Ab initio calculation of energy levels of trivalent lanthanide ions
The energy levels of Ln 3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f–f transitions in Ln 3+ complexes using group theory and simple semiempirical models: Russell–Saunders scheme for spin–orbit coupling, ligand-field theory for th...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 20; no. 21; pp. 14564 - 14577 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The energy levels of Ln
3+
ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f–f transitions in Ln
3+
complexes using group theory and simple semiempirical models: Russell–Saunders scheme for spin–orbit coupling, ligand-field theory for the splitting of the electronic levels, and Judd–Ofelt parameterization for reproducing the intensity of f–f transitions. Nevertheless, a fully
ab initio
computational scheme employing no empirical parameterization and suitable for any asymmetrical environment of Ln
3+
would be instructive. Here we present such a scheme based on the multireference SA-CASSCF/XMCQPDT2/SO-CASSCF (state-averaged complete active space SCF, quasi-degenerate perturbation theory, and spin–orbit CASSCF) approach for trivalent lanthanide ions from Ce
3+
(4f
1
) to Yb
3+
(4f
13
). To achieve the most accurate results, we analyse the factors that influence the accuracy of the calculation: basis set size, state averaging scheme, effect of the low-spin states on the energy gap between the high-spin states (
e.g.
, effect of triplets on the septet–quintet gaps in f
6
or f
8
configurations), and radial and angular correlations in the 4f shell. Our calculated energy levels agree well with the experimental values. We have shown that low-lying highest-spin and second-highest spin states are reproduced very well, while for higher-lying states the accuracy of the calculation decreases. The procedure was verified by calculating optical emission spectra of NaYF
4
:Eu,Tb; YAG:Eu,Tb; and Tb(acac)
3
bpm (bpm is 2,2′-bipyridine, acac is acetylacetonate, and YAG is yttrium aluminium garnet). For these compounds ligand-field induced electric-dipole transition intensities were calculated. |
---|---|
AbstractList | The energy levels of Ln3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f-f transitions in Ln3+ complexes using group theory and simple semiempirical models: Russell-Saunders scheme for spin-orbit coupling, ligand-field theory for the splitting of the electronic levels, and Judd-Ofelt parameterization for reproducing the intensity of f-f transitions. Nevertheless, a fully ab initio computational scheme employing no empirical parameterization and suitable for any asymmetrical environment of Ln3+ would be instructive. Here we present such a scheme based on the multireference SA-CASSCF/XMCQPDT2/SO-CASSCF (state-averaged complete active space SCF, quasi-degenerate perturbation theory, and spin-orbit CASSCF) approach for trivalent lanthanide ions from Ce3+ (4f1) to Yb3+ (4f13). To achieve the most accurate results, we analyse the factors that influence the accuracy of the calculation: basis set size, state averaging scheme, effect of the low-spin states on the energy gap between the high-spin states (e.g., effect of triplets on the septet-quintet gaps in f6 or f8 configurations), and radial and angular correlations in the 4f shell. Our calculated energy levels agree well with the experimental values. We have shown that low-lying highest-spin and second-highest spin states are reproduced very well, while for higher-lying states the accuracy of the calculation decreases. The procedure was verified by calculating optical emission spectra of NaYF4:Eu,Tb; YAG:Eu,Tb; and Tb(acac)3bpm (bpm is 2,2'-bipyridine, acac is acetylacetonate, and YAG is yttrium aluminium garnet). For these compounds ligand-field induced electric-dipole transition intensities were calculated. The energy levels of Ln3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f-f transitions in Ln3+ complexes using group theory and simple semiempirical models: Russell-Saunders scheme for spin-orbit coupling, ligand-field theory for the splitting of the electronic levels, and Judd-Ofelt parameterization for reproducing the intensity of f-f transitions. Nevertheless, a fully ab initio computational scheme employing no empirical parameterization and suitable for any asymmetrical environment of Ln3+ would be instructive. Here we present such a scheme based on the multireference SA-CASSCF/XMCQPDT2/SO-CASSCF (state-averaged complete active space SCF, quasi-degenerate perturbation theory, and spin-orbit CASSCF) approach for trivalent lanthanide ions from Ce3+ (4f1) to Yb3+ (4f13). To achieve the most accurate results, we analyse the factors that influence the accuracy of the calculation: basis set size, state averaging scheme, effect of the low-spin states on the energy gap between the high-spin states (e.g., effect of triplets on the septet-quintet gaps in f6 or f8 configurations), and radial and angular correlations in the 4f shell. Our calculated energy levels agree well with the experimental values. We have shown that low-lying highest-spin and second-highest spin states are reproduced very well, while for higher-lying states the accuracy of the calculation decreases. The procedure was verified by calculating optical emission spectra of NaYF4:Eu,Tb; YAG:Eu,Tb; and