Construction of a high-performance photocatalytic fuel cell (PFC) based on plasmonic silver modified Cr-BiOCl nanosheets for simultaneous electricity production and pollutant removal

The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer efficiency. Herein, we have experimentally obtained plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity an...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 11; no. 14; pp. 6662 - 6676
Main Authors Zhang, Lei, Liang, Chao, Guo, Hai, Niu, Cheng-Gang, Zhao, Xiu-Fei, Wen, Xiao-Ju, Zeng, Guang-Ming
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 04.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer efficiency. Herein, we have experimentally obtained plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity and provided direct evidence for the substantially enhanced catalytic activity in metal–semiconductor photocatalysts. The experimental results revealed that the Cr doping and Ag modification could not only extend the photo absorption of BiOCl from the UV to the visible light region but could also greatly increase the generation and transfer rate of charge carriers because of its narrowed band gap and the localized surface plasmon resonance (LSPR) effect of metallic Ag. Under visible light irradiation, the Cr-BOC/Ag showed a remarkable enhancement in the PFC performance when the optimum contents of Cr doping and Ag loading was 14.4% and 4%, respectively. The trapping experiments and multiple characterizations demonstrated that the advantageous combination of the Cr doping effect and SPR effect induced by the Ag nanoparticles is responsible for the high generation rate of oxidative species and effective charge carrier transfer. By using RhB as fuel, approximately 75.1% color removal efficiency and 8.38% coulombic efficiency were obtained under visible light irradiation for 240 min, which are higher than those of MO and TC. In addition, the J sc and V oc of the Cr-BOC/Ag photoanode were measured to be 0.0073 mA cm −2 and 0.543 V.
AbstractList The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer efficiency. Herein, we have experimentally obtained plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity and provided direct evidence for the substantially enhanced catalytic activity in metal–semiconductor photocatalysts. The experimental results revealed that the Cr doping and Ag modification could not only extend the photo absorption of BiOCl from the UV to the visible light region but could also greatly increase the generation and transfer rate of charge carriers because of its narrowed band gap and the localized surface plasmon resonance (LSPR) effect of metallic Ag. Under visible light irradiation, the Cr-BOC/Ag showed a remarkable enhancement in the PFC performance when the optimum contents of Cr doping and Ag loading was 14.4% and 4%, respectively. The trapping experiments and multiple characterizations demonstrated that the advantageous combination of the Cr doping effect and SPR effect induced by the Ag nanoparticles is responsible for the high generation rate of oxidative species and effective charge carrier transfer. By using RhB as fuel, approximately 75.1% color removal efficiency and 8.38% coulombic efficiency were obtained under visible light irradiation for 240 min, which are higher than those of MO and TC. In addition, the Jsc and Voc of the Cr-BOC/Ag photoanode were measured to be 0.0073 mA cm−2 and 0.543 V.
The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer efficiency. Herein, we have experimentally obtained plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity and provided direct evidence for the substantially enhanced catalytic activity in metal-semiconductor photocatalysts. The experimental results revealed that the Cr doping and Ag modification could not only extend the photo absorption of BiOCl from the UV to the visible light region but could also greatly increase the generation and transfer rate of charge carriers because of its narrowed band gap and the localized surface plasmon resonance (LSPR) effect of metallic Ag. Under visible light irradiation, the Cr-BOC/Ag showed a remarkable enhancement in the PFC performance when the optimum contents of Cr doping and Ag loading was 14.4% and 4%, respectively. The trapping experiments and multiple characterizations demonstrated that the advantageous combination of the Cr doping effect and SPR effect induced by the Ag nanoparticles is responsible for the high generation rate of oxidative species and effective charge carrier transfer. By using RhB as fuel, approximately 75.1% color removal efficiency and 8.38% coulombic efficiency were obtained under visible light irradiation for 240 min, which are higher than those of MO and TC. In addition, the Jsc and Voc of the Cr-BOC/Ag photoanode were measured to be 0.0073 mA cm-2 and 0.543 V.
The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer efficiency. Herein, we have experimentally obtained plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity and provided direct evidence for the substantially enhanced catalytic activity in metal–semiconductor photocatalysts. The experimental results revealed that the Cr doping and Ag modification could not only extend the photo absorption of BiOCl from the UV to the visible light region but could also greatly increase the generation and transfer rate of charge carriers because of its narrowed band gap and the localized surface plasmon resonance (LSPR) effect of metallic Ag. Under visible light irradiation, the Cr-BOC/Ag showed a remarkable enhancement in the PFC performance when the optimum contents of Cr doping and Ag loading was 14.4% and 4%, respectively. The trapping experiments and multiple characterizations demonstrated that the advantageous combination of the Cr doping effect and SPR effect induced by the Ag nanoparticles is responsible for the high generation rate of oxidative species and effective charge carrier transfer. By using RhB as fuel, approximately 75.1% color removal efficiency and 8.38% coulombic efficiency were obtained under visible light irradiation for 240 min, which are higher than those of MO and TC. In addition, the J sc and V oc of the Cr-BOC/Ag photoanode were measured to be 0.0073 mA cm −2 and 0.543 V.
The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer efficiency. Herein, we have experimentally obtained plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity and provided direct evidence for the substantially enhanced catalytic activity in metal-semiconductor photocatalysts. The experimental results revealed that the Cr doping and Ag modification could not only extend the photo absorption of BiOCl from the UV to the visible light region but could also greatly increase the generation and transfer rate of charge carriers because of its narrowed band gap and the localized surface plasmon resonance (LSPR) effect of metallic Ag. Under visible light irradiation, the Cr-BOC/Ag showed a remarkable enhancement in the PFC performance when the optimum contents of Cr doping and Ag loading was 14.4% and 4%, respectively. The trapping experiments and multiple characterizations demonstrated that the advantageous combination of the Cr doping effect and SPR effect induced by the Ag nanoparticles is responsible for the high generation rate of oxidative species and effective charge carrier transfer. By using RhB as fuel, approximately 75.1% color removal efficiency and 8.38% coulombic efficiency were obtained under visible light irradiation for 240 min, which are higher than those of MO and TC. In addition, the Jsc and Voc of the Cr-BOC/Ag photoanode were measured to be 0.0073 mA cm-2 and 0.543 V.The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer efficiency. Herein, we have experimentally obtained plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity and provided direct evidence for the substantially enhanced catalytic activity in metal-semiconductor photocatalysts. The experimental results revealed that the Cr doping and Ag modification could not only extend the photo absorption of BiOCl from the UV to the visible light region but could also greatly increase the generation and transfer rate of charge carriers because of its narrowed band gap and the localized surface plasmon resonance (LSPR) effect of metallic Ag. Under visible light irradiation, the Cr-BOC/Ag showed a remarkable enhancement in the PFC performance when the optimum contents of Cr doping and Ag loading was 14.4% and 4%, respectively. The trapping experiments and multiple characterizations demonstrated that the advantageous combination of the Cr doping effect and SPR effect induced by the Ag nanoparticles is responsible for the high generation rate of oxidative species and effective charge carrier transfer. By using RhB as fuel, approximately 75.1% color removal efficiency and 8.38% coulombic efficiency were obtained under visible light irradiation for 240 min, which are higher than those of MO and TC. In addition, the Jsc and Voc of the Cr-BOC/Ag photoanode were measured to be 0.0073 mA cm-2 and 0.543 V.
Author Liang, Chao
Guo, Hai
Wen, Xiao-Ju
Zhao, Xiu-Fei
Zeng, Guang-Ming
Zhang, Lei
Niu, Cheng-Gang
Author_xml – sequence: 1
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082
– sequence: 2
  givenname: Chao
  surname: Liang
  fullname: Liang, Chao
  organization: College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082
– sequence: 3
  givenname: Hai
  surname: Guo
  fullname: Guo, Hai
  organization: College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082
– sequence: 4
  givenname: Cheng-Gang
  orcidid: 0000-0002-5904-9111
  surname: Niu
  fullname: Niu, Cheng-Gang
  organization: College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082
– sequence: 5
  givenname: Xiu-Fei
  surname: Zhao
  fullname: Zhao, Xiu-Fei
  organization: College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082
– sequence: 6
  givenname: Xiao-Ju
  orcidid: 0000-0002-6450-7244
  surname: Wen
  fullname: Wen, Xiao-Ju
  organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, China
– sequence: 7
  givenname: Guang-Ming
  orcidid: 0000-0001-6496-8123
  surname: Zeng
  fullname: Zeng, Guang-Ming
  organization: College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30896684$$D View this record in MEDLINE/PubMed
BookMark eNptkdFqFDEYhYO02Hb1xgeQgDetMPpPMpOZudTB1kJpRfR6yCb_uCmZZEwyhX0xn88su1UovUog3zmcnHNGjpx3SMibEj6UwLuPfXv7HTpRiv4FOWVQQcF5w47-3UV1Qs5ivAcQHRf8JTnh0HZCtNUp-dN7F1NYVDLeUT9SSTfm16aYMYw-TNIppPPGJ69kknabjKLjgpYqtJaef7vsL-haRtQ0q2cr4-RdRqKxDxjo5LUZTX7sQ_HZ3PWWOul83CCmSLN95qbFJunQL5GiRZWCUSZt6Ry8PmSSTtPZW7tkLtGAk3-Q9hU5HqWN-PpwrsjPyy8_-q_Fzd3Vdf_pplC8ZqloOgZarxFUx1UFVVmWgrVYa61GoQBaXmvAEpiSjdBVPUqUa5TQMhCVloqvyPneNwf6vWBMw2Ti7u_7zAMru5o10DRtRt89Qe_9ElxONzAGnNd1letfkbcHallPqIc5mEmG7fC4SAZgD6jgYww4DrkQuWsiBWnsUMKwG334P3qWvH8ieXR9Bv4LGUevrg
CitedBy_id crossref_primary_10_3390_catal13010053
crossref_primary_10_1016_j_jphotochem_2019_111901
crossref_primary_10_1016_j_jenvman_2023_117411
crossref_primary_10_1016_j_solidstatesciences_2019_105989
crossref_primary_10_1007_s10971_023_06047_4
crossref_primary_10_1016_j_apcatb_2019_118465
crossref_primary_10_1016_j_jhazmat_2020_122599
crossref_primary_10_1016_j_jallcom_2020_155848
crossref_primary_10_1016_j_jece_2023_110135
crossref_primary_10_1039_D4TA01361A
crossref_primary_10_1039_D0AN01355B
crossref_primary_10_1016_j_cej_2019_123919
crossref_primary_10_1016_j_cej_2021_131074
crossref_primary_10_1016_j_cej_2019_04_137
crossref_primary_10_1016_j_snb_2020_128245
crossref_primary_10_1007_s10854_020_04599_7
crossref_primary_10_1021_acssuschemeng_9b02575
crossref_primary_10_1016_j_apcatb_2023_122646
crossref_primary_10_1016_j_cej_2023_145162
crossref_primary_10_1016_j_chemosphere_2024_142408
crossref_primary_10_1007_s13204_020_01296_z
crossref_primary_10_1016_j_cej_2019_123236
crossref_primary_10_1016_j_cej_2022_141087
crossref_primary_10_3390_pr11030838
crossref_primary_10_1016_j_seppur_2019_115821
crossref_primary_10_1016_j_colsurfa_2019_123747
crossref_primary_10_1016_j_physb_2020_412587
crossref_primary_10_1016_j_cej_2019_123824
crossref_primary_10_1016_j_jece_2023_110287
crossref_primary_10_1016_j_cej_2023_144628
crossref_primary_10_1016_j_jphotochem_2019_112070
crossref_primary_10_1515_revic_2023_0013
crossref_primary_10_1016_j_jmst_2023_12_004
crossref_primary_10_1016_j_surfin_2024_105090
crossref_primary_10_3389_fmicb_2023_1210790
crossref_primary_10_1016_j_colsurfa_2020_125239
crossref_primary_10_1016_j_apsusc_2021_150410
crossref_primary_10_1016_j_jece_2022_107611
crossref_primary_10_1016_j_mssp_2021_105788
crossref_primary_10_1016_j_mtcomm_2021_102145
crossref_primary_10_1016_j_jelechem_2022_116410
crossref_primary_10_1016_j_envres_2023_116702
crossref_primary_10_1007_s10854_022_09152_2
Cites_doi 10.1016/j.cej.2018.12.038
10.1021/acs.jpcc.7b04348
10.1021/jacs.6b12850
10.1021/jp400415m
10.1016/j.watres.2014.05.044
10.1016/j.surfcoat.2018.02.025
10.1021/acssuschemeng.8b01448
10.1021/acsami.7b01701
10.1021/acssuschemeng.7b00501
10.1021/es303968n
10.1039/c3nr03597b
10.1021/am3000903
10.1016/j.apcatb.2017.09.036
10.1016/j.jhazmat.2010.10.083
10.1039/C8TA00449H
10.1016/j.apcatb.2005.08.013
10.1038/353737a0
10.1016/j.watres.2011.05.004
10.1021/acsami.8b14227
10.1002/adfm.201303214
10.1021/acssuschemeng.6b03150
10.1016/j.apcatb.2013.04.005
10.1016/j.apcatb.2018.09.090
10.1016/j.cej.2014.05.041
10.1021/ja402956f
10.1039/C7TA02077E
10.1021/cs200320h
10.1038/ncomms9340
10.1021/es050986i
10.1021/ja200086g
10.1016/j.jallcom.2018.01.014
10.1016/j.jcat.2017.11.029
10.1039/c1ra00335f
10.1021/am5010392
10.1039/C7NJ00162B
10.1016/j.apcatb.2015.03.001
10.1021/nl104005n
10.1016/j.apcatb.2017.04.028
10.1039/C7TA08112J
10.1016/j.watres.2016.06.006
10.1016/j.cattod.2013.12.019
10.1039/C7TA09897A
10.1039/C1CP23516H
10.1002/smtd.201800184
10.1039/C7CY02190A
10.1039/C5NR08341A
10.1016/j.apcatb.2017.09.060
10.1021/acsami.8b03390
10.1016/j.apcatb.2017.03.024
10.1016/j.chemosphere.2016.09.082
10.1016/j.nanoen.2016.10.001
10.1016/j.apcatb.2013.08.006
10.1016/j.chemosphere.2013.09.056
10.1016/j.apcatb.2016.07.054
10.1021/ja210484t
10.1021/acsami.7b14541
10.1021/acs.jpcc.7b03213
10.1016/j.apcatb.2006.08.002
10.1021/cs501631n
10.1016/j.apcatb.2009.07.022
10.1016/j.apcatb.2018.05.029
10.1016/j.jcis.2017.10.068
10.1016/j.cej.2018.07.102
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/C8NR09616C
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 6676
ExternalDocumentID 30896684
10_1039_C8NR09616C
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
-JG
AGSTE
NPM
RRC
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c352t-7920ddbe0c93c404111628e5ddcf6c00835d0e102ca76d45faeabea082064dac3
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 01:13:36 EDT 2025
Sun Jun 29 12:51:12 EDT 2025
Wed Feb 19 02:32:46 EST 2025
Thu Apr 24 22:51:53 EDT 2025
Tue Jul 01 01:13:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-7920ddbe0c93c404111628e5ddcf6c00835d0e102ca76d45faeabea082064dac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6496-8123
0000-0002-6450-7244
0000-0002-5904-9111
PMID 30896684
PQID 2203355469
PQPubID 2047485
PageCount 15
ParticipantIDs proquest_miscellaneous_2195270778
proquest_journals_2203355469
pubmed_primary_30896684
crossref_citationtrail_10_1039_C8NR09616C
crossref_primary_10_1039_C8NR09616C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Apr-04
PublicationDateYYYYMMDD 2019-04-04
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-Apr-04
  day: 04
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Lai (C8NR09616C-(cit52)/*[position()=1]) 2013; 93
Liang (C8NR09616C-(cit54)/*[position()=1]) 2018; 8
Sun (C8NR09616C-(cit10)/*[position()=1]) 2015; 5
Cai (C8NR09616C-(cit27)/*[position()=1]) 2019; 3
Guo (C8NR09616C-(cit48)/*[position()=1]) 2018; 6
O'Regan (C8NR09616C-(cit60)/*[position()=1]) 1991; 353
Wu (C8NR09616C-(cit31)/*[position()=1]) 2017; 9
Ingram (C8NR09616C-(cit23)/*[position()=1]) 2011; 1
Fernandes (C8NR09616C-(cit30)/*[position()=1]) 2018; 339
Jeong (C8NR09616C-(cit57)/*[position()=1]) 2013; 117
Xiong (C8NR09616C-(cit17)/*[position()=1]) 2011; 1
Liu (C8NR09616C-(cit61)/*[position()=1]) 2011; 45
Rabaey (C8NR09616C-(cit64)/*[position()=1]) 2005; 39
Zhu (C8NR09616C-(cit38)/*[position()=1]) 2006; 62
Jiang (C8NR09616C-(cit8)/*[position()=1]) 2012; 134
Wen (C8NR09616C-(cit46)/*[position()=1]) 2018; 358
Lee (C8NR09616C-(cit2)/*[position()=1]) 2017; 166
Zhang (C8NR09616C-(cit16)/*[position()=1]) 2014; 6
Kamimura (C8NR09616C-(cit20)/*[position()=1]) 2017; 211
Zhang (C8NR09616C-(cit62)/*[position()=1]) 2018; 10
Deng (C8NR09616C-(cit36)/*[position()=1]) 2017; 4
Zhou (C8NR09616C-(cit56)/*[position()=1]) 2015; 6
Lianos (C8NR09616C-(cit59)/*[position()=1]) 2011; 185
Li (C8NR09616C-(cit4)/*[position()=1]) 2014; 62
Baidya (C8NR09616C-(cit34)/*[position()=1]) 2017; 121
Marschall (C8NR09616C-(cit9)/*[position()=1]) 2014; 24
Wang (C8NR09616C-(cit15)/*[position()=1]) 2018; 10
Li (C8NR09616C-(cit28)/*[position()=1]) 2018; 6
Jiang (C8NR09616C-(cit37)/*[position()=1]) 2013; 5
Huang (C8NR09616C-(cit18)/*[position()=1]) 2015; 174
Zhang (C8NR09616C-(cit35)/*[position()=1]) 2014; 144
Yu (C8NR09616C-(cit24)/*[position()=1]) 2017; 121
Huang (C8NR09616C-(cit63)/*[position()=1]) 2018; 740
Zhou (C8NR09616C-(cit41)/*[position()=1]) 2019; 242
Mi (C8NR09616C-(cit26)/*[position()=1]) 2016; 30
Wang (C8NR09616C-(cit19)/*[position()=1]) 2018; 221
Wen (C8NR09616C-(cit55)/*[position()=1]) 2018; 221
Li (C8NR09616C-(cit5)/*[position()=1]) 2013; 47
Ren (C8NR09616C-(cit39)/*[position()=1]) 2009; 92
Cai (C8NR09616C-(cit42)/*[position()=1]) 2017; 5
Li (C8NR09616C-(cit32)/*[position()=1]) 2017; 139
Wang (C8NR09616C-(cit3)/*[position()=1]) 2014; 253
Wang (C8NR09616C-(cit58)/*[position()=1]) 2017; 200
Chen (C8NR09616C-(cit45)/*[position()=1]) 2016; 101
Wang (C8NR09616C-(cit33)/*[position()=1]) 2019; 360
Deng (C8NR09616C-(cit22)/*[position()=1]) 2017; 9
Zhang (C8NR09616C-(cit53)/*[position()=1]) 2018; 352
Guan (C8NR09616C-(cit47)/*[position()=1]) 2018; 512
Zhang (C8NR09616C-(cit43)/*[position()=1]) 2012; 14
Luo (C8NR09616C-(cit44)/*[position()=1]) 2012; 4
Li (C8NR09616C-(cit6)/*[position()=1]) 2013; 140
Wang (C8NR09616C-(cit29)/*[position()=1]) 2018; 236
Zhou (C8NR09616C-(cit1)/*[position()=1]) 2017; 5
Bae (C8NR09616C-(cit51)/*[position()=1]) 2014; 224
Liang (C8NR09616C-(cit25)/*[position()=1]) 2017; 41
Ingram (C8NR09616C-(cit49)/*[position()=1]) 2011; 133
Guan (C8NR09616C-(cit13)/*[position()=1]) 2013; 135
Wen (C8NR09616C-(cit40)/*[position()=1]) 2017; 5
Zhang (C8NR09616C-(cit7)/*[position()=1]) 2006; 68
Ge (C8NR09616C-(cit21)/*[position()=1]) 2016; 8
Zhang (C8NR09616C-(cit11)/*[position()=1]) 2017; 5
Liu (C8NR09616C-(cit50)/*[position()=1]) 2011; 11
Cui (C8NR09616C-(cit12)/*[position()=1]) 2018; 6
Wang (C8NR09616C-(cit14)/*[position()=1]) 2017; 209
References_xml – volume: 360
  start-page: 838
  year: 2019
  ident: C8NR09616C-(cit33)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.12.038
– volume: 4
  start-page: 1494
  year: 2017
  ident: C8NR09616C-(cit36)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 121
  start-page: 15256
  year: 2017
  ident: C8NR09616C-(cit34)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b04348
– volume: 139
  start-page: 3513
  year: 2017
  ident: C8NR09616C-(cit32)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12850
– volume: 117
  start-page: 9104
  year: 2013
  ident: C8NR09616C-(cit57)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp400415m
– volume: 62
  start-page: 1
  year: 2014
  ident: C8NR09616C-(cit4)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.05.044
– volume: 339
  start-page: 167
  year: 2018
  ident: C8NR09616C-(cit30)/*[position()=1]
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.02.025
– volume: 6
  start-page: 8003
  year: 2018
  ident: C8NR09616C-(cit48)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01448
– volume: 9
  start-page: 16620
  year: 2017
  ident: C8NR09616C-(cit31)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01701
– volume: 5
  start-page: 5134
  year: 2017
  ident: C8NR09616C-(cit40)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00501
– volume: 47
  start-page: 3490
  year: 2013
  ident: C8NR09616C-(cit5)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es303968n
– volume: 5
  start-page: 10573
  year: 2013
  ident: C8NR09616C-(cit37)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr03597b
– volume: 4
  start-page: 1813
  year: 2012
  ident: C8NR09616C-(cit44)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3000903
– volume: 221
  start-page: 320
  year: 2018
  ident: C8NR09616C-(cit19)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.09.036
– volume: 185
  start-page: 575
  year: 2011
  ident: C8NR09616C-(cit59)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.10.083
– volume: 6
  start-page: 6344
  year: 2018
  ident: C8NR09616C-(cit28)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00449H
– volume: 62
  start-page: 329
  year: 2006
  ident: C8NR09616C-(cit38)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2005.08.013
– volume: 353
  start-page: 737
  year: 1991
  ident: C8NR09616C-(cit60)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/353737a0
– volume: 45
  start-page: 3991
  year: 2011
  ident: C8NR09616C-(cit61)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.05.004
– volume: 10
  start-page: 39723
  year: 2018
  ident: C8NR09616C-(cit62)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b14227
– volume: 24
  start-page: 2421
  year: 2014
  ident: C8NR09616C-(cit9)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303214
– volume: 5
  start-page: 4619
  year: 2017
  ident: C8NR09616C-(cit11)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b03150
– volume: 140
  start-page: 179
  year: 2013
  ident: C8NR09616C-(cit6)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2013.04.005
– volume: 242
  start-page: 76
  year: 2019
  ident: C8NR09616C-(cit41)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.09.090
– volume: 253
  start-page: 174
  year: 2014
  ident: C8NR09616C-(cit3)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.05.041
– volume: 135
  start-page: 10411
  year: 2013
  ident: C8NR09616C-(cit13)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402956f
– volume: 5
  start-page: 16412
  year: 2017
  ident: C8NR09616C-(cit42)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02077E
– volume: 1
  start-page: 1441
  year: 2011
  ident: C8NR09616C-(cit23)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs200320h
– volume: 6
  start-page: 8340
  year: 2015
  ident: C8NR09616C-(cit56)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9340
– volume: 39
  start-page: 8077
  year: 2005
  ident: C8NR09616C-(cit64)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050986i
– volume: 133
  start-page: 5202
  year: 2011
  ident: C8NR09616C-(cit49)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200086g
– volume: 740
  start-page: 355
  year: 2018
  ident: C8NR09616C-(cit63)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.01.014
– volume: 358
  start-page: 141
  year: 2018
  ident: C8NR09616C-(cit46)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.11.029
– volume: 1
  start-page: 1542
  year: 2011
  ident: C8NR09616C-(cit17)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c1ra00335f
– volume: 6
  start-page: 7766
  year: 2014
  ident: C8NR09616C-(cit16)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5010392
– volume: 41
  start-page: 5334
  year: 2017
  ident: C8NR09616C-(cit25)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ00162B
– volume: 174
  start-page: 105
  year: 2015
  ident: C8NR09616C-(cit18)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2015.03.001
– volume: 11
  start-page: 1111
  year: 2011
  ident: C8NR09616C-(cit50)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl104005n
– volume: 211
  start-page: 11
  year: 2017
  ident: C8NR09616C-(cit20)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.04.028
– volume: 5
  start-page: 25450
  year: 2017
  ident: C8NR09616C-(cit1)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08112J
– volume: 101
  start-page: 555
  year: 2016
  ident: C8NR09616C-(cit45)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.06.006
– volume: 224
  start-page: 21
  year: 2014
  ident: C8NR09616C-(cit51)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2013.12.019
– volume: 6
  start-page: 2193
  year: 2018
  ident: C8NR09616C-(cit12)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09897A
– volume: 14
  start-page: 1286
  year: 2012
  ident: C8NR09616C-(cit43)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP23516H
– volume: 3
  start-page: 1800184
  year: 2019
  ident: C8NR09616C-(cit27)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201800184
– volume: 8
  start-page: 1161
  year: 2018
  ident: C8NR09616C-(cit54)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY02190A
– volume: 8
  start-page: 5226
  year: 2016
  ident: C8NR09616C-(cit21)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR08341A
– volume: 221
  start-page: 701
  year: 2018
  ident: C8NR09616C-(cit55)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.09.060
– volume: 10
  start-page: 15304
  year: 2018
  ident: C8NR09616C-(cit15)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03390
– volume: 209
  start-page: 543
  year: 2017
  ident: C8NR09616C-(cit14)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.03.024
– volume: 166
  start-page: 118
  year: 2017
  ident: C8NR09616C-(cit2)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.09.082
– volume: 30
  start-page: 109
  year: 2016
  ident: C8NR09616C-(cit26)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.001
– volume: 144
  start-page: 730
  year: 2014
  ident: C8NR09616C-(cit35)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2013.08.006
– volume: 93
  start-page: 2805
  year: 2013
  ident: C8NR09616C-(cit52)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.09.056
– volume: 200
  start-page: 659
  year: 2017
  ident: C8NR09616C-(cit58)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.07.054
– volume: 134
  start-page: 4473
  year: 2012
  ident: C8NR09616C-(cit8)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja210484t
– volume: 9
  start-page: 42816
  year: 2017
  ident: C8NR09616C-(cit22)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14541
– volume: 121
  start-page: 13191
  year: 2017
  ident: C8NR09616C-(cit24)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b03213
– volume: 68
  start-page: 125
  year: 2006
  ident: C8NR09616C-(cit7)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2006.08.002
– volume: 5
  start-page: 3540
  year: 2015
  ident: C8NR09616C-(cit10)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs501631n
– volume: 92
  start-page: 50
  year: 2009
  ident: C8NR09616C-(cit39)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2009.07.022
– volume: 236
  start-page: 222
  year: 2018
  ident: C8NR09616C-(cit29)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.05.029
– volume: 512
  start-page: 272
  year: 2018
  ident: C8NR09616C-(cit47)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.10.068
– volume: 352
  start-page: 863
  year: 2018
  ident: C8NR09616C-(cit53)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.07.102
SSID ssj0069363
Score 2.4757571
Snippet The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 6662
SubjectTerms Catalysis
Catalytic activity
Charge efficiency
Charge transfer
Chromium
Color removal
Current carriers
Degradation
Doping
Efficiency
Fuel cells
Leaching
Light
Light irradiation
Low temperature
Mapping
Nanoparticles
Nanosheets
Photocatalysis
Photocatalysts
Photoelectric effect
Photoelectric emission
Pollutants
Potassium persulfate
Silver
Sodium sulfate
Spectra
Ultraviolet radiation
X ray photoelectron spectroscopy
Title Construction of a high-performance photocatalytic fuel cell (PFC) based on plasmonic silver modified Cr-BiOCl nanosheets for simultaneous electricity production and pollutant removal
URI https://www.ncbi.nlm.nih.gov/pubmed/30896684
https://www.proquest.com/docview/2203355469
https://www.proquest.com/docview/2195270778
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3db9MwEMCtskloPCC-KQxkBA9MU7Y0dpzkcYvYKj4KQpvYW-XYDo3UJlE_kODP4Y_g7-PO-WiKOgl4iSrbcdTer-c753xHyKuBilwhE99JuHYdriKJQQDG4YkJmE4GoC3xNPKHkRhe8rdX_lWv97MTtbRaJkfqx9ZzJf8jVWgDueIp2X-QbDspNMBnkC9cQcJw_SsZY7XNJv9rddARsw87ZecwQDkploXdo_mOqVnTlZke4mY9WpafzmLcFMCFTONLgxIs6ZmtiLPIMGAay-RkKdqo8dw5zT7G08Nc5sViYszSpnGAcRiQKHODgbRVRZ1MoV1fVolkm1jnEgsqY73iw7mZFd_q71XbxCOcE1BpEWs3sd-brA0Yyuq2eCKLNmhoZTd6h7IdNspW1SCTf3XOZb0s17saA_uCpqpDfGSs9vMw1JGxYFNVD7pI8o7iBS_M27oiuAwTqqown2NxG6G6g0Ca5cyywdwQ_L6Qr1fFNlax6bpBdj1wRUCX7p68Oz3_0qz3ImKCNYlvWXS8ftQeudncvGn1XOPKWJPm4g65Xfsi9KQC6y7pmfweudXJUHmf_OoiRouUSvonYnQTMYqIUUSMvgbADqjFi8LdLV60wos2eNEGL7rGi8L0tIsX7eBF13hRwIu2eNEarwfk8uzNRTx06lIfjgIPYOkEkedqnRhXRUxxl8MKLLzQ-FqrVCjrJ2jXgDGsZCA091NpZGIk2q-Ca6nYQ7KTF7l5TGjqptqkYiAFC7jmSciTIPX9VGs_SViY9slBI4qxqvPgYzmW6djGY7BoHIejz1aCcZ-8bMeWVfaXraP2G4mOa-2wGHuey9CWF1GfvGi7QXejAKofbgzWgu8FbhCEffKoIqF9TEPOk2t7npK99T9nn-wADOYZWMjL5HmN6G-na8Wp
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+a+high-performance+photocatalytic+fuel+cell+%28PFC%29+based+on+plasmonic+silver+modified+Cr-BiOCl+nanosheets+for+simultaneous+electricity+production+and+pollutant+removal&rft.jtitle=Nanoscale&rft.au=Zhang%2C+Lei&rft.au=Liang%2C+Chao&rft.au=Guo%2C+Hai&rft.au=Niu%2C+Cheng-Gang&rft.date=2019-04-04&rft.eissn=2040-3372&rft.volume=11&rft.issue=14&rft.spage=6662&rft_id=info:doi/10.1039%2Fc8nr09616c&rft_id=info%3Apmid%2F30896684&rft.externalDocID=30896684
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon