Nitrogen addition promotes soil phosphorus availability in the subalpine forest of eastern Tibetan Plateau
Purpose The biogeochemical cycling of phosphorus (P) is essential for maintaining plant productivity and thus plays a vital role in soil carbon sequestration. However, how soil P availability responds to increasing atmospheric nitrogen (N) deposition in subalpine forests remains unclear. The aims of...
Saved in:
Published in | Journal of soils and sediments Vol. 22; no. 1; pp. 1 - 11 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
The biogeochemical cycling of phosphorus (P) is essential for maintaining plant productivity and thus plays a vital role in soil carbon sequestration. However, how soil P availability responds to increasing atmospheric nitrogen (N) deposition in subalpine forests remains unclear. The aims of this study are to explore the responses of P bioavailability in the subalpine soils of eastern Tibetan Plateau to different N addition levels.
Materials and methods
A field experiment with three N addition gradients (0, 8, and 40 kg N ha
−1
year
−1
) was performed in the
Abies fabri
dominated forest of Gongga Mountain, eastern Tibetan Plateau. The soil P fractions in organic layer and mineral layers (0–5, 5–10, 10–20 cm) were analyzed to reveal their responses to different N addition levels, and the key drivers regulating soil P availability under the N addition were also deciphered.
Results and discussion
The low N addition did not alter the concentrations of total P and its fractions in the soils, while the high N addition significantly increased the concentrations of bioavailable P (AP). The results of structure equation models suggest that the decrease in microbial biomass and energy demand (dissolved organic carbon, DOC) of microorganisms under high N addition probably promotes the turnover and release of organic P rather than P immobilization. Soil P fractions displayed a significant difference among the soil depths, while the N addition did not alter their vertical distribution patterns. Soil moisture, pH, soil organic carbon, DOC, and microbial biomass controlled the vertical distribution of AP, while the oxides or minerals of aluminum determined the variation in other P fractions.
Conclusions
High N deposition rate can promote soil P availability in the subalpine forest, while N addition did not alter the vertical distribution patterns of soil P, suggesting a strong regulation of initial conditions on its response sensitivity to N deposition. Although short-term N deposition dose not strongly alter soil P transformation in the subalpine forest, the varied availability of soil P needs to be concerned under the increasing N deposition rate in the future. |
---|---|
AbstractList | PurposeThe biogeochemical cycling of phosphorus (P) is essential for maintaining plant productivity and thus plays a vital role in soil carbon sequestration. However, how soil P availability responds to increasing atmospheric nitrogen (N) deposition in subalpine forests remains unclear. The aims of this study are to explore the responses of P bioavailability in the subalpine soils of eastern Tibetan Plateau to different N addition levels.Materials and methodsA field experiment with three N addition gradients (0, 8, and 40 kg N ha−1 year−1) was performed in the Abies fabri dominated forest of Gongga Mountain, eastern Tibetan Plateau. The soil P fractions in organic layer and mineral layers (0–5, 5–10, 10–20 cm) were analyzed to reveal their responses to different N addition levels, and the key drivers regulating soil P availability under the N addition were also deciphered.Results and discussionThe low N addition did not alter the concentrations of total P and its fractions in the soils, while the high N addition significantly increased the concentrations of bioavailable P (AP). The results of structure equation models suggest that the decrease in microbial biomass and energy demand (dissolved organic carbon, DOC) of microorganisms under high N addition probably promotes the turnover and release of organic P rather than P immobilization. Soil P fractions displayed a significant difference among the soil depths, while the N addition did not alter their vertical distribution patterns. Soil moisture, pH, soil organic carbon, DOC, and microbial biomass controlled the vertical distribution of AP, while the oxides or minerals of aluminum determined the variation in other P fractions.ConclusionsHigh N deposition rate can promote soil P availability in the subalpine forest, while N addition did not alter the vertical distribution patterns of soil P, suggesting a strong regulation of initial conditions on its response sensitivity to N deposition. Although short-term N deposition dose not strongly alter soil P transformation in the subalpine forest, the varied availability of soil P needs to be concerned under the increasing N deposition rate in the future. Purpose The biogeochemical cycling of phosphorus (P) is essential for maintaining plant productivity and thus plays a vital role in soil carbon sequestration. However, how soil P availability responds to increasing atmospheric nitrogen (N) deposition in subalpine forests remains unclear. The aims of this study are to explore the responses of P bioavailability in the subalpine soils of eastern Tibetan Plateau to different N addition levels. Materials and methods A field experiment with three N addition gradients (0, 8, and 40 kg N ha −1 year −1 ) was performed in the Abies fabri dominated forest of Gongga Mountain, eastern Tibetan Plateau. The soil P fractions in organic layer and mineral layers (0–5, 5–10, 10–20 cm) were analyzed to reveal their responses to different N addition levels, and the key drivers regulating soil P availability under the N addition were also deciphered. Results and discussion The low N addition did not alter the concentrations of total P and its fractions in the soils, while the high N addition significantly increased the concentrations of bioavailable P (AP). The results of structure equation models suggest that the decrease in microbial biomass and energy demand (dissolved organic carbon, DOC) of microorganisms under high N addition probably promotes the turnover and release of organic P rather than P immobilization. Soil P fractions displayed a significant difference among the soil depths, while the N addition did not alter their vertical distribution patterns. Soil moisture, pH, soil organic carbon, DOC, and microbial biomass controlled the vertical distribution of AP, while the oxides or minerals of aluminum determined the variation in other P fractions. Conclusions High N deposition rate can promote soil P availability in the subalpine forest, while N addition did not alter the vertical distribution patterns of soil P, suggesting a strong regulation of initial conditions on its response sensitivity to N deposition. Although short-term N deposition dose not strongly alter soil P transformation in the subalpine forest, the varied availability of soil P needs to be concerned under the increasing N deposition rate in the future. PURPOSE: The biogeochemical cycling of phosphorus (P) is essential for maintaining plant productivity and thus plays a vital role in soil carbon sequestration. However, how soil P availability responds to increasing atmospheric nitrogen (N) deposition in subalpine forests remains unclear. The aims of this study are to explore the responses of P bioavailability in the subalpine soils of eastern Tibetan Plateau to different N addition levels. MATERIALS AND METHODS: A field experiment with three N addition gradients (0, 8, and 40 kg N ha⁻¹ year⁻¹) was performed in the Abies fabri dominated forest of Gongga Mountain, eastern Tibetan Plateau. The soil P fractions in organic layer and mineral layers (0–5, 5–10, 10–20 cm) were analyzed to reveal their responses to different N addition levels, and the key drivers regulating soil P availability under the N addition were also deciphered. RESULTS AND DISCUSSION: The low N addition did not alter the concentrations of total P and its fractions in the soils, while the high N addition significantly increased the concentrations of bioavailable P (AP). The results of structure equation models suggest that the decrease in microbial biomass and energy demand (dissolved organic carbon, DOC) of microorganisms under high N addition probably promotes the turnover and release of organic P rather than P immobilization. Soil P fractions displayed a significant difference among the soil depths, while the N addition did not alter their vertical distribution patterns. Soil moisture, pH, soil organic carbon, DOC, and microbial biomass controlled the vertical distribution of AP, while the oxides or minerals of aluminum determined the variation in other P fractions. CONCLUSIONS: High N deposition rate can promote soil P availability in the subalpine forest, while N addition did not alter the vertical distribution patterns of soil P, suggesting a strong regulation of initial conditions on its response sensitivity to N deposition. Although short-term N deposition dose not strongly alter soil P transformation in the subalpine forest, the varied availability of soil P needs to be concerned under the increasing N deposition rate in the future. |
Author | Chang, Ruiying Liu, Ye Wu, Yanhong Wang, Zhiguo Bing, Haijian Zhu, He Tian, Xin |
Author_xml | – sequence: 1 givenname: Ye surname: Liu fullname: Liu, Ye organization: The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Haijian surname: Bing fullname: Bing, Haijian email: hjbing@imde.ac.cn organization: The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences – sequence: 3 givenname: Yanhong surname: Wu fullname: Wu, Yanhong organization: The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences – sequence: 4 givenname: He surname: Zhu fullname: Zhu, He organization: The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences – sequence: 5 givenname: Xin surname: Tian fullname: Tian, Xin organization: The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 6 givenname: Zhiguo surname: Wang fullname: Wang, Zhiguo organization: The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 7 givenname: Ruiying surname: Chang fullname: Chang, Ruiying organization: The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences |
BookMark | eNp9kU9rGzEQxUVwIInTL9CTIJdcNh39We3uMZi0DZi2B_e8SKtZR2YtOZK2kG9fuQ4UcvBhNIL5PfE074YsfPBIyGcGDwyg-ZIYE6qtgLMKBChZwQW5ZorJqpEtLMpdiq4CBu0VuUlpByCaMr4mux8ux7BFT7W1Lrvg6SGGfciYaApuooeXkErFOVH9R7tJGze5_Eadp_kFaZqNng7OIx1DxJRpGCnqlDF6unEGs_b016Qz6vmWXI56SvjpvS_J769Pm9X3av3z2_PqcV0Noua5UkwZMyppbSeMBDCdrEVtrbbQctHiiGWEnbQgh3pgRmrDUdhhGGsjmDBiSe5P75aPvM7FU793acBp0h7DnHquhFK8a3lT0LsP6C7M0Rd3hWINY5x3R6o9UUMMKUUc-8FlfdxVjmUjPYP-GEJ_CqEvIfT_QijnkvAP0kN0ex3fzovESZQK7LcY_7s6o_oLpVydzA |
CitedBy_id | crossref_primary_10_1111_nph_18673 crossref_primary_10_1111_gcb_16205 crossref_primary_10_1016_j_foreco_2024_122338 crossref_primary_10_1002_ldr_4701 crossref_primary_10_1016_j_catena_2023_107193 crossref_primary_10_1111_1365_2745_14118 crossref_primary_10_1016_j_apsoil_2023_104911 crossref_primary_10_1016_j_jclepro_2022_134118 crossref_primary_10_1002_sae2_12100 crossref_primary_10_1016_j_jia_2024_07_033 crossref_primary_10_3389_fsufs_2024_1343283 crossref_primary_10_1016_j_scitotenv_2022_154998 crossref_primary_10_1016_j_envexpbot_2022_104932 crossref_primary_10_1016_j_apsoil_2025_106023 crossref_primary_10_1111_jam_15633 crossref_primary_10_1080_01490451_2024_2395356 crossref_primary_10_3390_w14060913 crossref_primary_10_3390_f15030416 crossref_primary_10_1016_j_apsoil_2024_105616 crossref_primary_10_1016_j_compag_2017_09_010 crossref_primary_10_1007_s11368_022_03276_y crossref_primary_10_1016_j_scitotenv_2024_178282 crossref_primary_10_1016_j_biortech_2023_128707 crossref_primary_10_1016_j_jenvman_2023_118207 crossref_primary_10_1016_j_scitotenv_2023_166383 |
Cites_doi | 10.5194/bg-17-441-2020 10.1073/pnas.2020790118 10.1016/0016-7061(76)90066-5 10.1007/s11104-020-04688-w 10.1016/j.catena.2021.105328 10.1111/nph.17154 10.2134/jeq2011.0250 10.1007/s11104-016-3022-y 10.1038/ngeo721 10.1007/s11104-019-04159-x 10.1111/j.1469-8137.2010.03214.x 10.1016/j.geoderma.2019.05.010 10.1111/2041-210X.12512 10.1890/ES11-00305.1 10.1007/s11104-009-0042-x 10.1016/j.geoderma.2018.04.015 10.1104/pp.111.175448 10.1016/j.soilbio.2020.108107 10.1016/j.ecolind.2015.10.033 10.1016/j.geoderma.2020.114650 10.1007/s11104-019-04329-x 10.2136/sssaj1982.03615995004600050017x 10.1007/s10021-007-9086-z 10.1007/s11104-019-04246-z 10.1046/j.1469-8137.2003.00695.x 10.1890/08-0127.1 10.1002/jpln.201600079 10.1104/pp.111.175232 10.1111/gcb.13939 10.2113/GSELEMENTS.4.2.89 10.1016/S0003-2670(00)88444-5 10.1016/0038-0717(87)90052-6 10.1038/ngeo339 10.1007/s10021-019-00450-1 10.1007/s11629-013-2328-y 10.1007/s11104-012-1493-z 10.1111/gcb.14093 10.1111/j.1469-8137.2012.04234.x 10.1111/gcb.12665 10.1007/s11104-018-03927-5 10.1007/s11769-015-0756-z 10.1016/j.geoderma.2020.114256 10.1007/s11368-015-1200-9 10.1111/1365-2745.13417 10.1023/A:1010760720215 10.1007/s11629-013-2386-1 10.1038/ncomms3934 10.1111/j.1744-7429.2011.00831.x 10.1890/07-1739.1 10.1016/j.soilbio.2010.05.020 10.32614/CRAN.package.rdacca.hp 10.1002/jpln.201500541 10.1038/s41467-018-05731-2 10.1007/s11104-020-04753-4 10.1073/pnas.0711618105 10.1023/A:1013351617532 10.1038/s41467-020-14492-w 10.1111/nph.14083 10.1016/j.soilbio.2018.09.006 10.1016/j.geoderma.2020.114357 10.1038/s41561-019-0352-4 10.1128/AEM.00160-16 10.1016/j.atmosenv.2008.02.038 10.1007/s10533-018-0442-1 10.1111/1365-2435.13484 10.1016/j.scitotenv.2020.142848 10.1038/nature06592 10.1111/gcb.15218 10.1016/j.soilbio.2016.04.023 10.1016/S0038-0717(97)00030-8 10.1016/j.catena.2016.03.004 10.1111/geb.12576 10.1111/1365-2435.13606 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7ST 7UA 7X2 7XB 88I 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 H97 HCIFZ L.G M0K M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PYCSY Q9U SOI 7S9 L.6 |
DOI | 10.1007/s11368-021-03064-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Water Resources Abstracts Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Database Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Agricultural Science Database Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1614-7480 |
EndPage | 11 |
ExternalDocumentID | 10_1007_s11368_021_03064_0 |
GeographicLocations | Tibetan Plateau China |
GeographicLocations_xml | – name: Tibetan Plateau – name: China |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5GY 5VS 67M 67Z 6NX 7X2 7XC 88I 8CJ 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ATCPS AXYYD AYJHY AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L8X LAS LK5 LLZTM M0K M2P M4Y M7R MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM PATMY PCBAR PF0 PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I RMD ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7U Z7Y ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7UA 7XB 8FK ABRTQ C1K F1W H96 H97 L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c352t-616bbf64dd93b400b94535ddad08238efe4dde94d04c5c1b4ab2e3dccf5b313b3 |
IEDL.DBID | BENPR |
ISSN | 1439-0108 |
IngestDate | Fri Jul 11 15:25:21 EDT 2025 Fri Jul 25 20:50:03 EDT 2025 Thu Apr 24 23:11:42 EDT 2025 Tue Jul 01 01:38:24 EDT 2025 Fri Feb 21 02:46:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Gongga Mountain Bioavailable phosphorus Fraction variation Nitrogen deposition Subalpine forest |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-616bbf64dd93b400b94535ddad08238efe4dde94d04c5c1b4ab2e3dccf5b313b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2617112297 |
PQPubID | 54474 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2636629827 proquest_journals_2617112297 crossref_citationtrail_10_1007_s11368_021_03064_0 crossref_primary_10_1007_s11368_021_03064_0 springer_journals_10_1007_s11368_021_03064_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationTitle | Journal of soils and sediments |
PublicationTitleAbbrev | J Soils Sediments |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Yang, Zhang, Barberán (CR68) 2021; 153 Wang, Creamer, Wang (CR61) 2016; 61 Lu, Mao, Gilliam (CR37) 2014; 20 Wang, Wu, Zhou (CR62) 2020; 446 Guo, Jiang, Liu (CR19) 2020; 456 Porder, Chadwick (CR46) 2009; 90 Deng, Liu, Sun (CR13) 2016; 212 Zhang, Li, Wang (CR72) 2019; 351 Chang, Li, Sun (CR8) 2018; 127 Copeland, Bruna, Silva (CR11) 2012; 3 CR30 Bing, Wu, Zhou (CR3) 2016; 16 García-Velázquez, Rodríguez, Gallardo (CR17) 2020; 34 Tiessen, Moir (CR54) 1993 Riggs, Hobbie (CR50) 2016; 99 Turner, Condron, Richardson (CR55) 2007; 10 Beck, Joergensen, Kandeler (CR2) 1997; 29 Yu, Wang, Huang (CR70) 2018; 24 Perring, Hedin, Levin (CR44) 2008; 105 Murphy, Riley (CR40) 1962; 27 Elser, Fagan, Kerkhoff (CR15) 2010; 186 Yu, Jia, He (CR71) 2019; 12 Zhou, Lu, Mori (CR75) 2018; 138 Hou, Chen, Luo (CR26) 2018; 24 CR45 Yang, Yang, Peng (CR67) 2019; 444 Chen, Yuan, Hu (CR10) 2021; 764 Vance, Uhde-Stone, Allan (CR58) 2003; 157 CR41 Weng, Van Riemsdijk, Hiemstra (CR63) 2012; 41 Zhu, Zhang, Liu (CR76) 2020; 108 Wu, Li, Zhou (CR65) 2013; 10 Lefcheck (CR33) 2016; 7 Turner, Lambers, Condron (CR56) 2013; 367 Deng, Hui, Dennis (CR14) 2017; 26 He, Zhou, Wu (CR20) 2018; 326 He, Yuan, Zhang (CR21) 2021; 460 Vitousek, Porder, Houlton (CR59) 2010; 20 Cao, Pang, Wang (CR6) 2020; 34 Liu, Xiao, Liu (CR34) 2008; 42 Hinsinger (CR25) 2001; 237 Tapia-Torres, Rodríguez-Torres, Elser (CR53) 2016; 82 Cui, Bing, Fang (CR12) 2021; 458 Qiao, Wang, Liu (CR47) 2020; 370 Lu, Mo, Gilliam (CR36) 2012; 44 Richardson, Simpson (CR49) 2011; 156 Zhu, Bing, Wu (CR77) 2021; 203 Lu, Vitousek, Mao (CR38) 2021; 118 Chen, Groenigen, Hungate (CR9) 2020; 26 Helfenstein, Pistocchi, Oberson (CR24) 2020; 17 Bol, Julich, Brödlin (CR4) 2016; 179 Long, Wu, Smith (CR35) 2016; 408 Helfenstein, Tamburini, von Sperber (CR23) 2018; 9 Vance, Brookes, Jenkinson (CR57) 1987; 19 CR52 Peñuelas, Poulter, Sardans (CR43) 2013; 4 Yin, Guo, Zhu (CR69) 2021; 27 Chai, Yu, He (CR7) 2015; 25 Wu, Zhou, Yu (CR64) 2013; 10 Shen, Yuan, Zhang (CR51) 2011; 156 Gruber, Galloway (CR18) 2008; 451 Hou, Luo, Kuang (CR27) 2020; 11 Lugli, Rosa, Andersen (CR39) 2021; 230 Peng, Peng, Zeng (CR42) 2019; 436 Filippelli (CR16) 2008; 4 Lang, Bauhus, Frossard (CR32) 2016; 179 Achat, Bakker, Zeller (CR1) 2010; 42 Jobbágy, Jackson (CR29) 2001; 53 Zhang, Shi, Fu (CR73) 2020; 380 Hedley, Stewart, Chauhan (CR22) 1982; 46 Lambers, Mougel, Jaillard (CR31) 2009; 321 Jia, Zhong, Liu (CR28) 2020; 366 Quinn Thomas, Canham, Weathers (CR48) 2010; 3 Wu, Xiang, Chen (CR66) 2020; 23 Walker, Syers (CR60) 1976; 15 Bowman, Cleveland, Halada (CR5) 2008; 1 Zhou, Wu, Bing (CR74) 2016; 142 Y Wu (3064_CR65) 2013; 10 JS Lefcheck (3064_CR33) 2016; 7 J Shen (3064_CR51) 2011; 156 W He (3064_CR21) 2021; 460 CE Riggs (3064_CR50) 2016; 99 R Bol (3064_CR4) 2016; 179 AE Richardson (3064_CR49) 2011; 156 ED Vance (3064_CR57) 1987; 19 Y Peng (3064_CR42) 2019; 436 3064_CR41 F Lang (3064_CR32) 2016; 179 3064_CR45 TW Walker (3064_CR60) 1976; 15 BL Turner (3064_CR56) 2013; 367 BL Turner (3064_CR55) 2007; 10 H Zhang (3064_CR73) 2020; 380 R Quinn Thomas (3064_CR48) 2010; 3 J Wang (3064_CR62) 2020; 446 H Bing (3064_CR3) 2016; 16 MJ Hedley (3064_CR22) 1982; 46 H Chai (3064_CR7) 2015; 25 E Hou (3064_CR26) 2018; 24 PM Vitousek (3064_CR59) 2010; 20 X Zhu (3064_CR76) 2020; 108 N Gruber (3064_CR18) 2008; 451 H Lambers (3064_CR31) 2009; 321 X Lu (3064_CR38) 2021; 118 R Wang (3064_CR61) 2016; 61 Q Deng (3064_CR14) 2017; 26 E Hou (3064_CR27) 2020; 11 X Liu (3064_CR34) 2008; 42 3064_CR52 L Yang (3064_CR67) 2019; 444 X He (3064_CR20) 2018; 326 K Zhou (3064_CR75) 2018; 138 J Helfenstein (3064_CR24) 2020; 17 GM Filippelli (3064_CR16) 2008; 4 SM Copeland (3064_CR11) 2012; 3 CP Vance (3064_CR58) 2003; 157 WD Bowman (3064_CR5) 2008; 1 Y Cui (3064_CR12) 2021; 458 J Murphy (3064_CR40) 1962; 27 H Zhu (3064_CR77) 2021; 203 T Beck (3064_CR2) 1997; 29 X Lu (3064_CR36) 2012; 44 X Lu (3064_CR37) 2014; 20 DL Achat (3064_CR1) 2010; 42 L García-Velázquez (3064_CR17) 2020; 34 M Deng (3064_CR13) 2016; 212 M Long (3064_CR35) 2016; 408 Z Yu (3064_CR70) 2018; 24 H Wu (3064_CR66) 2020; 23 J Peñuelas (3064_CR43) 2013; 4 L Weng (3064_CR63) 2012; 41 LF Lugli (3064_CR39) 2021; 230 Y Tapia-Torres (3064_CR53) 2016; 82 C Zhang (3064_CR72) 2019; 351 J Chen (3064_CR9) 2020; 26 H Tiessen (3064_CR54) 1993 S Porder (3064_CR46) 2009; 90 Y Guo (3064_CR19) 2020; 456 J Cao (3064_CR6) 2020; 34 F Yang (3064_CR68) 2021; 153 P Hinsinger (3064_CR25) 2001; 237 G Yu (3064_CR71) 2019; 12 Q Chen (3064_CR10) 2021; 764 Y Wu (3064_CR64) 2013; 10 X Jia (3064_CR28) 2020; 366 JJ Elser (3064_CR15) 2010; 186 J Helfenstein (3064_CR23) 2018; 9 3064_CR30 Y Qiao (3064_CR47) 2020; 370 J Zhou (3064_CR74) 2016; 142 EG Jobbágy (3064_CR29) 2001; 53 R Chang (3064_CR8) 2018; 127 M Yin (3064_CR69) 2021; 27 MP Perring (3064_CR44) 2008; 105 |
References_xml | – volume: 42 start-page: 1479 year: 2010 end-page: 1490 ident: CR1 article-title: Long-term organic phosphorus mineralization in Spodosols under forests and its relation to carbon and nitrogen mineralization publication-title: Soil Biol Biochem – ident: CR45 – volume: 46 start-page: 970 year: 1982 end-page: 976 ident: CR22 article-title: Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations publication-title: Soil Sci Soc Am J – volume: 41 start-page: 628 year: 2012 end-page: 635 ident: CR63 article-title: Factors controlling phosphate interaction with iron oxides publication-title: J Environ Qual – volume: 127 start-page: 31 year: 2018 end-page: 38 ident: CR8 article-title: Nitrogen addition reduces dissolved organic carbon leaching in a montane forest publication-title: Soil Biol Biochem – volume: 321 start-page: 83 year: 2009 end-page: 115 ident: CR31 article-title: Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective publication-title: Plant Soil – volume: 444 start-page: 87 year: 2019 end-page: 99 ident: CR67 article-title: Evaluating P availability influenced by warming and N deposition in a subtropical forest soil: a bioassay mesocosm experiment publication-title: Plant Soil – volume: 203 start-page: 105328 year: 2021 ident: CR77 article-title: Low molecular weight organic acids regulate soil phosphorus availability in the soils of subalpine forests, eastern Tibetan Plateau publication-title: Catena – volume: 20 start-page: 3790 year: 2014 end-page: 3801 ident: CR37 article-title: Nitrogen deposition contributes to soil acidification in tropical ecosystems publication-title: Glob Change Biol – volume: 408 start-page: 475 year: 2016 end-page: 484 ident: CR35 article-title: Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland publication-title: Plant Soil – volume: 27 start-page: 31 year: 1962 end-page: 36 ident: CR40 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal Chim Acta – volume: 3 start-page: 13 year: 2010 end-page: 17 ident: CR48 article-title: Increased tree carbon storage in response to nitrogen deposition in the US publication-title: Nat Geosci – volume: 9 start-page: 3226 year: 2018 ident: CR23 article-title: Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil publication-title: Nat Commun – volume: 156 start-page: 989 year: 2011 end-page: 996 ident: CR49 article-title: Soil microorganisms mediating phosphorus availability update on microbial phosphorus publication-title: Plant Physiol – volume: 1 start-page: 767 year: 2008 end-page: 770 ident: CR5 article-title: Negative impact of nitrogen deposition on soil buffering capacity publication-title: Nat Geosci – volume: 17 start-page: 441 year: 2020 end-page: 454 ident: CR24 article-title: Estimates of mean residence times of phosphorus in commonly considered inorganic soil phosphorus pools publication-title: Biogeosciences – volume: 118 start-page: e2020790118 year: 2021 ident: CR38 article-title: Nitrogen deposition accelerates soil carbon sequestration in tropical forests publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 43 year: 2013 end-page: 53 ident: CR64 article-title: Phosphorus biogeochemical cycle research in mountainous ecosystems publication-title: J Mt Sci – volume: 44 start-page: 302 year: 2012 end-page: 311 ident: CR36 article-title: Nitrogen addition shapes soil phosphorus availability in two reforested tropical forests in southern China publication-title: Biotropica – volume: 108 start-page: 2309 year: 2020 end-page: 2320 ident: CR76 article-title: Differential impacts of nitrogen addition on rhizosphere and bulk-soil carbon sequestration in an alpine shrubland publication-title: J Ecol – volume: 351 start-page: 49 year: 2019 end-page: 58 ident: CR72 article-title: Decreased temporary turnover of bacterial communities along soil depth gradient during a 35-year grazing exclusion period in a semiarid grassland publication-title: Geoderma – volume: 15 start-page: 1 year: 1976 end-page: 19 ident: CR60 article-title: The fate of phosphorus during pedogenesis publication-title: Geoderma – volume: 34 start-page: 723 year: 2020 end-page: 734 ident: CR6 article-title: Plant-bacteria-soil response to frequency of simulated nitrogen deposition has implications for global ecosystem change publication-title: Funct Ecol – volume: 153 start-page: 108107 year: 2021 ident: CR68 article-title: Nitrogen-induced acidification plays a vital role driving ecosystem functions: insights from a 6-year nitrogen enrichment experiment in a Tibetan alpine meadow publication-title: Soil Biol Biochem – volume: 446 start-page: 259 year: 2020 end-page: 274 ident: CR62 article-title: Soil microbes become a major pool of biological phosphorus during the early stage of soil development with little evidence of competition for phosphorus with plants publication-title: Plant Soil – volume: 460 start-page: 469 year: 2021 end-page: 481 ident: CR21 article-title: Effect of N addition on root exudation and associated microbial N transformation under in an alpine shrubland publication-title: Plant Soil – volume: 23 start-page: 973 year: 2020 end-page: 988 ident: CR66 article-title: Soil phosphorus bioavailability and recycling increased with stand age in Chinese fir plantations publication-title: Ecosystems – volume: 370 start-page: 114357 year: 2020 ident: CR47 article-title: Depth-dependent soil C-N-P stoichiometry in a mature subtropical broadleaf forest publication-title: Geoderma – volume: 29 start-page: 1023 year: 1997 end-page: 1032 ident: CR2 article-title: An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C publication-title: Soil Biol Biochem – volume: 179 start-page: 425 year: 2016 end-page: 438 ident: CR4 article-title: Dissolved and colloidal phosphorus fluxes in forest ecosystems—an almost blind spot in ecosystem research publication-title: J Plant Nutr Soil Sci – volume: 7 start-page: 573 year: 2016 end-page: 579 ident: CR33 article-title: piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics publication-title: Methods Ecol Evol – volume: 230 start-page: 116 year: 2021 end-page: 128 ident: CR39 article-title: Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia publication-title: New Phytol – volume: 99 start-page: 54 year: 2016 end-page: 65 ident: CR50 article-title: Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils publication-title: Soil Biol Biochem – volume: 4 start-page: 2934 year: 2013 ident: CR43 article-title: Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe publication-title: Nat Commun – volume: 26 start-page: 713 year: 2017 end-page: 728 ident: CR14 article-title: Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis publication-title: Glob Ecol Biogeogr – volume: 11 start-page: 637 year: 2020 ident: CR27 article-title: Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems publication-title: Nat Commun – volume: 10 start-page: 370 year: 2013 end-page: 377 ident: CR65 article-title: Temperature and precipitation variations at two meteorological stations on eastern slope of Gongga Mountain, SW China, in the past two decades publication-title: J Mt Sci – start-page: 75 year: 1993 end-page: 86 ident: CR54 article-title: Characterization of available P by sequential extraction publication-title: soil sampling and methods of analysis – volume: 142 start-page: 102 year: 2016 end-page: 111 ident: CR74 article-title: Variations in soil phosphorus biogeochemistry across six vegetation types along an altitudinal gradient in SW China publication-title: Catena – volume: 61 start-page: 806 year: 2016 end-page: 814 ident: CR61 article-title: The effects of a 9-year nitrogen and water addition on soil aggregate phosphorus and sulfur availability in a semi-arid grassland publication-title: Ecol Indic – volume: 764 start-page: 142848 year: 2021 ident: CR10 article-title: Excessive nitrogen addition accelerates N assimilation and P utilization by enhancing organic carbon decomposition in a Tibetan alpine steppe publication-title: Sci Total Environ – volume: 212 start-page: 1019 year: 2016 end-page: 1029 ident: CR13 article-title: Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate plantations publication-title: New Phytol – volume: 451 start-page: 293 year: 2008 end-page: 296 ident: CR18 article-title: An earth-system perspective of the global nitrogen cycle publication-title: Nature – ident: CR30 – volume: 366 start-page: 114256 year: 2020 ident: CR28 article-title: Effects of nitrogen enrichment on soil microbial characteristics: from biomass to enzyme activities publication-title: Geoderma – volume: 326 start-page: 144 year: 2018 end-page: 155 ident: CR20 article-title: Leaching disturbed the altitudinal distribution of soil organic phosphorus in subalpine coniferous forests on Mt. Gongga publication-title: SW China Geoderma – volume: 12 start-page: 424 year: 2019 end-page: 429 ident: CR71 article-title: Stabilization of atmospheric nitrogen deposition in China over the past decade publication-title: Nat Geosci – volume: 456 start-page: 15 year: 2020 end-page: 26 ident: CR19 article-title: Climate and vegetation together control the vertical distribution of soil carbon, nitrogen and phosphorus in shrublands in China publication-title: Plant Soil – volume: 16 start-page: 405 year: 2016 end-page: 416 ident: CR3 article-title: Stoichiometric variation of carbon, nitrogen, and phosphorus in soils and its implication for nutrient limitation in alpine ecosystem of eastern Tibetan Plateau publication-title: J Soils Sediments – volume: 42 start-page: 5413 year: 2008 end-page: 5423 ident: CR34 article-title: Stable carbon and nitrogen isotopes of the moss in an urban and a background area (SW China): the role of environmental conditions and atmospheric nitrogen deposition publication-title: Atmos Environ – volume: 24 start-page: 3344 year: 2018 end-page: 3356 ident: CR26 article-title: Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems publication-title: Glob Change Biol – volume: 237 start-page: 173 year: 2001 end-page: 195 ident: CR25 article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review publication-title: Plant Soil – volume: 436 start-page: 245 year: 2019 end-page: 252 ident: CR42 article-title: Effects of nitrogen-phosphorus imbalance on plant biomass production: a global perspective publication-title: Plant Soil – volume: 105 start-page: 1971 year: 2008 end-page: 1976 ident: CR44 article-title: Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems publication-title: Proc Natl Acad Sci – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: CR57 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol Biochem – volume: 4 start-page: 89 year: 2008 end-page: 95 ident: CR16 article-title: The global phosphorus cycle: past, present, and future publication-title: Elements – volume: 34 start-page: 1690 year: 2020 end-page: 1701 ident: CR17 article-title: Climate and soil microorganisms drive soil phosphorus fractions in coastal dune systems publication-title: Funct Ecol – volume: 458 start-page: 7 year: 2021 end-page: 20 ident: CR12 article-title: Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems publication-title: Plant Soil – volume: 179 start-page: 129 year: 2016 end-page: 135 ident: CR32 article-title: Phosphorus in forest ecosystems: new insights from an ecosystem nutrition perspective publication-title: J Plant Nutr Soil Sci – volume: 10 start-page: 1166 year: 2007 end-page: 1181 ident: CR55 article-title: Soil organic phosphorus transformations during pedogenesis publication-title: Ecosystems – volume: 25 start-page: 549 year: 2015 end-page: 560 ident: CR7 article-title: Vertical distribution of soil carbon, nitrogen, and phosphorus in typical Chinese terrestrial ecosystems publication-title: Chin Geogr Sci – ident: CR52 – volume: 157 start-page: 423 year: 2003 end-page: 447 ident: CR58 article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource publication-title: New Phytol – volume: 138 start-page: 215 year: 2018 end-page: 224 ident: CR75 article-title: Effects of long-term nitrogen deposition on phosphorus leaching dynamics in a mature tropical forest publication-title: Biogeochemistry – volume: 367 start-page: 225 year: 2013 end-page: 234 ident: CR56 article-title: Soil microbial biomass and the fate of phosphorus during long-term ecosystem development publication-title: Plant Soil – volume: 20 start-page: 5 year: 2010 end-page: 15 ident: CR59 article-title: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions publication-title: Ecol Appl – volume: 186 start-page: 593 year: 2010 end-page: 608 ident: CR15 article-title: Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change publication-title: New Phytol – volume: 27 start-page: 1 year: 2021 end-page: 7 ident: CR69 article-title: Nutrient limiting characteristics of subalpine coniferous forests under conditions of nitrogen deposition in the southwest mountains of China publication-title: Chin J Appl Environ Biol – volume: 26 start-page: 5077 year: 2020 end-page: 5086 ident: CR9 article-title: Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems publication-title: Glob Change Biol – volume: 90 start-page: 623 year: 2009 end-page: 636 ident: CR46 article-title: Climate and soil-age constraints on nutrient uplift and retention by plants publication-title: Ecology – volume: 24 start-page: 1308 year: 2018 end-page: 1320 ident: CR70 article-title: Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China publication-title: Glob Change Biol – volume: 380 start-page: 114650 year: 2020 ident: CR73 article-title: Effects of nitrogen deposition and increased precipitation on soil phosphorus dynamics in a temperate forest publication-title: Geoderma – volume: 53 start-page: 51 year: 2001 end-page: 77 ident: CR29 article-title: The distribution of soil nutrients with depth: global patterns and the imprint of plants publication-title: Biogeochemistry – volume: 156 start-page: 997 year: 2011 end-page: 1005 ident: CR51 article-title: Phosphorus dynamics: from soil to plant publication-title: Plant Physiol – ident: CR41 – volume: 82 start-page: 4652 year: 2016 end-page: 4662 ident: CR53 article-title: How to live with phosphorus scarcity in soil and sediment: lessons from bacteria publication-title: Appl Environ Microbiol – volume: 3 start-page: 1 year: 2012 end-page: 20 ident: CR11 article-title: Short-term effects of elevated precipitation and nitrogen on soil fertility and plant growth in a Neotropical savanna publication-title: Ecosphere – volume: 17 start-page: 441 year: 2020 ident: 3064_CR24 publication-title: Biogeosciences doi: 10.5194/bg-17-441-2020 – volume: 118 start-page: e2020790118 year: 2021 ident: 3064_CR38 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2020790118 – ident: 3064_CR45 – ident: 3064_CR41 – volume: 15 start-page: 1 year: 1976 ident: 3064_CR60 publication-title: Geoderma doi: 10.1016/0016-7061(76)90066-5 – volume: 456 start-page: 15 year: 2020 ident: 3064_CR19 publication-title: Plant Soil doi: 10.1007/s11104-020-04688-w – volume: 203 start-page: 105328 year: 2021 ident: 3064_CR77 publication-title: Catena doi: 10.1016/j.catena.2021.105328 – volume: 230 start-page: 116 year: 2021 ident: 3064_CR39 publication-title: New Phytol doi: 10.1111/nph.17154 – volume: 41 start-page: 628 year: 2012 ident: 3064_CR63 publication-title: J Environ Qual doi: 10.2134/jeq2011.0250 – volume: 408 start-page: 475 year: 2016 ident: 3064_CR35 publication-title: Plant Soil doi: 10.1007/s11104-016-3022-y – volume: 3 start-page: 13 year: 2010 ident: 3064_CR48 publication-title: Nat Geosci doi: 10.1038/ngeo721 – volume: 458 start-page: 7 year: 2021 ident: 3064_CR12 publication-title: Plant Soil doi: 10.1007/s11104-019-04159-x – volume: 186 start-page: 593 year: 2010 ident: 3064_CR15 publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03214.x – volume: 351 start-page: 49 year: 2019 ident: 3064_CR72 publication-title: Geoderma doi: 10.1016/j.geoderma.2019.05.010 – volume: 7 start-page: 573 year: 2016 ident: 3064_CR33 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.12512 – volume: 3 start-page: 1 year: 2012 ident: 3064_CR11 publication-title: Ecosphere doi: 10.1890/ES11-00305.1 – volume: 321 start-page: 83 year: 2009 ident: 3064_CR31 publication-title: Plant Soil doi: 10.1007/s11104-009-0042-x – volume: 326 start-page: 144 year: 2018 ident: 3064_CR20 publication-title: SW China Geoderma doi: 10.1016/j.geoderma.2018.04.015 – volume: 156 start-page: 989 year: 2011 ident: 3064_CR49 publication-title: Plant Physiol doi: 10.1104/pp.111.175448 – volume: 153 start-page: 108107 year: 2021 ident: 3064_CR68 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2020.108107 – volume: 61 start-page: 806 year: 2016 ident: 3064_CR61 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2015.10.033 – volume: 380 start-page: 114650 year: 2020 ident: 3064_CR73 publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114650 – volume: 446 start-page: 259 year: 2020 ident: 3064_CR62 publication-title: Plant Soil doi: 10.1007/s11104-019-04329-x – volume: 46 start-page: 970 year: 1982 ident: 3064_CR22 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1982.03615995004600050017x – volume: 10 start-page: 1166 year: 2007 ident: 3064_CR55 publication-title: Ecosystems doi: 10.1007/s10021-007-9086-z – volume: 444 start-page: 87 year: 2019 ident: 3064_CR67 publication-title: Plant Soil doi: 10.1007/s11104-019-04246-z – volume: 157 start-page: 423 year: 2003 ident: 3064_CR58 publication-title: New Phytol doi: 10.1046/j.1469-8137.2003.00695.x – volume: 20 start-page: 5 year: 2010 ident: 3064_CR59 publication-title: Ecol Appl doi: 10.1890/08-0127.1 – volume: 179 start-page: 425 year: 2016 ident: 3064_CR4 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.201600079 – volume: 156 start-page: 997 year: 2011 ident: 3064_CR51 publication-title: Plant Physiol doi: 10.1104/pp.111.175232 – volume: 24 start-page: 1308 year: 2018 ident: 3064_CR70 publication-title: Glob Change Biol doi: 10.1111/gcb.13939 – volume: 4 start-page: 89 year: 2008 ident: 3064_CR16 publication-title: Elements doi: 10.2113/GSELEMENTS.4.2.89 – volume: 27 start-page: 31 year: 1962 ident: 3064_CR40 publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 19 start-page: 703 year: 1987 ident: 3064_CR57 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(87)90052-6 – volume: 1 start-page: 767 year: 2008 ident: 3064_CR5 publication-title: Nat Geosci doi: 10.1038/ngeo339 – volume: 23 start-page: 973 year: 2020 ident: 3064_CR66 publication-title: Ecosystems doi: 10.1007/s10021-019-00450-1 – volume: 10 start-page: 370 year: 2013 ident: 3064_CR65 publication-title: J Mt Sci doi: 10.1007/s11629-013-2328-y – volume: 367 start-page: 225 year: 2013 ident: 3064_CR56 publication-title: Plant Soil doi: 10.1007/s11104-012-1493-z – volume: 24 start-page: 3344 year: 2018 ident: 3064_CR26 publication-title: Glob Change Biol doi: 10.1111/gcb.14093 – ident: 3064_CR52 doi: 10.1111/j.1469-8137.2012.04234.x – volume: 20 start-page: 3790 year: 2014 ident: 3064_CR37 publication-title: Glob Change Biol doi: 10.1111/gcb.12665 – volume: 436 start-page: 245 year: 2019 ident: 3064_CR42 publication-title: Plant Soil doi: 10.1007/s11104-018-03927-5 – volume: 25 start-page: 549 year: 2015 ident: 3064_CR7 publication-title: Chin Geogr Sci doi: 10.1007/s11769-015-0756-z – volume: 366 start-page: 114256 year: 2020 ident: 3064_CR28 publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114256 – volume: 16 start-page: 405 year: 2016 ident: 3064_CR3 publication-title: J Soils Sediments doi: 10.1007/s11368-015-1200-9 – volume: 108 start-page: 2309 year: 2020 ident: 3064_CR76 publication-title: J Ecol doi: 10.1111/1365-2745.13417 – volume: 53 start-page: 51 year: 2001 ident: 3064_CR29 publication-title: Biogeochemistry doi: 10.1023/A:1010760720215 – volume: 10 start-page: 43 year: 2013 ident: 3064_CR64 publication-title: J Mt Sci doi: 10.1007/s11629-013-2386-1 – volume: 4 start-page: 2934 year: 2013 ident: 3064_CR43 publication-title: Nat Commun doi: 10.1038/ncomms3934 – volume: 44 start-page: 302 year: 2012 ident: 3064_CR36 publication-title: Biotropica doi: 10.1111/j.1744-7429.2011.00831.x – volume: 90 start-page: 623 year: 2009 ident: 3064_CR46 publication-title: Ecology doi: 10.1890/07-1739.1 – volume: 42 start-page: 1479 year: 2010 ident: 3064_CR1 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2010.05.020 – ident: 3064_CR30 doi: 10.32614/CRAN.package.rdacca.hp – volume: 179 start-page: 129 year: 2016 ident: 3064_CR32 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.201500541 – volume: 9 start-page: 3226 year: 2018 ident: 3064_CR23 publication-title: Nat Commun doi: 10.1038/s41467-018-05731-2 – volume: 460 start-page: 469 year: 2021 ident: 3064_CR21 publication-title: Plant Soil doi: 10.1007/s11104-020-04753-4 – volume: 105 start-page: 1971 year: 2008 ident: 3064_CR44 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0711618105 – start-page: 75 volume-title: soil sampling and methods of analysis year: 1993 ident: 3064_CR54 – volume: 237 start-page: 173 year: 2001 ident: 3064_CR25 publication-title: Plant Soil doi: 10.1023/A:1013351617532 – volume: 11 start-page: 637 year: 2020 ident: 3064_CR27 publication-title: Nat Commun doi: 10.1038/s41467-020-14492-w – volume: 212 start-page: 1019 year: 2016 ident: 3064_CR13 publication-title: New Phytol doi: 10.1111/nph.14083 – volume: 127 start-page: 31 year: 2018 ident: 3064_CR8 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.09.006 – volume: 370 start-page: 114357 year: 2020 ident: 3064_CR47 publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114357 – volume: 12 start-page: 424 year: 2019 ident: 3064_CR71 publication-title: Nat Geosci doi: 10.1038/s41561-019-0352-4 – volume: 82 start-page: 4652 year: 2016 ident: 3064_CR53 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00160-16 – volume: 42 start-page: 5413 year: 2008 ident: 3064_CR34 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2008.02.038 – volume: 138 start-page: 215 year: 2018 ident: 3064_CR75 publication-title: Biogeochemistry doi: 10.1007/s10533-018-0442-1 – volume: 34 start-page: 723 year: 2020 ident: 3064_CR6 publication-title: Funct Ecol doi: 10.1111/1365-2435.13484 – volume: 764 start-page: 142848 year: 2021 ident: 3064_CR10 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.142848 – volume: 451 start-page: 293 year: 2008 ident: 3064_CR18 publication-title: Nature doi: 10.1038/nature06592 – volume: 26 start-page: 5077 year: 2020 ident: 3064_CR9 publication-title: Glob Change Biol doi: 10.1111/gcb.15218 – volume: 99 start-page: 54 year: 2016 ident: 3064_CR50 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.04.023 – volume: 29 start-page: 1023 year: 1997 ident: 3064_CR2 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(97)00030-8 – volume: 142 start-page: 102 year: 2016 ident: 3064_CR74 publication-title: Catena doi: 10.1016/j.catena.2016.03.004 – volume: 26 start-page: 713 year: 2017 ident: 3064_CR14 publication-title: Glob Ecol Biogeogr doi: 10.1111/geb.12576 – volume: 34 start-page: 1690 year: 2020 ident: 3064_CR17 publication-title: Funct Ecol doi: 10.1111/1365-2435.13606 – volume: 27 start-page: 1 year: 2021 ident: 3064_CR69 publication-title: Chin J Appl Environ Biol |
SSID | ssj0037161 |
Score | 2.4055371 |
Snippet | Purpose
The biogeochemical cycling of phosphorus (P) is essential for maintaining plant productivity and thus plays a vital role in soil carbon sequestration.... PurposeThe biogeochemical cycling of phosphorus (P) is essential for maintaining plant productivity and thus plays a vital role in soil carbon sequestration.... PURPOSE: The biogeochemical cycling of phosphorus (P) is essential for maintaining plant productivity and thus plays a vital role in soil carbon sequestration.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Abies fabri Aluminium Aluminum Atmospheric models Availability Bioavailability Biogeochemical cycles Biomass Biomass energy production Carbon Carbon sequestration China Deposition Dissolved organic carbon Distribution Distribution patterns Earth and Environmental Science energy Energy demand Environment Environmental Physics equations field experimentation Forests Fractions Immobilization Initial conditions microbial biomass Microorganisms Minerals Mountains Nitrogen Oxides Phosphorus Plateaus Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article Soil Soil depth Soil moisture soil organic carbon Soil Science & Conservation soil water Soils spatial distribution Subalpine environments Vertical distribution |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kXvQgPrFaZQVvGkiyu2n2WMQigsVDC72FfUUjISl5CP57Z9OkQVHBQ0472YSZzMw3mccidM21MrErpTN2lXDASjKHB0I5IQWDPGaGe0372NMseFjQxyVbtk1hZVft3qUkG0vdN7t5JAgdW1JgcS51IFDfZhC720KuhT_p7C-BCKAJs8DVQqDshm2rzM97fHVHPcb8lhZtvM10H-21MBFP1nI9QFsmO0S7k5eiHZVhjtDbLKmKHOSPbU2Q5S9eNbV1psRlnqR49ZqXcBV1icW7SNL1RO4PnGQYUB8uaynSFYBMDLgV3gbnMbYH-Zgiw_NEGkCN-DkFKCrqY7SY3s_vHpz25ARHAaCqIB4MpIwDqjUnErRUcsoI01pom1gLTWxgyXCqXaqY8iQV0jdEKxUzSTwiyQkaZHlmThE2lAMINzSIY4i9tOLg_5VWgimmQZ5siLyOgZFqx4rb0y3SqB-IbJkeAdOjhumRO0Q3m3tW66Eaf1KPOrlErYKVkR0kD1DR5-Mhutosg2rYfIfITF5bGhIEPg99oLnt5Nlv8fsTz_5Hfo52fNsU0fyYGaFBVdTmAqBKJS-bL_MTTD7hcg priority: 102 providerName: Springer Nature |
Title | Nitrogen addition promotes soil phosphorus availability in the subalpine forest of eastern Tibetan Plateau |
URI | https://link.springer.com/article/10.1007/s11368-021-03064-0 https://www.proquest.com/docview/2617112297 https://www.proquest.com/docview/2636629827 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9QwFH-4Mxc9iJ84ug4RvGmwbZJOc5JRZl0Uh0V2YD2VfFUrpa3tVPC_96WT7qDgHnpK2pT3kpff-wZ4Ka1xRaQ1XUVGUZSSgspUGZpxFMgr4WQ8po993qbnO_7xSlwFg1sfwionmTgKatsYbyN_4yuHIzZI5Opt-5P6rlHeuxpaaJzAHEVwls1g_m6zvfgyyWKG2sCocuG1i0pzlIW0mUPyXMzSjPoQBY-bOY3-vpqOePMfF-l485zdg7sBMpL1gcf34ZarH8Cd9bculM1wD-HHttx3De4F4uODPK1JO8bZuZ70TVmR9nvT49MNPVG_VFkdqnP_JmVNEAGSftCqahFwEsSw-DekKYhv6uO6mlyW2iGCJBcVwlI1PILd2eby_TkNXRSoQXC1R90w1bpIubWSaTyxWnLBhLXKeidb5gqHQ05yG3EjTKy50olj1phCaBYzzR7DrG5q9wSI4xIBueNpUaAeZo1ELGCsUcIIi7wVC4gnAuYmlBj3nS6q_Fgc2RM9R6LnI9HzaAGvrt9pDwU2bpx9OvElD4etz49bYwEvrofxmHjfh6pdM_g5LE0TmSU45_XEz-Mn_r_i05tXfAa3E58QMRplTmG27wb3HGHKXi9hvv7w9dNmGfbkEk52yfoPIIfodg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QF6QDzFQgEjwQkiktjOxocKFWi1pe2qQlupt-BXaFCUhGRD1T_Fb2ScR1cg0VsPOdlxopnx-BvPC-C1MNqmvlLezNfSQy3JPRFJ7cUMFfKMWxF06WPHi2h-yr6c8bMN-D3mwriwylEndoralNrdkb93lcMRG4Ri9qH66bmuUc67OrbQ6MXi0F5eoMnW7Bx8Rv6-CcP9veWnuTd0FfA0go0V2kqRUmnEjBFUoQQrwTjlxkjjnE6xTS0OWcGMzzTXgWJShZYarVOuaEAVxXVvwSajkR9OYPPj3uLk66j7KVofnYmHxzwa6X48pOn0yXoBjWLPhUQ4nM48_--jcI1v_3HJdifd_j24O0BUstvL1H3YsMUD2Nr9Xg9lOuxD-LHIVnWJskdcPJLjLam6uD7bkKbMclKdlw0-ddsQ-UtmeV8N_JJkBUHESZpWybxCgEsQM-PfkDIlromQrQuyzJRFxEpOcoTBsn0EpzdC38cwKcrCPgFimUADwLIoTdHuM1og9tBGS665QVniUwhGAiZ6KGnuOmvkyboYsyN6gkRPOqIn_hTeXr1T9QU9rp29PfIlGTZ3k6xFcQqvroZxWzpfiyxs2bo5NIpCEYc4593Iz_US___i0-u_-BJuz5fHR8nRweLwGdwJXTJGdyG0DZNV3drnCJFW6sUglwS-3fRW-APpLyS5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYToAfEUCwWMBCewmoedjQ8VKrSrlsJqhVqpt-BXaFCUhGRD1b_Gr2OcR1cg0VsPOdlxovF45hvPC-C1MNqmnlJ05mlJUUpyKiKpacxQIM-4FX6XPvZlER2esk9n_GwDfo-5MC6scpSJnaA2pXZ35Duucjhig0DMdtIhLGK5P39f_aSug5TztI7tNHoWObaXF2i-NbtH-7jXb4JgfnDy8ZAOHQaoRuCxQrspUiqNmDEiVMjNSjAecmOkcQ6o2KYWh6xgxmOaa18xqQIbGq1TrkI_VCGuews2Z84qmsDmh4PF8uuoB0K0RDpzD1U-GuxePKTs9Il7fhjF1IVHOMzOqPe3Wlxj3X_cs53Wm9-DuwNcJXs9f92HDVs8gK297_VQssM-hB-LbFWXyIfExSa5fSZVF-NnG9KUWU6q87LBp24bIn_JLO8rg1-SrCCIPknTKplXCHYJ4mf8G1KmxDUUsnVBTjJlEb2SZY6QWLaP4PRG6PsYJkVZ2CdALBNoDFgWpSnagEYLxCHaaMk1N8hXfAr-SMBED-XNXZeNPFkXZnZET5DoSUf0xJvC26t3qr64x7Wzt8d9SYaD3iRrtpzCq6thPKLO7yILW7ZuThhFgYgDnPNu3M_1Ev__4tPrv_gSbuMRSD4fLY6fwZ3A5WV0d0PbMFnVrX2OaGmlXgxsSeDbTZ-EP15zKO4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen+addition+promotes+soil+phosphorus+availability+in+the+subalpine+forest+of+eastern+Tibetan+Plateau&rft.jtitle=Journal+of+soils+and+sediments&rft.au=Liu%2C+Ye&rft.au=Bing%2C+Haijian&rft.au=Wu%2C+Yanhong&rft.au=Zhu%2C+He&rft.date=2022-01-01&rft.issn=1439-0108&rft.eissn=1614-7480&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1007%2Fs11368-021-03064-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11368_021_03064_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-0108&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-0108&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-0108&client=summon |