Tb(acac)3bpm (bpm is 2,2'-bipyridine, acac is acetylacetonate, and YAG is yttrium aluminium garnet). For these compounds ligand-field induced electric-dipole transition intensities were calculated.The energy levels of Ln3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f-f transitions in Ln3+ complexes using group theory and simple semiempirical models: Russell-Saunders scheme for spin-orbit coupling, ligand-field theory for the splitting of the electronic levels, and Judd-Ofelt parameterization for reproducing the intensity of f-f transitions. Nevertheless, a fully ab initio computational scheme employing no empirical parameterization and suitable for any asymmetrical environment of Ln3+ would be instructive. Here we present such a scheme based on the multireference SA-CASSCF/XMCQPDT2/SO-CASSCF (state-averaged complete active space SCF, quasi-degenerate perturbation theory, and spin-orbit CASSCF) approach for trivalent lanthanide ions from Ce3+ (4f1) to Yb3+ (4f13). To achieve the most accurate results, we analyse the factors that influence the accuracy of the calculation: basis set size, state averaging scheme, effect of the low-spin states on the energy gap between the high-spin states (e.g., effect of triplets on the septet-quintet gaps in f6 or f8 configurations), and radial and angular correlations in the 4f shell. Our calculated energy levels agree well with the experimental values. We have shown that low-lying highest-spin and second-highest spin states are reproduced very well, while for higher-lying states the accuracy of the calculation decreases. The procedure was verified by calculating optical emission spectra of NaYF4:Eu,Tb; YAG:Eu,Tb; and Tb(acac)3bpm (bpm is 2,2'-bipyridine, acac is acetylacetonate, and YAG is yttrium aluminium garnet). For these compounds ligand-field induced electric-dipole transition intensities were calculated. The energy levels of Ln 3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f–f transitions in Ln 3+ complexes using group theory and simple semiempirical models: Russell–Saunders scheme for spin–orbit coupling, ligand-field theory for the splitting of the electronic levels, and Judd–Ofelt parameterization for reproducing the intensity of f–f transitions. Nevertheless, a fully ab initio computational scheme employing no empirical parameterization and suitable for any asymmetrical environment of Ln 3+ would be instructive. Here we present such a scheme based on the multireference SA-CASSCF/XMCQPDT2/SO-CASSCF (state-averaged complete active space SCF, quasi-degenerate perturbation theory, and spin–orbit CASSCF) approach for trivalent lanthanide ions from Ce 3+ (4f 1 ) to Yb 3+ (4f 13 ). To achieve the most accurate results, we analyse the factors that influence the accuracy of the calculation: basis set size, state averaging scheme, effect of the low-spin states on the energy gap between the high-spin states ( e.g. , effect of triplets on the septet–quintet gaps in f 6 or f 8 configurations), and radial and angular correlations in the 4f shell. Our calculated energy levels agree well with the experimental values. We have shown that low-lying highest-spin and second-highest spin states are reproduced very well, while for higher-lying states the accuracy of the calculation decreases. The procedure was verified by calculating optical emission spectra of NaYF 4 :Eu,Tb; YAG:Eu,Tb; and Tb(acac) 3 bpm (bpm is 2,2′-bipyridine, acac is acetylacetonate, and YAG is yttrium aluminium garnet). For these compounds ligand-field induced electric-dipole transition intensities were calculated. |
Author | Kurbatov, Ilia A. Vovna, Vitaliy I. Freidzon, Alexandra Ya |
Author_xml | – sequence: 1 givenname: Alexandra Ya orcidid: 0000-0002-7473-7692 surname: Freidzon fullname: Freidzon, Alexandra Ya organization: Photochemistry Center, Russian Academy of Sciences, Moscow, Russia, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) – sequence: 2 givenname: Ilia A. orcidid: 0000-0002-4913-8452 surname: Kurbatov fullname: Kurbatov, Ilia A. organization: Far Eastern Federal University, Vladivostok, Russia – sequence: 3 givenname: Vitaliy I. orcidid: 0000-0002-8234-4039 surname: Vovna fullname: Vovna, Vitaliy I. organization: Far Eastern Federal University, Vladivostok, Russia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29766167$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0F1LwzAUBuAgE-emN_4AKXgjwjRp2qS5HMUvGOiFXpc0PdWMLJ1JOti_N3NzwvAqh_Ccw8s7QgPbWUDoguBbgqm4K3n5igvK2PQInZKM0YnARTbYz5wN0cj7OcaY5ISeoGEqOGOE8VNUTutEWx10lyhpVG9kHG3StQlYcB_rxMAKjN98BKdX0oANiZE2fEqrG0gi9mfouJXGw_nuHaP3h_u38mkye3l8LqeziaJ5GmKQhvG8YYTnQqRFJhRALVspOcFSQVMIVad1I3ihVEMUTjHFkhIpigxAFEDH6Hp7d-m6rx58qBbaKzAxDnS9r-KCKEQmSBrp1QGdd72zMV1UGc-ijI2N0eVO9fUCmmrp9EK6dfVbTwQ3W6Bc572Ddk8IrjbdV3_dR4wPsNLhp87gpDb_rXwDZweEUw |
CitedBy_id | crossref_primary_10_1016_j_jssc_2024_124727 crossref_primary_10_1021_acs_inorgchem_1c01062 crossref_primary_10_1016_j_jlumin_2020_117675 crossref_primary_10_1039_D4TC04537H crossref_primary_10_15328_cb1122 crossref_primary_10_1021_acs_jpcc_2c06637 crossref_primary_10_1016_j_ccr_2019_213146 crossref_primary_10_3390_molecules28010048 crossref_primary_10_1016_j_molstruc_2020_128815 crossref_primary_10_1016_j_jlumin_2023_120234 crossref_primary_10_1021_acs_inorgchem_0c00782 crossref_primary_10_1021_acs_jctc_9b00286 crossref_primary_10_1039_D3CP05959F crossref_primary_10_1016_j_mtcomm_2021_102277 crossref_primary_10_1021_acs_jpca_8b12034 crossref_primary_10_1016_j_cryogenics_2022_103476 crossref_primary_10_1021_acsaom_4c00254 crossref_primary_10_1021_acs_inorgchem_9b02907 crossref_primary_10_1039_C9CP04038B crossref_primary_10_3390_gels8100617 crossref_primary_10_1016_j_matt_2022_01_001 crossref_primary_10_1016_j_jlumin_2021_118456 crossref_primary_10_1021_acs_jctc_1c00776 crossref_primary_10_1007_s00269_024_01284_7 crossref_primary_10_1016_j_ceramint_2024_06_133 crossref_primary_10_1021_acs_inorgchem_2c01985 crossref_primary_10_1021_jacs_3c01968 crossref_primary_10_1016_j_dyepig_2020_108890 crossref_primary_10_1134_S0022476621020062 crossref_primary_10_2139_ssrn_4178393 crossref_primary_10_1039_D4TC00859F crossref_primary_10_1016_j_mtcomm_2019_100665 crossref_primary_10_1002_slct_201803182 crossref_primary_10_1021_acs_jpca_9b11683 crossref_primary_10_1016_j_saa_2024_123944 crossref_primary_10_1021_acs_inorgchem_0c02956 crossref_primary_10_1021_acs_inorgchem_8b03354 |
Cites_doi | 10.1088/0953-4075/34/12/307 10.5185/amlett.2014.amwc1033 10.1021/cr010287y 10.1063/1.3592148 10.1016/j.jnoncrysol.2008.09.022 10.1146/annurev.physchem.49.1.233 10.1016/S0166-1280(01)00751-5 10.1103/PhysRevA.64.042502 10.1016/j.mseb.2013.10.008 10.1007/BF00528565 10.1070/RC2002v071n05ABEH000717 10.1021/ic701805t 10.1063/1.4790166 10.1016/j.solener.2011.06.007 10.1080/00268978700101361 10.1021/cr2001383 10.1063/1.3359854 10.1021/jp4098809 10.1016/S0009-2614(98)00120-1 10.1063/1.2137315 10.1021/acs.jpca.6b07258 10.1063/1.4932388 10.1007/978-3-642-40766-6 10.1016/j.cplett.2010.03.003 10.1021/ic302735j 10.1016/j.solener.2011.07.014 10.1063/1.481136 10.1039/C0AN00808G 10.1007/978-3-642-57890-8 10.1021/ct200597h 10.1021/ba-1967-0071.ch008 10.1039/C6DT03734H 10.1039/C4TB01206B 10.1088/0953-4075/34/4/310 10.1063/1.432708 10.1021/ct100478d 10.1063/1.4827638 10.1021/ic049920z 10.1063/1.3596699 10.1039/C5DT00549C 10.1016/j.jlumin.2013.08.066 10.1007/BF01112983 10.1039/c2dt30650f 10.1016/S0166-1280(98)00167-5 10.1002/jcc.540141112 10.1098/rsta.2012.0476 10.1063/1.3276157 10.1021/ic048951r 10.1063/1.2353829 10.1063/1.4862495 10.1007/s40145-016-0208-y 10.1088/0953-4075/33/18/312 10.1063/1.3583367 10.1103/PhysRev.127.750 10.1021/acs.jpcc.7b01902 10.1139/v95-080 10.1016/j.jlumin.2012.10.035 10.1007/BF00528018 10.1063/1.1784778 10.1021/jp509492e 10.1016/j.ccr.2015.02.015 10.1063/1.438197 10.1021/acs.inorgchem.6b00244 10.1063/1.3039794 10.1016/j.nuclphysa.2015.06.017 10.1016/j.cplett.2011.01.077 10.1080/0144235032000101743 10.1016/S0010-8545(99)00054-5 10.1063/1.2404666 10.1038/283281a0 10.1103/PhysRevA.57.1721 10.1063/1.2920188 10.1039/C3DT53512F 10.1021/ic060149x 10.1002/app.20771 10.1039/FT9969201835 10.1063/1.461987 10.1021/ar100129p 10.1021/ic00114a036 10.1002/adom.201600556 10.1364/OL.41.005708 10.1063/1.456066 10.1039/C6CP02325H 10.1016/S0254-0584(01)00299-1 10.1021/jp9049507 10.1364/OL.41.001189 10.1016/0022-2852(87)90287-6 10.1039/C6CP05284C 10.1007/s00214-014-1517-2 10.1063/1.1753928 10.1007/s11172-015-1066-4 10.3184/003685005783238435 10.1021/ct400865b 10.1039/C4CP02260B 10.1016/j.ica.2013.04.006 10.1016/0009-2614(92)85581-T 10.1039/c0nj00969e 10.1016/j.saa.2016.12.004 10.1021/jp111303a 10.1063/1.1337864 10.1039/b406082m 10.1063/1.1701366 10.1002/jcc.10098 10.1007/s00214-012-1230-y 10.1016/S0022-2313(96)00126-3 10.1016/j.chemphys.2011.06.032 10.1007/978-3-642-40364-4 10.1063/1.466809 10.1021/j100002a023 10.1021/jp100607y |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/C7CP08366A |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 14577 |
ExternalDocumentID | 29766167 10_1039_C7CP08366A |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K 9M8 AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB O9- P2P R56 R7B R7C RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 XJT XOL YNT ZCG NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c352t-90d675d6175992849ceebafaa710aced89cb2bd978ccd1c02030a31a984ee98e3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 13:22:36 EDT 2025 Mon Jun 30 07:05:42 EDT 2025 Mon Jul 21 05:55:43 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Tue Jul 01 01:55:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c352t-90d675d6175992849ceebafaa710aced89cb2bd978ccd1c02030a31a984ee98e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7473-7692 0000-0002-4913-8452 0000-0002-8234-4039 |
PMID | 29766167 |
PQID | 2047403908 |
PQPubID | 2047499 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2039894912 proquest_journals_2047403908 pubmed_primary_29766167 crossref_primary_10_1039_C7CP08366A crossref_citationtrail_10_1039_C7CP08366A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | de Andrade (C7CP08366A-(cit31)/*[position()=1]) 1996; 92 Sørensen (C7CP08366A-(cit37)/*[position()=1]) 2011; 134 Moriyama (C7CP08366A-(cit42)/*[position()=1]) 2010; 132 Granovsky (C7CP08366A-(cit89)/*[position()=1]) Wang (C7CP08366A-(cit14)/*[position()=1]) 2011; 85 Liu (C7CP08366A-(cit77)/*[position()=1]) 1998; 57 Barandiarán (C7CP08366A-(cit123)/*[position()=1]) 2015; 143 Barandiarán (C7CP08366A-(cit124)/*[position()=1]) 2015 Yawalkar (C7CP08366A-(cit135)/*[position()=1]) 2014; 5 Nakano (C7CP08366A-(cit98)/*[position()=1]) 1993; 99 Bunzli (C7CP08366A-(cit19)/*[position()=1]) 2005; 