Construction of a high-performance photocatalytic fuel cell (PFC) based on plasmonic silver modified Cr-BiOCl nanosheets for simultaneous electricity production and pollutant removal
The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer efficiency. Herein, we have experimentally obtained plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity an...
Saved in:
Published in | Nanoscale Vol. 11; no. 14; pp. 6662 - 6676 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
04.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer efficiency. Herein, we have experimentally obtained plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity and provided direct evidence for the substantially enhanced catalytic activity in metal–semiconductor photocatalysts. The experimental results revealed that the Cr doping and Ag modification could not only extend the photo absorption of BiOCl from the UV to the visible light region but could also greatly increase the generation and transfer rate of charge carriers because of its narrowed band gap and the localized surface plasmon resonance (LSPR) effect of metallic Ag. Under visible light irradiation, the Cr-BOC/Ag showed a remarkable enhancement in the PFC performance when the optimum contents of Cr doping and Ag loading was 14.4% and 4%, respectively. The trapping experiments and multiple characterizations demonstrated that the advantageous combination of the Cr doping effect and SPR effect induced by the Ag nanoparticles is responsible for the high generation rate of oxidative species and effective charge carrier transfer. By using RhB as fuel, approximately 75.1% color removal efficiency and 8.38% coulombic efficiency were obtained under visible light irradiation for 240 min, which are higher than those of MO and TC. In addition, the
J
sc
and
V
oc
of the Cr-BOC/Ag photoanode were measured to be 0.0073 mA cm
−2
and 0.543 V. |
---|---|
AbstractList | The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer efficiency. Herein, we have experimentally obtained plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity and provided direct evidence for the substantially enhanced catalytic activity in metal–semiconductor photocatalysts. The experimental results revealed that the Cr doping and Ag modification could not only extend the photo absorption of BiOCl from the UV to the visible light region but could also greatly increase the generation and transfer rate of charge carriers because of its narrowed band gap and the localized surface plasmon resonance (LSPR) effect of metallic Ag. Under visible light irradiation, the Cr-BOC/Ag showed a remarkable enhancement in the PFC performance when the optimum contents of Cr doping and Ag loading was 14.4% and 4%, respectively. The trapping experiments and multiple characterizations demonstrated that the advantageous combination of the Cr doping effect and SPR effect induced by the Ag nanoparticles is responsible for the high generation rate of oxidative species and effective charge carrier transfer. By using RhB as fuel, approximately 75.1% color removal efficiency and 8.38% coulombic efficiency were obtained under visible light irradiation for 240 min, which are higher than those of MO and TC. In addition, the Jsc and Voc of the Cr-BOC/Ag photoanode were measured to be 0.0073 mA cm−2 and 0.543 V. The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer efficiency. Herein, we have experimentally obtained plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity and provided direct evidence for the substantially enhanced catalytic activity in metal-semiconductor photocatalysts. The experimental results revealed that the Cr