Microalgae-cyanobacteria–based biostimulant effect on salinity tolerance mechanisms, nutrient uptake, and tomato plant growth under salt stress
High soil salinity is a major abiotic stress affecting the growth, nutrition, development, and productivity of crops. This study investigated the modulating effect of combined microalgae-cyanobacteria extract formulations (MEF1%, MEF5%, and MEF10%) prepared from the species Dunaliella salina , Chlor...
Saved in:
Published in | Journal of applied phycology Vol. 33; no. 6; pp. 3779 - 3795 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High soil salinity is a major abiotic stress affecting the growth, nutrition, development, and productivity of crops. This study investigated the modulating effect of combined microalgae-cyanobacteria extract formulations (MEF1%, MEF5%, and MEF10%) prepared from the species
Dunaliella salina
,
Chlorella ellipsoidea
,
Aphanothece
sp., and
Arthrospira maxima
, on tomato plant growth and tolerance under four NaCl concentrations (0, 80, 120, and 150 mM). MEF5% enhanced the vegetative growth of tomato plants, characterized by higher shoot and root weight and larger leaf area. According to principal component analysis (PCA), improved plant growth was closely associated with leaf photosynthetic pigments, which was mainly due to improved osmotic adjustment and ion homeostasis. Proline accumulation was significantly enhanced by MEF5%-treatment in plants grown under 120 mM and 150 mM NaCl conditions. MEF5%-treatment also significantly improved nitrogen (N), phosphorus (P), and potassium (K
+
) absorption in plants grown at 80 mM and 120 mM NaCl levels. Leaf lipid peroxidation through ROS oxidative stress significantly decreased with enhanced CAT and SOD activities in MEF5%-treated plants. MEF5% triggered a significant decline in fatty acid content, indicating fatty acid transformation into other lipid forms such as alkanes, which are essential in the cuticular wax synthesis of hydric stressed plants. Enhanced K
+
uptake and reduced Na
+
/K
+
ratio in the leaves of treated plants indicate MEF’s active role in reestablishing ion homeostasis. Nutrient uptake can be improved by enhanced root biomass, which subsequently increases the roots’ surface for nutrient absorption. These results indicate that MEF stimulated plant growth and tolerance responses through (i) enhanced antioxidant enzyme activities and (ii) improved root growth and nutrient uptake. Therefore, combined microalgae-cyanobacteria formulations could be another sustainable alternative to boost nutrient uptake, growth, and crop adaptability under normal and saline conditions. |
---|---|
AbstractList | High soil salinity is a major abiotic stress affecting the growth, nutrition, development, and productivity of crops. This study investigated the modulating effect of combined microalgae-cyanobacteria extract formulations (MEF1%, MEF5%, and MEF10%) prepared from the species Dunaliella salina, Chlorella ellipsoidea, Aphanothece sp., and Arthrospira maxima, on tomato plant growth and tolerance under four NaCl concentrations (0, 80, 120, and 150 mM). MEF5% enhanced the vegetative growth of tomato plants, characterized by higher shoot and root weight and larger leaf area. According to principal component analysis (PCA), improved plant growth was closely associated with leaf photosynthetic pigments, which was mainly due to improved osmotic adjustment and ion homeostasis. Proline accumulation was significantly enhanced by MEF5%-treatment in plants grown under 120 mM and 150 mM NaCl conditions. MEF5%-treatment also significantly improved nitrogen (N), phosphorus (P), and potassium (K+) absorption in plants grown at 80 mM and 120 mM NaCl levels. Leaf lipid peroxidation through ROS oxidative stress significantly decreased with enhanced CAT and SOD activities in MEF5%-treated plants. MEF5% triggered a significant decline in fatty acid content, indicating fatty acid transformation into other lipid forms such as alkanes, which are essential in the cuticular wax synthesis of hydric stressed plants. Enhanced K+ uptake and reduced Na+/K+ ratio in the leaves of treated plants indicate MEF’s active role in reestablishing ion homeostasis. Nutrient uptake can be improved by enhanced root biomass, which subsequently increases the roots’ surface for nutrient absorption. These results indicate that MEF stimulated plant growth and tolerance responses through (i) enhanced antioxidant enzyme activities and (ii) improved root growth and nutrient uptake. Therefore, combined microalgae-cyanobacteria formulations could be another sustainable alternative to boost nutrient uptake, growth, and crop adaptability under normal and saline conditions. High soil salinity is a major abiotic stress affecting the growth, nutrition, development, and productivity of crops. This study investigated the modulating effect of combined microalgae-cyanobacteria extract formulations (MEF1%, MEF5%, and MEF10%) prepared from the species Dunaliella salina, Chlorella ellipsoidea, Aphanothece sp., and Arthrospira maxima, on tomato plant growth and tolerance under four NaCl concentrations (0, 80, 120, and 150 mM). MEF5% enhanced the vegetative growth of tomato plants, characterized by higher shoot and root weight and larger leaf area. According to principal component analysis (PCA), improved plant growth was closely associated with leaf photosynthetic pigments, which was mainly due to improved osmotic adjustment and ion homeostasis. Proline accumulation was significantly enhanced by MEF5%-treatment in plants grown under 120 mM and 150 mM NaCl conditions. MEF5%-treatment also significantly improved nitrogen (N), phosphorus (P), and potassium (K⁺) absorption in plants grown at 80 mM and 120 mM NaCl levels. Leaf lipid peroxidation through ROS oxidative stress significantly decreased with enhanced CAT and SOD activities in MEF5%-treated plants. MEF5% triggered a significant decline in fatty acid content, indicating fatty acid transformation into other lipid forms such as alkanes, which are essential in the cuticular wax synthesis of hydric stressed plants. Enhanced K⁺ uptake and reduced Na⁺/K⁺ ratio in the leaves of treated plants indicate MEF’s active role in reestablishing ion homeostasis. Nutrient uptake can be improved by enhanced root biomass, which subsequently increases the roots’ surface for nutrient absorption. These results indicate that MEF stimulated plant growth and tolerance responses through (i) enhanced antioxidant enzyme activities and (ii) improved root growth and nutrient uptake. Therefore, combined microalgae-cyanobacteria formulations could be another sustainable alternative to boost nutrient uptake, growth, and crop adaptability under normal and saline conditions. High soil salinity is a major abiotic stress affecting the growth, nutrition, development, and productivity of crops. This study investigated the modulating effect of combined microalgae-cyanobacteria extract formulations (MEF1%, MEF5%, and MEF10%) prepared from the species Dunaliella salina , Chlorella ellipsoidea , Aphanothece sp., and Arthrospira maxima , on tomato plant growth and tolerance under four NaCl concentrations (0, 80, 120, and 150 mM). MEF5% enhanced the vegetative growth of tomato plants, characterized by higher shoot and root weight and larger leaf area. According to principal component analysis (PCA), improved plant growth was closely associated with leaf photosynthetic pigments, which was mainly due to improved osmotic adjustment and ion homeostasis. Proline accumulation was significantly enhanced by MEF5%-treatment in plants grown under 120 mM and 150 mM NaCl conditions. MEF5%-treatment also significantly improved nitrogen (N), phosphorus (P), and potassium (K + ) absorption in plants grown at 80 mM and 120 mM NaCl levels. Leaf lipid peroxidation through ROS oxidative stress significantly decreased with enhanced CAT and SOD activities in MEF5%-treated plants. MEF5% triggered a significant decline in fatty acid content, indicating fatty acid transformation into other lipid forms such as alkanes, which are essential in the cuticular wax synthesis of hydric stressed plants. Enhanced K + uptake and reduced Na + /K + ratio in the leaves of treated plants indicate MEF’s active role in reestablishing ion homeostasis. Nutrient uptake can be improved by enhanced root biomass, which subsequently increases the roots’ surface for nutrient absorption. These results indicate that MEF stimulated plant growth and tolerance responses through (i) enhanced antioxidant enzyme activities and (ii) improved root growth and nutrient uptake. Therefore, combined microalgae-cyanobacteria formulations could be another sustainable alternative to boost nutrient uptake, growth, and crop adaptability under normal and saline conditions. |
Author | Rachidi, Farid Mernissi, Najib El Mohammed, Danouche Barakate, Mustapha Mutale-joan, Chanda Mohamed, Hachimi Alaoui Aasfar, Abderrahim Sbabou, Laila Arroussi, Hicham El |
Author_xml | – sequence: 1 givenname: Chanda surname: Mutale-joan fullname: Mutale-joan, Chanda organization: Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR), Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University of Rabat – sequence: 2 givenname: Farid surname: Rachidi fullname: Rachidi, Farid organization: Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR), Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University of Rabat – sequence: 3 givenname: Hachimi Alaoui surname: Mohamed fullname: Mohamed, Hachimi Alaoui organization: Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR) – sequence: 4 givenname: Najib El surname: Mernissi fullname: Mernissi, Najib El organization: Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR) – sequence: 5 givenname: Abderrahim surname: Aasfar fullname: Aasfar, Abderrahim organization: Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR) – sequence: 6 givenname: Mustapha surname: Barakate fullname: Barakate, Mustapha organization: Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Agrobiosciences Program, University Mohamed 6 Polytechnic (UM6P) – sequence: 7 givenname: Danouche surname: Mohammed fullname: Mohammed, Danouche organization: Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR), Microbial Biotechnology and Bioactive Molecules Laboratory, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University – sequence: 8 givenname: Laila surname: Sbabou fullname: Sbabou, Laila organization: Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University of Rabat – sequence: 9 givenname: Hicham El surname: Arroussi fullname: Arroussi, Hicham El email: h.elarroussi@mascir.com organization: Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR), Agrobiosciences Program, University Mohamed 6 Polytechnic (UM6P) |
BookMark | eNp9kc9qFTEUxoNU8Lb2BboKuHHR0fwhk8xSilqh4kbX4SRz5jZ1JrkmGeTufAXxDfsk5vYKQhddhAPJ9_vycb5TchJTREIuOHvDGdNvC2eG846Jw1Fq6NgzsuFKy05x3Z-QDRvakxk0f0FOS7ljjA2Gmw35_Tn4nGDeAnZ-DzE58BVzgPtffxwUHKkLqdSwrDPESnGa0FeaIi0whxjqntY0Y4bokS7obyGGspRLGteaAzZi3VX4jpcU4tikC9REdw9W25x-1lu6xhHzwa3SUjOW8pI8n2AueP5vnpFvH95_vbrubr58_HT17qbzUonaaUQjQffCcDcKHJmHQbUrrqTrjUHGBQ5SaIXCDCAdGGac816hcn6cmDwjr4--u5x-rFiqXULxOLdwmNZiRS_7xgjTN-mrR9K7tObY0lmhhkForbhsKnFUtYWWknGyuxwWyHvLmT20ZI8t2daSfWjJHlKYR5APFWpIsWYI89OoPKKl_RO3mP-neoL6C9uarUA |
CitedBy_id | crossref_primary_10_1016_j_biteb_2024_101789 crossref_primary_10_1016_j_heliyon_2023_e20470 crossref_primary_10_1016_j_stress_2024_100399 crossref_primary_10_1007_s13399_023_04533_x crossref_primary_10_1016_j_ram_2024_10_011 crossref_primary_10_1016_j_scp_2022_100899 crossref_primary_10_3390_plants12091827 crossref_primary_10_1016_j_algal_2024_103747 crossref_primary_10_3390_agriculture13010006 crossref_primary_10_3390_agronomy12051043 crossref_primary_10_1016_j_envres_2023_115448 crossref_primary_10_1016_j_bcab_2023_102657 crossref_primary_10_3390_plants11010104 crossref_primary_10_3389_fpls_2023_1293958 crossref_primary_10_3390_plants13020159 crossref_primary_10_1016_j_cej_2023_144562 crossref_primary_10_1016_j_envres_2024_118664 crossref_primary_10_3390_horticulturae9070785 crossref_primary_10_1080_17429145_2023_2242697 crossref_primary_10_1038_s41598_022_06502_2 crossref_primary_10_1007_s13399_023_04460_x crossref_primary_10_3390_ijms26031129 crossref_primary_10_1016_j_scitotenv_2023_162001 crossref_primary_10_3390_plants12051190 crossref_primary_10_1016_j_algal_2022_102865 crossref_primary_10_3390_agronomy11112302 crossref_primary_10_1016_j_pedsph_2023_12_002 crossref_primary_10_1007_s10343_022_00784_2 