34 Granovsky (C7CP08366A-(cit96)/*[position()=1]) 2011; 134 Upasani (C7CP08366A-(cit129)/*[position()=1]) 2016; 5 Chen (C7CP08366A-(cit88)/*[position()=1]) 2016; 4 Jayasankar (C7CP08366A-(cit114)/*[position()=1]) 1987; 61 Kalinowski (C7CP08366A-(cit15)/*[position()=1]) 2005 Fedorov (C7CP08366A-(cit101)/*[position()=1]) 2000; 112 Werts (C7CP08366A-(cit7)/*[position()=1]) 2005; 88 Bauschlieher (C7CP08366A-(cit115)/*[position()=1]) 1988; 74 Yamamoto (C7CP08366A-(cit40)/*[position()=1]) 2008; 129 Hatanaka (C7CP08366A-(cit83)/*[position()=1]) 2011; 504 Kharchenko (C7CP08366A-(cit33)/*[position()=1]) 2017; 174 Malta (C7CP08366A-(cit74)/*[position()=1]) 2002; 282 Malta (C7CP08366A-(cit72)/*[position()=1]) 1997; 71 Huzinaga (C7CP08366A-(cit55)/*[position()=1]) 1995; 73 Mosyagin (C7CP08366A-(cit62)/*[position()=1]) 2017; 20 Eliav (C7CP08366A-(cit49)/*[position()=1]) 2017 Janicki (C7CP08366A-(cit75)/*[position()=1]) 2016; 18 Van den Heuvel (C7CP08366A-(cit86)/*[position()=1]) 2016; 18 Coreno (C7CP08366A-(cit24)/*[position()=1]) 2014; 43 Smentek (C7CP08366A-(cit52)/*[position()=1]) 2000; 33 Sauri (C7CP08366A-(cit121)/*[position()=1]) 2011; 7 Witek (C7CP08366A-(cit99)/*[position()=1]) 2002; 23 Sakai (C7CP08366A-(cit126)/*[position()=1]) 1998; 451 Christiansen (C7CP08366A-(cit57)/*[position()=1]) 1979; 71 Infante (C7CP08366A-(cit47)/*[position()=1]) 2004; 121 Malmqvist (C7CP08366A-(cit119)/*[position()=1]) 2008; 128 Ross (C7CP08366A-(cit58)/*[position()=1]) 1994; 100 Koseki (C7CP08366A-(cit102)/*[position()=1]) 1987; 123 Dolg (C7CP08366A-(cit30)/*[position()=1]) 1993; 85 Potdevin (C7CP08366A-(cit130)/*[position()=1]) 2010; 490 Dolg (C7CP08366A-(cit29)/*[position()=1]) 1989; 75 Feltham (C7CP08366A-(cit1)/*[position()=1]) 2013; 52 Fratini (C7CP08366A-(cit133)/*[position()=1]) 2008; 47 de Jong (C7CP08366A-(cit125)/*[position()=1]) 2017; 121 Fleig (C7CP08366A-(cit28)/*[position()=1]) 2012; 395 Hebbink (C7CP08366A-(cit9)/*[position()=1]) 2002 Shinoda (C7CP08366A-(cit18)/*[position()=1]) 2011; 136 Yamamoto (C7CP08366A-(cit43)/*[position()=1]) 2012; 131 Peverati (C7CP08366A-(cit80)/*[position()=1]) 2014; 372 Wang (C7CP08366A-(cit8)/*[position()=1]) 2016 Reisfeld (C7CP08366A-(cit11)/*[position()=1]) 1980; 283 Hatanaka (C7CP08366A-(cit84)/*[position()=1]) 2014; 133 Schmidt (C7CP08366A-(cit91)/*[position()=1]) 1998; 49 Martin (C7CP08366A-(cit70)/*[position()=1]) Dutra (C7CP08366A-(cit67)/*[position()=1]) 2013; 117 Pascual (C7CP08366A-(cit122)/*[position()=1]) 2014; 145 Dhers (C7CP08366A-(cit3)/*[position()=1]) 2016; 45 Chen (C7CP08366A-(cit12)/*[position()=1]) 2001; 72 Barandiaran (C7CP08366A-(cit81)/*[position()=1]) 2013; 138 Klobukowski (C7CP08366A-(cit56)/*[position()=1]) 1999 Yamamoto (C7CP08366A-(cit41)/*[position()=1]) 2011; 134 Mullen (C7CP08366A-(cit16)/*[position()=1]) 2006 Seth (C7CP08366A-(cit78)/*[position()=1]) 2001; 34 Dolg (C7CP08366A-(cit61)/*[position()=1]) 2017 Andersson (C7CP08366A-(cit116)/*[position()=1]) 1992; 191 Roos (C7CP08366A-(cit92)/*[position()=1]) 1983 Zucchi (C7CP08366A-(cit109)/*[position()=1]) Song (C7CP08366A-(cit128)/*[position()=1]) 2014; 16 Fedorov (C7CP08366A-(cit100)/*[position()=1]) 2003; 22 Singh (C7CP08366A-(cit5)/*[position()=1]) 2016; 41 Eliav (C7CP08366A-(cit48)/*[position()=1]) 2015; 944 Roos (C7CP08366A-(cit93)/*[position()=1]) 1994 Grzechnik (C7CP08366A-(cit107)/*[position()=1]) 2012; 41 Pierloot (C7CP08366A-(cit117)/*[position()=1]) 2005 Kotzian (C7CP08366A-(cit71)/*[position()=1]) 1995; 99 Granovsky (C7CP08366A-(cit97)/*[position()=1]) Romanova (C7CP08366A-(cit35)/*[position()=1]) 2014; 118 Fedorov (C7CP08366A-(cit106)/*[position()=1]) 2001; 64 Rino (C7CP08366A-(cit132)/*[position()=1]) 2008; 354 Cao (C7CP08366A-(cit59)/*[position()=1]) 2015 Wang (C7CP08366A-(cit13)/*[position()=1]) 2011; 85 Martin (C7CP08366A-(cit110)/*[position()=1]) 2001; 114 Parra (C7CP08366A-(cit131)/*[position()=1]) 2004; 94 Piquer (C7CP08366A-(cit2)/*[position()=1]) 2015; 44 Teterin (C7CP08366A-(cit26)/*[position()=1]) 2002; 71 Bellusci (C7CP08366A-(cit134)/*[position()=1]) 2005; 44 Freidzon (C7CP08366A-(cit34)/*[position()=1]) 2011; 115 Hehlen (C7CP08366A-(cit66)/*[position()=1]) 2013; 136 Gusev (C7CP08366A-(cit136)/*[position()=1]) 2013; 406 Emelina (C7CP08366A-(cit36)/*[position()=1]) 2016; 120 Wang (C7CP08366A-(cit10)/*[position()=1]) 2011; 44 Kaltsoyannis (C7CP08366A-(cit76)/*[position()=1]) 1995; 34 Vancoillie (C7CP08366A-(cit120)/*[position()=1]) 2011; 7 Carnall (C7CP08366A-(cit113)/*[position()=1]) 1976; 64 Chen (C7CP08366A-(cit51)/*[position()=1]) 2014 de Sá (C7CP08366A-(cit73)/*[position()=1]) 2000; 196 Aravena (C7CP08366A-(cit85)/*[position()=1]) 2016; 55 Visser (C7CP08366A-(cit39)/*[position()=1]) 1992; 96 Jarlborg (C7CP08366A-(cit25)/*[position()=1]) 2014; 26 Hubert (C7CP08366A-(cit45)/*[position()=1]) 2013; 139 Dolg (C7CP08366A-(cit54)/*[position()=1]) 1989; 90 Shepard (C7CP08366A-(cit94)/*[position()=1]) 1987; 69 Wang (C7CP08366A-(cit127)/*[position()=1]) 2014; 179 Cao (C7CP08366A-(cit103)/*[position()=1]) 2002; 581 Hatanaka (C7CP08366A-(cit82)/*[position()=1]) 2009; 113 Marian (C7CP08366A-(cit65)/*[position()=1]) 2012; 2 Binnemans (C7CP08366A-(cit22)/*[position()=1]) 2015; 295 Dieke (C7CP08366A-(cit111)/*[position()=1]) 1968 Dolg (C7CP08366A-(cit60)/*[position()=1]) 2012; 112 Pierloot (C7CP08366A-(cit118)/*[position()=1]) 2006; 125 Schimmelpfennig (C7CP08366A-(cit105)/*[position()=1]) 1998; 286 Greco (C7CP08366A-(cit32)/*[position()=1]) 2014; 10 Liu (C7CP08366A-(cit63)/*[position()=1]) 2017 Schmidt (C7CP08366A-(cit90)/*[position()=1]) 1993; 14 Ofelt (C7CP08366A-(cit69)/*[position()=1]) 1962; 37 Abe (C7CP08366A-(cit44)/*[position()=1]) 2006; 125 Roos (C7CP08366A-(cit95)/*[position()=1]) 1987; 69 Knecht (C7CP08366A-(cit38)/*[position()=1]) 2010; 132 Geusic (C7CP08366A-(cit4)/*[position()=1]) 1964; 4 Butturini (C7CP08366A-(cit17)/*[position()=1]) 2014; 2 Petit (C7CP08366A-(cit79)/*[position()=1]) 2006; 45 Yang (C7CP08366A-(cit87)/*[position()=1]) 2010; 114 C7CP08366A-(cit104)/*[position()=1] Binnemans (C7CP08366A-(cit21)/*[position()=1]) 2002; 102 Vovna (C7CP08366A-(cit23)/*[position()=1]) 2015; 64 Gruen (C7CP08366A-(cit112)/*[position()=1]) 1967; 71 Kutzelnigg (C7CP08366A-(cit27)/*[position()=1]) 2005; 123 Dobrzycki (C7CP08366A-(cit108)/*[position()=1]) 2004; 43 Smentek (C7CP08366A-(cit53)/*[position()=1]) 2001; 34 Judd (C7CP08366A-(cit68)/*[position()=1]) 1962; 127 Eliseeva (C7CP08366A-(cit20)/*[position()=1]) 2011; 35 Su (C7CP08366A-(cit6)/*[position()=1]) 2016; 41 Marian (C7CP08366A-(cit64)/*[position()=1]) 2001 Knecht (C7CP08366A-(cit46)/*[position()=1]) 2014; 140 |
References_xml | – volume: 34 start-page: 2383 year: 2001 ident: C7CP08366A-(cit78)/*[position()=1] publication-title: J. Phys. B: At., Mol. Opt. Phys. doi: 10.1088/0953-4075/34/12/307 – volume: 5 start-page: 678 year: 2014 ident: C7CP08366A-(cit135)/*[position()=1] publication-title: Adv. Mater. Lett. doi: 10.5185/amlett.2014.amwc1033 – volume: 26 start-page: 155503 year: 2014 ident: C7CP08366A-(cit25)/*[position()=1] publication-title: J. Phys.: Condens. Matter – ident: C7CP08366A-(cit89)/*[position()=1] – volume: 102 start-page: 2303 year: 2002 ident: C7CP08366A-(cit21)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr010287y – volume: 134 start-page: 214102 year: 2011 ident: C7CP08366A-(cit37)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3592148 – volume: 354 start-page: 5326 year: 2008 ident: C7CP08366A-(cit132)/*[position()=1] publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2008.09.022 – volume: 49 start-page: 233 year: 1998 ident: C7CP08366A-(cit91)/*[position()=1] publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.49.1.233 – volume: 581 start-page: 139 year: 2002 ident: C7CP08366A-(cit103)/*[position()=1] publication-title: THEOCHEM doi: 10.1016/S0166-1280(01)00751-5 – volume: 64 start-page: 042502 year: 2001 ident: C7CP08366A-(cit106)/*[position()=1] publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.64.042502 – volume: 179 start-page: 48 year: 2014 ident: C7CP08366A-(cit127)/*[position()=1] publication-title: Mater. Sci. Eng., B doi: 10.1016/j.mseb.2013.10.008 – volume: 75 start-page: 173 year: 1989 ident: C7CP08366A-(cit29)/*[position()=1] publication-title: Theor. Chim. Acta doi: 10.1007/BF00528565 – volume: 71 start-page: 347 year: 2002 ident: C7CP08366A-(cit26)/*[position()=1] publication-title: Russ. Chem. Rev. doi: 10.1070/RC2002v071n05ABEH000717 – volume: 47 start-page: 1030 year: 2008 ident: C7CP08366A-(cit133)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic701805t – volume: 138 start-page: 074102 year: 2013 ident: C7CP08366A-(cit81)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4790166 – volume: 85 start-page: 2179 year: 2011 ident: C7CP08366A-(cit14)/*[position()=1] publication-title: Sol. Energy doi: 10.1016/j.solener.2011.06.007 – volume: 61 start-page: 635 year: 1987 ident: C7CP08366A-(cit114)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268978700101361 – volume: 112 start-page: 403 year: 2012 ident: C7CP08366A-(cit60)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr2001383 – volume: 132 start-page: 124310 year: 2010 ident: C7CP08366A-(cit42)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3359854 – volume: 117 start-page: 14095 year: 2013 ident: C7CP08366A-(cit67)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp4098809 – volume: 286 start-page: 261 year: 1998 ident: C7CP08366A-(cit105)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(98)00120-1 – volume: 123 start-page: 241102 year: 2005 ident: C7CP08366A-(cit27)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2137315 – volume: 120 start-page: 7529 year: 2016 ident: C7CP08366A-(cit36)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.6b07258 – volume: 143 start-page: 144702 year: 2015 ident: C7CP08366A-(cit123)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4932388 – volume-title: Handbook of Relativistic Quantum Chemistry year: 2017 ident: C7CP08366A-(cit63)/*[position()=1] doi: 10.1007/978-3-642-40766-6 – volume: 490 start-page: 50 year: 2010 ident: C7CP08366A-(cit130)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2010.03.003 – volume: 52 start-page: 3236 year: 2013 ident: C7CP08366A-(cit1)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic302735j – volume: 85 start-page: 2571 year: 2011 ident: C7CP08366A-(cit13)/*[position()=1] publication-title: Sol. Energy doi: 10.1016/j.solener.2011.07.014 – volume-title: Spectra and energy levels of rare earth ions in crystals year: 1968 ident: C7CP08366A-(cit111)/*[position()=1] – volume: 112 start-page: 5611 year: 2000 ident: C7CP08366A-(cit101)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.481136 – volume: 136 start-page: 431 year: 2011 ident: C7CP08366A-(cit18)/*[position()=1] publication-title: Analyst doi: 10.1039/C0AN00808G – volume-title: Lecture Notes in Quantum Chemistry year: 1994 ident: C7CP08366A-(cit93)/*[position()=1] doi: 10.1007/978-3-642-57890-8 – volume: 7 start-page: 3961 year: 2011 ident: C7CP08366A-(cit120)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200597h – ident: C7CP08366A-(cit97)/*[position()=1] – volume: 71 start-page: 102 year: 1967 ident: C7CP08366A-(cit112)/*[position()=1] publication-title: Adv. Chem. Ser. doi: 10.1021/ba-1967-0071.ch008 – volume: 45 start-page: 18089 year: 2016 ident: C7CP08366A-(cit3)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT03734H – volume: 2 start-page: 6639 year: 2014 ident: C7CP08366A-(cit17)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C4TB01206B – volume: 34 start-page: 625 year: 2001 ident: C7CP08366A-(cit53)/*[position()=1] publication-title: J. Phys. B: At., Mol. Opt. Phys. doi: 10.1088/0953-4075/34/4/310 – volume-title: Reviews in Computational Chemistry year: 2001 ident: C7CP08366A-(cit64)/*[position()=1] – volume: 64 start-page: 3582 year: 1976 ident: C7CP08366A-(cit113)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.432708 – volume: 7 start-page: 153 year: 2011 ident: C7CP08366A-(cit121)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100478d – volume: 139 start-page: 194106 year: 2013 ident: C7CP08366A-(cit45)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4827638 – volume: 69 start-page: 63 year: 1987 ident: C7CP08366A-(cit94)/*[position()=1] publication-title: Adv. Chem. Phys. – volume: 43 start-page: 7656 year: 2004 ident: C7CP08366A-(cit108)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic049920z – volume: 134 start-page: 214113 year: 2011 ident: C7CP08366A-(cit96)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3596699 – volume: 44 start-page: 8771 year: 2015 ident: C7CP08366A-(cit2)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C5DT00549C – volume-title: Luminescent materials based on lanthanide ions. Basic properties and application in NIR-LEDs and optical amplifiers year: 2002 ident: C7CP08366A-(cit9)/*[position()=1] – volume-title: Methods in Computational Molecular Physics year: 1983 ident: C7CP08366A-(cit92)/*[position()=1] – volume: 145 start-page: 808 year: 2014 ident: C7CP08366A-(cit122)/*[position()=1] publication-title: J. Lumin. doi: 10.1016/j.jlumin.2013.08.066 – ident: C7CP08366A-(cit70)/*[position()=1] – volume: 85 start-page: 441 year: 1993 ident: C7CP08366A-(cit30)/*[position()=1] publication-title: Theor. Chim. Acta doi: 10.1007/BF01112983 – volume: 41 start-page: 10258 year: 2012 ident: C7CP08366A-(cit107)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c2dt30650f – volume: 451 start-page: 143 year: 1998 ident: C7CP08366A-(cit126)/*[position()=1] publication-title: J. Mol. Struct. THEOCHEM doi: 10.1016/S0166-1280(98)00167-5 – volume: 14 start-page: 1347 year: 1993 ident: C7CP08366A-(cit90)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.540141112 – volume: 372 start-page: 20120476 year: 2014 ident: C7CP08366A-(cit80)/*[position()=1] publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2012.0476 – volume: 132 start-page: 014108 year: 2010 ident: C7CP08366A-(cit38)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3276157 – volume: 44 start-page: 1818 year: 2005 ident: C7CP08366A-(cit134)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic048951r – volume: 125 start-page: 124303 year: 2006 ident: C7CP08366A-(cit118)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2353829 – volume: 140 start-page: 041101 year: 2014 ident: C7CP08366A-(cit46)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4862495 – volume: 99 start-page: 7983 year: 1993 ident: C7CP08366A-(cit98)/*[position()=1] publication-title: Chem. Phys. – volume: 5 start-page: 344 year: 2016 ident: C7CP08366A-(cit129)/*[position()=1] publication-title: J. Adv. Ceram. doi: 10.1007/s40145-016-0208-y – volume: 282 start-page: 21 year: 2002 ident: C7CP08366A-(cit74)/*[position()=1] publication-title: J. Chem. Phys. – volume: 33 start-page: 3647 year: 2000 ident: C7CP08366A-(cit52)/*[position()=1] publication-title: J. Phys. B: At., Mol. Opt. Phys. doi: 10.1088/0953-4075/33/18/312 – volume: 134 start-page: 164310 year: 2011 ident: C7CP08366A-(cit41)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3583367 – volume: 127 start-page: 750 year: 1962 ident: C7CP08366A-(cit68)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.127.750 – volume: 121 start-page: 10095 year: 2017 ident: C7CP08366A-(cit125)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b01902 – volume: 73 start-page: 619 year: 1995 ident: C7CP08366A-(cit55)/*[position()=1] publication-title: Can. J. Chem. doi: 10.1139/v95-080 – volume: 136 start-page: 221 year: 2013 ident: C7CP08366A-(cit66)/*[position()=1] publication-title: J. Lumin. doi: 10.1016/j.jlumin.2012.10.035 – volume: 74 start-page: 479 year: 1988 ident: C7CP08366A-(cit115)/*[position()=1] publication-title: Theor. Chim. Acta doi: 10.1007/BF00528018 – volume: 121 start-page: 5783 year: 2004 ident: C7CP08366A-(cit47)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1784778 – volume: 118 start-page: 11244 year: 2014 ident: C7CP08366A-(cit35)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp509492e – volume: 295 start-page: 1 year: 2015 ident: C7CP08366A-(cit22)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.02.015 – volume: 71 start-page: 4445 year: 1979 ident: C7CP08366A-(cit57)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.438197 – volume: 55 start-page: 4457 year: 2016 ident: C7CP08366A-(cit85)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b00244 – volume: 129 start-page: 244505 year: 2008 ident: C7CP08366A-(cit40)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3039794 – volume: 944 start-page: 518 year: 2015 ident: C7CP08366A-(cit48)/*[position()=1] publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2015.06.017 – volume: 504 start-page: 193 year: 2011 ident: C7CP08366A-(cit83)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.01.077 – volume: 22 start-page: 551 year: 2003 ident: C7CP08366A-(cit100)/*[position()=1] publication-title: Int. Rev. Phys. Chem. doi: 10.1080/0144235032000101743 – volume: 196 start-page: 165 year: 2000 ident: C7CP08366A-(cit73)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(99)00054-5 – volume-title: Computational Methods in Lanthanide and Actinide Chemistry year: 2015 ident: C7CP08366A-(cit59)/*[position()=1] – volume: 125 start-page: 234110 year: 2006 ident: C7CP08366A-(cit44)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2404666 – volume: 283 start-page: 281 year: 1980 ident: C7CP08366A-(cit11)/*[position()=1] publication-title: Nature doi: 10.1038/283281a0 – volume-title: Organic Light-Emitting Diodes: Principles, Characteristics and Processes year: 2005 ident: C7CP08366A-(cit15)/*[position()=1] – volume: 57 start-page: 1721 year: 1998 ident: C7CP08366A-(cit77)/*[position()=1] publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.57.1721 – volume: 128 start-page: 204109 year: 2008 ident: C7CP08366A-(cit119)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2920188 – volume: 43 start-page: 5134 year: 2014 ident: C7CP08366A-(cit24)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C3DT53512F – volume: 45 start-page: 7382 year: 2006 ident: C7CP08366A-(cit79)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic060149x – volume: 94 start-page: 865 year: 2004 ident: C7CP08366A-(cit131)/*[position()=1] publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.20771 – ident: C7CP08366A-(cit104)/*[position()=1] – volume: 92 start-page: 1835 year: 1996 ident: C7CP08366A-(cit31)/*[position()=1] publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/FT9969201835 – volume: 96 start-page: 2901 year: 1992 ident: C7CP08366A-(cit39)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.461987 – volume: 44 start-page: 322 year: 2011 ident: C7CP08366A-(cit10)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar100129p – volume: 34 start-page: 2135 year: 1995 ident: C7CP08366A-(cit76)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic00114a036 – volume-title: Handbook of Relativistic Quantum Chemistry year: 2017 ident: C7CP08366A-(cit49)/*[position()=1] – volume: 4 start-page: 1760 issue: 11 year: 2016 ident: C7CP08366A-(cit88)/*[position()=1] publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600556 – volume: 41 start-page: 5708 year: 2016 ident: C7CP08366A-(cit6)/*[position()=1] publication-title: Opt. Lett. doi: 10.1364/OL.41.005708 – volume: 90 start-page: 1730 year: 1989 ident: C7CP08366A-(cit54)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.456066 – volume: 18 start-page: 15807 year: 2016 ident: C7CP08366A-(cit86)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP02325H – volume: 72 start-page: 11 year: 2001 ident: C7CP08366A-(cit12)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(01)00299-1 – volume-title: Organic Light Emitting Devices. Synthesis, Properties and Applications year: 2006 ident: C7CP08366A-(cit16)/*[position()=1] – volume: 113 start-page: 12615 year: 2009 ident: C7CP08366A-(cit82)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp9049507 – volume: 41 start-page: 1189 year: 2016 ident: C7CP08366A-(cit5)/*[position()=1] publication-title: Opt. Lett. doi: 10.1364/OL.41.001189 – volume: 123 start-page: 392 year: 1987 ident: C7CP08366A-(cit102)/*[position()=1] publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(87)90287-6 – volume: 18 start-page: 27808 year: 2016 ident: C7CP08366A-(cit75)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP05284C – volume-title: Handbook of Relativistic Quantum Chemistry year: 2017 ident: C7CP08366A-(cit61)/*[position()=1] – volume: 133 start-page: 1517 year: 2014 ident: C7CP08366A-(cit84)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-014-1517-2 – volume: 4 start-page: 182 year: 1964 ident: C7CP08366A-(cit4)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1753928 – ident: C7CP08366A-(cit109)/*[position()=1] – volume: 64 start-page: 1701 year: 2015 ident: C7CP08366A-(cit23)/*[position()=1] publication-title: Russ. Chem. Bull., Int. Ed. doi: 10.1007/s11172-015-1066-4 – volume: 88 start-page: 101 year: 2005 ident: C7CP08366A-(cit7)/*[position()=1] publication-title: Sci. Prog. doi: 10.3184/003685005783238435 – volume: 10 start-page: 767 year: 2014 ident: C7CP08366A-(cit32)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400865b – volume-title: Computational Photochemistry year: 2005 ident: C7CP08366A-(cit117)/*[position()=1] – volume: 69 start-page: 339 year: 1987 ident: C7CP08366A-(cit95)/*[position()=1] publication-title: Adv. Chem. Phys. – volume: 16 start-page: 15139 year: 2014 ident: C7CP08366A-(cit128)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02260B – volume: 406 start-page: 279 year: 2013 ident: C7CP08366A-(cit136)/*[position()=1] publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2013.04.006 – volume-title: Computational Chemistry: reviews of current trends year: 1999 ident: C7CP08366A-(cit56)/*[position()=1] – volume: 191 start-page: 507 year: 1992 ident: C7CP08366A-(cit116)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(92)85581-T – volume: 35 start-page: 1165 year: 2011 ident: C7CP08366A-(cit20)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/c0nj00969e – volume: 174 start-page: 297 year: 2017 ident: C7CP08366A-(cit33)/*[position()=1] publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2016.12.004 – volume: 115 start-page: 4565 year: 2011 ident: C7CP08366A-(cit34)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp111303a – volume: 114 start-page: 3408 year: 2001 ident: C7CP08366A-(cit110)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1337864 – volume: 34 start-page: 1048 year: 2005 ident: C7CP08366A-(cit19)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b406082m – volume: 2 start-page: 187 year: 2012 ident: C7CP08366A-(cit65)/*[position()=1] publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 37 start-page: 511 year: 1962 ident: C7CP08366A-(cit69)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1701366 – volume: 23 start-page: 957 year: 2002 ident: C7CP08366A-(cit99)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.10098 – volume: 20 start-page: 111 year: 2017 ident: C7CP08366A-(cit62)/*[position()=1] publication-title: Nonlinear Phenom. Complex Syst. – volume: 131 start-page: 1230 year: 2012 ident: C7CP08366A-(cit43)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-012-1230-y – volume: 71 start-page: 229 year: 1997 ident: C7CP08366A-(cit72)/*[position()=1] publication-title: J. Lumin. doi: 10.1016/S0022-2313(96)00126-3 – volume: 395 start-page: 2 year: 2012 ident: C7CP08366A-(cit28)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2011.06.032 – volume-title: Lanthanide-Doped Luminescent Nanomaterials: From Fundamentals to Bioapplications year: 2014 ident: C7CP08366A-(cit51)/*[position()=1] doi: 10.1007/978-3-642-40364-4 – volume: 100 start-page: 8145 year: 1994 ident: C7CP08366A-(cit58)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.466809 – volume-title: Computational Methods in Lanthanide and Actinide Chemistry year: 2015 ident: C7CP08366A-(cit124)/*[position()=1] – volume: 99 start-page: 600 year: 1995 ident: C7CP08366A-(cit71)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100002a023 – volume: 114 start-page: 7117 year: 2010 ident: C7CP08366A-(cit87)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp100607y – volume-title: Lanthanide-Based Near Infrared Nanomaterials for Bioimaging, in Near-infrared Nanomaterials: Preparation, Bioimaging and Therapy Applications year: 2016 ident: C7CP08366A-(cit8)/*[position()=1] |
SSID | ssj0001513 |
Score | 2.4308488 |
Snippet | The energy levels of Ln
3+
ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f–f transitions in Ln... The energy levels of Ln3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f-f transitions in... The energy levels of Ln3+ ions are known to be only slightly dependent on the ion environment. This allows one to predict the spectra of f–f transitions in... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 14564 |
SubjectTerms | Accuracy Aluminum Cerium Emission spectra Empirical analysis Energy gap Energy levels Field theory Group theory Ligands Parameterization Perturbation theory Yttrium Yttrium-aluminum garnet |
Title | Ab initio calculation of energy levels of trivalent lanthanide ions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29766167 https://www.proquest.com/docview/2047403908 https://www.proquest.com/docview/2039894912 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swELe29GF7mbbuK1s3MW0vEyLjwwH7EaFW7TZNeUir7gkZ26hIEUyUVFr_-p2xMXRtpbYviBgTwt3l7ndn3x1CX8AMhAETkVeQZenhuIw9yhPmBXEZBBKTEou-2uev-PAYfz9dno7BnD67pCsW_PLGvJKHcBXGgK8qS_YenLVfCgNwDvyFI3AYjnficVq4ldr807hAaW4acSn4J3VG30btCOr3anRtBQ9W6_4bIOUZqyshXRuqM-B0NfCMD13g9Jka0hGQ8z6CsMoymxV20MpKXJrG1DpZpmXub6vsf2zbAvz6i14XbSrmpovh0klzoRPSTlTjkuqve7SYxiCuKEwcRx442Kac9XRMt34btGzoT6RJJ0UbnRmoijYTAwyfdWeXa9rdj1Rx1CzJVqqmdmzro44ltP8zbXbDYb_UHtF8vPcx2gnBswhnaCfdXx_9tOYbIFCkU9L0iw01bSP6bbz7Koq5xTXpIcr6OXpmfAsn1YLyAj2S9S56kg3MfImytHC0wDgTgXGa0tEC42iBUQNWYJxRYBwlMK_Q8cH-Ojv0TBcNjwO47uAdBDiFApDqklIAIxRgUcFKxgBbMi4FobwIC0ETwrkIuFqZ9lkUMEqwlJTI6DWa1U0t3yJnCZCHc7AKBGNcYsI45oIkklOA_QCe5-jrQJWcmxLzqtPJJr9O_zn6bOf-0YVVbpy1NxA3N3-88zz0cYJhnk_m6JO9DKRUa12sls1WzYlUawEahHP0RjPFPiYECB4HcfLuTj_hPXqqRF6H3fbQrGu38gMA0a74aETnH7YZhr4 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ab+initio+calculation+of+energy+levels+of+trivalent+lanthanide+ions&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Freidzon%2C+Alexandra+Ya&rft.au=Kurbatov%2C+Ilia+A.&rft.au=Vovna%2C+Vitaliy+I.&rft.date=2018&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=20&rft.issue=21&rft.spage=14564&rft.epage=14577&rft_id=info:doi/10.1039%2FC7CP08366A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7CP08366A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |