Nitrogen addition promotes soil phosphorus availability in the subalpine forest of eastern Tibetan Plateau

Purpose The biogeochemical cycling of phosphorus (P) is essential for maintaining plant productivity and thus plays a vital role in soil carbon sequestration. However, how soil P availability responds to increasing atmospheric nitrogen (N) deposition in subalpine forests remains unclear. The aims of...

Full description

Saved in:
Bibliographic Details
Published inJournal of soils and sediments Vol. 22; no. 1; pp. 1 - 11
Main Authors Liu, Ye, Bing, Haijian, Wu, Yanhong, Zhu, He, Tian, Xin, Wang, Zhiguo, Chang, Ruiying
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose The biogeochemical cycling of phosphorus (P) is essential for maintaining plant productivity and thus plays a vital role in soil carbon sequestration. However, how soil P availability responds to increasing atmospheric nitrogen (N) deposition in subalpine forests remains unclear. The aims of this study are to explore the responses of P bioavailability in the subalpine soils of eastern Tibetan Plateau to different N addition levels. Materials and methods A field experiment with three N addition gradients (0, 8, and 40 kg N ha −1 year −1 ) was performed in the Abies fabri dominated forest of Gongga Mountain, eastern Tibetan Plateau. The soil P fractions in organic layer and mineral layers (0–5, 5–10, 10–20 cm) were analyzed to reveal their responses to different N addition levels, and the key drivers regulating soil P availability under the N addition were also deciphered. Results and discussion The low N addition did not alter the concentrations of total P and its fractions in the soils, while the high N addition significantly increased the concentrations of bioavailable P (AP). The results of structure equation models suggest that the decrease in microbial biomass and energy demand (dissolved organic carbon, DOC) of microorganisms under high N addition probably promotes the turnover and release of organic P rather than P immobilization. Soil P fractions displayed a significant difference among the soil depths, while the N addition did not alter their vertical distribution patterns. Soil moisture, pH, soil organic carbon, DOC, and microbial biomass controlled the vertical distribution of AP, while the oxides or minerals of aluminum determined the variation in other P fractions. Conclusions High N deposition rate can promote soil P availability in the subalpine forest, while N addition did not alter the vertical distribution patterns of soil P, suggesting a strong regulation of initial conditions on its response sensitivity to N deposition. Although short-term N deposition dose not strongly alter soil P transformation in the subalpine forest, the varied availability of soil P needs to be concerned under the increasing N deposition rate in the future.
AbstractList PurposeThe biogeochemical cycling of phosphorus (P) is essential for maintaining plant productivity and thus plays a vital role in soil carbon sequestration. However, how soil P availability responds to increasing atmospheric nitrogen (N) deposition in subalpine forests remains unclear. The aims of this study are to explore the responses of P bioavailability in the subalpine soils of eastern Tibetan Plateau to different N addition levels.Materials and methodsA field experiment with three N addition gradients (0, 8, and 40 kg N ha−1 year−1) was performed in the Abies fabri dominated forest of Gongga Mountain, eastern Tibetan Plateau. The soil P fractions in organic layer and mineral layers (0–5, 5–10, 10–20 cm) were analyzed to reveal their responses to different N addition levels, and the key drivers regulating soil P availability under the N addition were also deciphered.Results and discussionThe low N addition did not alter the concentrations of total P and its fractions in the soils, while the high N addition significantly increased the concentrations of bioavailable P (AP). The results of structure equation models suggest that the decrease in microbial biomass and energy demand (dissolved organic carbon, DOC) of microorganisms under high N addition probably promotes the turnover and release of organic P rather than P immobilization. Soil P fractions displayed a significant difference among the soil depths, while the N addition did not alter their vertical distribution patterns. Soil moisture, pH, soil organic carbon, DOC, and microbial biomass controlled the vertical distribution of AP, while the oxides or minerals of aluminum determined the variation in other P fractions.ConclusionsHigh N deposition rate can promote soil P availability in the subalpine forest, while N addition did not alter the vertical distribution patterns of soil P, suggesting a strong regulation of initial conditions on its response sensitivity to N deposition. Although short-term N deposition dose not strongly alter soil P transformation in the subalpine forest, the varied availability of soil P needs to be concerned under the increasing N deposition rate in the future.
Purpose The biogeochemical cycling of phosphorus (P) is essential for maintaining plant productivity and thus plays a vital role in soil carbon sequestration. However, how soil P availability responds to increasing atmospheric nitrogen (N) deposition in subalpine forests remains unclear. The aims of this study are to explore the responses of P bioavailability in the subalpine soils of eastern Tibetan Plateau to different N addition levels. Materials and methods A field experiment with three N addition gradients (0, 8, and 40 kg N ha −1 year −1 ) was performed in the Abies fabri dominated forest of Gongga Mountain, eastern Tibetan Plateau. The soil P fractions in organic layer and mineral layers (0–5, 5–10, 10–20 cm) were analyzed to reveal their responses to different N addition levels, and the key drivers regulating soil P availability under the N addition were also deciphered. Results and discussion The low N addition did not alter the concentrations of total P and its fractions in the soils, while the high N addition significantly increased the concentrations of bioavailable P (AP). The results of structure equation models suggest that the decrease in microbial biomass and energy demand (dissolved organic carbon, DOC) of microorganisms under high N addition probably promotes the turnover and release of organic P rather than P immobilization. Soil P fractions displayed a significant difference among the soil depths, while the N addition did not alter their vertical distribution patterns. Soil moisture, pH, soil organic carbon, DOC, and microbial biomass controlled the vertical distribution of AP, while the oxides or minerals of aluminum determined the variation in other P fractions. Conclusions High N deposition rate can promote soil P availability in the subalpine forest, while N addition did not alter the vertical distribution patterns of soil P, suggesting a strong regulation of initial conditions on its response sensitivity to N deposition. Although short-term N deposition dose not strongly alter soil P transformation in the subalpine forest, the varied availability of soil P needs to be concerned under the increasing N deposition rate in the future.
PURPOSE: The biogeochemical cycling of phosphorus (P) is essential for maintaining plant productivity and thus plays a vital role in soil carbon sequestration. However, how soil P availability responds to increasing atmospheric nitrogen (N) deposition in subalpine forests remains unclear. The aims of this study are to explore the responses of P bioavailability in the subalpine soils of eastern Tibetan Plateau to different N addition levels. MATERIALS AND METHODS: A field experiment with three N addition gradients (0, 8, and 40 kg N ha⁻¹ year⁻¹) was performed in the Abies fabri dominated forest of Gongga Mountain, eastern Tibetan Plateau. The soil P fractions in organic layer and mineral layers (0–5, 5–10, 10–20 cm) were analyzed to reveal their responses to different N addition levels, and the key drivers regulating soil P availability under the N addition were also deciphered. RESULTS AND DISCUSSION: The low N addition did not alter the concentrations of total P and its fractions in the soils, while the high N addition significantly increased the concentrations of bioavailable P (AP). The results of structure equation models suggest that the decrease in microbial biomass and energy demand (dissolved organic carbon, DOC) of microorganisms under high N addition probably promotes the turnover and release of organic P rather than P immobilization. Soil P fractions displayed a significant difference among the soil depths, while the N addition did not alter their vertical distribution patterns. Soil moisture, pH, soil organic carbon, DOC, and microbial biomass controlled the vertical distribution of AP, while the oxides or minerals of aluminum determined the variation in other P fractions. CONCLUSIONS: High N deposition rate can promote soil P availability in the subalpine forest, while N addition did not alter the vertical distribution patterns of soil P, suggesting a strong regulation of initial conditions on its response sensitivity to N deposition. Although short-term N deposition dose not strongly alter soil P transformation in the subalpine forest, the varied availability of soil P needs to be concerned under the increasing N deposition rate in the future.
Author Chang, Ruiying
Liu, Ye
Wu, Yanhong
Wang, Zhiguo
Bing, Haijian
Zhu, He
Tian, Xin
Author_xml – sequence: 1
  givenname: Ye
  surname: Liu
  fullname: Liu, Ye
  organization: The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Haijian
  surname: Bing
  fullname: Bing, Haijian
  email: hjbing@imde.ac.cn
  organization: The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
– sequence: 3
  givenname: Yanhong
  surname: Wu
  fullname: Wu, Yanhong
  organization: The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
– sequence: 4
  givenname: He
  surname: Zhu
  fullname: Zhu, He
  organization: The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
– sequence: 5
  givenname: Xin
  surname: Tian
  fullname: Tian, Xin
  organization: The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 6
  givenname: Zhiguo
  surname: Wang
  fullname: Wang, Zhiguo
  organization: The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 7
  givenname: Ruiying
  surname: Chang
  fullname: Chang, Ruiying
  organization: The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
BookMark eNp9kU9rGzEQxUVwIInTL9CTIJdcNh39We3uMZi0DZi2B_e8SKtZR2YtOZK2kG9fuQ4UcvBhNIL5PfE074YsfPBIyGcGDwyg-ZIYE6qtgLMKBChZwQW5ZorJqpEtLMpdiq4CBu0VuUlpByCaMr4mux8ux7BFT7W1Lrvg6SGGfciYaApuooeXkErFOVH9R7tJGze5_Eadp_kFaZqNng7OIx1DxJRpGCnqlDF6unEGs_b016Qz6vmWXI56SvjpvS_J769Pm9X3av3z2_PqcV0Noua5UkwZMyppbSeMBDCdrEVtrbbQctHiiGWEnbQgh3pgRmrDUdhhGGsjmDBiSe5P75aPvM7FU793acBp0h7DnHquhFK8a3lT0LsP6C7M0Rd3hWINY5x3R6o9UUMMKUUc-8FlfdxVjmUjPYP-GEJ_CqEvIfT_QijnkvAP0kN0ex3fzovESZQK7LcY_7s6o_oLpVydzA
CitedBy_id crossref_primary_10_1111_nph_18673
crossref_primary_10_1111_gcb_16205
crossref_primary_10_1016_j_foreco_2024_122338
crossref_primary_10_1002_ldr_4701
crossref_primary_10_1016_j_catena_2023_107193
crossref_primary_10_1111_1365_2745_14118
crossref_primary_10_1016_j_apsoil_2023_104911
crossref_primary_10_1016_j_jclepro_2022_134118
crossref_primary_10_1002_sae2_12100
crossref_primary_10_1016_j_jia_2024_07_033
crossref_primary_10_3389_fsufs_2024_1343283
crossref_primary_10_1016_j_scitotenv_2022_154998
crossref_primary_10_1016_j_envexpbot_2022_104932
crossref_primary_10_1016_j_apsoil_2025_106023
crossref_primary_10_1111_jam_15633
crossref_primary_10_1080_01490451_2024_2395356
crossref_primary_10_3390_w14060913
crossref_primary_10_3390_f15030416
crossref_primary_10_1016_j_apsoil_2024_105616
crossref_primary_10_1016_j_compag_2017_09_010
crossref_primary_10_1007_s11368_022_03276_y
crossref_primary_10_1016_j_scitotenv_2024_178282
crossref_primary_10_1016_j_biortech_2023_128707
crossref_primary_10_1016_j_jenvman_2023_118207
crossref_primary_10_1016_j_scitotenv_2023_166383
Cites_doi 10.5194/bg-17-441-2020
10.1073/pnas.2020790118
10.1016/0016-7061(76)90066-5
10.1007/s11104-020-04688-w
10.1016/j.catena.2021.105328
10.1111/nph.17154
10.2134/jeq2011.0250
10.1007/s11104-016-3022-y
10.1038/ngeo721
10.1007/s11104-019-04159-x
10.1111/j.1469-8137.2010.03214.x
10.1016/j.geoderma.2019.05.010
10.1111/2041-210X.12512
10.1890/ES11-00305.1
10.1007/s11104-009-0042-x
10.1016/j.geoderma.2018.04.015
10.1104/pp.111.175448
10.1016/j.soilbio.2020.108107
10.1016/j.ecolind.2015.10.033
10.1016/j.geoderma.2020.114650
10.1007/s11104-019-04329-x
10.2136/sssaj1982.03615995004600050017x
10.1007/s10021-007-9086-z
10.1007/s11104-019-04246-z
10.1046/j.1469-8137.2003.00695.x
10.1890/08-0127.1
10.1002/jpln.201600079
10.1104/pp.111.175232
10.1111/gcb.13939
10.2113/GSELEMENTS.4.2.89
10.1016/S0003-2670(00)88444-5
10.1016/0038-0717(87)90052-6
10.1038/ngeo339
10.1007/s10021-019-00450-1
10.1007/s11629-013-2328-y
10.1007/s11104-012-1493-z
10.1111/gcb.14093
10.1111/j.1469-8137.2012.04234.x
10.1111/gcb.12665
10.1007/s11104-018-03927-5
10.1007/s11769-015-0756-z
10.1016/j.geoderma.2020.114256
10.1007/s11368-015-1200-9
10.1111/1365-2745.13417
10.1023/A:1010760720215
10.1007/s11629-013-2386-1
10.1038/ncomms3934
10.1111/j.1744-7429.2011.00831.x
10.1890/07-1739.1
10.1016/j.soilbio.2010.05.020
10.32614/CRAN.package.rdacca.hp
10.1002/jpln.201500541
10.1038/s41467-018-05731-2
10.1007/s11104-020-04753-4
10.1073/pnas.0711618105
10.1023/A:1013351617532
10.1038/s41467-020-14492-w
10.1111/nph.14083
10.1016/j.soilbio.2018.09.006
10.1016/j.geoderma.2020.114357
10.1038/s41561-019-0352-4
10.1128/AEM.00160-16
10.1016/j.atmosenv.2008.02.038
10.1007/s10533-018-0442-1
10.1111/1365-2435.13484
10.1016/j.scitotenv.2020.142848
10.1038/nature06592
10.1111/gcb.15218
10.1016/j.soilbio.2016.04.023
10.1016/S0038-0717(97)00030-8
10.1016/j.catena.2016.03.004
10.1111/geb.12576
10.1111/1365-2435.13606
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7ST
7UA
7X2
7XB
88I
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
H97
HCIFZ
L.G
M0K
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11368-021-03064-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Water Resources Abstracts
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Agricultural Science Database
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database

AGRICOLA
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1614-7480
EndPage 11
ExternalDocumentID 10_1007_s11368_021_03064_0
GeographicLocations Tibetan Plateau
China
GeographicLocations_xml – name: Tibetan Plateau
– name: China
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5GY
5VS
67M
67Z
6NX
7X2
7XC
88I
8CJ
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ATCPS
AXYYD
AYJHY
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L8X
LAS
LK5
LLZTM
M0K
M2P
M4Y
M7R
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
RMD
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7U
Z7Y
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7ST
7UA
7XB
8FK
ABRTQ
C1K
F1W
H96
H97
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-616bbf64dd93b400b94535ddad08238efe4dde94d04c5c1b4ab2e3dccf5b313b3
IEDL.DBID BENPR
ISSN 1439-0108
IngestDate Fri Jul 11 15:25:21 EDT 2025
Fri Jul 25 20:50:03 EDT 2025
Thu Apr 24 23:11:42 EDT 2025
Tue Jul 01 01:38:24 EDT 2025
Fri Feb 21 02:46:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gongga Mountain
Bioavailable phosphorus
Fraction variation
Nitrogen deposition
Subalpine forest
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-616bbf64dd93b400b94535ddad08238efe4dde94d04c5c1b4ab2e3dccf5b313b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2617112297
PQPubID 54474
PageCount 11
ParticipantIDs proquest_miscellaneous_2636629827
proquest_journals_2617112297
crossref_citationtrail_10_1007_s11368_021_03064_0
crossref_primary_10_1007_s11368_021_03064_0
springer_journals_10_1007_s11368_021_03064_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Journal of soils and sediments
PublicationTitleAbbrev J Soils Sediments
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Yang, Zhang, Barberán (CR68) 2021; 153
Wang, Creamer, Wang (CR61) 2016; 61
Lu, Mao, Gilliam (CR37) 2014; 20
Wang, Wu, Zhou (CR62) 2020; 446
Guo, Jiang, Liu (CR19) 2020; 456
Porder, Chadwick (CR46) 2009; 90
Deng, Liu, Sun (CR13) 2016; 212
Zhang, Li, Wang (CR72) 2019; 351
Chang, Li, Sun (CR8) 2018; 127
Copeland, Bruna, Silva (CR11) 2012; 3
CR30
Bing, Wu, Zhou (CR3) 2016; 16
García-Velázquez, Rodríguez, Gallardo (CR17) 2020; 34
Tiessen, Moir (CR54) 1993
Riggs, Hobbie (CR50) 2016; 99
Turner, Condron, Richardson (CR55) 2007; 10
Beck, Joergensen, Kandeler (CR2) 1997; 29
Yu, Wang, Huang (CR70) 2018; 24
Perring, Hedin, Levin (CR44) 2008; 105
Murphy, Riley (CR40) 1962; 27
Elser, Fagan, Kerkhoff (CR15) 2010; 186
Yu, Jia, He (CR71) 2019; 12
Zhou, Lu, Mori (CR75) 2018; 138
Hou, Chen, Luo (CR26) 2018; 24
CR45
Yang, Yang, Peng (CR67) 2019; 444
Chen, Yuan, Hu (CR10) 2021; 764
Vance, Uhde-Stone, Allan (CR58) 2003; 157
CR41
Weng, Van Riemsdijk, Hiemstra (CR63) 2012; 41
Zhu, Zhang, Liu (CR76) 2020; 108
Wu, Li, Zhou (CR65) 2013; 10
Lefcheck (CR33) 2016; 7
Turner, Lambers, Condron (CR56) 2013; 367
Deng, Hui, Dennis (CR14) 2017; 26
He, Zhou, Wu (CR20) 2018; 326
He, Yuan, Zhang (CR21) 2021; 460
Vitousek, Porder, Houlton (CR59) 2010; 20
Cao, Pang, Wang (CR6) 2020; 34
Liu, Xiao, Liu (CR34) 2008; 42
Hinsinger (CR25) 2001; 237
Tapia-Torres, Rodríguez-Torres, Elser (CR53) 2016; 82
Cui, Bing, Fang (CR12) 2021; 458
Qiao, Wang, Liu (CR47) 2020; 370
Lu, Mo, Gilliam (CR36) 2012; 44
Richardson, Simpson (CR49) 2011; 156
Zhu, Bing, Wu (CR77) 2021; 203
Lu, Vitousek, Mao (CR38) 2021; 118
Chen, Groenigen, Hungate (CR9) 2020; 26
Helfenstein, Pistocchi, Oberson (CR24) 2020; 17
Bol, Julich, Brödlin (CR4) 2016; 179
Long, Wu, Smith (CR35) 2016; 408
Helfenstein, Tamburini, von Sperber (CR23) 2018; 9
Vance, Brookes, Jenkinson (CR57) 1987; 19
CR52
Peñuelas, Poulter, Sardans (CR43) 2013; 4
Yin, Guo, Zhu (CR69) 2021; 27
Chai, Yu, He (CR7) 2015; 25
Wu, Zhou, Yu (CR64) 2013; 10
Shen, Yuan, Zhang (CR51) 2011; 156
Gruber, Galloway (CR18) 2008; 451
Hou, Luo, Kuang (CR27) 2020; 11
Lugli, Rosa, Andersen (CR39) 2021; 230
Peng, Peng, Zeng (CR42) 2019; 436
Filippelli (CR16) 2008; 4
Lang, Bauhus, Frossard (CR32) 2016; 179
Achat, Bakker, Zeller (CR1) 2010; 42
Jobbágy, Jackson (CR29) 2001; 53
Zhang, Shi, Fu (CR73) 2020; 380
Hedley, Stewart, Chauhan (CR22) 1982; 46
Lambers, Mougel, Jaillard (CR31) 2009; 321
Jia, Zhong, Liu (CR28) 2020; 366
Quinn Thomas, Canham, Weathers (CR48) 2010; 3
Wu, Xiang, Chen (CR66) 2020; 23
Walker, Syers (CR60) 1976; 15
Bowman, Cleveland, Halada (CR5) 2008; 1
Zhou, Wu, Bing (CR74) 2016; 142
Y Wu (3064_CR65) 2013; 10
JS Lefcheck (3064_CR33) 2016; 7
J Shen (3064_CR51) 2011; 156
W He (3064_CR21) 2021; 460
CE Riggs (3064_CR50) 2016; 99
R Bol (3064_CR4) 2016; 179
AE Richardson (3064_CR49) 2011; 156
ED Vance (3064_CR57) 1987; 19
Y Peng (3064_CR42) 2019; 436
3064_CR41
F Lang (3064_CR32) 2016; 179
3064_CR45
TW Walker (3064_CR60) 1976; 15
BL Turner (3064_CR56) 2013; 367
BL Turner (3064_CR55) 2007; 10
H Zhang (3064_CR73) 2020; 380
R Quinn Thomas (3064_CR48) 2010; 3
J Wang (3064_CR62) 2020; 446
H Bing (3064_CR3) 2016; 16
MJ Hedley (3064_CR22) 1982; 46
H Chai (3064_CR7) 2015; 25
E Hou (3064_CR26) 2018; 24
PM Vitousek (3064_CR59) 2010; 20
X Zhu (3064_CR76) 2020; 108
N Gruber (3064_CR18) 2008; 451
H Lambers (3064_CR31) 2009; 321
X Lu (3064_CR38) 2021; 118
R Wang (3064_CR61) 2016; 61
Q Deng (3064_CR14) 2017; 26
E Hou (3064_CR27) 2020; 11
X Liu (3064_CR34) 2008; 42
3064_CR52
L Yang (3064_CR67) 2019; 444
X He (3064_CR20) 2018; 326
K Zhou (3064_CR75) 2018; 138
J Helfenstein (3064_CR24) 2020; 17
GM Filippelli (3064_CR16) 2008; 4
SM Copeland (3064_CR11) 2012; 3
CP Vance (3064_CR58) 2003; 157
WD Bowman (3064_CR5) 2008; 1
Y Cui (3064_CR12) 2021; 458
J Murphy (3064_CR40) 1962; 27
H Zhu (3064_CR77) 2021; 203
T Beck (3064_CR2) 1997; 29
X Lu (3064_CR36) 2012; 44
X Lu (3064_CR37) 2014; 20
DL Achat (3064_CR1) 2010; 42
L García-Velázquez (3064_CR17) 2020; 34
M Deng (3064_CR13) 2016; 212
M Long (3064_CR35) 2016; 408
Z Yu (3064_CR70) 2018; 24
H Wu (3064_CR66) 2020; 23
J Peñuelas (3064_CR43) 2013; 4
L Weng (3064_CR63) 2012; 41
LF Lugli (3064_CR39) 2021; 230
Y Tapia-Torres (3064_CR53) 2016; 82
C Zhang (3064_CR72) 2019; 351
J Chen (3064_CR9) 2020; 26
H Tiessen (3064_CR54) 1993
S Porder (3064_CR46) 2009; 90
Y Guo (3064_CR19) 2020; 456
J Cao (3064_CR6) 2020; 34
F Yang (3064_CR68) 2021; 153
P Hinsinger (3064_CR25) 2001; 237
G Yu (3064_CR71) 2019; 12
Q Chen (3064_CR10) 2021; 764
Y Wu (3064_CR64) 2013; 10
X Jia (3064_CR28) 2020; 366
JJ Elser (3064_CR15) 2010; 186
J Helfenstein (3064_CR23) 2018; 9
3064_CR30
Y Qiao (3064_CR47) 2020; 370
J Zhou (3064_CR74) 2016; 142
EG Jobbágy (3064_CR29) 2001; 53
R Chang (3064_CR8) 2018; 127
M Yin (3064_CR69) 2021; 27
MP Perring (3064_CR44) 2008; 105
References_xml – volume: 42
  start-page: 1479
  year: 2010
  end-page: 1490
  ident: CR1
  article-title: Long-term organic phosphorus mineralization in Spodosols under forests and its relation to carbon and nitrogen mineralization
  publication-title: Soil Biol Biochem
– ident: CR45
– volume: 46
  start-page: 970
  year: 1982
  end-page: 976
  ident: CR22
  article-title: Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations
  publication-title: Soil Sci Soc Am J
– volume: 41
  start-page: 628
  year: 2012
  end-page: 635
  ident: CR63
  article-title: Factors controlling phosphate interaction with iron oxides
  publication-title: J Environ Qual
– volume: 127
  start-page: 31
  year: 2018
  end-page: 38
  ident: CR8
  article-title: Nitrogen addition reduces dissolved organic carbon leaching in a montane forest
  publication-title: Soil Biol Biochem
– volume: 321
  start-page: 83
  year: 2009
  end-page: 115
  ident: CR31
  article-title: Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective
  publication-title: Plant Soil
– volume: 444
  start-page: 87
  year: 2019
  end-page: 99
  ident: CR67
  article-title: Evaluating P availability influenced by warming and N deposition in a subtropical forest soil: a bioassay mesocosm experiment
  publication-title: Plant Soil
– volume: 203
  start-page: 105328
  year: 2021
  ident: CR77
  article-title: Low molecular weight organic acids regulate soil phosphorus availability in the soils of subalpine forests, eastern Tibetan Plateau
  publication-title: Catena
– volume: 20
  start-page: 3790
  year: 2014
  end-page: 3801
  ident: CR37
  article-title: Nitrogen deposition contributes to soil acidification in tropical ecosystems
  publication-title: Glob Change Biol
– volume: 408
  start-page: 475
  year: 2016
  end-page: 484
  ident: CR35
  article-title: Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland
  publication-title: Plant Soil
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  ident: CR40
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal Chim Acta
– volume: 3
  start-page: 13
  year: 2010
  end-page: 17
  ident: CR48
  article-title: Increased tree carbon storage in response to nitrogen deposition in the US
  publication-title: Nat Geosci
– volume: 9
  start-page: 3226
  year: 2018
  ident: CR23
  article-title: Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil
  publication-title: Nat Commun
– volume: 156
  start-page: 989
  year: 2011
  end-page: 996
  ident: CR49
  article-title: Soil microorganisms mediating phosphorus availability update on microbial phosphorus
  publication-title: Plant Physiol
– volume: 1
  start-page: 767
  year: 2008
  end-page: 770
  ident: CR5
  article-title: Negative impact of nitrogen deposition on soil buffering capacity
  publication-title: Nat Geosci
– volume: 17
  start-page: 441
  year: 2020
  end-page: 454
  ident: CR24
  article-title: Estimates of mean residence times of phosphorus in commonly considered inorganic soil phosphorus pools
  publication-title: Biogeosciences
– volume: 118
  start-page: e2020790118
  year: 2021
  ident: CR38
  article-title: Nitrogen deposition accelerates soil carbon sequestration in tropical forests
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 43
  year: 2013
  end-page: 53
  ident: CR64
  article-title: Phosphorus biogeochemical cycle research in mountainous ecosystems
  publication-title: J Mt Sci
– volume: 44
  start-page: 302
  year: 2012
  end-page: 311
  ident: CR36
  article-title: Nitrogen addition shapes soil phosphorus availability in two reforested tropical forests in southern China
  publication-title: Biotropica
– volume: 108
  start-page: 2309
  year: 2020
  end-page: 2320
  ident: CR76
  article-title: Differential impacts of nitrogen addition on rhizosphere and bulk-soil carbon sequestration in an alpine shrubland
  publication-title: J Ecol
– volume: 351
  start-page: 49
  year: 2019
  end-page: 58
  ident: CR72
  article-title: Decreased temporary turnover of bacterial communities along soil depth gradient during a 35-year grazing exclusion period in a semiarid grassland
  publication-title: Geoderma
– volume: 15
  start-page: 1
  year: 1976
  end-page: 19
  ident: CR60
  article-title: The fate of phosphorus during pedogenesis
  publication-title: Geoderma
– volume: 34
  start-page: 723
  year: 2020
  end-page: 734
  ident: CR6
  article-title: Plant-bacteria-soil response to frequency of simulated nitrogen deposition has implications for global ecosystem change
  publication-title: Funct Ecol
– volume: 153
  start-page: 108107
  year: 2021
  ident: CR68
  article-title: Nitrogen-induced acidification plays a vital role driving ecosystem functions: insights from a 6-year nitrogen enrichment experiment in a Tibetan alpine meadow
  publication-title: Soil Biol Biochem
– volume: 446
  start-page: 259
  year: 2020
  end-page: 274
  ident: CR62
  article-title: Soil microbes become a major pool of biological phosphorus during the early stage of soil development with little evidence of competition for phosphorus with plants
  publication-title: Plant Soil
– volume: 460
  start-page: 469
  year: 2021
  end-page: 481
  ident: CR21
  article-title: Effect of N addition on root exudation and associated microbial N transformation under in an alpine shrubland
  publication-title: Plant Soil
– volume: 23
  start-page: 973
  year: 2020
  end-page: 988
  ident: CR66
  article-title: Soil phosphorus bioavailability and recycling increased with stand age in Chinese fir plantations
  publication-title: Ecosystems
– volume: 370
  start-page: 114357
  year: 2020
  ident: CR47
  article-title: Depth-dependent soil C-N-P stoichiometry in a mature subtropical broadleaf forest
  publication-title: Geoderma
– volume: 29
  start-page: 1023
  year: 1997
  end-page: 1032
  ident: CR2
  article-title: An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C
  publication-title: Soil Biol Biochem
– volume: 179
  start-page: 425
  year: 2016
  end-page: 438
  ident: CR4
  article-title: Dissolved and colloidal phosphorus fluxes in forest ecosystems—an almost blind spot in ecosystem research
  publication-title: J Plant Nutr Soil Sci
– volume: 7
  start-page: 573
  year: 2016
  end-page: 579
  ident: CR33
  article-title: piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics
  publication-title: Methods Ecol Evol
– volume: 230
  start-page: 116
  year: 2021
  end-page: 128
  ident: CR39
  article-title: Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia
  publication-title: New Phytol
– volume: 99
  start-page: 54
  year: 2016
  end-page: 65
  ident: CR50
  article-title: Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils
  publication-title: Soil Biol Biochem
– volume: 4
  start-page: 2934
  year: 2013
  ident: CR43
  article-title: Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe
  publication-title: Nat Commun
– volume: 26
  start-page: 713
  year: 2017
  end-page: 728
  ident: CR14
  article-title: Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis
  publication-title: Glob Ecol Biogeogr
– volume: 11
  start-page: 637
  year: 2020
  ident: CR27
  article-title: Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems
  publication-title: Nat Commun
– volume: 10
  start-page: 370
  year: 2013
  end-page: 377
  ident: CR65
  article-title: Temperature and precipitation variations at two meteorological stations on eastern slope of Gongga Mountain, SW China, in the past two decades
  publication-title: J Mt Sci
– start-page: 75
  year: 1993
  end-page: 86
  ident: CR54
  article-title: Characterization of available P by sequential extraction
  publication-title: soil sampling and methods of analysis
– volume: 142
  start-page: 102
  year: 2016
  end-page: 111
  ident: CR74
  article-title: Variations in soil phosphorus biogeochemistry across six vegetation types along an altitudinal gradient in SW China
  publication-title: Catena
– volume: 61
  start-page: 806
  year: 2016
  end-page: 814
  ident: CR61
  article-title: The effects of a 9-year nitrogen and water addition on soil aggregate phosphorus and sulfur availability in a semi-arid grassland
  publication-title: Ecol Indic
– volume: 764
  start-page: 142848
  year: 2021
  ident: CR10
  article-title: Excessive nitrogen addition accelerates N assimilation and P utilization by enhancing organic carbon decomposition in a Tibetan alpine steppe
  publication-title: Sci Total Environ
– volume: 212
  start-page: 1019
  year: 2016
  end-page: 1029
  ident: CR13
  article-title: Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate plantations
  publication-title: New Phytol
– volume: 451
  start-page: 293
  year: 2008
  end-page: 296
  ident: CR18
  article-title: An earth-system perspective of the global nitrogen cycle
  publication-title: Nature
– ident: CR30
– volume: 366
  start-page: 114256
  year: 2020
  ident: CR28
  article-title: Effects of nitrogen enrichment on soil microbial characteristics: from biomass to enzyme activities
  publication-title: Geoderma
– volume: 326
  start-page: 144
  year: 2018
  end-page: 155
  ident: CR20
  article-title: Leaching disturbed the altitudinal distribution of soil organic phosphorus in subalpine coniferous forests on Mt. Gongga
  publication-title: SW China Geoderma
– volume: 12
  start-page: 424
  year: 2019
  end-page: 429
  ident: CR71
  article-title: Stabilization of atmospheric nitrogen deposition in China over the past decade
  publication-title: Nat Geosci
– volume: 456
  start-page: 15
  year: 2020
  end-page: 26
  ident: CR19
  article-title: Climate and vegetation together control the vertical distribution of soil carbon, nitrogen and phosphorus in shrublands in China
  publication-title: Plant Soil
– volume: 16
  start-page: 405
  year: 2016
  end-page: 416
  ident: CR3
  article-title: Stoichiometric variation of carbon, nitrogen, and phosphorus in soils and its implication for nutrient limitation in alpine ecosystem of eastern Tibetan Plateau
  publication-title: J Soils Sediments
– volume: 42
  start-page: 5413
  year: 2008
  end-page: 5423
  ident: CR34
  article-title: Stable carbon and nitrogen isotopes of the moss in an urban and a background area (SW China): the role of environmental conditions and atmospheric nitrogen deposition
  publication-title: Atmos Environ
– volume: 24
  start-page: 3344
  year: 2018
  end-page: 3356
  ident: CR26
  article-title: Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems
  publication-title: Glob Change Biol
– volume: 237
  start-page: 173
  year: 2001
  end-page: 195
  ident: CR25
  article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review
  publication-title: Plant Soil
– volume: 436
  start-page: 245
  year: 2019
  end-page: 252
  ident: CR42
  article-title: Effects of nitrogen-phosphorus imbalance on plant biomass production: a global perspective
  publication-title: Plant Soil
– volume: 105
  start-page: 1971
  year: 2008
  end-page: 1976
  ident: CR44
  article-title: Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems
  publication-title: Proc Natl Acad Sci
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  ident: CR57
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biol Biochem
– volume: 4
  start-page: 89
  year: 2008
  end-page: 95
  ident: CR16
  article-title: The global phosphorus cycle: past, present, and future
  publication-title: Elements
– volume: 34
  start-page: 1690
  year: 2020
  end-page: 1701
  ident: CR17
  article-title: Climate and soil microorganisms drive soil phosphorus fractions in coastal dune systems
  publication-title: Funct Ecol
– volume: 458
  start-page: 7
  year: 2021
  end-page: 20
  ident: CR12
  article-title: Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems
  publication-title: Plant Soil
– volume: 179
  start-page: 129
  year: 2016
  end-page: 135
  ident: CR32
  article-title: Phosphorus in forest ecosystems: new insights from an ecosystem nutrition perspective
  publication-title: J Plant Nutr Soil Sci
– volume: 10
  start-page: 1166
  year: 2007
  end-page: 1181
  ident: CR55
  article-title: Soil organic phosphorus transformations during pedogenesis
  publication-title: Ecosystems
– volume: 25
  start-page: 549
  year: 2015
  end-page: 560
  ident: CR7
  article-title: Vertical distribution of soil carbon, nitrogen, and phosphorus in typical Chinese terrestrial ecosystems
  publication-title: Chin Geogr Sci
– ident: CR52
– volume: 157
  start-page: 423
  year: 2003
  end-page: 447
  ident: CR58
  article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource
  publication-title: New Phytol
– volume: 138
  start-page: 215
  year: 2018
  end-page: 224
  ident: CR75
  article-title: Effects of long-term nitrogen deposition on phosphorus leaching dynamics in a mature tropical forest
  publication-title: Biogeochemistry
– volume: 367
  start-page: 225
  year: 2013
  end-page: 234
  ident: CR56
  article-title: Soil microbial biomass and the fate of phosphorus during long-term ecosystem development
  publication-title: Plant Soil
– volume: 20
  start-page: 5
  year: 2010
  end-page: 15
  ident: CR59
  article-title: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions
  publication-title: Ecol Appl
– volume: 186
  start-page: 593
  year: 2010
  end-page: 608
  ident: CR15
  article-title: Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change
  publication-title: New Phytol
– volume: 27
  start-page: 1
  year: 2021
  end-page: 7
  ident: CR69
  article-title: Nutrient limiting characteristics of subalpine coniferous forests under conditions of nitrogen deposition in the southwest mountains of China
  publication-title: Chin J Appl Environ Biol
– volume: 26
  start-page: 5077
  year: 2020
  end-page: 5086
  ident: CR9
  article-title: Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems
  publication-title: Glob Change Biol
– volume: 90
  start-page: 623
  year: 2009
  end-page: 636
  ident: CR46
  article-title: Climate and soil-age constraints on nutrient uplift and retention by plants
  publication-title: Ecology
– volume: 24
  start-page: 1308
  year: 2018
  end-page: 1320
  ident: CR70
  article-title: Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China
  publication-title: Glob Change Biol
– volume: 380
  start-page: 114650
  year: 2020
  ident: CR73
  article-title: Effects of nitrogen deposition and increased precipitation on soil phosphorus dynamics in a temperate forest
  publication-title: Geoderma
– volume: 53
  start-page: 51
  year: 2001
  end-page: 77
  ident: CR29
  article-title: The distribution of soil nutrients with depth: global patterns and the imprint of plants
  publication-title: Biogeochemistry
– volume: 156
  start-page: 997
  year: 2011
  end-page: 1005
  ident: CR51
  article-title: Phosphorus dynamics: from soil to plant
  publication-title: Plant Physiol
– ident: CR41
– volume: 82
  start-page: 4652
  year: 2016
  end-page: 4662
  ident: CR53
  article-title: How to live with phosphorus scarcity in soil and sediment: lessons from bacteria
  publication-title: Appl Environ Microbiol
– volume: 3
  start-page: 1
  year: 2012
  end-page: 20
  ident: CR11
  article-title: Short-term effects of elevated precipitation and nitrogen on soil fertility and plant growth in a Neotropical savanna
  publication-title: Ecosphere
– volume: 17
  start-page: 441
  year: 2020
  ident: 3064_CR24
  publication-title: Biogeosciences
  doi: 10.5194/bg-17-441-2020
– volume: 118
  start-page: e2020790118
  year: 2021
  ident: 3064_CR38
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2020790118
– ident: 3064_CR45
– ident: 3064_CR41
– volume: 15
  start-page: 1
  year: 1976
  ident: 3064_CR60
  publication-title: Geoderma
  doi: 10.1016/0016-7061(76)90066-5
– volume: 456
  start-page: 15
  year: 2020
  ident: 3064_CR19
  publication-title: Plant Soil
  doi: 10.1007/s11104-020-04688-w
– volume: 203
  start-page: 105328
  year: 2021
  ident: 3064_CR77
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105328
– volume: 230
  start-page: 116
  year: 2021
  ident: 3064_CR39
  publication-title: New Phytol
  doi: 10.1111/nph.17154
– volume: 41
  start-page: 628
  year: 2012
  ident: 3064_CR63
  publication-title: J Environ Qual
  doi: 10.2134/jeq2011.0250
– volume: 408
  start-page: 475
  year: 2016
  ident: 3064_CR35
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-3022-y
– volume: 3
  start-page: 13
  year: 2010
  ident: 3064_CR48
  publication-title: Nat Geosci
  doi: 10.1038/ngeo721
– volume: 458
  start-page: 7
  year: 2021
  ident: 3064_CR12
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-04159-x
– volume: 186
  start-page: 593
  year: 2010
  ident: 3064_CR15
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2010.03214.x
– volume: 351
  start-page: 49
  year: 2019
  ident: 3064_CR72
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.010
– volume: 7
  start-page: 573
  year: 2016
  ident: 3064_CR33
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12512
– volume: 3
  start-page: 1
  year: 2012
  ident: 3064_CR11
  publication-title: Ecosphere
  doi: 10.1890/ES11-00305.1
– volume: 321
  start-page: 83
  year: 2009
  ident: 3064_CR31
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0042-x
– volume: 326
  start-page: 144
  year: 2018
  ident: 3064_CR20
  publication-title: SW China Geoderma
  doi: 10.1016/j.geoderma.2018.04.015
– volume: 156
  start-page: 989
  year: 2011
  ident: 3064_CR49
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175448
– volume: 153
  start-page: 108107
  year: 2021
  ident: 3064_CR68
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2020.108107
– volume: 61
  start-page: 806
  year: 2016
  ident: 3064_CR61
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2015.10.033
– volume: 380
  start-page: 114650
  year: 2020
  ident: 3064_CR73
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114650
– volume: 446
  start-page: 259
  year: 2020
  ident: 3064_CR62
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-04329-x
– volume: 46
  start-page: 970
  year: 1982
  ident: 3064_CR22
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1982.03615995004600050017x
– volume: 10
  start-page: 1166
  year: 2007
  ident: 3064_CR55
  publication-title: Ecosystems
  doi: 10.1007/s10021-007-9086-z
– volume: 444
  start-page: 87
  year: 2019
  ident: 3064_CR67
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-04246-z
– volume: 157
  start-page: 423
  year: 2003
  ident: 3064_CR58
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2003.00695.x
– volume: 20
  start-page: 5
  year: 2010
  ident: 3064_CR59
  publication-title: Ecol Appl
  doi: 10.1890/08-0127.1
– volume: 179
  start-page: 425
  year: 2016
  ident: 3064_CR4
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201600079
– volume: 156
  start-page: 997
  year: 2011
  ident: 3064_CR51
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175232
– volume: 24
  start-page: 1308
  year: 2018
  ident: 3064_CR70
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.13939
– volume: 4
  start-page: 89
  year: 2008
  ident: 3064_CR16
  publication-title: Elements
  doi: 10.2113/GSELEMENTS.4.2.89
– volume: 27
  start-page: 31
  year: 1962
  ident: 3064_CR40
  publication-title: Anal Chim Acta
  doi: 10.1016/S0003-2670(00)88444-5
– volume: 19
  start-page: 703
  year: 1987
  ident: 3064_CR57
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(87)90052-6
– volume: 1
  start-page: 767
  year: 2008
  ident: 3064_CR5
  publication-title: Nat Geosci
  doi: 10.1038/ngeo339
– volume: 23
  start-page: 973
  year: 2020
  ident: 3064_CR66
  publication-title: Ecosystems
  doi: 10.1007/s10021-019-00450-1
– volume: 10
  start-page: 370
  year: 2013
  ident: 3064_CR65
  publication-title: J Mt Sci
  doi: 10.1007/s11629-013-2328-y
– volume: 367
  start-page: 225
  year: 2013
  ident: 3064_CR56
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1493-z
– volume: 24
  start-page: 3344
  year: 2018
  ident: 3064_CR26
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.14093
– ident: 3064_CR52
  doi: 10.1111/j.1469-8137.2012.04234.x
– volume: 20
  start-page: 3790
  year: 2014
  ident: 3064_CR37
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.12665
– volume: 436
  start-page: 245
  year: 2019
  ident: 3064_CR42
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-03927-5
– volume: 25
  start-page: 549
  year: 2015
  ident: 3064_CR7
  publication-title: Chin Geogr Sci
  doi: 10.1007/s11769-015-0756-z
– volume: 366
  start-page: 114256
  year: 2020
  ident: 3064_CR28
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114256
– volume: 16
  start-page: 405
  year: 2016
  ident: 3064_CR3
  publication-title: J Soils Sediments
  doi: 10.1007/s11368-015-1200-9
– volume: 108
  start-page: 2309
  year: 2020
  ident: 3064_CR76
  publication-title: J Ecol
  doi: 10.1111/1365-2745.13417
– volume: 53
  start-page: 51
  year: 2001
  ident: 3064_CR29
  publication-title: Biogeochemistry
  doi: 10.1023/A:1010760720215
– volume: 10
  start-page: 43
  year: 2013
  ident: 3064_CR64
  publication-title: J Mt Sci
  doi: 10.1007/s11629-013-2386-1
– volume: 4
  start-page: 2934
  year: 2013
  ident: 3064_CR43
  publication-title: Nat Commun
  doi: 10.1038/ncomms3934
– volume: 44
  start-page: 302
  year: 2012
  ident: 3064_CR36
  publication-title: Biotropica
  doi: 10.1111/j.1744-7429.2011.00831.x
– volume: 90
  start-page: 623
  year: 2009
  ident: 3064_CR46
  publication-title: Ecology
  doi: 10.1890/07-1739.1
– volume: 42
  start-page: 1479
  year: 2010
  ident: 3064_CR1
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2010.05.020
– ident: 3064_CR30
  doi: 10.32614/CRAN.package.rdacca.hp
– volume: 179
  start-page: 129
  year: 2016
  ident: 3064_CR32
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201500541
– volume: 9
  start-page: 3226
  year: 2018
  ident: 3064_CR23
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05731-2
– volume: 460
  start-page: 469
  year: 2021
  ident: 3064_CR21
  publication-title: Plant Soil
  doi: 10.1007/s11104-020-04753-4
– volume: 105
  start-page: 1971
  year: 2008
  ident: 3064_CR44
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0711618105
– start-page: 75
  volume-title: soil sampling and methods of analysis
  year: 1993
  ident: 3064_CR54
– volume: 237
  start-page: 173
  year: 2001
  ident: 3064_CR25
  publication-title: Plant Soil
  doi: 10.1023/A:1013351617532
– volume: 11
  start-page: 637
  year: 2020
  ident: 3064_CR27
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-14492-w
– volume: 212
  start-page: 1019
  year: 2016
  ident: 3064_CR13
  publication-title: New Phytol
  doi: 10.1111/nph.14083
– volume: 127
  start-page: 31
  year: 2018
  ident: 3064_CR8
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2018.09.006
– volume: 370
  start-page: 114357
  year: 2020
  ident: 3064_CR47
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114357
– volume: 12
  start-page: 424
  year: 2019
  ident: 3064_CR71
  publication-title: Nat Geosci
  doi: 10.1038/s41561-019-0352-4
– volume: 82
  start-page: 4652
  year: 2016
  ident: 3064_CR53
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00160-16
– volume: 42
  start-page: 5413
  year: 2008
  ident: 3064_CR34
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2008.02.038
– volume: 138
  start-page: 215
  year: 2018
  ident: 3064_CR75
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-018-0442-1
– volume: 34
  start-page: 723
  year: 2020
  ident: 3064_CR6
  publication-title: Funct Ecol
  doi: 10.1111/1365-2435.13484
– volume: 764
  start-page: 142848
  year: 2021
  ident: 3064_CR10
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.142848
– volume: 451
  start-page: 293
  year: 2008
  ident: 3064_CR18
  publication-title: Nature
  doi: 10.1038/nature06592
– volume: 26
  start-page: 5077
  year: 2020
  ident: 3064_CR9
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.15218
– volume: 99
  start-page: 54
  year: 2016
  ident: 3064_CR50
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.04.023
– volume: 29
  start-page: 1023
  year: 1997
  ident: 3064_CR2
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(97)00030-8
– volume: 142
  start-page: 102
  year: 2016
  ident: 3064_CR74
  publication-title: Catena
  doi: 10.1016/j.catena.2016.03.004
– volume: 26
  start-page: 713
  year: 2017
  ident: 3064_CR14
  publication-title: Glob Ecol Biogeogr
  doi: 10.1111/geb.12576
– volume: 34
  start-page: 1690
  year: 2020
  ident: 3064_CR17
  publication-title: Funct Ecol
  doi: 10.1111/1365-2435.13606
– volume: 27
  start-page: 1
  year: 2021
  ident: 3064_CR69
  publication-title: Chin J Appl Environ Biol
SSID ssj0037161
Score 2.4055371
Snippet Purpose The biogeochemical cycling of phosphorus (P) is essential for maintaining plant productivity and thus plays a vital role in soil carbon sequestration....
PurposeThe biogeochemical cycling of phosphorus (P) is essential for maintaining plant productivity and thus plays a vital role in soil carbon sequestration....
PURPOSE: The biogeochemical cycling of phosphorus (P) is essential for maintaining plant productivity and thus plays a vital role in soil carbon sequestration....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Abies fabri
Aluminium
Aluminum
Atmospheric models
Availability
Bioavailability
Biogeochemical cycles
Biomass
Biomass energy production
Carbon
Carbon sequestration
China
Deposition
Dissolved organic carbon
Distribution
Distribution patterns
Earth and Environmental Science
energy
Energy demand
Environment
Environmental Physics
equations
field experimentation
Forests
Fractions
Immobilization
Initial conditions
microbial biomass
Microorganisms
Minerals
Mountains
Nitrogen
Oxides
Phosphorus
Plateaus
Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
Soil
Soil depth
Soil moisture
soil organic carbon
Soil Science & Conservation
soil water
Soils
spatial distribution
Subalpine environments
Vertical distribution
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kXvQgPrFaZQVvGkiyu2n2WMQigsVDC72FfUUjISl5CP57Z9OkQVHBQ0472YSZzMw3mccidM21MrErpTN2lXDASjKHB0I5IQWDPGaGe0372NMseFjQxyVbtk1hZVft3qUkG0vdN7t5JAgdW1JgcS51IFDfZhC720KuhT_p7C-BCKAJs8DVQqDshm2rzM97fHVHPcb8lhZtvM10H-21MBFP1nI9QFsmO0S7k5eiHZVhjtDbLKmKHOSPbU2Q5S9eNbV1psRlnqR49ZqXcBV1icW7SNL1RO4PnGQYUB8uaynSFYBMDLgV3gbnMbYH-Zgiw_NEGkCN-DkFKCrqY7SY3s_vHpz25ARHAaCqIB4MpIwDqjUnErRUcsoI01pom1gLTWxgyXCqXaqY8iQV0jdEKxUzSTwiyQkaZHlmThE2lAMINzSIY4i9tOLg_5VWgimmQZ5siLyOgZFqx4rb0y3SqB-IbJkeAdOjhumRO0Q3m3tW66Eaf1KPOrlErYKVkR0kD1DR5-Mhutosg2rYfIfITF5bGhIEPg99oLnt5Nlv8fsTz_5Hfo52fNsU0fyYGaFBVdTmAqBKJS-bL_MTTD7hcg
  priority: 102
  providerName: Springer Nature
Title Nitrogen addition promotes soil phosphorus availability in the subalpine forest of eastern Tibetan Plateau
URI https://link.springer.com/article/10.1007/s11368-021-03064-0
https://www.proquest.com/docview/2617112297
https://www.proquest.com/docview/2636629827
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9QwFH-4Mxc9iJ84ug4RvGmwbZJOc5JRZl0Uh0V2YD2VfFUrpa3tVPC_96WT7qDgHnpK2pT3kpff-wZ4Ka1xRaQ1XUVGUZSSgspUGZpxFMgr4WQ8po993qbnO_7xSlwFg1sfwionmTgKatsYbyN_4yuHIzZI5Opt-5P6rlHeuxpaaJzAHEVwls1g_m6zvfgyyWKG2sCocuG1i0pzlIW0mUPyXMzSjPoQBY-bOY3-vpqOePMfF-l485zdg7sBMpL1gcf34ZarH8Cd9bculM1wD-HHttx3De4F4uODPK1JO8bZuZ70TVmR9nvT49MNPVG_VFkdqnP_JmVNEAGSftCqahFwEsSw-DekKYhv6uO6mlyW2iGCJBcVwlI1PILd2eby_TkNXRSoQXC1R90w1bpIubWSaTyxWnLBhLXKeidb5gqHQ05yG3EjTKy50olj1phCaBYzzR7DrG5q9wSI4xIBueNpUaAeZo1ELGCsUcIIi7wVC4gnAuYmlBj3nS6q_Fgc2RM9R6LnI9HzaAGvrt9pDwU2bpx9OvElD4etz49bYwEvrofxmHjfh6pdM_g5LE0TmSU45_XEz-Mn_r_i05tXfAa3E58QMRplTmG27wb3HGHKXi9hvv7w9dNmGfbkEk52yfoPIIfodg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QF6QDzFQgEjwQkiktjOxocKFWi1pe2qQlupt-BXaFCUhGRD1T_Fb2ScR1cg0VsPOdlxopnx-BvPC-C1MNqmvlLezNfSQy3JPRFJ7cUMFfKMWxF06WPHi2h-yr6c8bMN-D3mwriwylEndoralNrdkb93lcMRG4Ri9qH66bmuUc67OrbQ6MXi0F5eoMnW7Bx8Rv6-CcP9veWnuTd0FfA0go0V2kqRUmnEjBFUoQQrwTjlxkjjnE6xTS0OWcGMzzTXgWJShZYarVOuaEAVxXVvwSajkR9OYPPj3uLk66j7KVofnYmHxzwa6X48pOn0yXoBjWLPhUQ4nM48_--jcI1v_3HJdifd_j24O0BUstvL1H3YsMUD2Nr9Xg9lOuxD-LHIVnWJskdcPJLjLam6uD7bkKbMclKdlw0-ddsQ-UtmeV8N_JJkBUHESZpWybxCgEsQM-PfkDIlromQrQuyzJRFxEpOcoTBsn0EpzdC38cwKcrCPgFimUADwLIoTdHuM1og9tBGS665QVniUwhGAiZ6KGnuOmvkyboYsyN6gkRPOqIn_hTeXr1T9QU9rp29PfIlGTZ3k6xFcQqvroZxWzpfiyxs2bo5NIpCEYc4593Iz_US___i0-u_-BJuz5fHR8nRweLwGdwJXTJGdyG0DZNV3drnCJFW6sUglwS-3fRW-APpLyS5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYToAfEUCwWMBCewmoedjQ8VKrSrlsJqhVqpt-BXaFCUhGRD1b_Gr2OcR1cg0VsPOdlxovF45hvPC-C1MNqmnlJ05mlJUUpyKiKpacxQIM-4FX6XPvZlER2esk9n_GwDfo-5MC6scpSJnaA2pXZ35Duucjhig0DMdtIhLGK5P39f_aSug5TztI7tNHoWObaXF2i-NbtH-7jXb4JgfnDy8ZAOHQaoRuCxQrspUiqNmDEiVMjNSjAecmOkcQ6o2KYWh6xgxmOaa18xqQIbGq1TrkI_VCGuews2Z84qmsDmh4PF8uuoB0K0RDpzD1U-GuxePKTs9Il7fhjF1IVHOMzOqPe3Wlxj3X_cs53Wm9-DuwNcJXs9f92HDVs8gK297_VQssM-hB-LbFWXyIfExSa5fSZVF-NnG9KUWU6q87LBp24bIn_JLO8rg1-SrCCIPknTKplXCHYJ4mf8G1KmxDUUsnVBTjJlEb2SZY6QWLaP4PRG6PsYJkVZ2CdALBNoDFgWpSnagEYLxCHaaMk1N8hXfAr-SMBED-XNXZeNPFkXZnZET5DoSUf0xJvC26t3qr64x7Wzt8d9SYaD3iRrtpzCq6thPKLO7yILW7ZuThhFgYgDnPNu3M_1Ev__4tPrv_gSbuMRSD4fLY6fwZ3A5WV0d0PbMFnVrX2OaGmlXgxsSeDbTZ-EP15zKO4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen+addition+promotes+soil+phosphorus+availability+in+the+subalpine+forest+of+eastern+Tibetan+Plateau&rft.jtitle=Journal+of+soils+and+sediments&rft.au=Liu%2C+Ye&rft.au=Bing%2C+Haijian&rft.au=Wu%2C+Yanhong&rft.au=Zhu%2C+He&rft.date=2022-01-01&rft.issn=1439-0108&rft.eissn=1614-7480&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1007%2Fs11368-021-03064-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11368_021_03064_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-0108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-0108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-0108&client=summon