crossref_primary_10_1038_s41598_023_32870_4 crossref_primary_10_3390_biology11121844 crossref_primary_10_1002_jpln_202300369 crossref_primary_10_3390_plants13233311 crossref_primary_10_1016_j_rser_2023_113773 crossref_primary_10_1016_j_algal_2024_103686 crossref_primary_10_3390_life12060808 crossref_primary_10_3390_plants13172504 crossref_primary_10_1007_s11104_023_06217_x crossref_primary_10_3389_fpls_2022_843465 crossref_primary_10_3390_ijpb15040076 crossref_primary_10_2166_wst_2022_270 crossref_primary_10_3389_fagro_2021_725804 crossref_primary_10_3390_life12020223 crossref_primary_10_1016_j_scienta_2023_112491 crossref_primary_10_3389_fpls_2022_949541 crossref_primary_10_1007_s10811_023_03175_w crossref_primary_10_1039_D2VA00158F crossref_primary_10_1016_j_heliyon_2023_e14708 crossref_primary_10_1016_j_micres_2023_127505 crossref_primary_10_3390_plants12142684 crossref_primary_10_3390_plants12213714 crossref_primary_10_1007_s10811_024_03430_8 crossref_primary_10_3390_plants12091872 |
Cites_doi | 10.1016/S0098-8472(02)00058-8 10.1007/s10811-017-1283-3 10.1016/j.cub.2013.08.042 10.1111/1751-7915.12167 10.1038/protex.2012.061 10.1111/j.1365-313X.2009.04073.x 10.1007/s11104-014-2131-8 10.1016/j.niox.2012.07.005 10.1016/j.btre.2020.e00426 10.1046/j.1365-3040.2003.01016.x 10.1016/S0168-9452(99)00197-1 10.1111/jipb.12689 10.3390/agriculture9100223 10.1007/s10811-015-0625-2 10.1007/s12010-018-2916-y 10.1105/tpc.111.095273 10.1016/j.plaphy.2020.08.042 10.1111/jac.12181 10.3390/w10111503 10.1002/fes3.108 10.1093/mp/sst017 10.1111/j.1469-8137.1983.tb04863.x 10.1016/0003-2697(76)90527-3 10.3389/fpls.2018.01782 10.3389/fpls.2016.02049 10.1111/nph.15862 10.1146/annurev-arplant-050718-100005 10.1007/978-1-61779-986-0_28 10.1093/jxb/ert430 10.1007/s13165-019-00270-6 10.1080/03650340.2016.1234042 10.1016/j.xinn.2020.100017 10.3390/antiox9080681 10.1094/MPMI-09-13-0265-R 10.1038/s41598-020-59840-4 10.1080/00103624.2018.1448861 10.1093/aob/mcg058 10.3389/fphys.2017.00509 10.3390/agronomy10091240 10.1016/0076-6879(87)48036-1 10.1186/s40538-016-0083-3 10.1007/s00299-019-02447-5 10.1371/journal.pone.0202175 10.1007/s10811-010-9583-x 10.3390/ijms20051086 10.1186/s12934-018-0879-x 10.1093/jxb/ery198 10.1007/s11738-013-1325-7 10.1007/s10811-017-1382-1 10.3390/plants9040407 10.3390/su10030759 10.3390/plants9040450 10.3390/agronomy7010018 10.1093/aob/mcf096 10.3389/fpls.2016.01787 10.3389/fpls.2019.00800 10.1016/j.cj.2018.01.003 10.1626/pps.6.219 10.1038/nprot.2007.102 10.3389/fmicb.2018.02525 10.3389/fpls.2017.02202 10.1016/J.BIOTECHADV.2018.04.004 10.1016/J.SCIENTA.2015.09.012 10.1002/0471142913.faf0403s01 10.1007/978-3-319-96190-3_2 10.1093/mp/sss158 10.1007/s11274-019-2745-3 10.3390/agronomy9040192 10.1155/2015/835761 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
DBID | AAYXX CITATION 3V. 7TN 7X2 8FE 8FH 8FK AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO F1W GNUQQ H95 HCIFZ L.G LK8 M0K M7N M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 |
DOI | 10.1007/s10811-021-02559-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Oceanic Abstracts Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Biological Science Collection Agricultural Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Oceanic Abstracts Natural Science Collection ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Ecology Botany |
EISSN | 1573-5176 |
EndPage | 3795 |
ExternalDocumentID | 10_1007_s10811_021_02559_0 |
GrantInformation_xml | – fundername: OCP-Agribiotech BU grantid: FFI 1 |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1OL 1SB 2.D 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 3SX 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M4Y M7P MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XJT XOL YLTOR YQT Z45 Z5O Z7U Z7V Z7W Z7Z Z81 Z83 Z86 Z8O Z8P Z8Q Z8T Z8U Z8W ZMTXR ZOVNA ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 3V. 7TN 8FK ABRTQ AZQEC DWQXO F1W GNUQQ H95 L.G M7N PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 |
ID | FETCH-LOGICAL-c352t-7ee83a76281bd2ed0ca95e83153b688e012e93275e289a3ba808bbcc5e5bcdf03 |
IEDL.DBID | BENPR |
ISSN | 0921-8971 |
IngestDate | Thu Jul 10 18:41:04 EDT 2025 Fri Jul 25 10:57:51 EDT 2025 Tue Jul 01 04:26:02 EDT 2025 Thu Apr 24 23:10:35 EDT 2025 Fri Feb 21 02:48:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Plant growth Chlorophyceae Cyanobacteria Salt stress tolerance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-7ee83a76281bd2ed0ca95e83153b688e012e93275e289a3ba808bbcc5e5bcdf03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2599277513 |
PQPubID | 2034534 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2636808286 proquest_journals_2599277513 crossref_primary_10_1007_s10811_021_02559_0 crossref_citationtrail_10_1007_s10811_021_02559_0 springer_journals_10_1007_s10811_021_02559_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Journal of applied phycology |
PublicationTitleAbbrev | J Appl Phycol |
PublicationYear | 2021 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Hanin, Ebel, Ngom, Laplaze, Masmoudi (CR33) 2016; 7 Colla, Rouphael (CR24) 2020; 10 Meloni, Oliva, Martinez, Cambraia (CR49) 2003; 49 Ahanger, Alyemeni, Wijaya, Alamri, Alam, Ashraf, Ahmad (CR2) 2018; 13 Van Oosten, Pepe, De Pascale, Silletti, Maggio (CR66) 2017; 4 Desoky, Merwad, Rady (CR28) 2018; 49 Rahman, Zhang (CR56) 2018; 10 Bose, Rodrigo-Moreno, Shabala (CR12) 2014; 65 Libutti, Cammerino, Monteleone (CR46) 2018; 10 Ji, Pardo, Batelli, Van Oosten, Bressan, Li (CR38) 2013; 6 Carvalho (CR17) 2017; 6 Huang, Ullah, Zhou, Yi, Zhao (CR36) 2019; 10 Barone, Baglieri, Stevanato, Broccanello, Bertoldo, Bertaggia, Cagnin, Pizzeghello, Moliterni, Mandolino, Fornasier (CR9) 2018; 30 Galvan-Ampudia, Julkowska, Darwish, Gandullo, Korver, Brunoud, Haring, Munnik, Vernoux, Testerink (CR31) 2013; 23 Khan, Siddiqui, Mohammad, Naeem (CR42) 2012; 27 Tahjib-UI-Arif, Sohag, Afrin, Bashar, Afrin, Mahamud, Polash, Hossain, Sohel, Taher, Brestic (CR63) 2019; 9 Leidi, Barragán, Rubio, El-Hamdaoui, Ruiz, Cubero, Fernández, Bressan, Hasegawa, Quintero, Pardo (CR45) 2010; 61 Tester (CR64) 2003; 91 Wu (CR70) 2018; 6 Lichtenthaler (CR47) 1987; 148 Zhao, Zhang, Song, Zhu, Shabala (CR74) 2020; 1 Arif, Singh, Siddiqui, Bajguz, Hayat (CR5) 2020; 156 Hasanuzzaman, Bhuyan, Zulfiqar, Raza, Mohsin, Mahmud, Fujita, Fotopoulos (CR35) 2020; 9 CR48 Acosta-Motos, Ortuño, Bernal-Vicente, Diaz-Vivancos, Sanchez-Blanco, Hernandez (CR1) 2017; 7 Yakhin, Lubyanov, Yakhin, Brown (CR71) 2017; 7 Bradford (CR13) 1976; 72 Calvo, Nelson, Kloepper (CR14) 2014; 383 CR44 Alcantara, Gonzaga (CR4) 2020; 10 Smith, Johnston, Cornforth (CR62) 1983; 94 Hardie, Doyle (CR34) 2012; 913 Huang, Hu, Zhang (CR37) 2015; 6 Garcia-Gonzalez, Sommerfeld (CR32) 2016; 28 Khan, Numan, Khan, Lee, Imran, Asaf, Al-Harrasi (CR40) 2020; 9 Mittova, Tal, Volokita, Guy (CR52) 2003; 26 Sikder, Wang, Zhang, Gui, Dong, Jin, Song (CR61) 2020; 9 Khan, Shin, Kim (CR41) 2018; 17 Van Zelm, Zhang, Testerink (CR67) 2020; 71 Chiaiese, Corrado, Colla, Kyriacou, Rouphael (CR21) 2018; 9 CR19 CR16 Khan, Hiltz, Critchley, Prithiviraj (CR43) 2011; 23 Munns, Passioura, Colmer, Byrt (CR53) 2020; 225 CR59 CR58 Assaha, Ueda, Saneoka, Al-Yahyai, Yaish (CR7) 2017; 8 Rachidi, Benhima, Sbabou, El Arroussi (CR55) 2020; 25 Bargaz, Nassar, Rady, Gaballah, Thompson, Brestic, Schmidhalter, Abdelhamid (CR8) 2016; 202 Vives-Peris, de Ollas, Gómez-Cadenas, Pérez-Clemente (CR69) 2020; 39 CR50 Cuellar-Bermudez, Aguilar-Hernandez, Cardenas-Chavez, Ornelas-Soto, Romero-Ogawa, Parra-Saldivar (CR26) 2015; 8 Arroussi, Benhima, Elbaouchi, Sijilmassi, Mernissi, Aafsar, Meftah-Kadmiri, Bendaou, Smouni (CR6) 2018; 30 Yang, Guo (CR73) 2018; 60 Farid, Mutale-Joan, Redouane, Najib, Abderahime, Laila, Hicham (CR30) 2019; 188 Contreras-Cornejo, Macías-Rodríguez, Alfaro-Cuevas, López-Bucio (CR25) 2014; 27 Caverzan, Piasecki, Chavarria, Stewart, Vargas (CR18) 2019; 20 Velikova, Yordanov, Edreva (CR68) 2000; 151 Chun, Paramasivan, Chandrasekaran (CR22) 2018; 9 Battacharyya, Babgohari, Rathor, Prithiviraj (CR11) 2015; 196 Renuka, Guldhe, Prasanna, Singh, Bux (CR57) 2018; 36 Noctor (CR54) 2002; 89 Colla, Hoagland, Ruzzi, Cardarelli, Bonini, Canaguier, Rouphael (CR23) 2017; 8 CR27 Elzaawely, Ahmed, Maswada, Xuan (CR29) 2017; 63 Chanda, Benhima, Elmernissi, Kasmi, Karim, Sbabou, Youssef, El Arroussi (CR20) 2020; 10 Ainsworth, Gillespie (CR3) 2007; 2 Turkan (CR65) 2018; 69 CR60 Barragán, Leidi, Andrés, Rubio, De Luca, Fernández, Cubero, Pardo (CR10) 2012; 24 Mitsuya, Kawasaki, Taniguchi, Miyake (CR51) 2003; 6 Carillo, Ciarmiello, Woodrow, Corrado, Chiaiese, Rouphael (CR15) 2020; 9 Yan, Shao, Shao, Chen, Zhao, Brestic, Chen (CR72) 2013; 35 Kamthan, Kamthan, Chakraborty, Chakraborty, Datta (CR39) 2012 A Bargaz (2559_CR8) 2016; 202 EO Leidi (2559_CR45) 2010; 61 2559_CR44 W Khan (2559_CR43) 2011; 23 OI Yakhin (2559_CR71) 2017; 7 M Hasanuzzaman (2559_CR35) 2020; 9 GS Smith (2559_CR62) 1983; 94 MA Ahanger (2559_CR2) 2018; 13 2559_CR48 ESM Desoky (2559_CR28) 2018; 49 CG Alcantara (2559_CR4) 2020; 10 F Rachidi (2559_CR55) 2020; 25 JR Acosta-Motos (2559_CR1) 2017; 7 G Noctor (2559_CR54) 2002; 89 MJ Van Oosten (2559_CR66) 2017; 4 A Caverzan (2559_CR18) 2019; 20 M Tahjib-UI-Arif (2559_CR63) 2019; 9 G Colla (2559_CR23) 2017; 8 CS Galvan-Ampudia (2559_CR31) 2013; 23 E Van Zelm (2559_CR67) 2020; 71 Y Yang (2559_CR73) 2018; 60 MJ Chanda (2559_CR20) 2020; 10 A Kamthan (2559_CR39) 2012 FP Carvalho (2559_CR17) 2017; 6 MN Khan (2559_CR42) 2012; 27 2559_CR50 2559_CR16 J Garcia-Gonzalez (2559_CR32) 2016; 28 2559_CR19 2559_CR58 2559_CR59 EA Ainsworth (2559_CR3) 2007; 2 N Renuka (2559_CR57) 2018; 36 SP Cuellar-Bermudez (2559_CR26) 2015; 8 H Ji (2559_CR38) 2013; 6 HK Lichtenthaler (2559_CR47) 1987; 148 RK Sikder (2559_CR61) 2020; 9 AA Elzaawely (2559_CR29) 2017; 63 S Mitsuya (2559_CR51) 2003; 6 P Carillo (2559_CR15) 2020; 9 C Zhao (2559_CR74) 2020; 1 W Huang (2559_CR37) 2015; 6 V Velikova (2559_CR68) 2000; 151 R Farid (2559_CR30) 2019; 188 M Hanin (2559_CR33) 2016; 7 2559_CR60 2559_CR27 V Mittova (2559_CR52) 2003; 26 I Turkan (2559_CR65) 2018; 69 P Chiaiese (2559_CR21) 2018; 9 P Calvo (2559_CR14) 2014; 383 V Vives-Peris (2559_CR69) 2020; 39 J Bose (2559_CR12) 2014; 65 SC Chun (2559_CR22) 2018; 9 M Tester (2559_CR64) 2003; 91 M Hardie (2559_CR34) 2012; 913 DV Assaha (2559_CR7) 2017; 8 HA Contreras-Cornejo (2559_CR25) 2014; 27 MM Bradford (2559_CR13) 1976; 72 D Battacharyya (2559_CR11) 2015; 196 V Barragán (2559_CR10) 2012; 24 R Munns (2559_CR53) 2020; 225 V Barone (2559_CR9) 2018; 30 G Colla (2559_CR24) 2020; 10 K Yan (2559_CR72) 2013; 35 DA Meloni (2559_CR49) 2003; 49 Y Arif (2559_CR5) 2020; 156 H Wu (2559_CR70) 2018; 6 H Huang (2559_CR36) 2019; 10 KMA Rahman (2559_CR56) 2018; 10 A Libutti (2559_CR46) 2018; 10 A Khan (2559_CR40) 2020; 9 HE Arroussi (2559_CR6) 2018; 30 MI Khan (2559_CR41) 2018; 17 |
References_xml | – volume: 49 start-page: 69 year: 2003 end-page: 76 ident: CR49 article-title: Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress publication-title: Environ Exp Bot doi: 10.1016/S0098-8472(02)00058-8 – volume: 30 start-page: 1061 year: 2018 end-page: 1071 ident: CR9 article-title: Root morphological and molecular responses induced by microalgae extracts in sugar beet ( L.) publication-title: J Appl Phycol doi: 10.1007/s10811-017-1283-3 – volume: 23 start-page: 2044 year: 2013 end-page: 2050 ident: CR31 article-title: Halotropism is a response of plant roots to avoid a saline environment publication-title: Curr Biol doi: 10.1016/j.cub.2013.08.042 – volume: 8 start-page: 190 year: 2015 end-page: 209 ident: CR26 article-title: Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins publication-title: Microb Biotechnol doi: 10.1111/1751-7915.12167 – ident: CR16 – year: 2012 ident: CR39 article-title: A simple protocol for extraction, derivatization, and analysis of tomato leaf and fruit lipophilic metabolites using GC-MS publication-title: Protocol Exchchange doi: 10.1038/protex.2012.061 – volume: 61 start-page: 495 year: 2010 end-page: 506 ident: CR45 article-title: The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato publication-title: Plant J doi: 10.1111/j.1365-313X.2009.04073.x – volume: 383 start-page: 3 year: 2014 end-page: 41 ident: CR14 article-title: Agricultural uses of plant biostimulants publication-title: Plant Soil doi: 10.1007/s11104-014-2131-8 – volume: 27 start-page: 210 year: 2012 end-page: 218 ident: CR42 article-title: Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress publication-title: Nitric Oxide - Biol Chem doi: 10.1016/j.niox.2012.07.005 – volume: 25 start-page: e00426 year: 2020 ident: CR55 article-title: Microalgae polysaccharides bio-stimulating effect on tomato plants: growth and metabolic distribution publication-title: Biotechnol Reports doi: 10.1016/j.btre.2020.e00426 – volume: 26 start-page: 845 year: 2003 end-page: 856 ident: CR52 article-title: Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species publication-title: Plant, Cell Environ doi: 10.1046/j.1365-3040.2003.01016.x – ident: CR58 – volume: 151 start-page: 59 year: 2000 end-page: 66 ident: CR68 article-title: Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines publication-title: Plant Sci doi: 10.1016/S0168-9452(99)00197-1 – volume: 60 start-page: 796 year: 2018 end-page: 804 ident: CR73 article-title: Unraveling salt stress signaling in plants publication-title: J Integr Plant Biol doi: 10.1111/jipb.12689 – volume: 9 start-page: 223 year: 2019 ident: CR63 article-title: Differential response of sugar beet to long-term mild to severe salinity in a soil–pot culture publication-title: Agriculture doi: 10.3390/agriculture9100223 – volume: 28 start-page: 1051 year: 2016 end-page: 1061 ident: CR32 article-title: Biofertilizer and biostimulant properties of the microalga publication-title: J Appl Phycol doi: 10.1007/s10811-015-0625-2 – volume: 188 start-page: 225 year: 2019 end-page: 240 ident: CR30 article-title: Effect of microalgae polysaccharides on biochemical and metabolomics pathways related to plant defense in publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-018-2916-y – ident: CR19 – volume: 24 start-page: 1127 year: 2012 end-page: 1142 ident: CR10 article-title: Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in publication-title: Plant Cell doi: 10.1105/tpc.111.095273 – volume: 156 start-page: 64 year: 2020 end-page: 77 ident: CR5 article-title: Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2020.08.042 – volume: 202 start-page: 497 year: 2016 end-page: 507 ident: CR8 article-title: Improved salinity tolerance by phosphorus fertilizer in two recombinant inbred lines contrasting in their P-efficiency publication-title: J Agron Crop Sci doi: 10.1111/jac.12181 – volume: 10 start-page: 1503 year: 2018 ident: CR46 article-title: Risk Assessment of soil salinization due to tomato cultivation in Mediterranean climate conditions publication-title: Water doi: 10.3390/w10111503 – volume: 6 start-page: 48 year: 2017 end-page: 60 ident: CR17 article-title: Pesticides, environment, and food safety publication-title: Food Energy Secur doi: 10.1002/fes3.108 – ident: CR50 – volume: 6 start-page: 275 year: 2013 end-page: 286 ident: CR38 article-title: The Salt Overly Sensitive (SOS) pathway: established and emerging roles publication-title: Mol Plant doi: 10.1093/mp/sst017 – volume: 94 start-page: 537 year: 1983 end-page: 548 ident: CR62 article-title: Comparison of nutrient solutions for growth of plants in sand culture publication-title: New Phytol doi: 10.1111/j.1469-8137.1983.tb04863.x – volume: 72 start-page: 248 year: 1976 end-page: 254 ident: CR13 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal Biochem doi: 10.1016/0003-2697(76)90527-3 – volume: 9 start-page: 1782 year: 2018 ident: CR21 article-title: Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01782 – ident: CR60 – volume: 7 start-page: 2049 year: 2017 ident: CR71 article-title: Biostimulants in plant science: a global perspective publication-title: Front Plant Sci doi: 10.3389/fpls.2016.02049 – volume: 225 start-page: 1091 year: 2020 end-page: 1096 ident: CR53 article-title: Osmotic adjustment and energy limitations to plant growth in saline soil publication-title: New Phytol doi: 10.1111/nph.15862 – volume: 71 start-page: 403 year: 2020 end-page: 433 ident: CR67 article-title: Salt Tolerance Mechanisms of Plants publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-050718-100005 – volume: 913 start-page: 415 year: 2012 end-page: 425 ident: CR34 article-title: Measuring soil salinity. Meth publication-title: Mol Biol doi: 10.1007/978-1-61779-986-0_28 – volume: 65 start-page: 1241 year: 2014 end-page: 1257 ident: CR12 article-title: ROS homeostasis in halophytes in the context of salinity stress tolerance publication-title: J Exp Bot doi: 10.1093/jxb/ert430 – volume: 10 start-page: 301 year: 2020 end-page: 307 ident: CR4 article-title: Nutrient uptake and yield of tomato ( ) in response to vermicast and vermi-foliar application publication-title: Org Agric doi: 10.1007/s13165-019-00270-6 – volume: 63 start-page: 687 year: 2017 end-page: 699 ident: CR29 article-title: Enhancing growth, yield, biochemical, and hormonal contents of snap bean ( L.) sprayed with moringa leaf extract publication-title: Arch Agron Soil Sci doi: 10.1080/03650340.2016.1234042 – volume: 1 start-page: 100017 year: 2020 ident: CR74 article-title: Mechanisms of plant responses and adaptation to soil salinity publication-title: Innov doi: 10.1016/j.xinn.2020.100017 – volume: 9 start-page: 681 year: 2020 ident: CR35 article-title: Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator publication-title: Antioxidants doi: 10.3390/antiox9080681 – volume: 27 start-page: 503 year: 2014 end-page: 514 ident: CR25 article-title: spp. Improve growth of seedlings under salt stress through enhanced root development, osmolite production, and Na elimination through root exudates publication-title: Mol Plant-Microbe Interact doi: 10.1094/MPMI-09-13-0265-R – volume: 10 start-page: 2820 issue: 1 year: 2020 ident: CR20 article-title: Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of L publication-title: Sci Rep doi: 10.1038/s41598-020-59840-4 – volume: 49 start-page: 967 year: 2018 end-page: 983 ident: CR28 article-title: Natural biostimulants improve saline soil characteristics and salt stressed- performance publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103624.2018.1448861 – volume: 91 start-page: 503 year: 2003 end-page: 527 ident: CR64 article-title: Na tolerance and Na transport in higher plants publication-title: Ann Bot doi: 10.1093/aob/mcg058 – volume: 8 start-page: 509 year: 2017 ident: CR7 article-title: The role of Na and K transporters in salt stress adaptation in glycophytes publication-title: Front Physiol doi: 10.3389/fphys.2017.00509 – volume: 10 start-page: 1240 year: 2020 ident: CR24 article-title: Microalgae: new source of plant biostimulants publication-title: Agronomy doi: 10.3390/agronomy10091240 – volume: 148 start-page: 350 year: 1987 end-page: 382 ident: CR47 article-title: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes publication-title: Meth Enzymol doi: 10.1016/0076-6879(87)48036-1 – volume: 9 start-page: 1 year: 2020 end-page: 21 ident: CR15 article-title: Enhancing sustainability by improving plant salt tolerance through macro-and micro-algal biostimulants publication-title: Biology (basel) – volume: 4 start-page: 1 year: 2017 end-page: 12 ident: CR66 article-title: The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants publication-title: Chem Biol Technol Agric doi: 10.1186/s40538-016-0083-3 – volume: 39 start-page: 3 year: 2020 end-page: 17 ident: CR69 article-title: Root exudates: from plant to rhizosphere and beyond publication-title: Plant Cell Rep doi: 10.1007/s00299-019-02447-5 – volume: 13 start-page: e0202175 year: 2018 ident: CR2 article-title: Potential of exogenously sourced kinetin in protecting from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system publication-title: PLoS ONE doi: 10.1371/journal.pone.0202175 – ident: CR27 – volume: 23 start-page: 409 year: 2011 end-page: 414 ident: CR43 article-title: Bioassay to detect extract-induced cytokinin-like activity in publication-title: J Appl Phycol doi: 10.1007/s10811-010-9583-x – volume: 20 start-page: 1086 year: 2019 ident: CR18 article-title: Defenses against ROS in crops and weeds: the effects of interference and herbicides publication-title: Int J Mol Sci doi: 10.3390/ijms20051086 – ident: CR44 – volume: 17 start-page: 36 year: 2018 ident: CR41 article-title: The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products publication-title: Microb Cell Fact doi: 10.1186/s12934-018-0879-x – ident: CR48 – volume: 69 start-page: 3313 year: 2018 end-page: 3315 ident: CR65 article-title: ROS and RNS: key signalling molecules in plants publication-title: J Exp Bot doi: 10.1093/jxb/ery198 – volume: 6 start-page: 621 year: 2015 ident: CR37 article-title: Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight publication-title: Front Plant Sci – volume: 35 start-page: 2867 year: 2013 end-page: 2878 ident: CR72 article-title: Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone publication-title: Acta Physiol Plant doi: 10.1007/s11738-013-1325-7 – volume: 30 start-page: 2929 year: 2018 end-page: 2941 ident: CR6 article-title: exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato ( ) publication-title: J Appl Phycol doi: 10.1007/s10811-017-1382-1 – volume: 9 start-page: 407 year: 2020 ident: CR40 article-title: Melatonin: Awakening the defense mechanisms during plant oxidative stress publication-title: Plants doi: 10.3390/plants9040407 – volume: 10 start-page: 759 year: 2018 ident: CR56 article-title: Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability publication-title: Sustainability doi: 10.3390/su10030759 – volume: 9 start-page: 40450 year: 2020 ident: CR61 article-title: Nitrogen enhances salt tolerance by modulating the antioxidant defense system and osmoregulation substance content in publication-title: Plants doi: 10.3390/plants9040450 – volume: 7 start-page: 18 year: 2017 ident: CR1 article-title: Plant responses to salt stress: adaptive mechanisms publication-title: Agronomy doi: 10.3390/agronomy7010018 – volume: 89 start-page: 841 year: 2002 end-page: 850 ident: CR54 article-title: Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? publication-title: Ann Bot doi: 10.1093/aob/mcf096 – volume: 7 start-page: 1787 year: 2016 ident: CR33 article-title: New insights on plant salt tolerance mechanisms and their potential use for breeding publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01787 – volume: 10 start-page: 800 year: 2019 ident: CR36 article-title: Mechanisms of ROS regulation of plant development and stress responses publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00800 – volume: 6 start-page: 215 year: 2018 end-page: 225 ident: CR70 article-title: Plant salt tolerance and Na+ sensing and transport publication-title: Crop J doi: 10.1016/j.cj.2018.01.003 – volume: 6 start-page: 219 year: 2003 end-page: 223 ident: CR51 article-title: Light dependency of salinity-induced chloroplast degradation publication-title: Plant Prod Sci doi: 10.1626/pps.6.219 – volume: 2 start-page: 875 year: 2007 end-page: 877 ident: CR3 article-title: Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent publication-title: Nat Protoc doi: 10.1038/nprot.2007.102 – volume: 9 start-page: 2525 year: 2018 ident: CR22 article-title: Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants publication-title: Front Microbiol doi: 10.3389/fmicb.2018.02525 – volume: 8 start-page: 2202 year: 2017 ident: CR23 article-title: Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome publication-title: Front Plant Sci doi: 10.3389/fpls.2017.02202 – ident: CR59 – volume: 36 start-page: 1255 year: 2018 end-page: 1273 ident: CR57 article-title: Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges publication-title: Biotechnol Adv doi: 10.1016/J.BIOTECHADV.2018.04.004 – volume: 196 start-page: 39 year: 2015 end-page: 48 ident: CR11 article-title: Seaweed extracts as biostimulants in horticulture publication-title: Sci Hortic (amsterdam) doi: 10.1016/J.SCIENTA.2015.09.012 – volume: 383 start-page: 3 year: 2014 ident: 2559_CR14 publication-title: Plant Soil doi: 10.1007/s11104-014-2131-8 – volume: 8 start-page: 509 year: 2017 ident: 2559_CR7 publication-title: Front Physiol doi: 10.3389/fphys.2017.00509 – ident: 2559_CR16 – volume: 10 start-page: 301 year: 2020 ident: 2559_CR4 publication-title: Org Agric doi: 10.1007/s13165-019-00270-6 – volume: 10 start-page: 800 year: 2019 ident: 2559_CR36 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00800 – volume: 24 start-page: 1127 year: 2012 ident: 2559_CR10 publication-title: Plant Cell doi: 10.1105/tpc.111.095273 – year: 2012 ident: 2559_CR39 publication-title: Protocol Exchchange doi: 10.1038/protex.2012.061 – volume: 9 start-page: 1782 year: 2018 ident: 2559_CR21 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01782 – ident: 2559_CR48 doi: 10.1002/0471142913.faf0403s01 – volume: 7 start-page: 18 year: 2017 ident: 2559_CR1 publication-title: Agronomy doi: 10.3390/agronomy7010018 – volume: 23 start-page: 2044 year: 2013 ident: 2559_CR31 publication-title: Curr Biol doi: 10.1016/j.cub.2013.08.042 – volume: 6 start-page: 219 year: 2003 ident: 2559_CR51 publication-title: Plant Prod Sci doi: 10.1626/pps.6.219 – ident: 2559_CR58 – volume: 49 start-page: 967 year: 2018 ident: 2559_CR28 publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103624.2018.1448861 – ident: 2559_CR50 – volume: 94 start-page: 537 year: 1983 ident: 2559_CR62 publication-title: New Phytol doi: 10.1111/j.1469-8137.1983.tb04863.x – volume: 65 start-page: 1241 year: 2014 ident: 2559_CR12 publication-title: J Exp Bot doi: 10.1093/jxb/ert430 – volume: 91 start-page: 503 year: 2003 ident: 2559_CR64 publication-title: Ann Bot doi: 10.1093/aob/mcg058 – volume: 9 start-page: 223 year: 2019 ident: 2559_CR63 publication-title: Agriculture doi: 10.3390/agriculture9100223 – volume: 151 start-page: 59 year: 2000 ident: 2559_CR68 publication-title: Plant Sci doi: 10.1016/S0168-9452(99)00197-1 – ident: 2559_CR60 doi: 10.1007/978-3-319-96190-3_2 – volume: 13 start-page: e0202175 year: 2018 ident: 2559_CR2 publication-title: PLoS ONE doi: 10.1371/journal.pone.0202175 – volume: 10 start-page: 1503 year: 2018 ident: 2559_CR46 publication-title: Water doi: 10.3390/w10111503 – volume: 2 start-page: 875 year: 2007 ident: 2559_CR3 publication-title: Nat Protoc doi: 10.1038/nprot.2007.102 – volume: 225 start-page: 1091 year: 2020 ident: 2559_CR53 publication-title: New Phytol doi: 10.1111/nph.15862 – volume: 30 start-page: 2929 year: 2018 ident: 2559_CR6 publication-title: J Appl Phycol doi: 10.1007/s10811-017-1382-1 – volume: 20 start-page: 1086 year: 2019 ident: 2559_CR18 publication-title: Int J Mol Sci doi: 10.3390/ijms20051086 – volume: 8 start-page: 2202 year: 2017 ident: 2559_CR23 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.02202 – volume: 39 start-page: 3 year: 2020 ident: 2559_CR69 publication-title: Plant Cell Rep doi: 10.1007/s00299-019-02447-5 – volume: 35 start-page: 2867 year: 2013 ident: 2559_CR72 publication-title: Acta Physiol Plant doi: 10.1007/s11738-013-1325-7 – volume: 71 start-page: 403 year: 2020 ident: 2559_CR67 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-050718-100005 – ident: 2559_CR44 doi: 10.1093/mp/sss158 – volume: 10 start-page: 759 year: 2018 ident: 2559_CR56 publication-title: Sustainability doi: 10.3390/su10030759 – volume: 69 start-page: 3313 year: 2018 ident: 2559_CR65 publication-title: J Exp Bot doi: 10.1093/jxb/ery198 – volume: 23 start-page: 409 year: 2011 ident: 2559_CR43 publication-title: J Appl Phycol doi: 10.1007/s10811-010-9583-x – ident: 2559_CR19 doi: 10.1007/s11274-019-2745-3 – volume: 8 start-page: 190 year: 2015 ident: 2559_CR26 publication-title: Microb Biotechnol doi: 10.1111/1751-7915.12167 – volume: 1 start-page: 100017 year: 2020 ident: 2559_CR74 publication-title: Innov doi: 10.1016/j.xinn.2020.100017 – volume: 9 start-page: 407 year: 2020 ident: 2559_CR40 publication-title: Plants doi: 10.3390/plants9040407 – volume: 72 start-page: 248 year: 1976 ident: 2559_CR13 publication-title: Anal Biochem doi: 10.1016/0003-2697(76)90527-3 – volume: 9 start-page: 1 year: 2020 ident: 2559_CR15 publication-title: Biology (basel) – volume: 27 start-page: 503 year: 2014 ident: 2559_CR25 publication-title: Mol Plant-Microbe Interact doi: 10.1094/MPMI-09-13-0265-R – volume: 6 start-page: 275 year: 2013 ident: 2559_CR38 publication-title: Mol Plant doi: 10.1093/mp/sst017 – volume: 28 start-page: 1051 year: 2016 ident: 2559_CR32 publication-title: J Appl Phycol doi: 10.1007/s10811-015-0625-2 – volume: 36 start-page: 1255 year: 2018 ident: 2559_CR57 publication-title: Biotechnol Adv doi: 10.1016/J.BIOTECHADV.2018.04.004 – volume: 4 start-page: 1 year: 2017 ident: 2559_CR66 publication-title: Chem Biol Technol Agric doi: 10.1186/s40538-016-0083-3 – volume: 6 start-page: 621 year: 2015 ident: 2559_CR37 publication-title: Front Plant Sci – volume: 89 start-page: 841 year: 2002 ident: 2559_CR54 publication-title: Ann Bot doi: 10.1093/aob/mcf096 – volume: 7 start-page: 1787 year: 2016 ident: 2559_CR33 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01787 – volume: 202 start-page: 497 year: 2016 ident: 2559_CR8 publication-title: J Agron Crop Sci doi: 10.1111/jac.12181 – volume: 17 start-page: 36 year: 2018 ident: 2559_CR41 publication-title: Microb Cell Fact doi: 10.1186/s12934-018-0879-x – volume: 49 start-page: 69 year: 2003 ident: 2559_CR49 publication-title: Environ Exp Bot doi: 10.1016/S0098-8472(02)00058-8 – volume: 27 start-page: 210 year: 2012 ident: 2559_CR42 publication-title: Nitric Oxide - Biol Chem doi: 10.1016/j.niox.2012.07.005 – volume: 156 start-page: 64 year: 2020 ident: 2559_CR5 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2020.08.042 – volume: 63 start-page: 687 year: 2017 ident: 2559_CR29 publication-title: Arch Agron Soil Sci doi: 10.1080/03650340.2016.1234042 – volume: 913 start-page: 415 year: 2012 ident: 2559_CR34 publication-title: Mol Biol doi: 10.1007/978-1-61779-986-0_28 – volume: 9 start-page: 681 year: 2020 ident: 2559_CR35 publication-title: Antioxidants doi: 10.3390/antiox9080681 – volume: 6 start-page: 48 year: 2017 ident: 2559_CR17 publication-title: Food Energy Secur doi: 10.1002/fes3.108 – volume: 10 start-page: 1240 year: 2020 ident: 2559_CR24 publication-title: Agronomy doi: 10.3390/agronomy10091240 – volume: 26 start-page: 845 year: 2003 ident: 2559_CR52 publication-title: Plant, Cell Environ doi: 10.1046/j.1365-3040.2003.01016.x – volume: 6 start-page: 215 year: 2018 ident: 2559_CR70 publication-title: Crop J doi: 10.1016/j.cj.2018.01.003 – volume: 25 start-page: e00426 year: 2020 ident: 2559_CR55 publication-title: Biotechnol Reports doi: 10.1016/j.btre.2020.e00426 – volume: 10 start-page: 2820 issue: 1 year: 2020 ident: 2559_CR20 publication-title: Sci Rep doi: 10.1038/s41598-020-59840-4 – volume: 196 start-page: 39 year: 2015 ident: 2559_CR11 publication-title: Sci Hortic (amsterdam) doi: 10.1016/J.SCIENTA.2015.09.012 – volume: 60 start-page: 796 year: 2018 ident: 2559_CR73 publication-title: J Integr Plant Biol doi: 10.1111/jipb.12689 – volume: 9 start-page: 2525 year: 2018 ident: 2559_CR22 publication-title: Front Microbiol doi: 10.3389/fmicb.2018.02525 – volume: 148 start-page: 350 year: 1987 ident: 2559_CR47 publication-title: Meth Enzymol doi: 10.1016/0076-6879(87)48036-1 – ident: 2559_CR59 doi: 10.3390/agronomy9040192 – ident: 2559_CR27 doi: 10.1155/2015/835761 – volume: 7 start-page: 2049 year: 2017 ident: 2559_CR71 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.02049 – volume: 61 start-page: 495 year: 2010 ident: 2559_CR45 publication-title: Plant J doi: 10.1111/j.1365-313X.2009.04073.x – volume: 188 start-page: 225 year: 2019 ident: 2559_CR30 publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-018-2916-y – volume: 30 start-page: 1061 year: 2018 ident: 2559_CR9 publication-title: J Appl Phycol doi: 10.1007/s10811-017-1283-3 – volume: 9 start-page: 40450 year: 2020 ident: 2559_CR61 publication-title: Plants doi: 10.3390/plants9040450 |
SSID | ssj0009818 |
Score | 2.5488212 |
Snippet | High soil salinity is a major abiotic stress affecting the growth, nutrition, development, and productivity of crops. This study investigated the modulating... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3779 |
SubjectTerms | Absorption Adaptability Algae algology Alkanes antioxidant enzymes Antioxidants Aphanothece Aquatic microorganisms Arthrospira biomass Biomedical and Life Sciences Chlorella ellipsoidea Cuticular wax Cyanobacteria Dunaliella salina Ecology Enzymatic activity Enzyme activity Epicuticular wax fatty acid composition Fatty acids Freshwater & Marine Ecology Homeostasis Leaf area Leaves Life Sciences Lipid peroxidation Lipids Microalgae Mineral nutrients Nitrogen Nutrient uptake Nutrition Oxidative stress Peroxidation Phosphorus Photosynthesis Photosynthetic pigments Phytoplankton Pigments Plant growth Plant Physiology Plant Sciences Plants Plants (botany) Potassium principal component analysis Principal components analysis Proline root growth Salinity Salinity effects Salinity tolerance salt stress salt tolerance Sodium chloride Soil salinity Soil stresses Superoxide dismutase Tomatoes Uptake vegetative growth |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEF-ktaAPYk_Fq1W24Ju3kMtmk83jVVqK0D71oG9hNpnU4l1yXHIP9-ZXEL-hn6Qzm6SnooIPB-Ey2UBmZuc3O_-EeB_HqY7IUChjjFNRCakCEmYVuSIsbVS6yB9dXF7FF_Po04256YvCmiHbfQhJ-p36p2I3y8d5If8IByty1PcN--4kxfNwtmu1a_2pXpASpU2TaV8q8-c1fjVHO4z5W1jUW5vz5-JZDxPlrOProXiE1Ug8nd2u-1YZOBIH3RjJ7Ug8Pq0J4tHFwZnvQb19Ib5dcqId12mgyrdQkdb6rszw4-t3NlyFdHc1afdys6BPK7usDllXsgEulWy3sq0XyEM3UC6Rq4PvmmUzkRU37yc7JTerFr7gREJVECnB3lqu_FK35Ne3nyXXpq15tVZ25Sgvxfz87PrjheqnL6icQFmrEkSrgfZKArZFiEWQQ2roL9oiXWwtkmVDAn-JQfLZQDuwgXUuzw0alxdloF-Jvaqu8LWQCUSFhTIMYtQcp3NOJ2VpYQpBAIU2YzEdmJDlfWtynpCxyHZNlZlxGTEu84zLgrH48PDMqmvM8U_q44G3Wa-kTUaeXxomiZnqsTh5uE3qxTETqLDeEE2seThJaOOxmAwysVvi7288-j_yN-JJyGLpE2WOxV673uBbgjute-el-x41b_gV priority: 102 providerName: Springer Nature |
Title | Microalgae-cyanobacteria–based biostimulant effect on salinity tolerance mechanisms, nutrient uptake, and tomato plant growth under salt stress |
URI | https://link.springer.com/article/10.1007/s10811-021-02559-0 https://www.proquest.com/docview/2599277513 https://www.proquest.com/docview/2636808286 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Pb9MwFH9iK0hwQFBAdIzKSNyohfPHiXNCHeqYQJsQotI4RXbibBNt0jXpoTe-AuIb8kl4L3EXgcQOuSSOLfk9v_fz-wvwOoqSIERFwaWUhoeFTrhGZuahyf1ChYUJW9PF6Vl0Mg8_nstzZ3CrXVjlTia2gjqvMrKRv0WYnvhxLL3g3eqaU9co8q66Fhp7MEARrPDyNTianX3-0pfdVa2FTyS-x1USey5txiXPKTIP-vQgrubib9XU481_XKSt5jl-BA8dZGTTjsaP4Y4th_BgerF2ZTPsEO51LSW3Q7h7VCHc2z6Bn6cUakeZGpZnW13iuW3rMuvfP36R6sqZuarwfC83C9xc1sV1sKpktaZkyWbLmmphqe2GZUtL-cFX9bKesJLK96OmYptVo7_bCdNljkMR-FZs1U51gTf75pJRdtqaZmtYl5DyFObHs6_vT7jrv8AzhGUNj61VgUZpidA2920uMp1IfIVC0kRKWdRtFuFfLC3e2nRgtBLKmCyTVposL0TwDPbLqrTPgcU6zJUufBHZgDx1xgRxUSjtaSF0HsgReLutTzNXnJx6ZCzSvqwykStFcqUtuVIxgjc3_6y60hy3jj7cUTR1x7ROe6Yawaubz3jAyGuiS1ttcEwUUHsSX0UjmOw4oZ_i_yse3L7iC7jvE_O1oTGHsN-sN_YlApzGjGEw_fDt02zsuHkMe3N_-gfLYvxF |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VFAQcEAQQgQKLBCeywl7_rQ8ItdAqpU2EUCv15u7a67ZqYofYUeUbr4B4Dx6KJ2HGP41AorcefLHXY8kzO_Pt_AK89v3QcdFQcM_zNHdTFXKFwsxdnYhUuql2a9fFeOKPDt3PR97RGvzqamEorbLTibWiTvKYfOTvEKaHIgg82_kw_8ZpahRFV7sRGo1Y7JnqAo9sxfvdT8jfN0LsbB98HPF2qgCPEWyUPDBGOgp1AAK2RJjEilXo4S3c-tqX0qDGNghqAs_gWUQ5WklLah3HnvF0nKSWg3RvwLrr4FGmB-tb25MvX1dtfmXtUbRCYXMZBnZbptMW60lyRwq6EMdz629TuMK3_4Rka0u3cx_utRCVbTYy9QDWTNaHu5sni7ZNh-nDrWaEZdWHm1s5wsvqIfwYU2ofVYYYHlcqQz1R94FWv7__JFOZMH2Woz6ZLafITNbkkbA8Y4Wi4syyYmU-NTTmw7CZoXrks2JWDFlG4wLQMrLlvFTnZshUluBSBNo5m9ekThb5RXnKqBpuQdRK1hTAPILDa-HMY-hleWaeAAuUm0iVCss3DkUGtXaCNJXKVpalEscbgN39-ihum6HTTI5ptGrjTOyKkF1Rza7IGsDby3fmTSuQK1dvdByNWrVQRCshHsCry8e4oSlKozKTL3GN79A4FCH9AQw7SViR-P8Xn179xZdwe3Qw3o_2dyd7z-COIEGs03I2oFculuY5gqtSv2glmsHxdW-iP9vlNzo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VFBAcEAQQgQKLBCeyqr3-Wx8QammjltKoQlTqzeza61KR2CF2VPnGKyDehsfhSZjxTy2Q6K0HX-z1WPLMznw7vwAvfT90XDQU3PM8zd1UhVyhMHNXJyKVbqrd2nVxOPX3jt33J97JGvzqamEorbLTibWiTvKYfOSbCNNDEQSe7WymbVrE0c7k7eIbpwlSFGntxmk0InJgqnM8vhVv9neQ16-EmOx-erfH2wkDPEbgUfLAGOko1AcI3hJhEitWoYe3UA1oX0qD2tsgwAk8g-cS5WglLal1HHvG03GSWg7SvQbrAZ6KrAGsb-9Ojz72LX9l7V20QmFzGQZ2W7LTFu5Jck0KuhDTc-tvs9hj3X_Cs7XVm9yFOy1cZVuNfN2DNZMN4fbW6bJt2WGGcKMZZ1kN4fp2jlCzug8_DinNj6pEDI8rlaHOqHtCq9_ff5LZTJg-y1G3zFczZCxrckpYnrFCUaFmWbEynxka-WHY3FBt8lkxL8Yso9EBaCXZalGqr2bMVJbgUgTdOVvUpE6X-Xn5hVFl3JKolawphnkAx1fCmYcwyPLMPAIWKDeRKhWWbxyKEmrtBGkqla0sSyWONwK7-_VR3DZGp_kcs6hv6UzsipBdUc2uyBrB64t3Fk1bkEtXb3QcjVoVUUS9QI_gxcVj3NwUsVGZyVe4xndoNIqQ_gjGnST0JP7_xceXf_E53MTNE33Ynx48gVuC5LDO0NmAQblcmaeIs0r9rBVoBp-veg_9ATzvO28 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microalgae-cyanobacteria%E2%80%93based+biostimulant+effect+on+salinity+tolerance+mechanisms%2C+nutrient+uptake%2C+and+tomato+plant+growth+under+salt+stress&rft.jtitle=Journal+of+applied+phycology&rft.au=Chanda%2C+Mutale-joan&rft.au=Rachidi+Farid&rft.au=Alaoui%2C+Mohamed+Hachimi&rft.au=Mernissi+Najib+El&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0921-8971&rft.eissn=1573-5176&rft.volume=33&rft.issue=6&rft.spage=3779&rft.epage=3795&rft_id=info:doi/10.1007%2Fs10811-021-02559-0&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8971&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8971&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8971&client=summon |