Fault Cause Assignment with Physics Informed Transfer Learning
To maintain successful operation, the field of health monitoring, fault detection and diagnosis plays a key role. Within the scenarios of system faults, locating a fault in a complex system consisting different components are one of the key challenge in fault detection. In this context, diagnosis of...
Saved in:
Published in | IFAC-PapersOnLine Vol. 54; no. 20; pp. 53 - 58 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To maintain successful operation, the field of health monitoring, fault detection and diagnosis plays a key role. Within the scenarios of system faults, locating a fault in a complex system consisting different components are one of the key challenge in fault detection. In this context, diagnosis of system faults originated from actuator and sensor is addressed to perform fault source separation. Physics of the underlying dynamics are investigated using only input and output data streams along with a purely data-driven technique, dynamic mode decomposition with control (DMDc) without a need for system model. Then time-frequency representation of the dynamic modes are obtained using continuous wavelet transform (CWT) and utilized in deep convolutional neural network (DCNN) to classify three scenarios for the case study, namely; nominal, actuator bias and sensor bias fault scenarios. Instead of training a DCNN structure from scratch, GoogLeNet structure presented for image classification is utilized as a standard methodology of transfer learning process. Finally, results of the image classification methodology are presented. |
---|---|
AbstractList | To maintain successful operation, the field of health monitoring, fault detection and diagnosis plays a key role. Within the scenarios of system faults, locating a fault in a complex system consisting different components are one of the key challenge in fault detection. In this context, diagnosis of system faults originated from actuator and sensor is addressed to perform fault source separation. Physics of the underlying dynamics are investigated using only input and output data streams along with a purely data-driven technique, dynamic mode decomposition with control (DMDc) without a need for system model. Then time-frequency representation of the dynamic modes are obtained using continuous wavelet transform (CWT) and utilized in deep convolutional neural network (DCNN) to classify three scenarios for the case study, namely; nominal, actuator bias and sensor bias fault scenarios. Instead of training a DCNN structure from scratch, GoogLeNet structure presented for image classification is utilized as a standard methodology of transfer learning process. Finally, results of the image classification methodology are presented. |
Author | Chen, YangQuan Guc, Furkan |
Author_xml | – sequence: 1 givenname: Furkan surname: Guc fullname: Guc, Furkan email: fguc@ucmerced.edu organization: Department of Mechanical Engineering, University of California Merced, CA 95343 USA – sequence: 2 givenname: YangQuan surname: Chen fullname: Chen, YangQuan email: ychen53@ucmerced.edu organization: Department of Mechanical Engineering, University of California Merced, CA 95343 USA |
BookMark | eNp9kMFKAzEYhINUsNa-gYe8wK75k-xm91IoxWphQQ_1HNLsnzalzUqyVfr2bqkHT8LAzGWG4bsno9AFJOQRWA4Myqd97p2x3SHnjEMOgwp-Q8ZcsiKr6lKM_uQ7Mk1pzxjjdSlVXY3JbGlOh54uzCkhnafkt-GIoaffvt_R9905eZvoKrguHrGl62hCchhpgyYGH7YP5NaZQ8Lpr0_Ix_J5vXjNmreX1WLeZFYUvM8UKO6sUc5sVOs2rFVMQFm5ukRkKARIKaqWFaLYCDDWDuec4Aqk5aU04MSEyOuujV1KEZ3-jP5o4lkD0xcMeq-vGPQFg4ZBBR9qs2sNh29fHqNO1mOw2PqIttdt5_8f-AFf0WkI |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_124678 crossref_primary_10_3390_en17112647 crossref_primary_10_1016_j_ymssp_2024_111420 crossref_primary_10_1016_j_apm_2023_07_011 crossref_primary_10_3390_s22082913 |
Cites_doi | 10.1016/j.ins.2020.06.060 10.1109/TIE.2017.2774777 10.1016/j.ymssp.2018.02.046 10.3390/s18061972 10.1137/15M1013857 10.1109/CVPR.2015.7298594 10.1109/JSEN.2010.2055236 10.1016/j.enbuild.2019.109689 10.1109/ACCESS.2020.3037117 10.1109/JSEN.2015.2497277 10.1016/j.jcp.2018.10.045 10.1115/1.4002877 10.1109/DCOSS.2013.52 10.1109/ACCESS.2018.2888842 10.2514/1.J059943 10.1016/j.arcontrol.2020.08.003 10.1017/S0022112010001217 10.1109/CVPR.2016.90 10.1016/j.ymssp.2017.09.013 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ifacol.2021.11.152 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2405-8963 |
EndPage | 58 |
ExternalDocumentID | 10_1016_j_ifacol_2021_11_152 S2405896321021960 |
GroupedDBID | 0R~ 0SF 457 AAJQP AALRI AAXUO ABMAC ACGFS ADBBV AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ATDSJ EBS EJD FDB HX~ KQ8 O9- ROL AAYXX ADVLN AEXQZ CITATION |
ID | FETCH-LOGICAL-c352t-7172fca7fab7dfb0d703168f96ee0e3314438d0535b31acc647f32714c264a1f3 |
ISSN | 2405-8963 |
IngestDate | Fri Aug 23 01:03:35 EDT 2024 Fri Feb 23 02:40:53 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 20 |
Keywords | Health monitoring Source Separation Data-Driven Approaches Transfer Learning Fault detection diagnosis Dynamic Mode Decomposition |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c352t-7172fca7fab7dfb0d703168f96ee0e3314438d0535b31acc647f32714c264a1f3 |
OpenAccessLink | https://doi.org/10.1016/j.ifacol.2021.11.152 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1016_j_ifacol_2021_11_152 elsevier_sciencedirect_doi_10_1016_j_ifacol_2021_11_152 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationTitle | IFAC-PapersOnLine |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Raissi, Perdikaris, Karniadakis (bib00013) 2019; 378 Verma, Asmita, Shukla (bib00018) 2015; 16 Baraldi, Bonfanti, Zio (bib0001) 2018; 102 Schmid (bib00015) 2010; 656 Sarkar, Jin, Ray (bib00014) 2011; 133 Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., and Kutz, J.N. (2013). On dynamic mode decomposition: Theory and applications. arXiv preprint arXiv:1312.0041. Yan, Huang, Shen, Ji (bib00022) 2020; 210 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-novich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, 1–9. Wen, Li, Gao, Zhang (bib00020) 2017; 65 Wenzel, Mensah-Brown, Josse, Yaz (bib00021) 2010; 11 Dang, Lv, Li, Wei (bib0002) 2018; 18 Khan, Farnsworth, McWilliam, Erkoyuncu (bib0006) 2020 Kumar, D., Rajasegarar, S., and Palaniswami, M. (2013). Automatic sensor drift detection and correction using spatial kriging and kalman filtering. In 2013 IEEE International Conference on Distributed Computing in Sensor Systems, 183–190. IEEE. Proctor, Brunton, Kutz (bib00012) 2016; 15 de Silva, B.M., Callaham, J., Jonker, J., Goebel, N., Klemisch, J., McDonald, D., Hicks, N., Kutz, J.N., Brunton, S.L., and Aravkin, A.Y. (2020). Physics-informed machine learning for sensor fault detection with flight test data. arXiv preprint arXiv:2006.13380. Krizhevsky, Sutskever, Hinton (bib0007) 2012; 25 Peng, Liu, Wang, Qin, Jia (bib00011) 2018; 7 Viola, Chen, Wang (bib00019) 2021; 542 Luo, Chen (bib00010) 2012 Han, Jiang, Xu, Bari, Pei, Sun (bib0004) 2020; 8 He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778. Li, Jia, Feng, Davari, Qiao, Hwang, Lee (bib0009) 2018; 109 10.1016/j.ifacol.2021.11.152_bib00017 Li (10.1016/j.ifacol.2021.11.152_bib0009) 2018; 109 10.1016/j.ifacol.2021.11.152_bib00016 10.1016/j.ifacol.2021.11.152_bib0003 Raissi (10.1016/j.ifacol.2021.11.152_bib00013) 2019; 378 Yan (10.1016/j.ifacol.2021.11.152_bib00022) 2020; 210 Dang (10.1016/j.ifacol.2021.11.152_bib0002) 2018; 18 Han (10.1016/j.ifacol.2021.11.152_bib0004) 2020; 8 Wenzel (10.1016/j.ifacol.2021.11.152_bib00021) 2010; 11 Schmid (10.1016/j.ifacol.2021.11.152_bib00015) 2010; 656 Baraldi (10.1016/j.ifacol.2021.11.152_bib0001) 2018; 102 Verma (10.1016/j.ifacol.2021.11.152_bib00018) 2015; 16 Luo (10.1016/j.ifacol.2021.11.152_bib00010) 2012 Peng (10.1016/j.ifacol.2021.11.152_bib00011) 2018; 7 Krizhevsky (10.1016/j.ifacol.2021.11.152_bib0007) 2012; 25 Khan (10.1016/j.ifacol.2021.11.152_bib0006) 2020 Wen (10.1016/j.ifacol.2021.11.152_bib00020) 2017; 65 10.1016/j.ifacol.2021.11.152_bib0008 10.1016/j.ifacol.2021.11.152_bib0005 Proctor (10.1016/j.ifacol.2021.11.152_bib00012) 2016; 15 Sarkar (10.1016/j.ifacol.2021.11.152_bib00014) 2011; 133 Viola (10.1016/j.ifacol.2021.11.152_bib00019) 2021; 542 |
References_xml | – year: 2012 ident: bib00010 publication-title: Fractional order motion controls contributor: fullname: Chen – volume: 11 start-page: 225 year: 2010 end-page: 232 ident: bib00021 article-title: Online drift compensation for chemical sensors using estimation theory publication-title: IEEE Sensors Journal contributor: fullname: Yaz – volume: 133 year: 2011 ident: bib00014 article-title: Data-driven fault detection in aircraft engines with noisy sensor measurements publication-title: Journal of Engineering for Gas Turbines and Power contributor: fullname: Ray – volume: 15 start-page: 142 year: 2016 end-page: 161 ident: bib00012 article-title: Dynamic mode decomposition with control publication-title: SIAM Journal on Applied Dynamical Systems contributor: fullname: Kutz – volume: 102 start-page: 382 year: 2018 end-page: 400 ident: bib0001 article-title: Differential evolution-based multi-objective optimization for the definition of a health indicator for fault diagnostics and prognostics publication-title: Mechanical Systems and Signal Processing contributor: fullname: Zio – volume: 109 start-page: 45 year: 2018 end-page: 57 ident: bib0009 article-title: Prognosability study of ball screw degradation using systematic methodology publication-title: Mechanical Systems and Signal Processing contributor: fullname: Lee – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: bib00013 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: Journal of Computational Physics contributor: fullname: Karniadakis – year: 2020 ident: bib0006 article-title: On the requirements of digital twin-driven autonomous maintenance publication-title: Annual Reviews in Control contributor: fullname: Erkoyuncu – volume: 65 start-page: 5990 year: 2017 end-page: 5998 ident: bib00020 article-title: A new convolutional neural network-based data-driven fault diagnosis method publication-title: IEEE Transactions on Industrial Electronics contributor: fullname: Zhang – volume: 210 start-page: 109689 year: 2020 ident: bib00022 article-title: Unsupervised learning for fault detection and diagnosis of air handling units publication-title: Energy and Buildings contributor: fullname: Ji – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: bib0007 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems contributor: fullname: Hinton – volume: 542 start-page: 195 year: 2021 end-page: 211 ident: bib00019 article-title: Faultface: Deep convolutional generative adversarial network (dcgan) based ball-bearing failure detection method publication-title: Information Sciences contributor: fullname: Wang – volume: 8 start-page: 204389 year: 2020 end-page: 204399 ident: bib0004 article-title: Sensor drift detection based on discrete wavelet transform and grey models publication-title: IEEE Access contributor: fullname: Sun – volume: 16 start-page: 1310 year: 2015 end-page: 1318 ident: bib00018 article-title: A regularized ensemble of classifiers for sensor drift compensation publication-title: IEEE Sensors Journal contributor: fullname: Shukla – volume: 7 start-page: 10278 year: 2018 end-page: 10293 ident: bib00011 article-title: A novel deeper one-dimensional cnn with residual learning for fault diagnosis of wheelset bearings in high-speed trains publication-title: IEEE Access contributor: fullname: Jia – volume: 18 start-page: 1972 year: 2018 ident: bib0002 article-title: Improved dynamic mode decomposition and its application to fault diagnosis of rolling bearing publication-title: Sensors contributor: fullname: Wei – volume: 656 start-page: 5 year: 2010 end-page: 28 ident: bib00015 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: Journal of fluid mechanics contributor: fullname: Schmid – volume: 542 start-page: 195 year: 2021 ident: 10.1016/j.ifacol.2021.11.152_bib00019 article-title: Faultface: Deep convolutional generative adversarial network (dcgan) based ball-bearing failure detection method publication-title: Information Sciences doi: 10.1016/j.ins.2020.06.060 contributor: fullname: Viola – volume: 65 start-page: 5990 issue: 7 year: 2017 ident: 10.1016/j.ifacol.2021.11.152_bib00020 article-title: A new convolutional neural network-based data-driven fault diagnosis method publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2017.2774777 contributor: fullname: Wen – volume: 109 start-page: 45 year: 2018 ident: 10.1016/j.ifacol.2021.11.152_bib0009 article-title: Prognosability study of ball screw degradation using systematic methodology publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.02.046 contributor: fullname: Li – volume: 18 start-page: 1972 issue: 6 year: 2018 ident: 10.1016/j.ifacol.2021.11.152_bib0002 article-title: Improved dynamic mode decomposition and its application to fault diagnosis of rolling bearing publication-title: Sensors doi: 10.3390/s18061972 contributor: fullname: Dang – volume: 15 start-page: 142 issue: 1 year: 2016 ident: 10.1016/j.ifacol.2021.11.152_bib00012 article-title: Dynamic mode decomposition with control publication-title: SIAM Journal on Applied Dynamical Systems doi: 10.1137/15M1013857 contributor: fullname: Proctor – ident: 10.1016/j.ifacol.2021.11.152_bib00016 doi: 10.1109/CVPR.2015.7298594 – volume: 11 start-page: 225 issue: 1 year: 2010 ident: 10.1016/j.ifacol.2021.11.152_bib00021 article-title: Online drift compensation for chemical sensors using estimation theory publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2010.2055236 contributor: fullname: Wenzel – volume: 210 start-page: 109689 year: 2020 ident: 10.1016/j.ifacol.2021.11.152_bib00022 article-title: Unsupervised learning for fault detection and diagnosis of air handling units publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2019.109689 contributor: fullname: Yan – volume: 8 start-page: 204389 year: 2020 ident: 10.1016/j.ifacol.2021.11.152_bib0004 article-title: Sensor drift detection based on discrete wavelet transform and grey models publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3037117 contributor: fullname: Han – volume: 16 start-page: 1310 issue: 5 year: 2015 ident: 10.1016/j.ifacol.2021.11.152_bib00018 article-title: A regularized ensemble of classifiers for sensor drift compensation publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2015.2497277 contributor: fullname: Verma – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.ifacol.2021.11.152_bib00013 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2018.10.045 contributor: fullname: Raissi – volume: 133 issue: 8 year: 2011 ident: 10.1016/j.ifacol.2021.11.152_bib00014 article-title: Data-driven fault detection in aircraft engines with noisy sensor measurements publication-title: Journal of Engineering for Gas Turbines and Power doi: 10.1115/1.4002877 contributor: fullname: Sarkar – ident: 10.1016/j.ifacol.2021.11.152_bib0008 doi: 10.1109/DCOSS.2013.52 – year: 2012 ident: 10.1016/j.ifacol.2021.11.152_bib00010 contributor: fullname: Luo – volume: 7 start-page: 10278 year: 2018 ident: 10.1016/j.ifacol.2021.11.152_bib00011 article-title: A novel deeper one-dimensional cnn with residual learning for fault diagnosis of wheelset bearings in high-speed trains publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2888842 contributor: fullname: Peng – ident: 10.1016/j.ifacol.2021.11.152_bib0003 doi: 10.2514/1.J059943 – year: 2020 ident: 10.1016/j.ifacol.2021.11.152_bib0006 article-title: On the requirements of digital twin-driven autonomous maintenance publication-title: Annual Reviews in Control doi: 10.1016/j.arcontrol.2020.08.003 contributor: fullname: Khan – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.ifacol.2021.11.152_bib0007 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems contributor: fullname: Krizhevsky – volume: 656 start-page: 5 year: 2010 ident: 10.1016/j.ifacol.2021.11.152_bib00015 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: Journal of fluid mechanics doi: 10.1017/S0022112010001217 contributor: fullname: Schmid – ident: 10.1016/j.ifacol.2021.11.152_bib00017 – ident: 10.1016/j.ifacol.2021.11.152_bib0005 doi: 10.1109/CVPR.2016.90 – volume: 102 start-page: 382 year: 2018 ident: 10.1016/j.ifacol.2021.11.152_bib0001 article-title: Differential evolution-based multi-objective optimization for the definition of a health indicator for fault diagnostics and prognostics publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.09.013 contributor: fullname: Baraldi |
SSID | ssj0002964798 |
Score | 1.914764 |
Snippet | To maintain successful operation, the field of health monitoring, fault detection and diagnosis plays a key role. Within the scenarios of system faults,... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 53 |
SubjectTerms | Data-Driven Approaches diagnosis Dynamic Mode Decomposition Fault detection Health monitoring Source Separation Transfer Learning |
Title | Fault Cause Assignment with Physics Informed Transfer Learning |
URI | https://dx.doi.org/10.1016/j.ifacol.2021.11.152 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB60XryIouLOHLzJlEmmWbwIUqxVXEFBTyGziQtRanLx1_tma4MWUS8hHcg0ky9575u3IrQbpzxTLEqJpjIjICUVyVUSkVQJymTOZNwzicLnF-nwtnd6l9xNujja7JKad8XH1LyS_6AKY4CryZL9A7LjSWEAzgFfOALCcPwVxoOyean3-mVjqou8m1AM69q3tlUb2ine91y-EdBKq5W0GoWSqg9tXnoyOOyTq_INyOBlddbytR83tgX6oBk9T96jvk_puC-rh-vGj3vTgctEdrIF9HhC8n0vW9SUMS8cXYVn_xLEtCXqEtZSmq78-jdx7CwDT91HbWpwd809gIw2PZcm6ie43L9opXGsYAhDeyrcLIWZBTYuBcwyi-ZiU-DPOOOv87FtzbiSM9sGebymkDVpQ_u-3850VtJiGjeLaMFvEfChw3sJzahqGR1YrLHFGk-wxgZr7LHGAWscsMYB6xV0Ozi66Q-J731BBFDimsAuO9aizHTJM6k5fEjUtBjT-6lSVDEG-2CWS1Och7OoFAIWrFmcRT0BDLeMNFtFneq1UmsICyFVTjlNqDT16xSXcQa7TC6BqXGqo3VEwtqLN1fipPjpoa-jLDygwtM0R78KgP3HKzf--E-baN78chavLdSpR43aBg5Y8x0L-Ccuc1pQ |
link.rule.ids | 315,783,787,4033,27937,27938,27939 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Cause+Assignment+with+Physics+Informed+Transfer+Learning&rft.jtitle=IFAC-PapersOnLine&rft.au=Guc%2C+Furkan&rft.au=Chen%2C+YangQuan&rft.date=2021&rft.issn=2405-8963&rft.eissn=2405-8963&rft.volume=54&rft.issue=20&rft.spage=53&rft.epage=58&rft_id=info:doi/10.1016%2Fj.ifacol.2021.11.152&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ifacol_2021_11_152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8963&client=summon |