doping and Ag modification could not only extend the photo absorption of BiOCl from the UV to the visible light region but could also greatly increase the generation and transfer rate of charge carriers because of its narrowed band gap and the localized surface plasmon resonance (LSPR) effect of metallic Ag. Under visible light irradiation, the Cr-BOC/Ag showed a remarkable enhancement in the PFC performance when the optimum contents of Cr doping and Ag loading was 14.4% and 4%, respectively. The trapping experiments and multiple characterizations demonstrated that the advantageous combination of the Cr doping effect and SPR effect induced by the Ag nanoparticles is responsible for the high generation rate of oxidative species and effective charge carrier transfer. By using RhB as fuel, approximately 75.1% color removal efficiency and 8.38% coulombic efficiency were obtained under visible light irradiation for 240 min, which are higher than those of MO and TC. In addition, the Jsc and Voc of the Cr-BOC/Ag photoanode were measured to be 0.0073 mA cm-2 and 0.543 V. The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer efficiency. Herein, we have experimentally obtained plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity and provided direct evidence for the substantially enhanced catalytic activity in metal–semiconductor photocatalysts. The experimental results revealed that the Cr doping and Ag modification could not only extend the photo absorption of BiOCl from the UV to the visible light region but could also greatly increase the generation and transfer rate of charge carriers because of its narrowed band gap and the localized surface plasmon resonance (LSPR) effect of metallic Ag. Under visible light irradiation, the Cr-BOC/Ag showed a remarkable enhancement in the PFC performance when the optimum contents of Cr doping and Ag loading was 14.4% and 4%, respectively. The trapping experiments and multiple characterizations demonstrated that the advantageous combination of the Cr doping effect and SPR effect induced by the Ag nanoparticles is responsible for the high generation rate of oxidative species and effective charge carrier transfer. By using RhB as fuel, approximately 75.1% color removal efficiency and 8.38% coulombic efficiency were obtained under visible light irradiation for 240 min, which are higher than those of MO and TC. In addition, the J sc and V oc of the Cr-BOC/Ag photoanode were measured to be 0.0073 mA cm −2 and 0.543 V. The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer efficiency. Herein, we have experimentally obtained plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity and provided direct evidence for the substantially enhanced catalytic activity in metal-semiconductor photocatalysts. The experimental results revealed that the Cr doping and Ag modification could not only extend the photo absorption of BiOCl from the UV to the visible light region but could also greatly increase the generation and transfer rate of charge carriers because of its narrowed band gap and the localized surface plasmon resonance (LSPR) effect of metallic Ag. Under visible light irradiation, the Cr-BOC/Ag showed a remarkable enhancement in the PFC performance when the optimum contents of Cr doping and Ag loading was 14.4% and 4%, respectively. The trapping experiments and multiple characterizations demonstrated that the advantageous combination of the Cr doping effect and SPR effect induced by the Ag nanoparticles is responsible for the high generation rate of oxidative species and effective charge carrier transfer. By using RhB as fuel, approximately 75.1% color removal efficiency and 8.38% coulombic efficiency were obtained under visible light irradiation for 240 min, which are higher than those of MO and TC. In addition, the Jsc and Voc of the Cr-BOC/Ag photoanode were measured to be 0.0073 mA cm-2 and 0.543 V.The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer efficiency. Herein, we have experimentally obtained plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity and provided direct evidence for the substantially enhanced catalytic activity in metal-semiconductor photocatalysts. The experimental results revealed that the Cr doping and Ag modification could not only extend the photo absorption of BiOCl from the UV to the visible light region but could also greatly increase the generation and transfer rate of charge carriers because of its narrowed band gap and the localized surface plasmon resonance (LSPR) effect of metallic Ag. Under visible light irradiation, the Cr-BOC/Ag showed a remarkable enhancement in the PFC performance when the optimum contents of Cr doping and Ag loading was 14.4% and 4%, respectively. The trapping experiments and multiple characterizations demonstrated that the advantageous combination of the Cr doping effect and SPR effect induced by the Ag nanoparticles is responsible for the high generation rate of oxidative species and effective charge carrier transfer. By using RhB as fuel, approximately 75.1% color removal efficiency and 8.38% coulombic efficiency were obtained under visible light irradiation for 240 min, which are higher than those of MO and TC. In addition, the Jsc and Voc of the Cr-BOC/Ag photoanode were measured to be 0.0073 mA cm-2 and 0.543 V. |
Author | Liang, Chao Guo, Hai Wen, Xiao-Ju Zhao, Xiu-Fei Zeng, Guang-Ming Zhang, Lei Niu, Cheng-Gang |
Author_xml | – sequence: 1 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082 – sequence: 2 givenname: Chao surname: Liang fullname: Liang, Chao organization: College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082 – sequence: 3 givenname: Hai surname: Guo fullname: Guo, Hai organization: College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082 – sequence: 4 givenname: Cheng-Gang orcidid: 0000-0002-5904-9111 surname: Niu fullname: Niu, Cheng-Gang organization: College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082 – sequence: 5 givenname: Xiu-Fei surname: Zhao fullname: Zhao, Xiu-Fei organization: College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082 – sequence: 6 givenname: Xiao-Ju orcidid: 0000-0002-6450-7244 surname: Wen fullname: Wen, Xiao-Ju organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, China – sequence: 7 givenname: Guang-Ming orcidid: 0000-0001-6496-8123 surname: Zeng fullname: Zeng, Guang-Ming organization: College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30896684$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdFqFDEYhYO02Hb1xgeQgDetMPpPMpOZudTB1kJpRfR6yCb_uCmZZEwyhX0xn88su1UovUog3zmcnHNGjpx3SMibEj6UwLuPfXv7HTpRiv4FOWVQQcF5w47-3UV1Qs5ivAcQHRf8JTnh0HZCtNUp-dN7F1NYVDLeUT9SSTfm16aYMYw-TNIppPPGJ69kknabjKLjgpYqtJaef7vsL-haRtQ0q2cr4-RdRqKxDxjo5LUZTX7sQ_HZ3PWWOul83CCmSLN95qbFJunQL5GiRZWCUSZt6Ry8PmSSTtPZW7tkLtGAk3-Q9hU5HqWN-PpwrsjPyy8_-q_Fzd3Vdf_pplC8ZqloOgZarxFUx1UFVVmWgrVYa61GoQBaXmvAEpiSjdBVPUqUa5TQMhCVloqvyPneNwf6vWBMw2Ti7u_7zAMru5o10DRtRt89Qe_9ElxONzAGnNd1letfkbcHallPqIc5mEmG7fC4SAZgD6jgYww4DrkQuWsiBWnsUMKwG334P3qWvH8ieXR9Bv4LGUevrg |
CitedBy_id | crossref_primary_10_3390_catal13010053 crossref_primary_10_1016_j_jphotochem_2019_111901 crossref_primary_10_1016_j_jenvman_2023_117411 crossref_primary_10_1016_j_solidstatesciences_2019_105989 crossref_primary_10_1007_s10971_023_06047_4 crossref_primary_10_1016_j_apcatb_2019_118465 crossref_primary_10_1016_j_jhazmat_2020_122599 crossref_primary_10_1016_j_jallcom_2020_155848 crossref_primary_10_1016_j_jece_2023_110135 crossref_primary_10_1039_D4TA01361A crossref_primary_10_1039_D0AN01355B crossref_primary_10_1016_j_cej_2019_123919 crossref_primary_10_1016_j_cej_2021_131074 crossref_primary_10_1016_j_cej_2019_04_137 crossref_primary_10_1016_j_snb_2020_128245 crossref_primary_10_1007_s10854_020_04599_7 crossref_primary_10_1021_acssuschemeng_9b02575 crossref_primary_10_1016_j_apcatb_2023_122646 crossref_primary_10_1016_j_cej_2023_145162 crossref_primary_10_1016_j_chemosphere_2024_142408 crossref_primary_10_1007_s13204_020_01296_z crossref_primary_10_1016_j_cej_2019_123236 crossref_primary_10_1016_j_cej_2022_141087 crossref_primary_10_3390_pr11030838 crossref_primary_10_1016_j_seppur_2019_115821 crossref_primary_10_1016_j_colsurfa_2019_123747 crossref_primary_10_1016_j_physb_2020_412587 crossref_primary_10_1016_j_cej_2019_123824 crossref_primary_10_1016_j_jece_2023_110287 crossref_primary_10_1016_j_cej_2023_144628 crossref_primary_10_1016_j_jphotochem_2019_112070 crossref_primary_10_1515_revic_2023_0013 crossref_primary_10_1016_j_jmst_2023_12_004 crossref_primary_10_1016_j_surfin_2024_105090 crossref_primary_10_3389_fmicb_2023_1210790 crossref_primary_10_1016_j_colsurfa_2020_125239 crossref_primary_10_1016_j_apsusc_2021_150410 crossref_primary_10_1016_j_jece_2022_107611 crossref_primary_10_1016_j_mssp_2021_105788 crossref_primary_10_1016_j_mtcomm_2021_102145 crossref_primary_10_1016_j_jelechem_2022_116410 crossref_primary_10_1016_j_envres_2023_116702 crossref_primary_10_1007_s10854_022_09152_2 |
Cites_doi | 10.1016/j.cej.2018.12.038 10.1021/acs.jpcc.7b04348 10.1021/jacs.6b12850 10.1021/jp400415m 10.1016/j.watres.2014.05.044 10.1016/j.surfcoat.2018.02.025 10.1021/acssuschemeng.8b01448 10.1021/acsami.7b01701 10.1021/acssuschemeng.7b00501 10.1021/es303968n 10.1039/c3nr03597b 10.1021/am3000903 10.1016/j.apcatb.2017.09.036 10.1016/j.jhazmat.2010.10.083 10.1039/C8TA00449H 10.1016/j.apcatb.2005.08.013 10.1038/353737a0 10.1016/j.watres.2011.05.004 10.1021/acsami.8b14227 10.1002/adfm.201303214 10.1021/acssuschemeng.6b03150 10.1016/j.apcatb.2013.04.005 10.1016/j.apcatb.2018.09.090 10.1016/j.cej.2014.05.041 10.1021/ja402956f 10.1039/C7TA02077E 10.1021/cs200320h 10.1038/ncomms9340 10.1021/es050986i 10.1021/ja200086g 10.1016/j.jallcom.2018.01.014 10.1016/j.jcat.2017.11.029 10.1039/c1ra00335f 10.1021/am5010392 10.1039/C7NJ00162B 10.1016/j.apcatb.2015.03.001 10.1021/nl104005n 10.1016/j.apcatb.2017.04.028 10.1039/C7TA08112J 10.1016/j.watres.2016.06.006 10.1016/j.cattod.2013.12.019 10.1039/C7TA09897A 10.1039/C1CP23516H 10.1002/smtd.201800184 10.1039/C7CY02190A 10.1039/C5NR08341A 10.1016/j.apcatb.2017.09.060 10.1021/acsami.8b03390 10.1016/j.apcatb.2017.03.024 10.1016/j.chemosphere.2016.09.082 10.1016/j.nanoen.2016.10.001 10.1016/j.apcatb.2013.08.006 10.1016/j.chemosphere.2013.09.056 10.1016/j.apcatb.2016.07.054 10.1021/ja210484t 10.1021/acsami.7b14541 10.1021/acs.jpcc.7b03213 10.1016/j.apcatb.2006.08.002 10.1021/cs501631n 10.1016/j.apcatb.2009.07.022 10.1016/j.apcatb.2018.05.029 10.1016/j.jcis.2017.10.068 10.1016/j.cej.2018.07.102 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/C8NR09616C |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 6676 |
ExternalDocumentID | 30896684 10_1039_C8NR09616C |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY -JG AGSTE NPM RRC 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c352t-7920ddbe0c93c404111628e5ddcf6c00835d0e102ca76d45faeabea082064dac3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 01:13:36 EDT 2025 Sun Jun 29 12:51:12 EDT 2025 Wed Feb 19 02:32:46 EST 2025 Thu Apr 24 22:51:53 EDT 2025 Tue Jul 01 01:13:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c352t-7920ddbe0c93c404111628e5ddcf6c00835d0e102ca76d45faeabea082064dac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6496-8123 0000-0002-6450-7244 0000-0002-5904-9111 |
PMID | 30896684 |
PQID | 2203355469 |
PQPubID | 2047485 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2195270778 proquest_journals_2203355469 pubmed_primary_30896684 crossref_citationtrail_10_1039_C8NR09616C crossref_primary_10_1039_C8NR09616C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Apr-04 |
PublicationDateYYYYMMDD | 2019-04-04 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-Apr-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Lai (C8NR09616C-(cit52)/*[position()=1]) 2013; 93 Liang (C8NR09616C-(cit54)/*[position()=1]) 2018; 8 Sun (C8NR09616C-(cit10)/*[position()=1]) 2015; 5 Cai (C8NR09616C-(cit27)/*[position()=1]) 2019; 3 Guo (C8NR09616C-(cit48)/*[position()=1]) 2018; 6 O'Regan (C8NR09616C-(cit60)/*[position()=1]) 1991; 353 Wu (C8NR09616C-(cit31)/*[position()=1]) 2017; 9 Ingram (C8NR09616C-(cit23)/*[position()=1]) 2011; 1 Fernandes (C8NR09616C-(cit30)/*[position()=1]) 2018; 339 Jeong (C8NR09616C-(cit57)/*[position()=1]) 2013; 117 Xiong (C8NR09616C-(cit17)/*[position()=1]) 2011; 1 Liu (C8NR09616C-(cit61)/*[position()=1]) 2011; 45 Rabaey (C8NR09616C-(cit64)/*[position()=1]) 2005; 39 Zhu (C8NR09616C-(cit38)/*[position()=1]) 2006; 62 Jiang (C8NR09616C-(cit8)/*[position()=1]) 2012; 134 Wen (C8NR09616C-(cit46)/*[position()=1]) 2018; 358 Lee (C8NR09616C-(cit2)/*[position()=1]) 2017; 166 Zhang (C8NR09616C-(cit16)/*[position()=1]) 2014; 6 Kamimura (C8NR09616C-(cit20)/*[position()=1]) 2017; 211 Zhang (C8NR09616C-(cit62)/*[position()=1]) 2018; 10 Deng (C8NR09616C-(cit36)/*[position()=1]) 2017; 4 Zhou (C8NR09616C-(cit56)/*[position()=1]) 2015; 6 Lianos (C8NR09616C-(cit59)/*[position()=1]) 2011; 185 Li (C8NR09616C-(cit4)/*[position()=1]) 2014; 62 Baidya (C8NR09616C-(cit34)/*[position()=1]) 2017; 121 Marschall (C8NR09616C-(cit9)/*[position()=1]) 2014; 24 Wang (C8NR09616C-(cit15)/*[position()=1]) 2018; 10 Li (C8NR09616C-(cit28)/*[position()=1]) 2018; 6 Jiang (C8NR09616C-(cit37)/*[position()=1]) 2013; 5 Huang (C8NR09616C-(cit18)/*[position()=1]) 2015; 174 Zhang (C8NR09616C-(cit35)/*[position()=1]) 2014; 144 Yu (C8NR09616C-(cit24)/*[position()=1]) 2017; 121 Huang (C8NR09616C-(cit63)/*[position()=1]) 2018; 740 Zhou (C8NR09616C-(cit41)/*[position()=1]) 2019; 242 Mi (C8NR09616C-(cit26)/*[position()=1]) 2016; 30 Wang (C8NR09616C-(cit19)/*[position()=1]) 2018; 221 Wen (C8NR09616C-(cit55)/*[position()=1]) 2018; 221 Li (C8NR09616C-(cit5)/*[position()=1]) 2013; 47 Ren (C8NR09616C-(cit39)/*[position()=1]) 2009; 92 Cai (C8NR09616C-(cit42)/*[position()=1]) 2017; 5 Li (C8NR09616C-(cit32)/*[position()=1]) 2017; 139 Wang (C8NR09616C-(cit3)/*[position()=1]) 2014; 253 Wang (C8NR09616C-(cit58)/*[position()=1]) 2017; 200 Chen (C8NR09616C-(cit45)/*[position()=1]) 2016; 101 Wang (C8NR09616C-(cit33)/*[position()=1]) 2019; 360 Deng (C8NR09616C-(cit22)/*[position()=1]) 2017; 9 Zhang (C8NR09616C-(cit53)/*[position()=1]) 2018; 352 Guan (C8NR09616C-(cit47)/*[position()=1]) 2018; 512 Zhang (C8NR09616C-(cit43)/*[position()=1]) 2012; 14 Luo (C8NR09616C-(cit44)/*[position()=1]) 2012; 4 Li (C8NR09616C-(cit6)/*[position()=1]) 2013; 140 Wang (C8NR09616C-(cit29)/*[position()=1]) 2018; 236 Zhou (C8NR09616C-(cit1)/*[position()=1]) 2017; 5 Bae (C8NR09616C-(cit51)/*[position()=1]) 2014; 224 Liang (C8NR09616C-(cit25)/*[position()=1]) 2017; 41 Ingram (C8NR09616C-(cit49)/*[position()=1]) 2011; 133 Guan (C8NR09616C-(cit13)/*[position()=1]) 2013; 135 Wen (C8NR09616C-(cit40)/*[position()=1]) 2017; 5 Zhang (C8NR09616C-(cit7)/*[position()=1]) 2006; 68 Ge (C8NR09616C-(cit21)/*[position()=1]) 2016; 8 Zhang (C8NR09616C-(cit11)/*[position()=1]) 2017; 5 Liu (C8NR09616C-(cit50)/*[position()=1]) 2011; 11 Cui (C8NR09616C-(cit12)/*[position()=1]) 2018; 6 Wang (C8NR09616C-(cit14)/*[position()=1]) 2017; 209 |
References_xml | – volume: 360 start-page: 838 year: 2019 ident: C8NR09616C-(cit33)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.038 – volume: 4 start-page: 1494 year: 2017 ident: C8NR09616C-(cit36)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 121 start-page: 15256 year: 2017 ident: C8NR09616C-(cit34)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b04348 – volume: 139 start-page: 3513 year: 2017 ident: C8NR09616C-(cit32)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12850 – volume: 117 start-page: 9104 year: 2013 ident: C8NR09616C-(cit57)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp400415m – volume: 62 start-page: 1 year: 2014 ident: C8NR09616C-(cit4)/*[position()=1] publication-title: Water Res. doi: 10.1016/j.watres.2014.05.044 – volume: 339 start-page: 167 year: 2018 ident: C8NR09616C-(cit30)/*[position()=1] publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.02.025 – volume: 6 start-page: 8003 year: 2018 ident: C8NR09616C-(cit48)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b01448 – volume: 9 start-page: 16620 year: 2017 ident: C8NR09616C-(cit31)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01701 – volume: 5 start-page: 5134 year: 2017 ident: C8NR09616C-(cit40)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b00501 – volume: 47 start-page: 3490 year: 2013 ident: C8NR09616C-(cit5)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es303968n – volume: 5 start-page: 10573 year: 2013 ident: C8NR09616C-(cit37)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr03597b – volume: 4 start-page: 1813 year: 2012 ident: C8NR09616C-(cit44)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3000903 – volume: 221 start-page: 320 year: 2018 ident: C8NR09616C-(cit19)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.09.036 – volume: 185 start-page: 575 year: 2011 ident: C8NR09616C-(cit59)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.10.083 – volume: 6 start-page: 6344 year: 2018 ident: C8NR09616C-(cit28)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00449H – volume: 62 start-page: 329 year: 2006 ident: C8NR09616C-(cit38)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2005.08.013 – volume: 353 start-page: 737 year: 1991 ident: C8NR09616C-(cit60)/*[position()=1] publication-title: Nature doi: 10.1038/353737a0 – volume: 45 start-page: 3991 year: 2011 ident: C8NR09616C-(cit61)/*[position()=1] publication-title: Water Res. doi: 10.1016/j.watres.2011.05.004 – volume: 10 start-page: 39723 year: 2018 ident: C8NR09616C-(cit62)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14227 – volume: 24 start-page: 2421 year: 2014 ident: C8NR09616C-(cit9)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303214 – volume: 5 start-page: 4619 year: 2017 ident: C8NR09616C-(cit11)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b03150 – volume: 140 start-page: 179 year: 2013 ident: C8NR09616C-(cit6)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2013.04.005 – volume: 242 start-page: 76 year: 2019 ident: C8NR09616C-(cit41)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.09.090 – volume: 253 start-page: 174 year: 2014 ident: C8NR09616C-(cit3)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.05.041 – volume: 135 start-page: 10411 year: 2013 ident: C8NR09616C-(cit13)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402956f – volume: 5 start-page: 16412 year: 2017 ident: C8NR09616C-(cit42)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02077E – volume: 1 start-page: 1441 year: 2011 ident: C8NR09616C-(cit23)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs200320h – volume: 6 start-page: 8340 year: 2015 ident: C8NR09616C-(cit56)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms9340 – volume: 39 start-page: 8077 year: 2005 ident: C8NR09616C-(cit64)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es050986i – volume: 133 start-page: 5202 year: 2011 ident: C8NR09616C-(cit49)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200086g – volume: 740 start-page: 355 year: 2018 ident: C8NR09616C-(cit63)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.01.014 – volume: 358 start-page: 141 year: 2018 ident: C8NR09616C-(cit46)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2017.11.029 – volume: 1 start-page: 1542 year: 2011 ident: C8NR09616C-(cit17)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c1ra00335f – volume: 6 start-page: 7766 year: 2014 ident: C8NR09616C-(cit16)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5010392 – volume: 41 start-page: 5334 year: 2017 ident: C8NR09616C-(cit25)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C7NJ00162B – volume: 174 start-page: 105 year: 2015 ident: C8NR09616C-(cit18)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2015.03.001 – volume: 11 start-page: 1111 year: 2011 ident: C8NR09616C-(cit50)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl104005n – volume: 211 start-page: 11 year: 2017 ident: C8NR09616C-(cit20)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.04.028 – volume: 5 start-page: 25450 year: 2017 ident: C8NR09616C-(cit1)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08112J – volume: 101 start-page: 555 year: 2016 ident: C8NR09616C-(cit45)/*[position()=1] publication-title: Water Res. doi: 10.1016/j.watres.2016.06.006 – volume: 224 start-page: 21 year: 2014 ident: C8NR09616C-(cit51)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2013.12.019 – volume: 6 start-page: 2193 year: 2018 ident: C8NR09616C-(cit12)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09897A – volume: 14 start-page: 1286 year: 2012 ident: C8NR09616C-(cit43)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP23516H – volume: 3 start-page: 1800184 year: 2019 ident: C8NR09616C-(cit27)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201800184 – volume: 8 start-page: 1161 year: 2018 ident: C8NR09616C-(cit54)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY02190A – volume: 8 start-page: 5226 year: 2016 ident: C8NR09616C-(cit21)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR08341A – volume: 221 start-page: 701 year: 2018 ident: C8NR09616C-(cit55)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.09.060 – volume: 10 start-page: 15304 year: 2018 ident: C8NR09616C-(cit15)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b03390 – volume: 209 start-page: 543 year: 2017 ident: C8NR09616C-(cit14)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.03.024 – volume: 166 start-page: 118 year: 2017 ident: C8NR09616C-(cit2)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.09.082 – volume: 30 start-page: 109 year: 2016 ident: C8NR09616C-(cit26)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.001 – volume: 144 start-page: 730 year: 2014 ident: C8NR09616C-(cit35)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2013.08.006 – volume: 93 start-page: 2805 year: 2013 ident: C8NR09616C-(cit52)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.09.056 – volume: 200 start-page: 659 year: 2017 ident: C8NR09616C-(cit58)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.07.054 – volume: 134 start-page: 4473 year: 2012 ident: C8NR09616C-(cit8)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja210484t – volume: 9 start-page: 42816 year: 2017 ident: C8NR09616C-(cit22)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14541 – volume: 121 start-page: 13191 year: 2017 ident: C8NR09616C-(cit24)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b03213 – volume: 68 start-page: 125 year: 2006 ident: C8NR09616C-(cit7)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2006.08.002 – volume: 5 start-page: 3540 year: 2015 ident: C8NR09616C-(cit10)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs501631n – volume: 92 start-page: 50 year: 2009 ident: C8NR09616C-(cit39)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2009.07.022 – volume: 236 start-page: 222 year: 2018 ident: C8NR09616C-(cit29)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.05.029 – volume: 512 start-page: 272 year: 2018 ident: C8NR09616C-(cit47)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.10.068 – volume: 352 start-page: 863 year: 2018 ident: C8NR09616C-(cit53)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.07.102 |
SSID | ssj0069363 |
Score | 2.4757571 |
Snippet | The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 6662 |
SubjectTerms | Catalysis Catalytic activity Charge efficiency Charge transfer Chromium Color removal Current carriers Degradation Doping Efficiency Fuel cells Leaching Light Light irradiation Low temperature Mapping Nanoparticles Nanosheets Photocatalysis Photocatalysts Photoelectric effect Photoelectric emission Pollutants Potassium persulfate Silver Sodium sulfate Spectra Ultraviolet radiation X ray photoelectron spectroscopy |
Title | Construction of a high-performance photocatalytic fuel cell (PFC) based on plasmonic silver modified Cr-BiOCl nanosheets for simultaneous electricity production and pollutant removal |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30896684 https://www.proquest.com/docview/2203355469 https://www.proquest.com/docview/2195270778 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3db9MwEMCtskloPCC-KQxkBA9MU7Y0dpzkcYvYKj4KQpvYW-XYDo3UJlE_kODP4Y_g7-PO-WiKOgl4iSrbcdTer-c753xHyKuBilwhE99JuHYdriKJQQDG4YkJmE4GoC3xNPKHkRhe8rdX_lWv97MTtbRaJkfqx9ZzJf8jVWgDueIp2X-QbDspNMBnkC9cQcJw_SsZY7XNJv9rddARsw87ZecwQDkploXdo_mOqVnTlZke4mY9WpafzmLcFMCFTONLgxIs6ZmtiLPIMGAay-RkKdqo8dw5zT7G08Nc5sViYszSpnGAcRiQKHODgbRVRZ1MoV1fVolkm1jnEgsqY73iw7mZFd_q71XbxCOcE1BpEWs3sd-brA0Yyuq2eCKLNmhoZTd6h7IdNspW1SCTf3XOZb0s17saA_uCpqpDfGSs9vMw1JGxYFNVD7pI8o7iBS_M27oiuAwTqqown2NxG6G6g0Ca5cyywdwQ_L6Qr1fFNlax6bpBdj1wRUCX7p68Oz3_0qz3ImKCNYlvWXS8ftQeudncvGn1XOPKWJPm4g65Xfsi9KQC6y7pmfweudXJUHmf_OoiRouUSvonYnQTMYqIUUSMvgbADqjFi8LdLV60wos2eNEGL7rGi8L0tIsX7eBF13hRwIu2eNEarwfk8uzNRTx06lIfjgIPYOkEkedqnRhXRUxxl8MKLLzQ-FqrVCjrJ2jXgDGsZCA091NpZGIk2q-Ca6nYQ7KTF7l5TGjqptqkYiAFC7jmSciTIPX9VGs_SViY9slBI4qxqvPgYzmW6djGY7BoHIejz1aCcZ-8bMeWVfaXraP2G4mOa-2wGHuey9CWF1GfvGi7QXejAKofbgzWgu8FbhCEffKoIqF9TEPOk2t7npK99T9nn-wADOYZWMjL5HmN6G-na8Wp |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+a+high-performance+photocatalytic+fuel+cell+%28PFC%29+based+on+plasmonic+silver+modified+Cr-BiOCl+nanosheets+for+simultaneous+electricity+production+and+pollutant+removal&rft.jtitle=Nanoscale&rft.au=Zhang%2C+Lei&rft.au=Liang%2C+Chao&rft.au=Guo%2C+Hai&rft.au=Niu%2C+Cheng-Gang&rft.date=2019-04-04&rft.eissn=2040-3372&rft.volume=11&rft.issue=14&rft.spage=6662&rft_id=info:doi/10.1039%2Fc8nr09616c&rft_id=info%3Apmid%2F30896684&rft.externalDocID=30896684 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |