jun 30 07:05:42 EDT 2025
Mon Jul 21 05:55:43 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
Tue Jul 01 01:55:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-90d675d6175992849ceebafaa710aced89cb2bd978ccd1c02030a31a984ee98e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7473-7692
0000-0002-4913-8452
0000-0002-8234-4039
PMID 29766167
PQID 2047403908
PQPubID 2047499
PageCount 14
ParticipantIDs proquest_miscellaneous_2039894912
proquest_journals_2047403908
pubmed_primary_29766167
crossref_primary_10_1039_C7CP08366A
crossref_citationtrail_10_1039_C7CP08366A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References de Andrade (C7CP08366A-(cit31)/*[position()=1]) 1996; 92
Sørensen (C7CP08366A-(cit37)/*[position()=1]) 2011; 134
Moriyama (C7CP08366A-(cit42)/*[position()=1]) 2010; 132
Granovsky (C7CP08366A-(cit89)/*[position()=1])
Wang (C7CP08366A-(cit14)/*[position()=1]) 2011; 85
Liu (C7CP08366A-(cit77)/*[position()=1]) 1998; 57
Barandiarán (C7CP08366A-(cit123)/*[position()=1]) 2015; 143
Barandiarán (C7CP08366A-(cit124)/*[position()=1]) 2015
Yawalkar (C7CP08366A-(cit135)/*[position()=1]) 2014; 5
Nakano (C7CP08366A-(cit98)/*[position()=1]) 1993; 99
Bunzli (C7CP08366A-(cit19)/*[position()=1]) 2005; 34
Granovsky (C7CP08366A-(cit96)/*[position()=1]) 2011; 134
Upasani (C7CP08366A-(cit129)/*[position()=1]) 2016; 5
Chen (C7CP08366A-(cit88)/*[position()=1]) 2016; 4
Jayasankar (C7CP08366A-(cit114)/*[position()=1]) 1987; 61
Kalinowski (C7CP08366A-(cit15)/*[position()=1]) 2005
Fedorov (C7CP08366A-(cit101)/*[position()=1]) 2000; 112
Werts (C7CP08366A-(cit7)/*[position()=1]) 2005; 88
Bauschlieher (C7CP08366A-(cit115)/*[position()=1]) 1988; 74
Yamamoto (C7CP08366A-(cit40)/*[position()=1]) 2008; 129
Hatanaka (C7CP08366A-(cit83)/*[position()=1]) 2011; 504
Kharchenko (C7CP08366A-(cit33)/*[position()=1]) 2017; 174
Malta (C7CP08366A-(cit74)/*[position()=1]) 2002; 282
Malta (C7CP08366A-(cit72)/*[position()=1]) 1997; 71
Huzinaga (C7CP08366A-(cit55)/*[position()=1]) 1995; 73
Mosyagin (C7CP08366A-(cit62)/*[position()=1]) 2017; 20
Eliav (C7CP08366A-(cit49)/*[position()=1]) 2017
Janicki (C7CP08366A-(cit75)/*[position()=1]) 2016; 18
Van den Heuvel (C7CP08366A-(cit86)/*[position()=1]) 2016; 18
Coreno (C7CP08366A-(cit24)/*[position()=1]) 2014; 43
Smentek (C7CP08366A-(cit52)/*[position()=1]) 2000; 33
Sauri (C7CP08366A-(cit121)/*[position()=1]) 2011; 7
Witek (C7CP08366A-(cit99)/*[position()=1]) 2002; 23
Sakai (C7CP08366A-(cit126)/*[position()=1]) 1998; 451
Christiansen (C7CP08366A-(cit57)/*[position()=1]) 1979; 71
Infante (C7CP08366A-(cit47)/*[position()=1]) 2004; 121
Malmqvist (C7CP08366A-(cit119)/*[position()=1]) 2008; 128
Ross (C7CP08366A-(cit58)/*[position()=1]) 1994; 100
Koseki (C7CP08366A-(cit102)/*[position()=1]) 1987; 123
Dolg (C7CP08366A-(cit30)/*[position()=1]) 1993; 85
Potdevin (C7CP08366A-(cit130)/*[position()=1]) 2010; 490
Dolg (C7CP08366A-(cit29)/*[position()=1]) 1989; 75
Feltham (C7CP08366A-(cit1)/*[position()=1]) 2013; 52
Fratini (C7CP08366A-(cit133)/*[position()=1]) 2008; 47
de Jong (C7CP08366A-(cit125)/*[position()=1]) 2017; 121
Fleig (C7CP08366A-(cit28)/*[position()=1]) 2012; 395
Hebbink (C7CP08366A-(cit9)/*[position()=1]) 2002
Shinoda (C7CP08366A-(cit18)/*[position()=1]) 2011; 136
Yamamoto (C7CP08366A-(cit43)/*[position()=1]) 2012; 131
Peverati (C7CP08366A-(cit80)/*[position()=1]) 2014; 372
Wang (C7CP08366A-(cit8)/*[position()=1]) 2016
Reisfeld (C7CP08366A-(cit11)/*[position()=1]) 1980; 283
Hatanaka (C7CP08366A-(cit84)/*[position()=1]) 2014; 133
Schmidt (C7CP08366A-(cit91)/*[position()=1]) 1998; 49
Martin (C7CP08366A-(cit70)/*[position()=1])
Dutra (C7CP08366A-(cit67)/*[position()=1]) 2013; 117
Pascual (C7CP08366A-(cit122)/*[position()=1]) 2014; 145
Dhers (C7CP08366A-(cit3)/*[position()=1]) 2016; 45
Chen (C7CP08366A-(cit12)/*[position()=1]) 2001; 72
Barandiaran (C7CP08366A-(cit81)/*[position()=1]) 2013; 138
Klobukowski (C7CP08366A-(cit56)/*[position()=1]) 1999
Yamamoto (C7CP08366A-(cit41)/*[position()=1]) 2011; 134
Mullen (C7CP08366A-(cit16)/*[position()=1]) 2006
Seth (C7CP08366A-(cit78)/*[position()=1]) 2001; 34
Dolg (C7CP08366A-(cit61)/*[position()=1]) 2017
Andersson (C7CP08366A-(cit116)/*[position()=1]) 1992; 191
Roos (C7CP08366A-(cit92)/*[position()=1]) 1983
Zucchi (C7CP08366A-(cit109)/*[position()=1])
Song (C7CP08366A-(cit128)/*[position()=1]) 2014; 16
Fedorov (C7CP08366A-(cit100)/*[position()=1]) 2003; 22
Singh (C7CP08366A-(cit5)/*[position()=1]) 2016; 41
Eliav (C7CP08366A-(cit48)/*[position()=1]) 2015; 944
Roos (C7CP08366A-(cit93)/*[position()=1]) 1994
Grzechnik (C7CP08366A-(cit107)/*[position()=1]) 2012; 41
Pierloot (C7CP08366A-(cit117)/*[position()=1]) 2005
Kotzian (C7CP08366A-(cit71)/*[position()=1]) 1995; 99
Granovsky (C7CP08366A-(cit97)/*[position()=1])
Romanova (C7CP08366A-(cit35)/*[position()=1]) 2014; 118
Fedorov (C7CP08366A-(cit106)/*[position()=1]) 2001; 64
Rino (C7CP08366A-(cit132)/*[position()=1]) 2008; 354
Cao (C7CP08366A-(cit59)/*[position()=1]) 2015
Wang (C7CP08366A-(cit13)/*[position()=1]) 2011; 85
Martin (C7CP08366A-(cit110)/*[position()=1]) 2001; 114
Parra (C7CP08366A-(cit131)/*[position()=1]) 2004; 94
Piquer (C7CP08366A-(cit2)/*[position()=1]) 2015; 44
Teterin (C7CP08366A-(cit26)/*[position()=1]) 2002; 71
Bellusci (C7CP08366A-(cit134)/*[position()=1]) 2005; 44
Freidzon (C7CP08366A-(cit34)/*[position()=1]) 2011; 115
Hehlen (C7CP08366A-(cit66)/*[position()=1]) 2013; 136
Gusev (C7CP08366A-(cit136)/*[position()=1]) 2013; 406
Emelina (C7CP08366A-(cit36)/*[position()=1]) 2016; 120
Wang (C7CP08366A-(cit10)/*[position()=1]) 2011; 44
Kaltsoyannis (C7CP08366A-(cit76)/*[position()=1]) 1995; 34
Vancoillie (C7CP08366A-(cit120)/*[position()=1]) 2011; 7
Carnall (C7CP08366A-(cit113)/*[position()=1]) 1976; 64
Chen (C7CP08366A-(cit51)/*[position()=1]) 2014
de Sá (C7CP08366A-(cit73)/*[position()=1]) 2000; 196
Aravena (C7CP08366A-(cit85)/*[position()=1]) 2016; 55
Visser (C7CP08366A-(cit39)/*[position()=1]) 1992; 96
Jarlborg (C7CP08366A-(cit25)/*[position()=1]) 2014; 26
Hubert (C7CP08366A-(cit45)/*[position()=1]) 2013; 139
Dolg (C7CP08366A-(cit54)/*[position()=1]) 1989; 90
Shepard (C7CP08366A-(cit94)/*[position()=1]) 1987; 69
Wang (C7CP08366A-(cit127)/*[position()=1]) 2014; 179
Cao (C7CP08366A-(cit103)/*[position()=1]) 2002; 581
Hatanaka (C7CP08366A-(cit82)/*[position()=1]) 2009; 113
Marian (C7CP08366A-(cit65)/*[position()=1]) 2012; 2
Binnemans (C7CP08366A-(cit22)/*[position()=1]) 2015; 295
Dieke (C7CP08366A-(cit111)/*[position()=1]) 1968
Dolg (C7CP08366A-(cit60)/*[position()=1]) 2012; 112
Pierloot (C7CP08366A-(cit118)/*[position()=1]) 2006; 125
Schimmelpfennig (C7CP08366A-(cit105)/*[position()=1]) 1998; 286
Greco (C7CP08366A-(cit32)/*[position()=1]) 2014; 10
Liu (C7CP08366A-(cit63)/*[position()=1]) 2017
Schmidt (C7CP08366A-(cit90)/*[position()=1]) 1993; 14
Ofelt (C7CP08366A-(cit69)/*[position()=1]) 1962; 37
Abe (C7CP08366A-(cit44)/*[position()=1]) 2006; 125
Roos (C7CP08366A-(cit95)/*[position()=1]) 1987; 69
Knecht (C7CP08366A-(cit38)/*[position()=1]) 2010; 132
Geusic (C7CP08366A-(cit4)/*[position()=1]) 1964; 4
Butturini (C7CP08366A-(cit17)/*[position()=1]) 2014; 2
Petit (C7CP08366A-(cit79)/*[position()=1]) 2006; 45
Yang (C7CP08366A-(cit87)/*[position()=1]) 2010; 114
C7CP08366A-(cit104)/*[position()=1]
Binnemans (C7CP08366A-(cit21)/*[position()=1]) 2002; 102
Vovna (C7CP08366A-(cit23)/*[position()=1]) 2015; 64
Gruen (C7CP08366A-(cit112)/*[position()=1]) 1967; 71
Kutzelnigg (C7CP08366A-(cit27)/*[position()=1]) 2005; 123
Dobrzycki (C7CP08366A-(cit108)/*[position()=1]) 2004; 43
Smentek (C7CP08366A-(cit53)/*[position()=1]) 2001; 34
Judd (C7CP08366A-(cit68)/*[position()=1]) 1962; 127
Eliseeva (C7CP08366A-(cit20)/*[position()=1]) 2011; 35
Su (C7CP08366A-(cit6)/*[position()=1]) 2016; 41
Marian (C7CP08366A-(cit64)/*[position()=1]) 2001
Knecht (C7CP08366A-(cit46)/*[position()=1]) 2014; 140
References_xml – volume: 34
  start-page: 2383
  year: 2001
  ident: C7CP08366A-(cit78)/*[position()=1]
  publication-title: J. Phys. B: At., Mol. Opt. Phys.
  doi: 10.1088/0953-4075/34/12/307
– volume: 5
  start-page: 678
  year: 2014
  ident: C7CP08366A-(cit135)/*[position()=1]
  publication-title: Adv. Mater. Lett.
  doi: 10.5185/amlett.2014.amwc1033
– volume: 26
  start-page: 155503
  year: 2014
  ident: C7CP08366A-(cit25)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– ident: C7CP08366A-(cit89)/*[position()=1]
– volume: 102
  start-page: 2303
  year: 2002
  ident: C7CP08366A-(cit21)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr010287y
– volume: 134
  start-page: 214102
  year: 2011
  ident: C7CP08366A-(cit37)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3592148
– volume: 354
  start-page: 5326
  year: 2008
  ident: C7CP08366A-(cit132)/*[position()=1]
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2008.09.022
– volume: 49
  start-page: 233
  year: 1998
  ident: C7CP08366A-(cit91)/*[position()=1]
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.49.1.233
– volume: 581
  start-page: 139
  year: 2002
  ident: C7CP08366A-(cit103)/*[position()=1]
  publication-title: THEOCHEM
  doi: 10.1016/S0166-1280(01)00751-5
– volume: 64
  start-page: 042502
  year: 2001
  ident: C7CP08366A-(cit106)/*[position()=1]
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.64.042502
– volume: 179
  start-page: 48
  year: 2014
  ident: C7CP08366A-(cit127)/*[position()=1]
  publication-title: Mater. Sci. Eng., B
  doi: 10.1016/j.mseb.2013.10.008
– volume: 75
  start-page: 173
  year: 1989
  ident: C7CP08366A-(cit29)/*[position()=1]
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF00528565
– volume: 71
  start-page: 347
  year: 2002
  ident: C7CP08366A-(cit26)/*[position()=1]
  publication-title: Russ. Chem. Rev.
  doi: 10.1070/RC2002v071n05ABEH000717
– volume: 47
  start-page: 1030
  year: 2008
  ident: C7CP08366A-(cit133)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic701805t
– volume: 138
  start-page: 074102
  year: 2013
  ident: C7CP08366A-(cit81)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4790166
– volume: 85
  start-page: 2179
  year: 2011
  ident: C7CP08366A-(cit14)/*[position()=1]
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.06.007
– volume: 61
  start-page: 635
  year: 1987
  ident: C7CP08366A-(cit114)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268978700101361
– volume: 112
  start-page: 403
  year: 2012
  ident: C7CP08366A-(cit60)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr2001383
– volume: 132
  start-page: 124310
  year: 2010
  ident: C7CP08366A-(cit42)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3359854
– volume: 117
  start-page: 14095
  year: 2013
  ident: C7CP08366A-(cit67)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp4098809
– volume: 286
  start-page: 261
  year: 1998
  ident: C7CP08366A-(cit105)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(98)00120-1
– volume: 123
  start-page: 241102
  year: 2005
  ident: C7CP08366A-(cit27)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2137315
– volume: 120
  start-page: 7529
  year: 2016
  ident: C7CP08366A-(cit36)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.6b07258
– volume: 143
  start-page: 144702
  year: 2015
  ident: C7CP08366A-(cit123)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4932388
– volume-title: Handbook of Relativistic Quantum Chemistry
  year: 2017
  ident: C7CP08366A-(cit63)/*[position()=1]
  doi: 10.1007/978-3-642-40766-6
– volume: 490
  start-page: 50
  year: 2010
  ident: C7CP08366A-(cit130)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2010.03.003
– volume: 52
  start-page: 3236
  year: 2013
  ident: C7CP08366A-(cit1)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic302735j
– volume: 85
  start-page: 2571
  year: 2011
  ident: C7CP08366A-(cit13)/*[position()=1]
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.07.014
– volume-title: Spectra and energy levels of rare earth ions in crystals
  year: 1968
  ident: C7CP08366A-(cit111)/*[position()=1]
– volume: 112
  start-page: 5611
  year: 2000
  ident: C7CP08366A-(cit101)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481136
– volume: 136
  start-page: 431
  year: 2011
  ident: C7CP08366A-(cit18)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/C0AN00808G
– volume-title: Lecture Notes in Quantum Chemistry
  year: 1994
  ident: C7CP08366A-(cit93)/*[position()=1]
  doi: 10.1007/978-3-642-57890-8
– volume: 7
  start-page: 3961
  year: 2011
  ident: C7CP08366A-(cit120)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200597h
– ident: C7CP08366A-(cit97)/*[position()=1]
– volume: 71
  start-page: 102
  year: 1967
  ident: C7CP08366A-(cit112)/*[position()=1]
  publication-title: Adv. Chem. Ser.
  doi: 10.1021/ba-1967-0071.ch008
– volume: 45
  start-page: 18089
  year: 2016
  ident: C7CP08366A-(cit3)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT03734H
– volume: 2
  start-page: 6639
  year: 2014
  ident: C7CP08366A-(cit17)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB01206B
– volume: 34
  start-page: 625
  year: 2001
  ident: C7CP08366A-(cit53)/*[position()=1]
  publication-title: J. Phys. B: At., Mol. Opt. Phys.
  doi: 10.1088/0953-4075/34/4/310
– volume-title: Reviews in Computational Chemistry
  year: 2001
  ident: C7CP08366A-(cit64)/*[position()=1]
– volume: 64
  start-page: 3582
  year: 1976
  ident: C7CP08366A-(cit113)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.432708
– volume: 7
  start-page: 153
  year: 2011
  ident: C7CP08366A-(cit121)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100478d
– volume: 139
  start-page: 194106
  year: 2013
  ident: C7CP08366A-(cit45)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4827638
– volume: 69
  start-page: 63
  year: 1987
  ident: C7CP08366A-(cit94)/*[position()=1]
  publication-title: Adv. Chem. Phys.
– volume: 43
  start-page: 7656
  year: 2004
  ident: C7CP08366A-(cit108)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic049920z
– volume: 134
  start-page: 214113
  year: 2011
  ident: C7CP08366A-(cit96)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3596699
– volume: 44
  start-page: 8771
  year: 2015
  ident: C7CP08366A-(cit2)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT00549C
– volume-title: Luminescent materials based on lanthanide ions. Basic properties and application in NIR-LEDs and optical amplifiers
  year: 2002
  ident: C7CP08366A-(cit9)/*[position()=1]
– volume-title: Methods in Computational Molecular Physics
  year: 1983
  ident: C7CP08366A-(cit92)/*[position()=1]
– volume: 145
  start-page: 808
  year: 2014
  ident: C7CP08366A-(cit122)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2013.08.066
– ident: C7CP08366A-(cit70)/*[position()=1]
– volume: 85
  start-page: 441
  year: 1993
  ident: C7CP08366A-(cit30)/*[position()=1]
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF01112983
– volume: 41
  start-page: 10258
  year: 2012
  ident: C7CP08366A-(cit107)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt30650f
– volume: 451
  start-page: 143
  year: 1998
  ident: C7CP08366A-(cit126)/*[position()=1]
  publication-title: J. Mol. Struct. THEOCHEM
  doi: 10.1016/S0166-1280(98)00167-5
– volume: 14
  start-page: 1347
  year: 1993
  ident: C7CP08366A-(cit90)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540141112
– volume: 372
  start-page: 20120476
  year: 2014
  ident: C7CP08366A-(cit80)/*[position()=1]
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2012.0476
– volume: 132
  start-page: 014108
  year: 2010
  ident: C7CP08366A-(cit38)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3276157
– volume: 44
  start-page: 1818
  year: 2005
  ident: C7CP08366A-(cit134)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic048951r
– volume: 125
  start-page: 124303
  year: 2006
  ident: C7CP08366A-(cit118)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2353829
– volume: 140
  start-page: 041101
  year: 2014
  ident: C7CP08366A-(cit46)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4862495
– volume: 99
  start-page: 7983
  year: 1993
  ident: C7CP08366A-(cit98)/*[position()=1]
  publication-title: Chem. Phys.
– volume: 5
  start-page: 344
  year: 2016
  ident: C7CP08366A-(cit129)/*[position()=1]
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-016-0208-y
– volume: 282
  start-page: 21
  year: 2002
  ident: C7CP08366A-(cit74)/*[position()=1]
  publication-title: J. Chem. Phys.
– volume: 33
  start-page: 3647
  year: 2000
  ident: C7CP08366A-(cit52)/*[position()=1]
  publication-title: J. Phys. B: At., Mol. Opt. Phys.
  doi: 10.1088/0953-4075/33/18/312
– volume: 134
  start-page: 164310
  year: 2011
  ident: C7CP08366A-(cit41)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3583367
– volume: 127
  start-page: 750
  year: 1962
  ident: C7CP08366A-(cit68)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.127.750
– volume: 121
  start-page: 10095
  year: 2017
  ident: C7CP08366A-(cit125)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b01902
– volume: 73
  start-page: 619
  year: 1995
  ident: C7CP08366A-(cit55)/*[position()=1]
  publication-title: Can. J. Chem.
  doi: 10.1139/v95-080
– volume: 136
  start-page: 221
  year: 2013
  ident: C7CP08366A-(cit66)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2012.10.035
– volume: 74
  start-page: 479
  year: 1988
  ident: C7CP08366A-(cit115)/*[position()=1]
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF00528018
– volume: 121
  start-page: 5783
  year: 2004
  ident: C7CP08366A-(cit47)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1784778
– volume: 118
  start-page: 11244
  year: 2014
  ident: C7CP08366A-(cit35)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp509492e
– volume: 295
  start-page: 1
  year: 2015
  ident: C7CP08366A-(cit22)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.02.015
– volume: 71
  start-page: 4445
  year: 1979
  ident: C7CP08366A-(cit57)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.438197
– volume: 55
  start-page: 4457
  year: 2016
  ident: C7CP08366A-(cit85)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b00244
– volume: 129
  start-page: 244505
  year: 2008
  ident: C7CP08366A-(cit40)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3039794
– volume: 944
  start-page: 518
  year: 2015
  ident: C7CP08366A-(cit48)/*[position()=1]
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2015.06.017
– volume: 504
  start-page: 193
  year: 2011
  ident: C7CP08366A-(cit83)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2011.01.077
– volume: 22
  start-page: 551
  year: 2003
  ident: C7CP08366A-(cit100)/*[position()=1]
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235032000101743
– volume: 196
  start-page: 165
  year: 2000
  ident: C7CP08366A-(cit73)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(99)00054-5
– volume-title: Computational Methods in Lanthanide and Actinide Chemistry
  year: 2015
  ident: C7CP08366A-(cit59)/*[position()=1]
– volume: 125
  start-page: 234110
  year: 2006
  ident: C7CP08366A-(cit44)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2404666
– volume: 283
  start-page: 281
  year: 1980
  ident: C7CP08366A-(cit11)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/283281a0
– volume-title: Organic Light-Emitting Diodes: Principles, Characteristics and Processes
  year: 2005
  ident: C7CP08366A-(cit15)/*[position()=1]
– volume: 57
  start-page: 1721
  year: 1998
  ident: C7CP08366A-(cit77)/*[position()=1]
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.57.1721
– volume: 128
  start-page: 204109
  year: 2008
  ident: C7CP08366A-(cit119)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2920188
– volume: 43
  start-page: 5134
  year: 2014
  ident: C7CP08366A-(cit24)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C3DT53512F
– volume: 45
  start-page: 7382
  year: 2006
  ident: C7CP08366A-(cit79)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic060149x
– volume: 94
  start-page: 865
  year: 2004
  ident: C7CP08366A-(cit131)/*[position()=1]
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.20771
– ident: C7CP08366A-(cit104)/*[position()=1]
– volume: 92
  start-page: 1835
  year: 1996
  ident: C7CP08366A-(cit31)/*[position()=1]
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/FT9969201835
– volume: 96
  start-page: 2901
  year: 1992
  ident: C7CP08366A-(cit39)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.461987
– volume: 44
  start-page: 322
  year: 2011
  ident: C7CP08366A-(cit10)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar100129p
– volume: 34
  start-page: 2135
  year: 1995
  ident: C7CP08366A-(cit76)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00114a036
– volume-title: Handbook of Relativistic Quantum Chemistry
  year: 2017
  ident: C7CP08366A-(cit49)/*[position()=1]
– volume: 4
  start-page: 1760
  issue: 11
  year: 2016
  ident: C7CP08366A-(cit88)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600556
– volume: 41
  start-page: 5708
  year: 2016
  ident: C7CP08366A-(cit6)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.005708
– volume: 90
  start-page: 1730
  year: 1989
  ident: C7CP08366A-(cit54)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456066
– volume: 18
  start-page: 15807
  year: 2016
  ident: C7CP08366A-(cit86)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP02325H
– volume: 72
  start-page: 11
  year: 2001
  ident: C7CP08366A-(cit12)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(01)00299-1
– volume-title: Organic Light Emitting Devices. Synthesis, Properties and Applications
  year: 2006
  ident: C7CP08366A-(cit16)/*[position()=1]
– volume: 113
  start-page: 12615
  year: 2009
  ident: C7CP08366A-(cit82)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9049507
– volume: 41
  start-page: 1189
  year: 2016
  ident: C7CP08366A-(cit5)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.001189
– volume: 123
  start-page: 392
  year: 1987
  ident: C7CP08366A-(cit102)/*[position()=1]
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(87)90287-6
– volume: 18
  start-page: 27808
  year: 2016
  ident: C7CP08366A-(cit75)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP05284C
– volume-title: Handbook of Relativistic Quantum Chemistry
  year: 2017
  ident: C7CP08366A-(cit61)/*[position()=1]
– volume: 133
  start-page: 1517
  year: 2014
  ident: C7CP08366A-(cit84)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-014-1517-2
– volume: 4
  start-page: 182
  year: 1964
  ident: C7CP08366A-(cit4)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1753928
– ident: C7CP08366A-(cit109)/*[position()=1]
– volume: 64
  start-page: 1701
  year: 2015
  ident: C7CP08366A-(cit23)/*[position()=1]
  publication-title: Russ. Chem. Bull., Int. Ed.
  doi: 10.1007/s11172-015-1066-4
– volume: 88
  start-page: 101
  year: 2005
  ident: C7CP08366A-(cit7)/*[position()=1]
  publication-title: Sci. Prog.
  doi: 10.3184/003685005783238435
– volume: 10
  start-page: 767
  year: 2014
  ident: C7CP08366A-(cit32)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400865b
– volume-title: Computational Photochemistry
  year: 2005
  ident: C7CP08366A-(cit117)/*[position()=1]
– volume: 69
  start-page: 339
  year: 1987
  ident: C7CP08366A-(cit95)/*[position()=1]
  publication-title: Adv. Chem. Phys.
– volume: 16
  start-page: 15139
  year: 2014
  ident: C7CP08366A-(cit128)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02260B
– volume: 406
  start-page: 279
  year: 2013
  ident: C7CP08366A-(cit136)/*[position()=1]
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2013.04.006
– volume-title: Computational Chemistry: reviews of current trends
  year: 1999
  ident: C7CP08366A-(cit56)/*[position()=1]
– volume: 191
  start-page: 507
  year: 1992
  ident: C7CP08366A-(cit116)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(92)85581-T
– volume: 35
  start-page: 1165
  year: 2011
  ident: C7CP08366A-(cit20)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/c0nj00969e
– volume: 174
  start-page: 297
  year: 2017
  ident: C7CP08366A-(cit33)/*[position()=1]
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2016.12.004
– volume: 115
  start-page: 4565
  year: 2011
  ident: C7CP08366A-(cit34)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp111303a
– volume: 114
  start-page: 3408
  year: 2001
  ident: C7CP08366A-(cit110)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1337864
– volume: 34
  start-page: 1048
  year: 2005
  ident: C7CP08366A-(cit19)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b406082m
– volume: 2
  start-page: 187
  year: 2012
  ident: C7CP08366A-(cit65)/*[position()=1]
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 37
  start-page: 511
  year: 1962
  ident: C7CP08366A-(cit69)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1701366
– volume: 23
  start-page: 957
  year: 2002
  ident: C7CP08366A-(cit99)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10098
– volume: 20
  start-page: 111
  year: 2017
  ident: C7CP08366A-(cit62)/*[position()=1]
  publication-title: Nonlinear Phenom. Complex Syst.
– volume: 131
  start-page: 1230
  year: 2012
  ident: C7CP08366A-(cit43)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-012-1230-y
– volume: 71
  start-page: 229
  year: 1997
  ident: C7CP08366A-(cit72)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/S0022-2313(96)00126-3
– volume: 395
  start-page: 2
  year: 2012
  ident: C7CP08366A-(cit28)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2011.06.032
– volume-title: Lanthanide-Doped Luminescent Nanomaterials: From Fundamentals to Bioapplications
  year: 2014
  ident: C7CP08366A-(cit51)/*[position()=1]
  doi: 10.1007/978-3-642-40364-4
– volume: 100
  start-page: 8145
  year: 1994
  ident: C7CP08366A-(cit58)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466809
– volume-title: Computational Methods in Lanthanide and Actinide Chemistry
  year: 2015
  ident: C7CP08366A-(cit124)/*[position()=1]
– volume: 99
  start-page: 600
  year: 1995
  ident: C7CP08366A-(cit71)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100002a023
– volume: 114
  start-page: 7117
  year: 2010
  ident: C7CP08366A-(cit87)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp100607y
– volume-title: Lanthanide-Based Near Infrared Nanomaterials for Bioimaging, in Near-infrared Nanomaterials: Preparation, Bioimaging and Therapy Applications
  year: 2016
  ident: C7CP08366A-(cit8)/*[position()=1]
SSID ssj0001513
Score 2.4308488
Snippet The energy levels of Ln 3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f–f transitions in Ln...
The energy levels of Ln3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f-f transitions in...
The energy levels of Ln3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f–f transitions in...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 14564
SubjectTerms Accuracy
Aluminum
Cerium
Emission spectra
Empirical analysis
Energy gap
Energy levels
Field theory
Group theory
Ligands
Parameterization
Perturbation theory
Yttrium
Yttrium-aluminum garnet
Title Ab initio calculation of energy levels of trivalent lanthanide ions
URI https://www.ncbi.nlm.nih.gov/pubmed/29766167
https://www.proquest.com/docview/2047403908
https://www.proquest.com/docview/2039894912
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swELe29GF7mbbuK1s3MW0vEyLjwwH7EaFW7TZNeUir7gkZ26hIEUyUVFr_-p2xMXRtpbYviBgTwt3l7ndn3x1CX8AMhAETkVeQZenhuIw9yhPmBXEZBBKTEou-2uev-PAYfz9dno7BnD67pCsW_PLGvJKHcBXGgK8qS_YenLVfCgNwDvyFI3AYjnficVq4ldr807hAaW4acSn4J3VG30btCOr3anRtBQ9W6_4bIOUZqyshXRuqM-B0NfCMD13g9Jka0hGQ8z6CsMoymxV20MpKXJrG1DpZpmXub6vsf2zbAvz6i14XbSrmpovh0klzoRPSTlTjkuqve7SYxiCuKEwcRx442Kac9XRMt34btGzoT6RJJ0UbnRmoijYTAwyfdWeXa9rdj1Rx1CzJVqqmdmzro44ltP8zbXbDYb_UHtF8vPcx2gnBswhnaCfdXx_9tOYbIFCkU9L0iw01bSP6bbz7Koq5xTXpIcr6OXpmfAsn1YLyAj2S9S56kg3MfImytHC0wDgTgXGa0tEC42iBUQNWYJxRYBwlMK_Q8cH-Ojv0TBcNjwO47uAdBDiFApDqklIAIxRgUcFKxgBbMi4FobwIC0ETwrkIuFqZ9lkUMEqwlJTI6DWa1U0t3yJnCZCHc7AKBGNcYsI45oIkklOA_QCe5-jrQJWcmxLzqtPJJr9O_zn6bOf-0YVVbpy1NxA3N3-88zz0cYJhnk_m6JO9DKRUa12sls1WzYlUawEahHP0RjPFPiYECB4HcfLuTj_hPXqqRF6H3fbQrGu38gMA0a74aETnH7YZhr4
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ab+initio+calculation+of+energy+levels+of+trivalent+lanthanide+ions&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Freidzon%2C+Alexandra+Ya&rft.au=Kurbatov%2C+Ilia+A.&rft.au=Vovna%2C+Vitaliy+I.&rft.date=2018&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=20&rft.issue=21&rft.spage=14564&rft.epage=14577&rft_id=info:doi/10.1039%2FC7CP08366A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7CP08366A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon