Neonicotinoid insecticides in river water of an agriculture-dominated basin: Occurrence, flux variations, and ecological risks
The widespread use of neonicotinoid insecticides (NNIs) has led to their widespread detection in surface waters worldwide. However, pollution characteristics and transport fluxes in agriculture-dominated watersheds have not been thoroughly studied. In this study, we analyzed the pollution characteri...
Saved in:
Published in | Marine pollution bulletin Vol. 217; p. 118068 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The widespread use of neonicotinoid insecticides (NNIs) has led to their widespread detection in surface waters worldwide. However, pollution characteristics and transport fluxes in agriculture-dominated watersheds have not been thoroughly studied. In this study, we analyzed the pollution characteristics of NNIs in the Zhoukou Reach of the Shaying River, a typical agricultural area in northern China, focusing on their vertical distribution, transport flux, and ecological risk across different river sections. NNIs were commonly detected in the surface water in the Zhoukou section of the Shaying River, with concentrations ranging from 42.5 to 307 ng/L. The predominant compounds were imidacloprid, thiamethoxam, acetamiprid, and clothianidin at concentrations of 33.4 ng/L, 30.0 ng/L, 29.1 ng/L, and 28.7 ng/L, respectively. Vertically, higher NNI concentrations of 163 ± 88.9 ng/L were found in the bottom layer than in the surface layer (152 ± 82.9 ng/L) (p < 0.05). Compared to the upstream and midstream regions, the NNI concentration downstream was higher, primarily because of the developed fruit cultivation and high pesticide usage. The initial input flux of NNIs of the Zhoukou section of the Shaying River was 1.73 kg/d, whereas the output flux was 4.32 kg/d, with a net flux of 2.58 kg/d. In the midstream and upstream regions, NNIs pose a chronic risk to aquatic invertebrates, whereas NNIs in the downstream region present an acute risk. Therefore, it is crucial to alleviate downstream NNI pollution.
[Display omitted]
•NNIs were frequently detected in river water in agricultural area (152 ± 82.9 ng/L).•Bottom layer suffered from higher NNIs pollution than surface layer.•Agricultural industry layouts affected the spatial distribution of NNIs.•Riverine NNIs fluxes increased from 1.73 kg/d to 4.32 kg/d from inlet to outlet. |
---|---|
AbstractList | The widespread use of neonicotinoid insecticides (NNIs) has led to their widespread detection in surface waters worldwide. However, pollution characteristics and transport fluxes in agriculture-dominated watersheds have not been thoroughly studied. In this study, we analyzed the pollution characteristics of NNIs in the Zhoukou Reach of the Shaying River, a typical agricultural area in northern China, focusing on their vertical distribution, transport flux, and ecological risk across different river sections. NNIs were commonly detected in the surface water in the Zhoukou section of the Shaying River, with concentrations ranging from 42.5 to 307 ng/L. The predominant compounds were imidacloprid, thiamethoxam, acetamiprid, and clothianidin at concentrations of 33.4 ng/L, 30.0 ng/L, 29.1 ng/L, and 28.7 ng/L, respectively. Vertically, higher NNI concentrations of 163 ± 88.9 ng/L were found in the bottom layer than in the surface layer (152 ± 82.9 ng/L) (p < 0.05). Compared to the upstream and midstream regions, the NNI concentration downstream was higher, primarily because of the developed fruit cultivation and high pesticide usage. The initial input flux of NNIs of the Zhoukou section of the Shaying River was 1.73 kg/d, whereas the output flux was 4.32 kg/d, with a net flux of 2.58 kg/d. In the midstream and upstream regions, NNIs pose a chronic risk to aquatic invertebrates, whereas NNIs in the downstream region present an acute risk. Therefore, it is crucial to alleviate downstream NNI pollution. The widespread use of neonicotinoid insecticides (NNIs) has led to their widespread detection in surface waters worldwide. However, pollution characteristics and transport fluxes in agriculture-dominated watersheds have not been thoroughly studied. In this study, we analyzed the pollution characteristics of NNIs in the Zhoukou Reach of the Shaying River, a typical agricultural area in northern China, focusing on their vertical distribution, transport flux, and ecological risk across different river sections. NNIs were commonly detected in the surface water in the Zhoukou section of the Shaying River, with concentrations ranging from 42.5 to 307 ng/L. The predominant compounds were imidacloprid, thiamethoxam, acetamiprid, and clothianidin at concentrations of 33.4 ng/L, 30.0 ng/L, 29.1 ng/L, and 28.7 ng/L, respectively. Vertically, higher NNI concentrations of 163 ± 88.9 ng/L were found in the bottom layer than in the surface layer (152 ± 82.9 ng/L) (p < 0.05). Compared to the upstream and midstream regions, the NNI concentration downstream was higher, primarily because of the developed fruit cultivation and high pesticide usage. The initial input flux of NNIs of the Zhoukou section of the Shaying River was 1.73 kg/d, whereas the output flux was 4.32 kg/d, with a net flux of 2.58 kg/d. In the midstream and upstream regions, NNIs pose a chronic risk to aquatic invertebrates, whereas NNIs in the downstream region present an acute risk. Therefore, it is crucial to alleviate downstream NNI pollution.The widespread use of neonicotinoid insecticides (NNIs) has led to their widespread detection in surface waters worldwide. However, pollution characteristics and transport fluxes in agriculture-dominated watersheds have not been thoroughly studied. In this study, we analyzed the pollution characteristics of NNIs in the Zhoukou Reach of the Shaying River, a typical agricultural area in northern China, focusing on their vertical distribution, transport flux, and ecological risk across different river sections. NNIs were commonly detected in the surface water in the Zhoukou section of the Shaying River, with concentrations ranging from 42.5 to 307 ng/L. The predominant compounds were imidacloprid, thiamethoxam, acetamiprid, and clothianidin at concentrations of 33.4 ng/L, 30.0 ng/L, 29.1 ng/L, and 28.7 ng/L, respectively. Vertically, higher NNI concentrations of 163 ± 88.9 ng/L were found in the bottom layer than in the surface layer (152 ± 82.9 ng/L) (p < 0.05). Compared to the upstream and midstream regions, the NNI concentration downstream was higher, primarily because of the developed fruit cultivation and high pesticide usage. The initial input flux of NNIs of the Zhoukou section of the Shaying River was 1.73 kg/d, whereas the output flux was 4.32 kg/d, with a net flux of 2.58 kg/d. In the midstream and upstream regions, NNIs pose a chronic risk to aquatic invertebrates, whereas NNIs in the downstream region present an acute risk. Therefore, it is crucial to alleviate downstream NNI pollution. The widespread use of neonicotinoid insecticides (NNIs) has led to their widespread detection in surface waters worldwide. However, pollution characteristics and transport fluxes in agriculture-dominated watersheds have not been thoroughly studied. In this study, we analyzed the pollution characteristics of NNIs in the Zhoukou Reach of the Shaying River, a typical agricultural area in northern China, focusing on their vertical distribution, transport flux, and ecological risk across different river sections. NNIs were commonly detected in the surface water in the Zhoukou section of the Shaying River, with concentrations ranging from 42.5 to 307 ng/L. The predominant compounds were imidacloprid, thiamethoxam, acetamiprid, and clothianidin at concentrations of 33.4 ng/L, 30.0 ng/L, 29.1 ng/L, and 28.7 ng/L, respectively. Vertically, higher NNI concentrations of 163 ± 88.9 ng/L were found in the bottom layer than in the surface layer (152 ± 82.9 ng/L) (p < 0.05). Compared to the upstream and midstream regions, the NNI concentration downstream was higher, primarily because of the developed fruit cultivation and high pesticide usage. The initial input flux of NNIs of the Zhoukou section of the Shaying River was 1.73 kg/d, whereas the output flux was 4.32 kg/d, with a net flux of 2.58 kg/d. In the midstream and upstream regions, NNIs pose a chronic risk to aquatic invertebrates, whereas NNIs in the downstream region present an acute risk. Therefore, it is crucial to alleviate downstream NNI pollution. The widespread use of neonicotinoid insecticides (NNIs) has led to their widespread detection in surface waters worldwide. However, pollution characteristics and transport fluxes in agriculture-dominated watersheds have not been thoroughly studied. In this study, we analyzed the pollution characteristics of NNIs in the Zhoukou Reach of the Shaying River, a typical agricultural area in northern China, focusing on their vertical distribution, transport flux, and ecological risk across different river sections. NNIs were commonly detected in the surface water in the Zhoukou section of the Shaying River, with concentrations ranging from 42.5 to 307 ng/L. The predominant compounds were imidacloprid, thiamethoxam, acetamiprid, and clothianidin at concentrations of 33.4 ng/L, 30.0 ng/L, 29.1 ng/L, and 28.7 ng/L, respectively. Vertically, higher NNI concentrations of 163 ± 88.9 ng/L were found in the bottom layer than in the surface layer (152 ± 82.9 ng/L) (p < 0.05). Compared to the upstream and midstream regions, the NNI concentration downstream was higher, primarily because of the developed fruit cultivation and high pesticide usage. The initial input flux of NNIs of the Zhoukou section of the Shaying River was 1.73 kg/d, whereas the output flux was 4.32 kg/d, with a net flux of 2.58 kg/d. In the midstream and upstream regions, NNIs pose a chronic risk to aquatic invertebrates, whereas NNIs in the downstream region present an acute risk. Therefore, it is crucial to alleviate downstream NNI pollution. [Display omitted] •NNIs were frequently detected in river water in agricultural area (152 ± 82.9 ng/L).•Bottom layer suffered from higher NNIs pollution than surface layer.•Agricultural industry layouts affected the spatial distribution of NNIs.•Riverine NNIs fluxes increased from 1.73 kg/d to 4.32 kg/d from inlet to outlet. |
ArticleNumber | 118068 |
Author | Han, BingJun Wang, JinZe Wang, LiXi Liu, WenXin Hou, Jie Zhu, ZiYang |
Author_xml | – sequence: 1 givenname: JinZe surname: Wang fullname: Wang, JinZe organization: Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China – sequence: 2 givenname: Jie surname: Hou fullname: Hou, Jie organization: Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China – sequence: 3 givenname: BingJun surname: Han fullname: Han, BingJun organization: Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China – sequence: 4 givenname: LiXi surname: Wang fullname: Wang, LiXi organization: Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China – sequence: 5 givenname: ZiYang surname: Zhu fullname: Zhu, ZiYang organization: State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China – sequence: 6 givenname: WenXin surname: Liu fullname: Liu, WenXin email: wxliu@urban.pku.edu.cn organization: Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40311401$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuFDEQRS0URCaBXwAvWaQHP_pldlEEASkiG5DYWX5URzV47MHunsCGb49HE7LNxpZV55ale87ISUwRCHnH2Zoz3n_YrLcm71KwS1gLJro15yPrxxdkxcdBNVL28oSsWJ00UvQ_T8lZKRvG2CAG_oqctkxy3jK-Iv--QYro0owxoacYC7gZHXoo9UEz7iHTezPXM03URGruMrolzEuGxqctxjrz1JqC8SO9dW7JGaKDCzqF5Q_dm4xmxhTLRQ17Ci6FdIfOhLq6_CqvycvJhAJvHu9z8uPzp-9XX5qb2-uvV5c3jZOdmJuu851StuNidGxSTMJgvFO9VMIzPllvJIh2GMZO2s56KdQ0OG_51Hppe-blOXl_3LvL6fcCZdZbLA5CMBHSUrQUrWCtEFI-j3Kl2v7wW0XfPqKL3YLXu4xVy1_9v94KDEfA5VRKhukJ4UwfROqNfhKpDyL1UWRNXh6TUFvZI2RdHB6K9ZirIe0TPrvjAcu7rDg |
Cites_doi | 10.1016/j.fochx.2023.100603 10.1016/j.watres.2020.116630 10.1016/j.scitotenv.2021.146589 10.1016/j.jhazmat.2022.130715 10.1016/j.pestbp.2018.08.003 10.1371/journal.pone.0032432 10.1038/s41893-020-0582-x 10.1016/j.scitotenv.2018.08.309 10.1016/j.scitotenv.2024.174392 10.1016/j.chemosphere.2023.141063 10.1016/j.envpol.2019.03.099 10.1016/j.scitotenv.2020.140627 10.1016/j.envint.2014.10.024 10.1021/acs.est.7b00568 10.1016/j.scitotenv.2020.141696 10.1016/j.jece.2022.108485 10.1016/j.scitotenv.2023.166000 10.1016/j.envpol.2024.124459 10.1016/j.envpol.2023.122068 10.1016/j.scitotenv.2022.159784 10.1016/j.watres.2021.117535 10.1007/s11368-020-02800-2 10.1002/etc.4088 10.1016/j.jhazmat.2022.130067 10.1126/science.1259159 10.1021/acs.est.8b06096 10.1016/j.envpol.2019.05.062 10.1021/acs.est.7b06388 10.1016/j.scitotenv.2023.161872 10.1016/j.jhazmat.2023.131635 10.1016/j.jenvman.2023.117838 10.1016/j.chemosphere.2019.05.040 10.1126/science.aax3442 10.1016/j.watres.2023.120724 10.1002/etc.4842 10.1016/j.jhazmat.2023.131851 10.1016/j.scitotenv.2019.02.419 10.1016/j.envres.2024.118988 10.1007/s11356-014-3277-x 10.1016/j.scitotenv.2022.161383 10.1016/j.scitotenv.2024.171455 10.1007/s11356-023-30360-8 10.1007/s11356-019-04470-1 10.1007/s11356-014-3332-7 10.1016/j.scitotenv.2021.146803 10.1016/j.jhazmat.2022.128476 10.1007/s11356-014-3470-y 10.1289/EHP515 10.1002/etc.5583 10.1016/j.chemosphere.2018.11.024 10.1016/j.jhazmat.2024.134621 10.1016/j.pestbp.2020.104587 10.1016/j.envres.2022.112703 10.1016/j.scitotenv.2021.146826 10.1038/nature13531 10.1016/j.scitotenv.2019.03.040 10.1038/srep32108 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.marpolbul.2025.118068 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography Environmental Sciences |
EISSN | 1879-3363 |
ExternalDocumentID | 40311401 10_1016_j_marpolbul_2025_118068 S0025326X25005430 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M -~X ..I .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAFWJ AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYOK AAYWO ABFNM ABFRF ABGRD ABJNI ABMAC ABPPZ ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFO ACGFS ACLVX ACPRK ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADVLN ADXHL AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ IHE IMUCA J1W KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSA SSE SSH SSJ SSZ T5K UQL WH7 WUQ XPP YQT YV5 ZMT ZXP ~02 ~G- AAYXX CITATION CGR CUY CVF ECM EFKBS EIF K-O NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c352t-55d599b5128c0f903e7adc96392d01fbda3e2477853b5bd329f7cdb1f4d3b60d3 |
IEDL.DBID | .~1 |
ISSN | 0025-326X 1879-3363 |
IngestDate | Fri Aug 22 20:40:19 EDT 2025 Wed Jul 02 04:38:19 EDT 2025 Mon Jul 21 06:03:27 EDT 2025 Thu Jul 03 08:43:52 EDT 2025 Sat Jul 05 17:12:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Vertical variation Spatial distribution Neonicotinoid insecticides Riverine fluxes Ecological risks |
Language | English |
License | Copyright © 2025 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-55d599b5128c0f903e7adc96392d01fbda3e2477853b5bd329f7cdb1f4d3b60d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 40311401 |
PQID | 3199462477 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3242042233 proquest_miscellaneous_3199462477 pubmed_primary_40311401 crossref_primary_10_1016_j_marpolbul_2025_118068 elsevier_sciencedirect_doi_10_1016_j_marpolbul_2025_118068 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Marine pollution bulletin |
PublicationTitleAlternate | Mar Pollut Bull |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cimino, Boyles, Thayer, Perry (bb0050) 2017; 125 Wang, Hou, Wang, Zhu, Han, Chen, Liu (bb0240) 2024; 365 XHPG (bb0270) 2021 Sánchez-Bayo (bb0195) 2014; 346 Bonmatin, Giorio, Girolami, Goulson, Kreutzweiser, Krupke, Liess, Long, Marzaro, Mitchell, Noome, Simon-Delso, Tapparo (bb0010) 2015; 22 Mahai, Wan, Xia, Yang, He, Xu (bb0165) 2019; 229 Zhang, Cao, Cao, Li, Yan (bb0325) 2023; 333 Li, Chen, Ruan (bb0110) 2023; 30 Wang, Qin, Lu, Tian, Ke, Guo, Luo, Yang (bb0255) 2023; 17 Chen, Wu, Zhang, Ling, Yu, Shen, Du, Zhao (bb0035) 2022; 430 Jia, Cai, Yuan, Zhang, Li, Li (bb0095) 2023; 146 Li, Yang, Song, Qing (bb0105) 2024; 44 Shen, Gu, Liu, Feng, Li, Liu, Jiang, Qin, An, Li, Leng (bb0200) 2023; 443 Zhou, Lu, Yu, Wang, Zhao, Yang, Zhang, Tan, Wang, Guo (bb0345) 2021; 782 Zhu, Wang (bb0350) 2021; 753 Halbach, Möder, Schrader, Liebmann, Schäfer, Schneeweiss, Schreiner, Vormeier, Weisner, Liess, Reemtsma (bb0065) 2021; 203 Zhang (bb0320) 2009 Gong, Xiong, Tan, Li, Ma, Yi, Wang, You (bb0060) 2023; 458 Liu, Cui, Zhang, Zhang, Hough, Fu, Li, An, Huang, Li, Ke, Zhang (bb0140) 2021; 8 Naumann, Bento, Wittmann, Gandrass, Tang, Zhen, Liu, Ebinghaus (bb0180) 2022; 209 Sousa, Ribeiro, Barbosa, Ribeiro, Tiritan, Pereira, Silva (bb0215) 2019; 649 Cabrera, Capparelli, Ortega-Andrade, Medina-Villamizar, Rico (bb0020) 2024; 357 Hladik, Main, Goulson (bb0075) 2018; 52 Yue, Wang, Fu, Tang, Ma, Qin, Li, Yang, Chen (bb0300) 2021; 21 Zhang, Zhang, Zeng, Wang, Wang, Jia, Xu, Gao (bb0315) 2022; 208 Zhang, Tian, Yi, Zhang, Ruan, Wu, Chen, Huang, Ying (bb0310) 2019; 217 Raby, Nowierski, Perlov, Zhao, Hao, Poirier, Sibley (bb0185) 2018; 37 Liao, Feng, Zhao, Yang, Lin, Guo, Xu, Gao (bb0130) 2024; 473 Yamamuro, Komuro, Kamiya, Kato, Hasegawa, Kameda (bb0280) 2019; 366 Yi, Zhang, Liu, Wu, Tian, Ruan, Zhang, Huang, Ying (bb0290) 2019; 251 Chow, Curchod, Davies, Veludo, Oltramare, Dalvie, Stamm, Röösli, Fuhrimann (bb0045) 2023; 858 Shi, Burton, Wang, Xu, Zhang, Yu (bb0205) 2018; 152 ZBS (bb0305) 2024 Mahai, Wan, Xia, Wang, Shi, Qian, He, Xu (bb0170) 2021; 189 Liu, Li, Xu, Huang, Xu, Liu, Liang, Yang (bb0150) 2024; 10 Morrissey, Mineau, Devries, Sanchez-Bayo, Liess, Cavallaro, Liber (bb0175) 2015; 74 Kimura-Kuroda, Komuta, Kuroda, Hayashi, Kawano (bb0100) 2012; 7 Ma, Liu, Yu, Li, Han (bb0160) 2019; 26 Zhao, Yang, Li, Xing, Ren, Pang, Li (bb0340) 2020; 39 Li, Wang, Yuan, Wang (bb0115) 2023; 870 Chen, Zang, Shen, Liu, Du, Fei, Yang, Chen, Wang, Liu, Zhao (bb0030) 2019; 53 Li, Miao, Khanna (bb0120) 2020; 3 FAO (bb0055) 2024 Zhang, Li (bb0335) 2024; 350 Li, Li, Niu (bb0125) 2023; 42 Yan, Cai, Zhang, Guo, Ying (bb0285) 2024; 948 Alsafran, Rizwan, Usman, Saleem, Al Jabri (bb0005) 2022; 10 Stehle, Ovcharova, Wolfram, Bub, Herrmann, Petschick, Schulz (bb0225) 2023; 867 Ying, Wang, Hu, Wang, Lu, Zhang (bb0295) 2024; 58 Ma, Wei, Liu, Fan, Nie, Song, Wang, Wang, Xu, Wang, Shi, Geng, Zhao, Jia, Huan, Huo, Wang, Mao, Huang, Zeng (bb0155) 2022; 10 Zhang, Cao, Cao, Feng, Zhang, Li, Yan (bb0330) 2024; 923 Wu-Smart, Spivak (bb0265) 2016; 6 Wang, Zhang, Zeng, Li, Yang, Guo (bb0260) 2019; 667 Hou, Chen, Han, Li, Yu, Wang, Tao, Liu (bb0080) 2023; 902 Liu, Cui, Fu, Zhang, Zhang, Hough, An, Li, Zhang (bb0145) 2023; 339 Tao, Phung, Dong, Xu, Liu, Wu, Liu, He, Pan, Li, Zheng (bb0235) 2019; 669 Takeshita, Hayashi, Yokomizo (bb0230) 2020; 743 Huang, Zhang, Li (bb0085) 2024; 252 Liu, You, Li, Zhang, He, Breider, Tao, Liu (bb0135) 2021; 779 Chen, Yu, Zhang, Cao, Ling, Liao, Shen, Du, Chen, Zhao, Wu, Jin (bb0040) 2023; 446 Simon-Delso, Amaral-Rogers, Belzunces, Bonmatin, Chagnon, Downs, Furlan, Gibbons, Giorio, Girolami, Goulson, Kreutzweiser, Krupke, Liess, Long, McField, Mineau, Mitchell, Morrissey, Noome, Pisa, Settele, Stark, Tapparo, Van Dyck, Van Praagh, Van der Sluijs, Whitehorn, Wiemers (bb0210) 2015; 22 Roodt, Huszarik, Entling, Schulz (bb0190) 2023; 455 Wang, Zhong, Lu, Xu, Xue, Huang, Blaney, Yu (bb0245) 2021; 782 Wang, Wan, Li, He, Xu, Xia (bb0250) 2023; 247 Sparks, Crossthwaite, Nauen, Banba, Cordova, Earley, Ebbinghaus-Kintscher, Fujioka, Hirao, Karmon, Kennedy, Nakao, Popham, Salgado, Watson, Wedel, Wessels (bb0220) 2020; 167 Hallmann, Foppen, van Turnhout, de Kroon, Jongejans (bb0070) 2014; 511 Huang, Zhang, Li, Cheng, Zhong, Zhang, Li (bb0090) 2017; 51 Bonmatin, Noome, Moreno, Mitchell, Glauser, Soumana, van Lexmond, Sánchez-Bayo (bb0015) 2019; 249 Chagnon, Kreutzweiser, Mitchell, Mitchell, Morrissey, Noome, Noome, Van der Sluijs, Van der Sluijs (bb0025) 2015; 22 XHPG (bb0275) 2023 Wang (10.1016/j.marpolbul.2025.118068_bb0240) 2024; 365 Ying (10.1016/j.marpolbul.2025.118068_bb0295) 2024; 58 Yue (10.1016/j.marpolbul.2025.118068_bb0300) 2021; 21 Ma (10.1016/j.marpolbul.2025.118068_bb0160) 2019; 26 Naumann (10.1016/j.marpolbul.2025.118068_bb0180) 2022; 209 Wang (10.1016/j.marpolbul.2025.118068_bb0260) 2019; 667 Zhang (10.1016/j.marpolbul.2025.118068_bb0335) 2024; 350 XHPG (10.1016/j.marpolbul.2025.118068_bb0275) ZBS (10.1016/j.marpolbul.2025.118068_bb0305) 2024 Simon-Delso (10.1016/j.marpolbul.2025.118068_bb0210) 2015; 22 Sparks (10.1016/j.marpolbul.2025.118068_bb0220) 2020; 167 Zhu (10.1016/j.marpolbul.2025.118068_bb0350) 2021; 753 XHPG (10.1016/j.marpolbul.2025.118068_bb0270) Zhang (10.1016/j.marpolbul.2025.118068_bb0320) 2009 Li (10.1016/j.marpolbul.2025.118068_bb0120) 2020; 3 Gong (10.1016/j.marpolbul.2025.118068_bb0060) 2023; 458 Li (10.1016/j.marpolbul.2025.118068_bb0110) 2023; 30 Zhang (10.1016/j.marpolbul.2025.118068_bb0325) 2023; 333 Chen (10.1016/j.marpolbul.2025.118068_bb0030) 2019; 53 Huang (10.1016/j.marpolbul.2025.118068_bb0090) 2017; 51 Alsafran (10.1016/j.marpolbul.2025.118068_bb0005) 2022; 10 Wang (10.1016/j.marpolbul.2025.118068_bb0245) 2021; 782 Zhou (10.1016/j.marpolbul.2025.118068_bb0345) 2021; 782 Huang (10.1016/j.marpolbul.2025.118068_bb0085) 2024; 252 Chen (10.1016/j.marpolbul.2025.118068_bb0040) 2023; 446 Wang (10.1016/j.marpolbul.2025.118068_bb0250) 2023; 247 Kimura-Kuroda (10.1016/j.marpolbul.2025.118068_bb0100) 2012; 7 Tao (10.1016/j.marpolbul.2025.118068_bb0235) 2019; 669 Zhang (10.1016/j.marpolbul.2025.118068_bb0315) 2022; 208 Li (10.1016/j.marpolbul.2025.118068_bb0125) 2023; 42 Wu-Smart (10.1016/j.marpolbul.2025.118068_bb0265) 2016; 6 Sousa (10.1016/j.marpolbul.2025.118068_bb0215) 2019; 649 Stehle (10.1016/j.marpolbul.2025.118068_bb0225) 2023; 867 Yan (10.1016/j.marpolbul.2025.118068_bb0285) 2024; 948 Li (10.1016/j.marpolbul.2025.118068_bb0105) 2024; 44 Hladik (10.1016/j.marpolbul.2025.118068_bb0075) 2018; 52 Cimino (10.1016/j.marpolbul.2025.118068_bb0050) 2017; 125 Takeshita (10.1016/j.marpolbul.2025.118068_bb0230) 2020; 743 Chen (10.1016/j.marpolbul.2025.118068_bb0035) 2022; 430 Ma (10.1016/j.marpolbul.2025.118068_bb0155) 2022; 10 Liu (10.1016/j.marpolbul.2025.118068_bb0140) 2021; 8 Yamamuro (10.1016/j.marpolbul.2025.118068_bb0280) 2019; 366 Mahai (10.1016/j.marpolbul.2025.118068_bb0170) 2021; 189 Shen (10.1016/j.marpolbul.2025.118068_bb0200) 2023; 443 Yi (10.1016/j.marpolbul.2025.118068_bb0290) 2019; 251 Liao (10.1016/j.marpolbul.2025.118068_bb0130) 2024; 473 Chagnon (10.1016/j.marpolbul.2025.118068_bb0025) 2015; 22 Sánchez-Bayo (10.1016/j.marpolbul.2025.118068_bb0195) 2014; 346 Hallmann (10.1016/j.marpolbul.2025.118068_bb0070) 2014; 511 Morrissey (10.1016/j.marpolbul.2025.118068_bb0175) 2015; 74 Cabrera (10.1016/j.marpolbul.2025.118068_bb0020) 2024; 357 Zhao (10.1016/j.marpolbul.2025.118068_bb0340) 2020; 39 Liu (10.1016/j.marpolbul.2025.118068_bb0145) 2023; 339 Zhang (10.1016/j.marpolbul.2025.118068_bb0310) 2019; 217 Wang (10.1016/j.marpolbul.2025.118068_bb0255) 2023; 17 Bonmatin (10.1016/j.marpolbul.2025.118068_bb0015) 2019; 249 Liu (10.1016/j.marpolbul.2025.118068_bb0150) 2024; 10 Chow (10.1016/j.marpolbul.2025.118068_bb0045) 2023; 858 Raby (10.1016/j.marpolbul.2025.118068_bb0185) 2018; 37 Roodt (10.1016/j.marpolbul.2025.118068_bb0190) 2023; 455 Li (10.1016/j.marpolbul.2025.118068_bb0115) 2023; 870 Zhang (10.1016/j.marpolbul.2025.118068_bb0330) 2024; 923 Hou (10.1016/j.marpolbul.2025.118068_bb0080) 2023; 902 Liu (10.1016/j.marpolbul.2025.118068_bb0135) 2021; 779 FAO (10.1016/j.marpolbul.2025.118068_bb0055) Bonmatin (10.1016/j.marpolbul.2025.118068_bb0010) 2015; 22 Halbach (10.1016/j.marpolbul.2025.118068_bb0065) 2021; 203 Jia (10.1016/j.marpolbul.2025.118068_bb0095) 2023; 146 Mahai (10.1016/j.marpolbul.2025.118068_bb0165) 2019; 229 Shi (10.1016/j.marpolbul.2025.118068_bb0205) 2018; 152 |
References_xml | – volume: 3 start-page: 1027 year: 2020 end-page: 1035 ident: bb0120 article-title: Neonicotinoids and decline in bird biodiversity in the United States publication-title: Nat Sustain – volume: 53 start-page: 2539 year: 2019 end-page: 2548 ident: bb0030 article-title: Resolution of the ongoing challenge of estimating nonpoint source neonicotinoid pollution in the Yangtze River basin using a modified mass balance approach publication-title: Environ. Sci. Technol. – volume: 10 year: 2022 ident: bb0005 article-title: Neonicotinoid insecticides in the environment: a critical review of their distribution, transport, fate, and toxic effects publication-title: J. Environ. Chem. Eng. – volume: 247 year: 2023 ident: bb0250 article-title: Occurrence, spatial variation, seasonal difference, and risk assessment of neonicotinoid insecticides, selected agriculture fungicides, and their transformation products in the Yangtze River, China: from the upper to lower reaches publication-title: Water Res. – volume: 229 start-page: 452 year: 2019 end-page: 460 ident: bb0165 article-title: Neonicotinoid insecticides in surface water from the Central Yangtze River, China publication-title: Chemosphere – volume: 58 start-page: 3173 year: 2024 end-page: 3181 ident: bb0295 article-title: Neonicotinoids persisting in the sea pose a potential chronic risk to marine organisms: a case from Xiangshan Bay, China (2015-2019) publication-title: Environ. Sci. Technol. – volume: 39 start-page: 1884 year: 2020 end-page: 1893 ident: bb0340 article-title: Toxicities of neonicotinoid-containing pesticide mixtures on nontarget organisms publication-title: Environ. Toxicol. Chem. – year: 2021 ident: bb0270 article-title: The publication of Xihua County Village Classification and Layout Plan (2020–2035) – volume: 6 start-page: 32108 year: 2016 ident: bb0265 article-title: Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development publication-title: Sci Rep-Uk – volume: 167 year: 2020 ident: bb0220 article-title: Insecticides, biologics and nematicides: updates to IRAC’S mode of action classification - a tool for resistance management publication-title: Pestic Biochem Phys – volume: 782 year: 2021 ident: bb0345 article-title: Comparison of neonicotinoid residues in soils of different land use types publication-title: Sci. Total Environ. – volume: 146 year: 2023 ident: bb0095 article-title: Spatial distribution and ecological risks of neonicotinoid insecticides for an urban tidal stream of Guangzhou City publication-title: South China. Ecol Indic – year: 2023 ident: bb0275 article-title: Notice on the issuance of Xihua County 2023 agricultural production socialization service project organization implementation plan – volume: 333 year: 2023 ident: bb0325 article-title: Occurrence, source, and risk assessment of neonicotinoid insecticides in the Huai River publication-title: China. Environ Pollut – volume: 42 start-page: 928 year: 2023 end-page: 938 ident: bb0125 article-title: A modeling approach for assessing ecological risks of neonicotinoid insecticides from emission to nontarget organisms: a case study of cotton plant publication-title: Environ. Toxicol. Chem. – volume: 51 start-page: 4424 year: 2017 end-page: 4433 ident: bb0090 article-title: Experimental study on the role of sedimentation and degradation processes on atmospheric deposition of persistent organic pollutants in a subtropical water column publication-title: Environ. Sci. Technol. – year: 2024 ident: bb0055 article-title: Pesticides Use – volume: 26 start-page: 11153 year: 2019 end-page: 11169 ident: bb0160 article-title: Sources and transformations of anthropogenic nitrogen in the highly disturbed Huai River basin, eastern China publication-title: Environ. Sci. Pollut. R. – volume: 753 year: 2021 ident: bb0350 article-title: Impact of farm size on intensity of pesticide use: evidence from China publication-title: Sci. Total Environ. – volume: 458 year: 2023 ident: bb0060 article-title: Occurrence and water-sediment exchange of systemic insecticides and their transformation products in an agriculture-dominated basin publication-title: J. Hazard. Mater. – volume: 366 start-page: 620 year: 2019 end-page: 623 ident: bb0280 article-title: Neonicotinoids disrupt aquatic food webs and decrease fishery yields publication-title: Science – volume: 189 year: 2021 ident: bb0170 article-title: A nationwide study of occurrence and exposure assessment of neonicotinoid insecticides and their metabolites in drinking water of China publication-title: Water Res. – volume: 867 year: 2023 ident: bb0225 article-title: Neonicotinoid insecticides in global agricultural surface waters-exposure, risks and regulatory challenges publication-title: Sci. Total Environ. – volume: 30 start-page: 115950 year: 2023 end-page: 115964 ident: bb0110 article-title: Differences in nonpoint source pollution load losses based on hydrological zone characteristics: a case study of the Shaying River basin, China publication-title: Environ. Sci. Pollut. R. – volume: 455 year: 2023 ident: bb0190 article-title: Aquatic-terrestrial transfer of neonicotinoid insecticides in riparian food webs publication-title: J. Hazard. Mater. – volume: 446 year: 2023 ident: bb0040 article-title: First evidence of neonicotinoid insecticides in human bile and associated hepatotoxicity risk publication-title: J. Hazard. Mater. – volume: 17 year: 2023 ident: bb0255 article-title: Residue detection and correlation analysis of multiple neonicotinoid insecticides and their metabolites in edible herbs publication-title: Food Chem X – volume: 249 start-page: 949 year: 2019 end-page: 958 ident: bb0015 article-title: A survey and risk assessment of neonicotinoids in water, soil and sediments of Belize publication-title: Environ. Pollut. – volume: 782 year: 2021 ident: bb0245 article-title: Occurrence, spatiotemporal distribution, and risk assessment of current-use pesticides in surface water: a case study near Taihu Lake publication-title: China. Sci Total Environ – volume: 37 start-page: 1430 year: 2018 end-page: 1445 ident: bb0185 article-title: Acute toxicity of 6 neonicotinoid insecticides to freshwater invertebrates publication-title: Environ. Toxicol. Chem. – volume: 443 year: 2023 ident: bb0200 article-title: Damming has changed the migration process of microplastics and increased the pollution risk in the reservoirs in the Shaying River basin publication-title: J. Hazard. Mater. – volume: 350 year: 2024 ident: bb0335 article-title: Harmonizing pesticides environmental quality standards: a fate-pathway perspective publication-title: Chemosphere – year: 2024 ident: bb0305 article-title: Zhoukou Statistical Yearbook of 2023 – volume: 208 year: 2022 ident: bb0315 article-title: Exposure to neonicotinoid insecticides and their characteristic metabolites: association with human liver cancer publication-title: Environ. Res. – volume: 74 start-page: 291 year: 2015 end-page: 303 ident: bb0175 article-title: Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review publication-title: Environ. Int. – volume: 779 year: 2021 ident: bb0135 article-title: Insights into the horizontal and vertical profiles of microplastics in a river emptying into the sea affected by intensive anthropogenic activities in northern China publication-title: Sci. Total Environ. – volume: 22 start-page: 5 year: 2015 end-page: 34 ident: bb0210 article-title: Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites publication-title: Environ. Sci. Pollut. R. – volume: 870 year: 2023 ident: bb0115 article-title: Spatiotemporal distribution patterns and ecological risk of multi-pesticide residues in the surface water of a typical agriculture area in China publication-title: Sci. Total Environ. – volume: 52 start-page: 3329 year: 2018 end-page: 3335 ident: bb0075 article-title: Environmental risks and challenges associated with neonicotinoid insecticides publication-title: Environ. Sci. Technol. – volume: 511 start-page: 341 year: 2014 end-page: 343 ident: bb0070 article-title: Declines in insectivorous birds are associated with high neonicotinoid concentrations publication-title: Nature – volume: 22 start-page: 35 year: 2015 end-page: 67 ident: bb0010 article-title: Environmental fate and exposure; neonicotinoids and fipronil publication-title: Environ. Sci. Pollut. R. – volume: 902 year: 2023 ident: bb0080 article-title: Distribution characteristics and risk assessment of neonicotinoid insecticides in planting soils of mainland China publication-title: Sci. Total Environ. – volume: 948 year: 2024 ident: bb0285 article-title: Neonicotinoid insecticides in a large-scale agricultural basin system - use, emission, transportation, and their contributions to the ecological risks in the Pearl River Basin publication-title: China. Sci Total Environ – year: 2009 ident: bb0320 article-title: Distribution Characteristic and Assessment of Typical Persistent Organic Pollutants - Organochlorine Pesticides in Water of Chaohu Lake Watershed – volume: 7 year: 2012 ident: bb0100 article-title: Nicotine-like effects of the neonicotinoid insecticides Acetamiprid and Imidacloprid on cerebellar neurons from neonatal rats publication-title: PLoS One – volume: 649 start-page: 1083 year: 2019 end-page: 1095 ident: bb0215 article-title: Monitoring of the 17 EU watch list contaminants of emerging concern in the Ave and the Sousa Rivers publication-title: Sci. Total Environ. – volume: 203 year: 2021 ident: bb0065 article-title: Small streams-large concentrations? Pesticide monitoring in small agricultural streams in Germany during dry weather and rainfall publication-title: Water Res. – volume: 923 year: 2024 ident: bb0330 article-title: Neonicotinoid insecticides in waters of the northern Jiangsu segment of the Beijing-Hangzhou Grand Canal: environmental and health implications publication-title: Sci. Total Environ. – volume: 858 year: 2023 ident: bb0045 article-title: Seasonal drivers and risks of aquatic pesticide pollution in drought and post-drought conditions in three Mediterranean watersheds publication-title: Sci. Total Environ. – volume: 473 year: 2024 ident: bb0130 article-title: Neonicotinoid insecticides in well-developed agricultural cultivation areas: seawater occurrence, spatial-seasonal variability and ecological risks publication-title: J. Hazard. Mater. – volume: 346 start-page: 806 year: 2014 end-page: 807 ident: bb0195 article-title: The trouble with neonicotinoids publication-title: Science – volume: 22 start-page: 119 year: 2015 end-page: 134 ident: bb0025 article-title: Risks of large-scale use of systemic insecticides to ecosystem functioning and services publication-title: Environ. Sci. Pollut. R. – volume: 8 year: 2021 ident: bb0140 article-title: Occurrence, variations, and risk assessment of neonicotinoid insecticides in Harbin section of the Songhua River, Northeast China publication-title: Environ Sci Ecotech – volume: 251 start-page: 892 year: 2019 end-page: 900 ident: bb0290 article-title: Occurrence and distribution of neonicotinoid insecticides in surface water and sediment of the Guangzhou section of the Pearl River, South China publication-title: Environ. Pollut. – volume: 430 year: 2022 ident: bb0035 article-title: High spatial resolved cropland coverage and cultivation category determine neonicotinoid distribution in agricultural soil at the provincial scale publication-title: J. Hazard. Mater. – volume: 21 start-page: 1290 year: 2021 end-page: 1301 ident: bb0300 article-title: Differential response of microbial diversity and abundance to hydrological residual time and age in cascade reservoirs publication-title: J. Soils Sediments – volume: 10 year: 2024 ident: bb0150 article-title: Associations between neonicotinoid insecticide levels in follicular fluid and serum and reproductive outcomes among women undergoing assisted reproductive technology: An observational study publication-title: Heliyon – volume: 10 year: 2022 ident: bb0155 article-title: Pesticide residues in commonly consumed vegetables in Henan Province of China in 2020 publication-title: Front. Public Health – volume: 667 start-page: 586 year: 2019 end-page: 593 ident: bb0260 article-title: Accumulation and toxicity of thiamethoxam and its metabolite clothianidin to the gonads of publication-title: Sci. Total Environ. – volume: 152 start-page: 17 year: 2018 end-page: 23 ident: bb0205 article-title: Metabolomic analysis of honey bee, publication-title: Pestic Biochem Phys – volume: 743 year: 2020 ident: bb0230 article-title: Evaluation of interregional consistency in associations between neonicotinoid insecticides and functions of benthic invertebrate communities in rivers in urban rice-paddy areas publication-title: Sci. Total Environ. – volume: 365 year: 2024 ident: bb0240 article-title: Pollution characteristics, environmental issues, and green development of neonicotinoid insecticides in China: insights from Imidacloprid publication-title: Environ. Pollut. – volume: 125 start-page: 155 year: 2017 end-page: 162 ident: bb0050 article-title: Effects of neonicotinoid pesticide exposure on human health: a systematic review publication-title: Environ Health Persp – volume: 357 year: 2024 ident: bb0020 article-title: Effects of the insecticide imidacloprid on aquatic invertebrate communities of the Ecuadorian Amazon publication-title: Environ. Pollut. – volume: 339 year: 2023 ident: bb0145 article-title: Transport of neonicotinoid insecticides in a wetland ecosystem: has the cultivation of different crops become the major sources? publication-title: J. Environ. Manag. – volume: 252 year: 2024 ident: bb0085 article-title: Analysis of nationwide soil pesticide pollution: insights from China publication-title: Environ. Res. – volume: 669 start-page: 721 year: 2019 end-page: 728 ident: bb0235 article-title: Urinary monitoring of neonicotinoid imidacloprid exposure to pesticide applicators publication-title: Sci. Total Environ. – volume: 44 start-page: 3955 year: 2024 end-page: 3965 ident: bb0105 article-title: The influence of soil physics and chemical properties on groundwater nitrogen pollution in the riparian zone of Shaying River publication-title: China Environ. Sci. – volume: 209 year: 2022 ident: bb0180 article-title: Occurrence and ecological risk assessment of neonicotinoids and related insecticides in the Bohai Sea and its surrounding rivers publication-title: China. Water Res – volume: 217 start-page: 437 year: 2019 end-page: 446 ident: bb0310 article-title: Occurrence, distribution and seasonal variation of five neonicotinoid insecticides in surface water and sediment of the pearl Rivers, South China publication-title: Chemosphere – volume: 17 year: 2023 ident: 10.1016/j.marpolbul.2025.118068_bb0255 article-title: Residue detection and correlation analysis of multiple neonicotinoid insecticides and their metabolites in edible herbs publication-title: Food Chem X doi: 10.1016/j.fochx.2023.100603 – volume: 189 year: 2021 ident: 10.1016/j.marpolbul.2025.118068_bb0170 article-title: A nationwide study of occurrence and exposure assessment of neonicotinoid insecticides and their metabolites in drinking water of China publication-title: Water Res. doi: 10.1016/j.watres.2020.116630 – volume: 779 year: 2021 ident: 10.1016/j.marpolbul.2025.118068_bb0135 article-title: Insights into the horizontal and vertical profiles of microplastics in a river emptying into the sea affected by intensive anthropogenic activities in northern China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146589 – volume: 446 year: 2023 ident: 10.1016/j.marpolbul.2025.118068_bb0040 article-title: First evidence of neonicotinoid insecticides in human bile and associated hepatotoxicity risk publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.130715 – volume: 152 start-page: 17 year: 2018 ident: 10.1016/j.marpolbul.2025.118068_bb0205 article-title: Metabolomic analysis of honey bee, Apis mellifera L. response to thiacloprid publication-title: Pestic Biochem Phys doi: 10.1016/j.pestbp.2018.08.003 – volume: 44 start-page: 3955 year: 2024 ident: 10.1016/j.marpolbul.2025.118068_bb0105 article-title: The influence of soil physics and chemical properties on groundwater nitrogen pollution in the riparian zone of Shaying River publication-title: China Environ. Sci. – ident: 10.1016/j.marpolbul.2025.118068_bb0055 – volume: 7 year: 2012 ident: 10.1016/j.marpolbul.2025.118068_bb0100 article-title: Nicotine-like effects of the neonicotinoid insecticides Acetamiprid and Imidacloprid on cerebellar neurons from neonatal rats publication-title: PLoS One doi: 10.1371/journal.pone.0032432 – ident: 10.1016/j.marpolbul.2025.118068_bb0275 – volume: 10 year: 2024 ident: 10.1016/j.marpolbul.2025.118068_bb0150 article-title: Associations between neonicotinoid insecticide levels in follicular fluid and serum and reproductive outcomes among women undergoing assisted reproductive technology: An observational study publication-title: Heliyon – volume: 8 year: 2021 ident: 10.1016/j.marpolbul.2025.118068_bb0140 article-title: Occurrence, variations, and risk assessment of neonicotinoid insecticides in Harbin section of the Songhua River, Northeast China publication-title: Environ Sci Ecotech – volume: 3 start-page: 1027 year: 2020 ident: 10.1016/j.marpolbul.2025.118068_bb0120 article-title: Neonicotinoids and decline in bird biodiversity in the United States publication-title: Nat Sustain doi: 10.1038/s41893-020-0582-x – volume: 649 start-page: 1083 year: 2019 ident: 10.1016/j.marpolbul.2025.118068_bb0215 article-title: Monitoring of the 17 EU watch list contaminants of emerging concern in the Ave and the Sousa Rivers publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.309 – volume: 948 year: 2024 ident: 10.1016/j.marpolbul.2025.118068_bb0285 article-title: Neonicotinoid insecticides in a large-scale agricultural basin system - use, emission, transportation, and their contributions to the ecological risks in the Pearl River Basin publication-title: China. Sci Total Environ doi: 10.1016/j.scitotenv.2024.174392 – volume: 350 year: 2024 ident: 10.1016/j.marpolbul.2025.118068_bb0335 article-title: Harmonizing pesticides environmental quality standards: a fate-pathway perspective publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.141063 – volume: 249 start-page: 949 year: 2019 ident: 10.1016/j.marpolbul.2025.118068_bb0015 article-title: A survey and risk assessment of neonicotinoids in water, soil and sediments of Belize publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.03.099 – volume: 146 year: 2023 ident: 10.1016/j.marpolbul.2025.118068_bb0095 article-title: Spatial distribution and ecological risks of neonicotinoid insecticides for an urban tidal stream of Guangzhou City publication-title: South China. Ecol Indic – volume: 743 year: 2020 ident: 10.1016/j.marpolbul.2025.118068_bb0230 article-title: Evaluation of interregional consistency in associations between neonicotinoid insecticides and functions of benthic invertebrate communities in rivers in urban rice-paddy areas publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140627 – volume: 74 start-page: 291 year: 2015 ident: 10.1016/j.marpolbul.2025.118068_bb0175 article-title: Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review publication-title: Environ. Int. doi: 10.1016/j.envint.2014.10.024 – volume: 51 start-page: 4424 year: 2017 ident: 10.1016/j.marpolbul.2025.118068_bb0090 article-title: Experimental study on the role of sedimentation and degradation processes on atmospheric deposition of persistent organic pollutants in a subtropical water column publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00568 – volume: 753 year: 2021 ident: 10.1016/j.marpolbul.2025.118068_bb0350 article-title: Impact of farm size on intensity of pesticide use: evidence from China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141696 – volume: 10 year: 2022 ident: 10.1016/j.marpolbul.2025.118068_bb0005 article-title: Neonicotinoid insecticides in the environment: a critical review of their distribution, transport, fate, and toxic effects publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.108485 – volume: 902 year: 2023 ident: 10.1016/j.marpolbul.2025.118068_bb0080 article-title: Distribution characteristics and risk assessment of neonicotinoid insecticides in planting soils of mainland China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.166000 – volume: 357 year: 2024 ident: 10.1016/j.marpolbul.2025.118068_bb0020 article-title: Effects of the insecticide imidacloprid on aquatic invertebrate communities of the Ecuadorian Amazon publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2024.124459 – volume: 333 year: 2023 ident: 10.1016/j.marpolbul.2025.118068_bb0325 article-title: Occurrence, source, and risk assessment of neonicotinoid insecticides in the Huai River publication-title: China. Environ Pollut doi: 10.1016/j.envpol.2023.122068 – volume: 858 year: 2023 ident: 10.1016/j.marpolbul.2025.118068_bb0045 article-title: Seasonal drivers and risks of aquatic pesticide pollution in drought and post-drought conditions in three Mediterranean watersheds publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.159784 – volume: 203 year: 2021 ident: 10.1016/j.marpolbul.2025.118068_bb0065 article-title: Small streams-large concentrations? Pesticide monitoring in small agricultural streams in Germany during dry weather and rainfall publication-title: Water Res. doi: 10.1016/j.watres.2021.117535 – volume: 21 start-page: 1290 year: 2021 ident: 10.1016/j.marpolbul.2025.118068_bb0300 article-title: Differential response of microbial diversity and abundance to hydrological residual time and age in cascade reservoirs publication-title: J. Soils Sediments doi: 10.1007/s11368-020-02800-2 – volume: 37 start-page: 1430 year: 2018 ident: 10.1016/j.marpolbul.2025.118068_bb0185 article-title: Acute toxicity of 6 neonicotinoid insecticides to freshwater invertebrates publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.4088 – volume: 10 year: 2022 ident: 10.1016/j.marpolbul.2025.118068_bb0155 article-title: Pesticide residues in commonly consumed vegetables in Henan Province of China in 2020 publication-title: Front. Public Health – volume: 443 year: 2023 ident: 10.1016/j.marpolbul.2025.118068_bb0200 article-title: Damming has changed the migration process of microplastics and increased the pollution risk in the reservoirs in the Shaying River basin publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.130067 – volume: 346 start-page: 806 year: 2014 ident: 10.1016/j.marpolbul.2025.118068_bb0195 article-title: The trouble with neonicotinoids publication-title: Science doi: 10.1126/science.1259159 – ident: 10.1016/j.marpolbul.2025.118068_bb0270 – volume: 53 start-page: 2539 year: 2019 ident: 10.1016/j.marpolbul.2025.118068_bb0030 article-title: Resolution of the ongoing challenge of estimating nonpoint source neonicotinoid pollution in the Yangtze River basin using a modified mass balance approach publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b06096 – volume: 251 start-page: 892 year: 2019 ident: 10.1016/j.marpolbul.2025.118068_bb0290 article-title: Occurrence and distribution of neonicotinoid insecticides in surface water and sediment of the Guangzhou section of the Pearl River, South China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.05.062 – volume: 52 start-page: 3329 year: 2018 ident: 10.1016/j.marpolbul.2025.118068_bb0075 article-title: Environmental risks and challenges associated with neonicotinoid insecticides publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b06388 – volume: 870 year: 2023 ident: 10.1016/j.marpolbul.2025.118068_bb0115 article-title: Spatiotemporal distribution patterns and ecological risk of multi-pesticide residues in the surface water of a typical agriculture area in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.161872 – volume: 455 year: 2023 ident: 10.1016/j.marpolbul.2025.118068_bb0190 article-title: Aquatic-terrestrial transfer of neonicotinoid insecticides in riparian food webs publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.131635 – volume: 365 year: 2024 ident: 10.1016/j.marpolbul.2025.118068_bb0240 article-title: Pollution characteristics, environmental issues, and green development of neonicotinoid insecticides in China: insights from Imidacloprid publication-title: Environ. Pollut. – volume: 339 year: 2023 ident: 10.1016/j.marpolbul.2025.118068_bb0145 article-title: Transport of neonicotinoid insecticides in a wetland ecosystem: has the cultivation of different crops become the major sources? publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2023.117838 – volume: 229 start-page: 452 year: 2019 ident: 10.1016/j.marpolbul.2025.118068_bb0165 article-title: Neonicotinoid insecticides in surface water from the Central Yangtze River, China publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.05.040 – volume: 366 start-page: 620 year: 2019 ident: 10.1016/j.marpolbul.2025.118068_bb0280 article-title: Neonicotinoids disrupt aquatic food webs and decrease fishery yields publication-title: Science doi: 10.1126/science.aax3442 – volume: 247 year: 2023 ident: 10.1016/j.marpolbul.2025.118068_bb0250 article-title: Occurrence, spatial variation, seasonal difference, and risk assessment of neonicotinoid insecticides, selected agriculture fungicides, and their transformation products in the Yangtze River, China: from the upper to lower reaches publication-title: Water Res. doi: 10.1016/j.watres.2023.120724 – volume: 39 start-page: 1884 year: 2020 ident: 10.1016/j.marpolbul.2025.118068_bb0340 article-title: Toxicities of neonicotinoid-containing pesticide mixtures on nontarget organisms publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.4842 – volume: 458 year: 2023 ident: 10.1016/j.marpolbul.2025.118068_bb0060 article-title: Occurrence and water-sediment exchange of systemic insecticides and their transformation products in an agriculture-dominated basin publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.131851 – volume: 667 start-page: 586 year: 2019 ident: 10.1016/j.marpolbul.2025.118068_bb0260 article-title: Accumulation and toxicity of thiamethoxam and its metabolite clothianidin to the gonads of Eremias argus publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.419 – volume: 252 year: 2024 ident: 10.1016/j.marpolbul.2025.118068_bb0085 article-title: Analysis of nationwide soil pesticide pollution: insights from China publication-title: Environ. Res. doi: 10.1016/j.envres.2024.118988 – volume: 22 start-page: 119 year: 2015 ident: 10.1016/j.marpolbul.2025.118068_bb0025 article-title: Risks of large-scale use of systemic insecticides to ecosystem functioning and services publication-title: Environ. Sci. Pollut. R. doi: 10.1007/s11356-014-3277-x – volume: 867 year: 2023 ident: 10.1016/j.marpolbul.2025.118068_bb0225 article-title: Neonicotinoid insecticides in global agricultural surface waters-exposure, risks and regulatory challenges publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.161383 – volume: 923 year: 2024 ident: 10.1016/j.marpolbul.2025.118068_bb0330 article-title: Neonicotinoid insecticides in waters of the northern Jiangsu segment of the Beijing-Hangzhou Grand Canal: environmental and health implications publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2024.171455 – volume: 30 start-page: 115950 year: 2023 ident: 10.1016/j.marpolbul.2025.118068_bb0110 article-title: Differences in nonpoint source pollution load losses based on hydrological zone characteristics: a case study of the Shaying River basin, China publication-title: Environ. Sci. Pollut. R. doi: 10.1007/s11356-023-30360-8 – volume: 26 start-page: 11153 year: 2019 ident: 10.1016/j.marpolbul.2025.118068_bb0160 article-title: Sources and transformations of anthropogenic nitrogen in the highly disturbed Huai River basin, eastern China publication-title: Environ. Sci. Pollut. R. doi: 10.1007/s11356-019-04470-1 – volume: 22 start-page: 35 year: 2015 ident: 10.1016/j.marpolbul.2025.118068_bb0010 article-title: Environmental fate and exposure; neonicotinoids and fipronil publication-title: Environ. Sci. Pollut. R. doi: 10.1007/s11356-014-3332-7 – volume: 209 year: 2022 ident: 10.1016/j.marpolbul.2025.118068_bb0180 article-title: Occurrence and ecological risk assessment of neonicotinoids and related insecticides in the Bohai Sea and its surrounding rivers publication-title: China. Water Res – volume: 782 year: 2021 ident: 10.1016/j.marpolbul.2025.118068_bb0345 article-title: Comparison of neonicotinoid residues in soils of different land use types publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146803 – year: 2009 ident: 10.1016/j.marpolbul.2025.118068_bb0320 – volume: 430 year: 2022 ident: 10.1016/j.marpolbul.2025.118068_bb0035 article-title: High spatial resolved cropland coverage and cultivation category determine neonicotinoid distribution in agricultural soil at the provincial scale publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.128476 – volume: 22 start-page: 5 year: 2015 ident: 10.1016/j.marpolbul.2025.118068_bb0210 article-title: Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites publication-title: Environ. Sci. Pollut. R. doi: 10.1007/s11356-014-3470-y – volume: 58 start-page: 3173 year: 2024 ident: 10.1016/j.marpolbul.2025.118068_bb0295 article-title: Neonicotinoids persisting in the sea pose a potential chronic risk to marine organisms: a case from Xiangshan Bay, China (2015-2019) publication-title: Environ. Sci. Technol. – volume: 125 start-page: 155 year: 2017 ident: 10.1016/j.marpolbul.2025.118068_bb0050 article-title: Effects of neonicotinoid pesticide exposure on human health: a systematic review publication-title: Environ Health Persp doi: 10.1289/EHP515 – volume: 42 start-page: 928 year: 2023 ident: 10.1016/j.marpolbul.2025.118068_bb0125 article-title: A modeling approach for assessing ecological risks of neonicotinoid insecticides from emission to nontarget organisms: a case study of cotton plant publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5583 – volume: 217 start-page: 437 year: 2019 ident: 10.1016/j.marpolbul.2025.118068_bb0310 article-title: Occurrence, distribution and seasonal variation of five neonicotinoid insecticides in surface water and sediment of the pearl Rivers, South China publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.11.024 – volume: 473 year: 2024 ident: 10.1016/j.marpolbul.2025.118068_bb0130 article-title: Neonicotinoid insecticides in well-developed agricultural cultivation areas: seawater occurrence, spatial-seasonal variability and ecological risks publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2024.134621 – volume: 167 year: 2020 ident: 10.1016/j.marpolbul.2025.118068_bb0220 article-title: Insecticides, biologics and nematicides: updates to IRAC’S mode of action classification - a tool for resistance management publication-title: Pestic Biochem Phys doi: 10.1016/j.pestbp.2020.104587 – volume: 208 year: 2022 ident: 10.1016/j.marpolbul.2025.118068_bb0315 article-title: Exposure to neonicotinoid insecticides and their characteristic metabolites: association with human liver cancer publication-title: Environ. Res. doi: 10.1016/j.envres.2022.112703 – year: 2024 ident: 10.1016/j.marpolbul.2025.118068_bb0305 – volume: 782 year: 2021 ident: 10.1016/j.marpolbul.2025.118068_bb0245 article-title: Occurrence, spatiotemporal distribution, and risk assessment of current-use pesticides in surface water: a case study near Taihu Lake publication-title: China. Sci Total Environ doi: 10.1016/j.scitotenv.2021.146826 – volume: 511 start-page: 341 year: 2014 ident: 10.1016/j.marpolbul.2025.118068_bb0070 article-title: Declines in insectivorous birds are associated with high neonicotinoid concentrations publication-title: Nature doi: 10.1038/nature13531 – volume: 669 start-page: 721 year: 2019 ident: 10.1016/j.marpolbul.2025.118068_bb0235 article-title: Urinary monitoring of neonicotinoid imidacloprid exposure to pesticide applicators publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.040 – volume: 6 start-page: 32108 year: 2016 ident: 10.1016/j.marpolbul.2025.118068_bb0265 article-title: Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development publication-title: Sci Rep-Uk doi: 10.1038/srep32108 |
SSID | ssj0007271 |
Score | 2.4657822 |
Snippet | The widespread use of neonicotinoid insecticides (NNIs) has led to their widespread detection in surface waters worldwide. However, pollution characteristics... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 118068 |
SubjectTerms | acetamiprid Agriculture - statistics & numerical data Animals Aquatic Organisms basins China clothianidin Ecological risks Environmental Monitoring fruit growing imidacloprid Insecticides - analysis Insecticides - toxicity marine pollution Neonicotinoid insecticides Neonicotinoids - analysis Neonicotinoids - toxicity pesticide application risk Risk Assessment river water Riverine fluxes rivers Rivers - chemistry Spatial distribution surface water thiamethoxam Vertical variation Water Pollutants, Chemical - analysis Water Pollutants, Chemical - toxicity Water Pollution, Chemical - statistics & numerical data |
Title | Neonicotinoid insecticides in river water of an agriculture-dominated basin: Occurrence, flux variations, and ecological risks |
URI | https://dx.doi.org/10.1016/j.marpolbul.2025.118068 https://www.ncbi.nlm.nih.gov/pubmed/40311401 https://www.proquest.com/docview/3199462477 https://www.proquest.com/docview/3242042233 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4heqkqVYWWdluKXKlHAknsbDA3hEDbVt1eirQ3y88qFTirZBc48ds7kwcIqY9Dj07syPGMZ76xx58BPmYy2IBANZGlC4nISp9o0a2I5cZ51BrZ8RR8nU9nF-LzolhswOl4FobSKgfb39v0zloPTw6H0TxcVhWd8c0LBB8LdOKIOzjF7UKUpOUHdw9pHuifs_HaVqr9KMfrSjfL-tKsaQ8iLw6IDo04V3_vof6EQDtPdP4Cng8Qkp30vdyCDR-3Yefs4cQavhymbLsNz75Zr-NATP0S7uaeyHDrVRXryrEqtmTxbOV8iwXWUJoGu0EA2rA6MB2Z_tEM9Bw-cTUlziBGZej8qnjMiKO46c4L7rNwub5l1xh692uA-9jYMW9H48ooib19BRfnZ99PZ8lwB0NiEZqtkqJwhZQGYcGRTYNMuS-1szhrZe7SLBinuc9FWaLXN4VxPJehtM5kQThupqnjO7AZ6-jfACu0ldIigLQYBXlpaYdTCPwUXc5eptkE0nHc1bKn2lBjDtpPdS8qRaJSvagmcDzKRz3SGoUO4d-NP4wSVTinaKNER1-vW8WJMHlKv_WXOohtiD-N8wm87tXhvtcCLSUFrm__p3vv4CmV-mTDXdhcNWv_HgHQyux1Gr4HT04-fZnNfwGTaAeG |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAhISgUlqeR4Na0SexscCUOCFptabtcWmlvJn4EBRVnlexSuPRP8QeZSZxWlXgcUI-JE8vxTGY-258_A7xMZGlKBKqRzG0ZiSR3USG6GbFUW4deIzudgsPpeHIsPsyy2Qr8HPbCEK0yxP4-pnfROtzZCr25Na8q2uObZgg-ZpjEEXfwODAr992PUxy3tW_23qORX6Xp7s7Ru0kUjhaIDCKORZRlNpNSY7Z7beJSxtzlhTXojDK1cVJqW3CXijzHZKYzbXkqy9xYnZTCcj2OLcd6r8F1geGCjk3YPLvglSAgSIZzYql5l0hlX4tmXp_oJS16pNkm6a-RyOvvU-KfIG-X-nbvwO2AWdnbvlvuworza7C-c7FFDgtDjGjX4NZH4woflLDvwdnUkfpuvah8XVlW-ZZCrKmsa_GCNcQLYaeIeBtWl6zwrPjcBD0QF9mamDoIihlm28pvMxJFbroNihusPFl-Z99wrN9POm7gy5Y5M0RzRqz59j4cX4ll1mHV1949BJYVRkqDiNXgsMtJQ0uqQmBVdBp8HicjiId-V_Ne20MNpLcv6txUikylelONYHuwj7rkpgoz0L9ffjFYVOFPTCszhXf1slWcFJrH9Fl_eQbBFAm2cT6CB707nLdaYGimkfKj_2nec7gxOTo8UAd70_3HcJNKeqbjE1hdNEv3FNHXQj_rvJ3Bp6v-vX4BghxDUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neonicotinoid+insecticides+in+river+water+of+an+agriculture-dominated+basin%3A+Occurrence%2C+flux+variations%2C+and+ecological+risks&rft.jtitle=Marine+pollution+bulletin&rft.au=Wang%2C+JinZe&rft.au=Hou%2C+Jie&rft.au=Han%2C+BingJun&rft.au=Wang%2C+LiXi&rft.date=2025-08-01&rft.issn=0025-326X&rft.volume=217&rft.spage=118068&rft_id=info:doi/10.1016%2Fj.marpolbul.2025.118068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_marpolbul_2025_118068 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-326X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-326X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-326X&client=summon |