Organic-Inorganic-Induced Polymer Intercalation into Layered Composites for Aqueous Zinc-Ion Battery
Rechargeable aqueous zinc-based batteries are very attractive alternative devices for current energy storage by virtue of their low cost and high security. However, the performance of vanadium oxide cathode strongly relies on the distance of interlayer spacing. Here, we employ layered PEDOT-NH4V3O8...
Saved in:
Published in | Chem Vol. 6; no. 4; pp. 968 - 984 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
09.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rechargeable aqueous zinc-based batteries are very attractive alternative devices for current energy storage by virtue of their low cost and high security. However, the performance of vanadium oxide cathode strongly relies on the distance of interlayer spacing. Here, we employ layered PEDOT-NH4V3O8 (PEDOT-NVO) as a cathode material, which produces an enlarged interlayer spacing of 10.8 Å (against 7.8 Å for the single NVO) by effectively conducting polymer intercalation. This cathode material exhibits an improved capacity of 356.8 mAh g−1 at 0.05 A g−1 and 163.6 mAh g−1, even at the highest current density of 10 A g−1 (with a high retention from 0.05 to 10 A g−1), and features an ultra-long lifetime of over 5,000 charge-discharge cycles with a capacity retention of 94.1%. A combination of mechanism analyses and theoretical calculations suggest that the oxygen vacancies and larger interlayer spacing through polymer assistance account for the improved electrochemical performance.
[Display omitted]
•A kind of organic-inorganic intercalated layered composite was synthesized•The PEDOT-NH4V3O8 has enlarged interlayer spacing and oxygen vacancies•The PEDOT-NH4V3O8 cathode exhibits excellent zinc storage performance•The mechanistic and theoretical analysis was investigated by various methods
For the high demand of large-scale renewable energy storage system, zinc-ion batteries fulfill this requirement because of their abundance in Earth's total elemental reserves, higher water stability than that of alkaline (Li, Na, and K) metals, and high theoretical capacity. Here, we have developed an enlarged interlayer spacing of layered material that is capable of reversibly accommodating more Zn2+ ion while achieving high-cycle performance cathode materials for the application of zinc-ion batteries. The conducting polymer material has emerged as an important pathway for producing organic-inorganic intercalation compounds with larger interlayer spacing or oxygen vacancies, which are essential for fundamental studies as well as technique application.
A kind of organic-inorganic intercalated composite can improve capacity and stability in aqueous rechargeable zinc batteries (ARZBs) as a result of the expanded interplanar spacing distance and oxygen vacancies of ammonium vanadate layered oxide. |
---|---|
AbstractList | Rechargeable aqueous zinc-based batteries are very attractive alternative devices for current energy storage by virtue of their low cost and high security. However, the performance of vanadium oxide cathode strongly relies on the distance of interlayer spacing. Here, we employ layered PEDOT-NH4V3O8 (PEDOT-NVO) as a cathode material, which produces an enlarged interlayer spacing of 10.8 Å (against 7.8 Å for the single NVO) by effectively conducting polymer intercalation. This cathode material exhibits an improved capacity of 356.8 mAh g−1 at 0.05 A g−1 and 163.6 mAh g−1, even at the highest current density of 10 A g−1 (with a high retention from 0.05 to 10 A g−1), and features an ultra-long lifetime of over 5,000 charge-discharge cycles with a capacity retention of 94.1%. A combination of mechanism analyses and theoretical calculations suggest that the oxygen vacancies and larger interlayer spacing through polymer assistance account for the improved electrochemical performance.
[Display omitted]
•A kind of organic-inorganic intercalated layered composite was synthesized•The PEDOT-NH4V3O8 has enlarged interlayer spacing and oxygen vacancies•The PEDOT-NH4V3O8 cathode exhibits excellent zinc storage performance•The mechanistic and theoretical analysis was investigated by various methods
For the high demand of large-scale renewable energy storage system, zinc-ion batteries fulfill this requirement because of their abundance in Earth's total elemental reserves, higher water stability than that of alkaline (Li, Na, and K) metals, and high theoretical capacity. Here, we have developed an enlarged interlayer spacing of layered material that is capable of reversibly accommodating more Zn2+ ion while achieving high-cycle performance cathode materials for the application of zinc-ion batteries. The conducting polymer material has emerged as an important pathway for producing organic-inorganic intercalation compounds with larger interlayer spacing or oxygen vacancies, which are essential for fundamental studies as well as technique application.
A kind of organic-inorganic intercalated composite can improve capacity and stability in aqueous rechargeable zinc batteries (ARZBs) as a result of the expanded interplanar spacing distance and oxygen vacancies of ammonium vanadate layered oxide. |
Author | Liu, Yao Wang, Yonggang Huo, Wangchen Huang, Jianhang Dong, Fan Xia, Yongyao Yuan, Yingbo Zhang, Yuxin Bin, Duan |
Author_xml | – sequence: 1 givenname: Duan surname: Bin fullname: Bin, Duan organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai, 200433, China – sequence: 2 givenname: Wangchen surname: Huo fullname: Huo, Wangchen organization: State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China – sequence: 3 givenname: Yingbo surname: Yuan fullname: Yuan, Yingbo organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai, 200433, China – sequence: 4 givenname: Jianhang surname: Huang fullname: Huang, Jianhang organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai, 200433, China – sequence: 5 givenname: Yao surname: Liu fullname: Liu, Yao organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai, 200433, China – sequence: 6 givenname: Yuxin surname: Zhang fullname: Zhang, Yuxin organization: State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China – sequence: 7 givenname: Fan surname: Dong fullname: Dong, Fan organization: Research Center for Environmental Science & Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China – sequence: 8 givenname: Yonggang surname: Wang fullname: Wang, Yonggang organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai, 200433, China – sequence: 9 givenname: Yongyao surname: Xia fullname: Xia, Yongyao email: yyxia@fudan.edu.cn organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai, 200433, China |
BookMark | eNqFkMtKAzEUhoNUsNa-gYt5gRlzmasLoRYvhUJd6MZNyGTOaMpMUpOMMG9vakXEhcKBnMX__Zx8p2iijQaEzglOCCb5xTaRr9DvbEIxxQmmCcbkCE1pmpG4olU6-bGfoLlzWxwSJSVFhqeo2dgXoZWMV9p8b80goYkeTDf2YKOV9mCl6IRXRkdKexOtxQg2RJam3xmnPLioNTZavA1gBhc9Kx1qQvha-MCOZ-i4FZ2D-dc7Q0-3N4_L-3i9uVstF-tYsoz6OEuhoiTNaymbssZpDiSXNWGYFg1rcsnSluRF0RZFGaZlEkNZCyEZhoqRMmczdHnoldY4Z6HlUvnPs70VquME870yvuUHZXyvjGPKg5AAp7_gnVW9sON_2NUBg_CxdwWWO6lAB4HKgvS8Mervgg-7korz |
CitedBy_id | crossref_primary_10_1002_asia_202200067 crossref_primary_10_1016_j_coco_2021_100882 crossref_primary_10_1021_acsnano_1c01389 crossref_primary_10_1021_acsnano_4c17565 crossref_primary_10_1002_smtd_202300255 crossref_primary_10_1016_j_cclet_2023_108487 crossref_primary_10_1016_j_cclet_2023_109213 crossref_primary_10_1007_s40820_024_01339_y crossref_primary_10_1002_ange_202212031 crossref_primary_10_1557_s43581_022_00033_z crossref_primary_10_1039_D4TA01656D crossref_primary_10_1039_D3TA00133D crossref_primary_10_1002_adfm_202111714 crossref_primary_10_1002_smll_202304668 crossref_primary_10_1039_D3EE02029K crossref_primary_10_3390_nano11041054 crossref_primary_10_1002_tcr_202200310 crossref_primary_10_1039_D4CC05484A crossref_primary_10_1002_smll_202207754 crossref_primary_10_1016_j_cej_2023_146901 crossref_primary_10_1016_j_ensm_2021_03_005 crossref_primary_10_1002_smll_202306275 crossref_primary_10_1039_D0TA10336E crossref_primary_10_1016_j_ensm_2022_05_010 crossref_primary_10_1002_advs_202002722 crossref_primary_10_1021_acsami_4c16336 crossref_primary_10_1016_j_chempr_2023_03_033 crossref_primary_10_1016_j_gce_2023_01_001 crossref_primary_10_1039_D1SE01317C crossref_primary_10_1002_adma_202314247 crossref_primary_10_1016_j_trechm_2023_02_008 crossref_primary_10_1039_D0EE03206A crossref_primary_10_1039_D1QM00998B crossref_primary_10_1016_j_jpowsour_2024_234524 crossref_primary_10_1007_s40820_023_01023_7 crossref_primary_10_1002_inf2_12223 crossref_primary_10_1016_j_apsusc_2022_156259 crossref_primary_10_1016_j_nanoen_2022_107331 crossref_primary_10_1016_j_colsurfa_2023_131459 crossref_primary_10_1002_adfm_202100164 crossref_primary_10_1002_celc_202200178 crossref_primary_10_1002_celc_202200059 crossref_primary_10_1016_j_apsusc_2023_159005 crossref_primary_10_1016_j_electacta_2022_140270 crossref_primary_10_1039_D4CS00779D crossref_primary_10_1002_celc_202400504 crossref_primary_10_1016_j_colsurfa_2023_131451 crossref_primary_10_1016_j_jechem_2020_10_019 crossref_primary_10_1021_acsanm_4c03283 crossref_primary_10_1002_ange_202400045 crossref_primary_10_1016_j_electacta_2025_146056 crossref_primary_10_1016_j_vacuum_2023_112671 crossref_primary_10_1016_j_cej_2024_152064 crossref_primary_10_1002_adfm_202413893 crossref_primary_10_1021_acsaem_1c00573 crossref_primary_10_3866_PKU_WHXB202310034 crossref_primary_10_1016_j_cej_2022_138116 crossref_primary_10_1021_acsaem_2c02882 crossref_primary_10_1016_j_ensm_2022_10_016 crossref_primary_10_1002_adfm_202006855 crossref_primary_10_1016_j_mattod_2020_08_021 crossref_primary_10_1016_j_pmatsci_2021_100911 crossref_primary_10_1016_j_ensm_2021_07_044 crossref_primary_10_1002_cssc_202200075 crossref_primary_10_1016_j_cej_2023_143971 crossref_primary_10_1016_j_cej_2023_147411 crossref_primary_10_1063_5_0061714 crossref_primary_10_1002_sstr_202100212 crossref_primary_10_1002_aenm_202003823 crossref_primary_10_1016_j_jcis_2024_01_036 crossref_primary_10_3390_inorganics11030118 crossref_primary_10_1016_j_ccr_2021_214124 crossref_primary_10_1002_aenm_202103010 crossref_primary_10_1016_j_mtener_2022_101095 crossref_primary_10_1002_adma_202102701 crossref_primary_10_1002_ange_202320075 crossref_primary_10_1039_D2TA03145K crossref_primary_10_1002_batt_202400507 crossref_primary_10_1002_adfm_202010445 crossref_primary_10_1016_j_cej_2022_136861 crossref_primary_10_1016_j_ensm_2022_06_027 crossref_primary_10_3389_fchem_2022_892013 crossref_primary_10_1039_D1TA05526G crossref_primary_10_1016_j_jechem_2020_06_016 crossref_primary_10_1007_s12598_023_02364_3 crossref_primary_10_1016_j_cej_2022_140323 crossref_primary_10_1002_cnma_202000384 crossref_primary_10_1016_j_jechem_2021_01_023 crossref_primary_10_1021_acsenergylett_2c02817 crossref_primary_10_1002_eem2_12502 crossref_primary_10_1002_smsc_202000066 crossref_primary_10_1021_acsami_0c15621 crossref_primary_10_3390_batteries9010005 crossref_primary_10_1002_eem2_12145 crossref_primary_10_1039_D1TA09968J crossref_primary_10_1016_j_jpowsour_2024_234976 crossref_primary_10_1039_D2NR06786B crossref_primary_10_1039_D0QM01105C crossref_primary_10_1016_j_cej_2025_160745 crossref_primary_10_1002_ange_202212231 crossref_primary_10_1016_j_jallcom_2021_162615 crossref_primary_10_1039_D2TA04490K crossref_primary_10_1002_smtd_202200560 crossref_primary_10_1021_acssuschemeng_4c06052 crossref_primary_10_1002_adfm_202302659 crossref_primary_10_1016_j_ensm_2020_06_014 crossref_primary_10_1002_anie_202211478 crossref_primary_10_1002_ece2_69 crossref_primary_10_1002_aenm_202303967 crossref_primary_10_1016_j_est_2025_116173 crossref_primary_10_1016_j_materresbull_2020_111077 crossref_primary_10_1021_acsaem_4c02629 crossref_primary_10_1021_acs_energyfuels_4c01189 crossref_primary_10_1002_adfm_202005080 crossref_primary_10_1039_D1EE00030F crossref_primary_10_1002_ange_202310577 crossref_primary_10_1016_j_jechem_2021_08_057 crossref_primary_10_1002_anie_202200598 crossref_primary_10_1016_j_jcis_2022_08_064 crossref_primary_10_1016_j_jcis_2023_06_172 crossref_primary_10_1002_smll_202307849 crossref_primary_10_3390_molecules25225229 crossref_primary_10_1016_j_jpowsour_2022_232385 crossref_primary_10_1002_smll_202105796 crossref_primary_10_1021_acssuschemeng_3c03386 crossref_primary_10_1002_adfm_202306205 crossref_primary_10_1039_D4SC00292J crossref_primary_10_1002_ente_202100011 crossref_primary_10_1016_j_colsurfa_2024_134317 crossref_primary_10_1021_acsami_1c04279 crossref_primary_10_1002_adfm_202103070 crossref_primary_10_1021_acsnano_2c09977 crossref_primary_10_1016_j_mtener_2023_101456 crossref_primary_10_1021_acsnano_1c05725 crossref_primary_10_1002_adom_202400459 crossref_primary_10_1002_anie_202310577 crossref_primary_10_2139_ssrn_4176786 crossref_primary_10_1007_s12598_023_02434_6 crossref_primary_10_1016_j_jcis_2021_06_141 crossref_primary_10_1016_j_chphma_2021_11_001 crossref_primary_10_1002_adfm_202210010 crossref_primary_10_1002_ange_202200598 crossref_primary_10_1016_j_ccr_2022_214477 crossref_primary_10_1002_adfm_202100005 crossref_primary_10_1002_adfm_202006495 crossref_primary_10_1039_D1QM00703C crossref_primary_10_1016_j_jallcom_2023_169271 crossref_primary_10_1039_D2TA05882K crossref_primary_10_1016_j_ensm_2022_01_059 crossref_primary_10_1039_D0QM00745E crossref_primary_10_1002_aesr_202100088 crossref_primary_10_1016_j_est_2024_110808 crossref_primary_10_1016_j_jechem_2021_07_027 crossref_primary_10_1016_j_matlet_2020_127813 crossref_primary_10_1039_D4TA06326K crossref_primary_10_1039_D1TA03620C crossref_primary_10_1002_eom2_12326 crossref_primary_10_1021_acsami_2c01698 crossref_primary_10_1007_s12274_022_4477_1 crossref_primary_10_1002_cnma_202300615 crossref_primary_10_1039_D2TA08466J crossref_primary_10_1021_acsaem_1c02324 crossref_primary_10_1002_adfm_202007358 crossref_primary_10_1016_j_ensm_2020_12_010 crossref_primary_10_1016_j_mtener_2023_101474 crossref_primary_10_1039_D3TA04414A crossref_primary_10_1016_j_jma_2025_02_014 crossref_primary_10_1002_adfm_202312789 crossref_primary_10_1016_j_cej_2024_155645 crossref_primary_10_1021_acsnano_1c11169 crossref_primary_10_1007_s40843_021_1730_1 crossref_primary_10_1016_j_electacta_2023_142702 crossref_primary_10_1016_j_matlet_2025_138273 crossref_primary_10_1002_ange_202211478 crossref_primary_10_1002_cssc_202201118 crossref_primary_10_1039_D3YA00158J crossref_primary_10_1016_j_egyr_2024_06_007 crossref_primary_10_1093_nsr_nwae336 crossref_primary_10_1021_acsaem_3c02561 crossref_primary_10_1007_s11426_023_1698_6 crossref_primary_10_1016_j_ensm_2021_05_003 crossref_primary_10_1016_j_ensm_2022_04_040 crossref_primary_10_1039_D1TA10545K crossref_primary_10_1002_smll_202207487 crossref_primary_10_1021_acs_chemrev_3c00389 crossref_primary_10_3390_nano12213896 crossref_primary_10_1016_j_cej_2023_147727 crossref_primary_10_1021_acssuschemeng_3c07140 crossref_primary_10_1021_acs_langmuir_4c03422 crossref_primary_10_1007_s10008_023_05542_6 crossref_primary_10_1002_adma_202100359 crossref_primary_10_3390_nano11061517 crossref_primary_10_1016_j_nanoen_2021_105969 crossref_primary_10_1002_cjoc_202100791 crossref_primary_10_1016_j_jics_2022_100663 crossref_primary_10_1007_s10751_024_02212_5 crossref_primary_10_1039_D2NH00349J crossref_primary_10_1016_j_jallcom_2025_178455 crossref_primary_10_1002_smll_202201011 crossref_primary_10_1021_acsenergylett_3c01737 crossref_primary_10_1002_smll_202306790 crossref_primary_10_1016_j_cclet_2022_107839 crossref_primary_10_1002_adfm_202400032 crossref_primary_10_1002_smll_202402811 crossref_primary_10_1016_j_nxener_2023_100067 crossref_primary_10_1039_D3EE00462G crossref_primary_10_1002_smtd_202300660 crossref_primary_10_1002_smtd_202301083 crossref_primary_10_1016_j_cej_2022_139396 crossref_primary_10_1016_j_jssc_2022_123788 crossref_primary_10_1021_acsami_2c02920 crossref_primary_10_1021_acsaem_2c00832 crossref_primary_10_1021_acsami_1c01405 crossref_primary_10_1016_j_gee_2023_02_001 crossref_primary_10_1039_D2QI00362G crossref_primary_10_1002_advs_202004995 crossref_primary_10_1016_j_cej_2021_134402 crossref_primary_10_1016_j_jcis_2024_03_161 crossref_primary_10_1002_cey2_647 crossref_primary_10_1002_smll_202309029 crossref_primary_10_1021_acsami_1c04596 crossref_primary_10_1002_adfm_202201584 crossref_primary_10_3390_en17225768 crossref_primary_10_1002_anie_202415997 crossref_primary_10_1039_D2MA00063F crossref_primary_10_1007_s11708_023_0902_8 crossref_primary_10_1002_advs_202206836 crossref_primary_10_1002_aenm_202404597 crossref_primary_10_1016_j_enchem_2021_100052 crossref_primary_10_1002_ente_202000829 crossref_primary_10_1039_D3EE01344H crossref_primary_10_1007_s40820_023_01136_z crossref_primary_10_1002_aenm_202301480 crossref_primary_10_1016_j_seppur_2024_129058 crossref_primary_10_1007_s12274_020_3109_x crossref_primary_10_1039_D0QM00656D crossref_primary_10_1016_j_fmre_2021_06_017 crossref_primary_10_1002_aenm_202002354 crossref_primary_10_1016_j_jallcom_2022_164434 crossref_primary_10_1016_j_ensm_2024_103544 crossref_primary_10_1016_j_jcis_2024_03_025 crossref_primary_10_1016_j_est_2024_113716 crossref_primary_10_3390_en15238966 crossref_primary_10_1088_1674_4926_44_4_041701 crossref_primary_10_1016_j_compositesb_2024_111305 crossref_primary_10_1039_D2QM00254J crossref_primary_10_1007_s40843_021_1808_7 crossref_primary_10_1039_D4QI01942C crossref_primary_10_1016_j_cej_2024_157587 crossref_primary_10_1002_anie_202400045 crossref_primary_10_1002_anie_202212231 crossref_primary_10_1002_adfm_202311412 crossref_primary_10_1016_j_cej_2022_136349 crossref_primary_10_1039_D1EE01472B crossref_primary_10_1016_j_vacuum_2023_112826 crossref_primary_10_1039_D4TA00376D crossref_primary_10_1021_acssuschemeng_0c09184 crossref_primary_10_1016_j_jpcs_2023_111558 crossref_primary_10_1016_j_jpowsour_2023_232945 crossref_primary_10_1002_smll_202305030 crossref_primary_10_1002_adfm_202104543 crossref_primary_10_1016_j_jpowsour_2025_236365 crossref_primary_10_1016_j_cej_2022_137681 crossref_primary_10_1016_j_cej_2022_139621 crossref_primary_10_1016_j_ensm_2024_103494 crossref_primary_10_1016_j_mtcomm_2021_102271 crossref_primary_10_1021_acsami_2c19457 crossref_primary_10_1021_acssuschemeng_3c06125 crossref_primary_10_1002_adfm_202301291 crossref_primary_10_1002_adfm_202303102 crossref_primary_10_1016_j_ensm_2021_04_004 crossref_primary_10_1002_ange_202415997 crossref_primary_10_1016_j_cej_2022_134738 crossref_primary_10_1039_D4CC04997G crossref_primary_10_1039_D3NR06207D crossref_primary_10_1002_aesr_202100220 crossref_primary_10_1002_anie_202320075 crossref_primary_10_1007_s12274_023_6286_6 crossref_primary_10_1016_j_cej_2022_141140 crossref_primary_10_1016_j_est_2023_106988 crossref_primary_10_1016_j_jechem_2020_10_044 crossref_primary_10_1002_anie_202008960 crossref_primary_10_1016_j_cej_2023_142221 crossref_primary_10_1039_D1TA04420F crossref_primary_10_1002_adfm_202102011 crossref_primary_10_1016_j_jpowsour_2021_229677 crossref_primary_10_1016_j_chempr_2020_03_006 crossref_primary_10_1021_acsami_1c18950 crossref_primary_10_1002_aenm_202401493 crossref_primary_10_1016_j_est_2024_112002 crossref_primary_10_1016_j_jallcom_2023_171750 crossref_primary_10_1002_adfm_202303211 crossref_primary_10_1002_adma_202310645 crossref_primary_10_1002_batt_202200221 crossref_primary_10_1016_j_jcis_2022_11_101 crossref_primary_10_1039_D3CS00295K crossref_primary_10_1039_D4TA05938G crossref_primary_10_1016_j_colsurfa_2023_131703 crossref_primary_10_1016_j_jpowsour_2021_229680 crossref_primary_10_1002_batt_202200461 crossref_primary_10_1021_acsaem_3c00063 crossref_primary_10_1002_elsa_202100090 crossref_primary_10_1021_acsaem_3c02940 crossref_primary_10_1002_aenm_202406171 crossref_primary_10_1021_acs_chemrev_9b00628 crossref_primary_10_1021_acssuschemeng_2c07108 crossref_primary_10_1021_acs_accounts_4c00776 crossref_primary_10_1002_aenm_202202039 crossref_primary_10_1002_smtd_202100544 crossref_primary_10_1002_advs_202206907 crossref_primary_10_1016_j_jpowsour_2024_234434 crossref_primary_10_1021_acsnano_4c12849 crossref_primary_10_2139_ssrn_3978523 crossref_primary_10_1002_anie_202408414 crossref_primary_10_1016_j_ensm_2022_08_040 crossref_primary_10_1021_acs_inorgchem_4c03146 crossref_primary_10_1016_j_jpowsour_2022_231920 crossref_primary_10_1016_j_cjche_2020_05_015 crossref_primary_10_1039_D2CE01467J crossref_primary_10_1021_acsami_1c21581 crossref_primary_10_1016_j_cej_2022_140194 crossref_primary_10_1016_j_matlet_2023_134262 crossref_primary_10_1021_jacs_3c08264 crossref_primary_10_1002_smtd_202300606 crossref_primary_10_1016_j_cej_2023_146127 crossref_primary_10_1002_adma_202105452 crossref_primary_10_1039_D3NR00466J crossref_primary_10_1016_j_jallcom_2022_163701 crossref_primary_10_1002_smll_202400692 crossref_primary_10_2174_0115701794314387240604112621 crossref_primary_10_1016_j_est_2024_114448 crossref_primary_10_1002_aenm_202401704 crossref_primary_10_1002_ange_202408414 crossref_primary_10_1016_j_cej_2022_134642 crossref_primary_10_1002_aenm_202204358 crossref_primary_10_1002_anie_202212031 crossref_primary_10_1039_D0EE02111C crossref_primary_10_1002_ange_202008960 |
Cites_doi | 10.1021/jacs.6b05958 10.1002/aenm.201501882 10.1021/acsenergylett.8b01423 10.1021/acsnano.9b03686 10.1039/b919541f 10.1039/B414922J 10.1039/C8TA08814D 10.1038/s41563-018-0063-z 10.1002/anie.201713291 10.1002/anie.201903941 10.1002/aenm.201801819 10.1016/j.jallcom.2019.06.084 10.1039/C4TA05131A 10.1016/j.nanoen.2016.08.052 10.1002/aenm.201900993 10.1016/j.nanoen.2016.04.051 10.1016/j.nanoen.2018.09.021 10.1021/acs.nanolett.5b03601 10.1021/acsaem.8b01676 10.1021/cm00040a009 10.1038/nenergy.2016.119 10.1007/s40820-019-0256-2 10.1021/acsenergylett.8b01426 10.1039/b100714i 10.1002/advs.201700322 10.1021/nn700261c 10.1002/aenm.201803815 10.1021/cr500232y 10.1038/s41467-018-04949-4 10.1039/C8TA09338E 10.1039/C8EE01651H 10.1126/science.aax6873 10.1016/j.nanoen.2013.12.005 10.1016/j.ensm.2017.10.014 10.1038/nenergy.2016.39 10.1002/aenm.201200065 10.1002/adfm.201906142 10.1038/s41467-018-04060-8 10.1002/adma.201703725 10.1126/science.aab1595 10.1021/acs.nanolett.7b05298 10.1021/acs.nanolett.7b05403 10.1039/C5EE02896E 10.1002/adfm.201802564 10.1002/smll.201702551 10.1002/aenm.201702463 10.1039/C8TA06626D 10.1021/acsenergylett.8b00565 10.1002/adfm.201402924 10.1038/natrevmats.2016.103 10.1038/s41560-018-0108-1 10.1002/anie.201602397 10.1039/C6TA08257B 10.1021/nl404709b 10.1038/s41467-017-00467-x 10.1021/acsenergylett.9b01541 10.1021/acs.chemmater.5b02512 10.1002/aenm.201400930 10.1021/jacs.7b04471 10.1016/j.nanoen.2013.12.014 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chempr.2020.02.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2451-9294 |
EndPage | 984 |
ExternalDocumentID | 10_1016_j_chempr_2020_02_001 S2451929420300486 |
GroupedDBID | 0R~ AACTN AAEDW AALRI AAVLU AAXUO ABMAC ABVKL ACGFS ADJPV AFTJW ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB O9- OK1 AAMRU AAYWO AAYXX ABDGV ABJNI ACVFH ADBBV ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AITUG AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD SSZ |
ID | FETCH-LOGICAL-c352t-54e92146bccd8b046e16cb13027d3d6c34f1677f778778f3c0e8baac30e931863 |
ISSN | 2451-9294 |
IngestDate | Thu Apr 24 23:05:38 EDT 2025 Tue Jul 01 03:15:20 EDT 2025 Thu Jul 20 20:19:52 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | interlayer spacing aqueous zinc-based batteries vanadium oxide polymer intercalation SDG7: Affordable and clean energy oxygen vacancies electrochemical performance |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c352t-54e92146bccd8b046e16cb13027d3d6c34f1677f778778f3c0e8baac30e931863 |
OpenAccessLink | http://www.cell.com/article/S2451929420300486/pdf |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1016_j_chempr_2020_02_001 crossref_primary_10_1016_j_chempr_2020_02_001 elsevier_sciencedirect_doi_10_1016_j_chempr_2020_02_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-09 |
PublicationDateYYYYMMDD | 2020-04-09 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-09 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | Chem |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Pan, Shao, Yan, Cheng, Han, Nie, Wang, Yang, Li, Bhattacharya (bib16) 2016; 1 Yang, Tang, Fang, Shan, Guo, Zhang, Wang, Wang, Zhou, Liang (bib27) 2018; 11 Zheng, Zhao, Tang, Yin, Quilty, Renderos, Liu, Deng, Wang, Bock (bib60) 2019; 366 Liu, Wang, Xu, Jiang, Li, Zhang, Lin, Shen (bib55) 2018; 5 Li, Yang, Jiang, Jin, Huang, Ding, Huang (bib22) 2016; 25 He, Quan, Xu, Yan, Yang, An, He, Mai (bib53) 2017; 13 Yuan, Duan, Zhang, Li, Zhang, Vankelecom (bib7) 2016; 9 Fang, Zhou, Pan, Liang (bib10) 2018; 3 Huang, Wang, Hou, Dong, Liu, Wang, Xia (bib33) 2018; 9 Zhao, Fan, Ding, Hu, Zhong, Lu (bib14) 2019; 4 Liu, Chen, Fang, Wang, Cai, Tang, Zhou, Liang (bib50) 2019; 11 Zhang, Dong, Jia, Bian, Wang, Qiu, Xu, Liu, Jiao, Cheng (bib23) 2018; 3 Soundharrajan, Sambandam, Kim, Alfaruqi, Putro, Jo, Kim, Mathew, Sun, Kim (bib52) 2018; 18 Wan, Zhang, Dai, Wang, Niu, Chen (bib51) 2018; 9 Li, Chen, Fang, Shan, Cao, Huang, Liang, Zhou (bib29) 2019; 801 Pozarnsky, McCormick (bib45) 1994; 6 Wei, Li, Yang, Wang (bib39) 2018; 6 Brückner (bib46) 2010; 39 Li, Dong, Feng, Xu, Ren, Gao, Li, Cheng, Wu, Wu (bib48) 2019; 13 Zhang, Chen, Zhou, Liu (bib17) 2015; 5 Ma, Li, Long, Dong, Fang, Liu, Zhao, Li, Fan, Chen (bib18) 2019; 29 Zhang, Higgins, Park, O'Brien, Long, Coleman, Nicolosi (bib35) 2016; 28 Zhang, Wu, Ding, Yan, Zhou, Ding, Liu (bib13) 2018; 53 Manthiram, Yu, Wang (bib1) 2017; 2 Suo, Borodin, Gao, Olguin, Ho, Fan, Luo, Wang, Xu (bib5) 2015; 350 Deng, Zhang, Dong, Shang (bib20) 2014; 4 Zhang, Cheng, Liu, Zhao, Lei, Chen, Liu, Chen (bib56) 2016; 138 Sun, Wang, Hou, Yang, Fan, Ma, Gao, Han, Hu, Zhu, Wang (bib15) 2017; 139 Lee, Gleason (bib47) 2015; 25 Guo, Sun, Ouyang, Lu (bib43) 2015; 27 Kim, Hong, Park, Kim, Kim, Kang (bib3) 2014; 114 Xia, Zhou, Velusamy, Farah, Li, Jiang, Odeh, Wang, Zhang, Alshareef (bib54) 2018; 18 Murugan, Kale, Kwon, Campet, Vijayamohanan (bib34) 2001; 11 Song, Tan, Chao, Fan (bib12) 2018; 28 Wang, Zhang, Cheng, Feng, Li, Zhang (bib8) 2017; 5 Tang, Zhou, Fang, Liu, Zhu, Wang, Pan, Liang (bib58) 2019; 7 Zhang, Cai, Qin, Wei (bib59) 2014; 4 Zhang, Cheng, Liu, Wang, Long, Liu, Li, Chen (bib9) 2017; 8 Bi, Wu, Liu, Wang, Du, Gao, Wu, Cao (bib44) 2019; 2 Yan, He, Chen, Wang, Wei, Zhao, Xu, An, Shuang, Shao (bib26) 2018; 30 Ni, Chen, Song, Liu, Yang, Cai (bib37) 2019; 7 Li, Wang, Cheng, Jiang (bib57) 2019; 9 He, Zhang, Liao, Yan, Xu, An, Liu, Mai (bib28) 2018; 8 Cai, Darmawan, Cui, Wang, Chen, Magdassi, Lee (bib36) 2016; 6 Yao, Li, Massé, Uchaker, Cao (bib32) 2018; 11 Vadivel Murugan, Quintin, Delville, Campet, Vijayamohanan (bib38) 2005; 15 Suo, Borodin, Sun, Fan, Yang, Wang, Gao, Ma, Schroeder, von Cresce (bib6) 2016; 55 Kundu, Adams, Duffort, Vajargah, Nazar (bib21) 2016; 1 Ming, Liang, Lei, Kandambeth, Eddaoudi, Alshareef (bib31) 2018; 3 Xiong, Aliev, Gnade, Balkus (bib42) 2008; 2 Yue, Wang, Bin, Xu, Du, Lu, Guo (bib40) 2015; 3 Xia, Guo, Li, Zhang, Alshareef (bib30) 2018; 57 Fan, Luo, Lamb, Zhu, Xu, Wang (bib41) 2015; 15 Cano, Banham, Ye, Hintennach, Lu, Fowler, Chen (bib2) 2018; 3 Wang, Yi, Xia (bib4) 2012; 2 Guo, Fang, Zhang, Zhou, Shan, Wang, Wang, Lin, Tang, Liang (bib25) 2018; 8 Xiong, Yu, Wu, Du, Xie, Chen, Zhang, Pennycook, Lee, Xue (bib49) 2019; 9 Fan, Niu (bib24) 2019; 58 Wang, Borodin, Gao, Fan, Sun, Han, Faraone, Dura, Xu, Wang (bib11) 2018; 17 Wei, An, Chen, Mai, Chen, Zhao, Hercule, Xu, Minhas-Khan, Zhang (bib19) 2014; 14 Ni (10.1016/j.chempr.2020.02.001_bib37) 2019; 7 Tang (10.1016/j.chempr.2020.02.001_bib58) 2019; 7 Bi (10.1016/j.chempr.2020.02.001_bib44) 2019; 2 Guo (10.1016/j.chempr.2020.02.001_bib25) 2018; 8 Xiong (10.1016/j.chempr.2020.02.001_bib42) 2008; 2 Fan (10.1016/j.chempr.2020.02.001_bib41) 2015; 15 Zhang (10.1016/j.chempr.2020.02.001_bib9) 2017; 8 Fang (10.1016/j.chempr.2020.02.001_bib10) 2018; 3 Zhang (10.1016/j.chempr.2020.02.001_bib23) 2018; 3 Wang (10.1016/j.chempr.2020.02.001_bib11) 2018; 17 Fan (10.1016/j.chempr.2020.02.001_bib24) 2019; 58 Yan (10.1016/j.chempr.2020.02.001_bib26) 2018; 30 Ming (10.1016/j.chempr.2020.02.001_bib31) 2018; 3 Pozarnsky (10.1016/j.chempr.2020.02.001_bib45) 1994; 6 Lee (10.1016/j.chempr.2020.02.001_bib47) 2015; 25 Soundharrajan (10.1016/j.chempr.2020.02.001_bib52) 2018; 18 Yuan (10.1016/j.chempr.2020.02.001_bib7) 2016; 9 Wei (10.1016/j.chempr.2020.02.001_bib39) 2018; 6 Liu (10.1016/j.chempr.2020.02.001_bib50) 2019; 11 Cano (10.1016/j.chempr.2020.02.001_bib2) 2018; 3 Zhang (10.1016/j.chempr.2020.02.001_bib13) 2018; 53 Brückner (10.1016/j.chempr.2020.02.001_bib46) 2010; 39 Xia (10.1016/j.chempr.2020.02.001_bib54) 2018; 18 Suo (10.1016/j.chempr.2020.02.001_bib5) 2015; 350 Suo (10.1016/j.chempr.2020.02.001_bib6) 2016; 55 Zhang (10.1016/j.chempr.2020.02.001_bib17) 2015; 5 Murugan (10.1016/j.chempr.2020.02.001_bib34) 2001; 11 Zhao (10.1016/j.chempr.2020.02.001_bib14) 2019; 4 Pan (10.1016/j.chempr.2020.02.001_bib16) 2016; 1 Li (10.1016/j.chempr.2020.02.001_bib22) 2016; 25 Zhang (10.1016/j.chempr.2020.02.001_bib59) 2014; 4 Xiong (10.1016/j.chempr.2020.02.001_bib49) 2019; 9 Zheng (10.1016/j.chempr.2020.02.001_bib60) 2019; 366 Deng (10.1016/j.chempr.2020.02.001_bib20) 2014; 4 Sun (10.1016/j.chempr.2020.02.001_bib15) 2017; 139 Xia (10.1016/j.chempr.2020.02.001_bib30) 2018; 57 Wei (10.1016/j.chempr.2020.02.001_bib19) 2014; 14 Yao (10.1016/j.chempr.2020.02.001_bib32) 2018; 11 Wan (10.1016/j.chempr.2020.02.001_bib51) 2018; 9 Zhang (10.1016/j.chempr.2020.02.001_bib35) 2016; 28 Yang (10.1016/j.chempr.2020.02.001_bib27) 2018; 11 Wang (10.1016/j.chempr.2020.02.001_bib8) 2017; 5 Yue (10.1016/j.chempr.2020.02.001_bib40) 2015; 3 Li (10.1016/j.chempr.2020.02.001_bib48) 2019; 13 Vadivel Murugan (10.1016/j.chempr.2020.02.001_bib38) 2005; 15 He (10.1016/j.chempr.2020.02.001_bib28) 2018; 8 Zhang (10.1016/j.chempr.2020.02.001_bib56) 2016; 138 Ma (10.1016/j.chempr.2020.02.001_bib18) 2019; 29 Kundu (10.1016/j.chempr.2020.02.001_bib21) 2016; 1 Song (10.1016/j.chempr.2020.02.001_bib12) 2018; 28 Wang (10.1016/j.chempr.2020.02.001_bib4) 2012; 2 Huang (10.1016/j.chempr.2020.02.001_bib33) 2018; 9 Cai (10.1016/j.chempr.2020.02.001_bib36) 2016; 6 Li (10.1016/j.chempr.2020.02.001_bib57) 2019; 9 Li (10.1016/j.chempr.2020.02.001_bib29) 2019; 801 Kim (10.1016/j.chempr.2020.02.001_bib3) 2014; 114 Liu (10.1016/j.chempr.2020.02.001_bib55) 2018; 5 Guo (10.1016/j.chempr.2020.02.001_bib43) 2015; 27 Manthiram (10.1016/j.chempr.2020.02.001_bib1) 2017; 2 He (10.1016/j.chempr.2020.02.001_bib53) 2017; 13 |
References_xml | – volume: 8 start-page: 405 year: 2017 ident: bib9 article-title: Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities publication-title: Nat. Commun. – volume: 139 start-page: 9775 year: 2017 end-page: 9778 ident: bib15 article-title: Zn/MnO publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 29152849 year: 2017 ident: bib53 article-title: High-performance aqueous zinc-ion battery based on layered H publication-title: Small – volume: 114 start-page: 11788 year: 2014 end-page: 11827 ident: bib3 article-title: Aqueous rechargeable Li and Na ion batteries publication-title: Chem. Rev. – volume: 28 start-page: 1802564 year: 2018 ident: bib12 article-title: Recent advances in Zn-ion batteries publication-title: Adv. Funct. Mater. – volume: 15 start-page: 902 year: 2005 end-page: 909 ident: bib38 article-title: Entrapment of poly(3,4-ethylenedioxythiophene) between VS publication-title: J. Mater. Chem. – volume: 11 start-page: 3157 year: 2018 end-page: 3162 ident: bib27 article-title: Li+ intercalated V publication-title: Energy Environ. Sci. – volume: 4 start-page: 14 year: 2014 end-page: 22 ident: bib59 article-title: Tunable self-discharge process of carbon nanotube based supercapacitors publication-title: Nano Energy – volume: 11 start-page: 205 year: 2018 end-page: 259 ident: bib32 article-title: Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond publication-title: Energy Storage Mater. – volume: 4 start-page: 49 year: 2014 end-page: 55 ident: bib20 article-title: 1D nanostructured sodium vanadium oxide as a novel anode material for aqueous sodium ion batteries publication-title: Nano Energy – volume: 8 start-page: 1801819 year: 2018 ident: bib25 article-title: Mechanistic insights of Zn publication-title: Adv. Energy Mater. – volume: 3 start-page: 279 year: 2018 end-page: 289 ident: bib2 article-title: Batteries and fuel cells for emerging electric vehicle markets publication-title: Nat. Energy – volume: 11 start-page: 2 year: 2019 end-page: 11 ident: bib50 article-title: V publication-title: Nano Micro Lett. – volume: 3 start-page: 1366 year: 2018 end-page: 1372 ident: bib23 article-title: Rechargeable aqueous Zn-V publication-title: ACS Energy Lett. – volume: 3 start-page: 1077 year: 2015 end-page: 1088 ident: bib40 article-title: Facile one-pot synthesis of Pd–PEDOT/graphene nanocomposites with hierarchical structure and high electrocatalytic performance for ethanol oxidation publication-title: J. Mater. Chem. A – volume: 7 start-page: 1323 year: 2019 end-page: 1333 ident: bib37 article-title: Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors publication-title: J. Mater. Chem. A – volume: 2 start-page: 16103 year: 2017 ident: bib1 article-title: Lithium battery chemistries enabled by solid-state electrolytes publication-title: Nat. Rev. Mater. – volume: 29 start-page: 1906142 year: 2019 ident: bib18 article-title: Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density publication-title: Adv. Funct. Mater. – volume: 1 start-page: 16309 year: 2016 ident: bib16 article-title: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions publication-title: Nat. Energy – volume: 18 start-page: 1506 year: 2018 end-page: 1515 ident: bib54 article-title: Anomalous Li storage capability in atomically thin two-dimensional sheets of nonlayered MoO publication-title: Nano Lett. – volume: 9 start-page: 1656 year: 2018 ident: bib51 article-title: Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers publication-title: Nat. Commun. – volume: 28 start-page: 495 year: 2016 end-page: 505 ident: bib35 article-title: Highly flexible and transparent solid-state supercapacitors based on RuO publication-title: Nano Energy – volume: 27 start-page: 5813 year: 2015 end-page: 5819 ident: bib43 article-title: Layered V publication-title: Chem. Mater. – volume: 1 start-page: 16119 year: 2016 ident: bib21 article-title: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode publication-title: Nat. Energy – volume: 801 start-page: 82 year: 2019 end-page: 89 ident: bib29 article-title: Synthesis of polycrystalline K publication-title: J. Alloys Compd. – volume: 39 start-page: 4673 year: 2010 end-page: 4684 ident: bib46 article-title: In situ electron paramagnetic resonance: a unique tool for analysing structure-reactivity relationships in heterogeneous catalysis publication-title: Chem. Soc. Rev. – volume: 17 start-page: 543 year: 2018 end-page: 549 ident: bib11 article-title: Highly reversible zinc metal anode for aqueous batteries publication-title: Nat. Mater. – volume: 138 start-page: 12894 year: 2016 end-page: 12901 ident: bib56 article-title: Cation-deficient spinel ZnMn publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 16358 year: 2019 end-page: 16367 ident: bib24 article-title: Design strategies of vanadium-based aqueous zinc-ion batteries publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 1702463 year: 2018 ident: bib28 article-title: Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries publication-title: Adv. Energy Mater. – volume: 9 start-page: 1803815 year: 2019 ident: bib49 article-title: Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery publication-title: Adv. Energy Mater. – volume: 6 start-page: 20402 year: 2018 end-page: 20410 ident: bib39 article-title: Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH publication-title: J. Mater. Chem. A – volume: 350 start-page: 938 year: 2015 end-page: 943 ident: bib5 article-title: “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries publication-title: Science – volume: 5 start-page: 593 year: 2017 end-page: 599 ident: bib8 article-title: Rational design and synthesis of LiTi publication-title: J. Mater. Chem. A – volume: 4 start-page: 2259 year: 2019 end-page: 2270 ident: bib14 article-title: Challenges in zinc electrodes for alkaline zinc-air batteries: obstacles to commercialization publication-title: ACS Energy Lett. – volume: 14 start-page: 1042 year: 2014 end-page: 1048 ident: bib19 article-title: One-pot synthesized bicontinuous hierarchical Li publication-title: Nano Lett. – volume: 7 start-page: 940 year: 2019 end-page: 945 ident: bib58 article-title: Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode publication-title: J. Mater. Chem. A – volume: 13 start-page: 9227 year: 2019 end-page: 9236 ident: bib48 article-title: Controllably enriched oxygen vacancies through polymer assistance in titanium pyrophosphate as a super anode for Na/K-ion batteries publication-title: ACS Nano – volume: 5 start-page: 1400930 year: 2015 ident: bib17 article-title: Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system publication-title: Adv. Energy Mater. – volume: 30 start-page: 1703725 year: 2018 ident: bib26 article-title: Water-lubricated intercalation in V publication-title: Adv. Mater. – volume: 3 start-page: 2480 year: 2018 end-page: 2501 ident: bib10 article-title: Recent advances in aqueous zinc-ion batteries publication-title: ACS Energy Lett. – volume: 2 start-page: 668 year: 2019 end-page: 677 ident: bib44 article-title: Gradient oxygen vacancies in V publication-title: ACS Appl. Energy Mater. – volume: 25 start-page: 211 year: 2016 end-page: 217 ident: bib22 article-title: Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na publication-title: Nano Energy – volume: 53 start-page: 666 year: 2018 end-page: 674 ident: bib13 article-title: Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes publication-title: Nano Energy – volume: 2 start-page: 293 year: 2008 end-page: 301 ident: bib42 article-title: Fabrication of silver vanadium oxide and V publication-title: ACS Nano – volume: 15 start-page: 7650 year: 2015 end-page: 7656 ident: bib41 article-title: PEDOT encapsulated FeOF nanorod cathodes for high energy lithium-ion batteries publication-title: Nano Lett. – volume: 9 start-page: 1900993 year: 2019 ident: bib57 article-title: An ultrastable presodiated titanium fisulfide anode for aqueous “Rocking-Chair” zinc ion battery publication-title: Adv. Energy Mater. – volume: 57 start-page: 3943 year: 2018 end-page: 3948 ident: bib30 article-title: Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode publication-title: Angew. Chem. Int. Ed. – volume: 366 start-page: 645 year: 2019 end-page: 648 ident: bib60 article-title: Reversible epitaxial electrodeposition of metals in battery anodes publication-title: Science – volume: 3 start-page: 2602 year: 2018 end-page: 2609 ident: bib31 article-title: Layered Mg publication-title: ACS Energy Lett. – volume: 2 start-page: 830 year: 2012 end-page: 840 ident: bib4 article-title: Recent progress in aqueous lithium-ion batteries publication-title: Adv. Energy Mater. – volume: 25 start-page: 85 year: 2015 end-page: 93 ident: bib47 article-title: Enhanced optical property with tunable band gap of cross-linked PEDOT copolymers via oxidative chemical vapor deposition publication-title: Adv. Funct. Mater. – volume: 9 start-page: 2906 year: 2018 ident: bib33 article-title: Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery publication-title: Nat. Commun. – volume: 6 start-page: 1501882 year: 2016 ident: bib36 article-title: Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors publication-title: Adv. Energy Mater. – volume: 55 start-page: 7136 year: 2016 end-page: 7141 ident: bib6 article-title: Advanced high-voltage aqueous lithium-ion battery enabled by "water-in-Bisalt" electrolyte publication-title: Angew. Chem. Int. Ed. – volume: 18 start-page: 2402 year: 2018 end-page: 2410 ident: bib52 article-title: Na publication-title: Nano Lett. – volume: 5 start-page: 1700322 year: 2018 ident: bib55 article-title: Advanced Energy storage devices: basic principles, analytical methods, and raditional materials design publication-title: Adv. Sci. – volume: 9 start-page: 441 year: 2016 end-page: 447 ident: bib7 article-title: Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries publication-title: Energy Environ. Sci. – volume: 11 start-page: 2470 year: 2001 end-page: 2475 ident: bib34 article-title: Synthesis and characterization of a new organo-inorganic poly(3,4-ethylene dioxythiophene) PEDOT/V publication-title: J. Mater. Chem. – volume: 6 start-page: 380 year: 1994 end-page: 385 ident: bib45 article-title: V NMR and EPR study of reaction kinetics and mechanisms in V publication-title: Chem. Mater. – volume: 138 start-page: 12894 year: 2016 ident: 10.1016/j.chempr.2020.02.001_bib56 article-title: Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05958 – volume: 6 start-page: 1501882 year: 2016 ident: 10.1016/j.chempr.2020.02.001_bib36 article-title: Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501882 – volume: 3 start-page: 2602 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib31 article-title: Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01423 – volume: 13 start-page: 9227 year: 2019 ident: 10.1016/j.chempr.2020.02.001_bib48 article-title: Controllably enriched oxygen vacancies through polymer assistance in titanium pyrophosphate as a super anode for Na/K-ion batteries publication-title: ACS Nano doi: 10.1021/acsnano.9b03686 – volume: 39 start-page: 4673 year: 2010 ident: 10.1016/j.chempr.2020.02.001_bib46 article-title: In situ electron paramagnetic resonance: a unique tool for analysing structure-reactivity relationships in heterogeneous catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/b919541f – volume: 15 start-page: 902 year: 2005 ident: 10.1016/j.chempr.2020.02.001_bib38 article-title: Entrapment of poly(3,4-ethylenedioxythiophene) between VS 2 layers to form a new organic–inorganic intercalative nanocomposite publication-title: J. Mater. Chem. doi: 10.1039/B414922J – volume: 7 start-page: 1323 year: 2019 ident: 10.1016/j.chempr.2020.02.001_bib37 article-title: Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08814D – volume: 17 start-page: 543 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib11 article-title: Highly reversible zinc metal anode for aqueous batteries publication-title: Nat. Mater. doi: 10.1038/s41563-018-0063-z – volume: 57 start-page: 3943 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib30 article-title: Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201713291 – volume: 58 start-page: 16358 year: 2019 ident: 10.1016/j.chempr.2020.02.001_bib24 article-title: Design strategies of vanadium-based aqueous zinc-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201903941 – volume: 8 start-page: 1801819 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib25 article-title: Mechanistic insights of Zn2+ storage in sodium vanadates publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801819 – volume: 801 start-page: 82 year: 2019 ident: 10.1016/j.chempr.2020.02.001_bib29 article-title: Synthesis of polycrystalline K0.25V2O5 nanoparticles as cathode for aqueous zinc-ion battery publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.06.084 – volume: 3 start-page: 1077 year: 2015 ident: 10.1016/j.chempr.2020.02.001_bib40 article-title: Facile one-pot synthesis of Pd–PEDOT/graphene nanocomposites with hierarchical structure and high electrocatalytic performance for ethanol oxidation publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05131A – volume: 28 start-page: 495 year: 2016 ident: 10.1016/j.chempr.2020.02.001_bib35 article-title: Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT: PSS conductive ultrathin films publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.052 – volume: 9 start-page: 1900993 year: 2019 ident: 10.1016/j.chempr.2020.02.001_bib57 article-title: An ultrastable presodiated titanium fisulfide anode for aqueous “Rocking-Chair” zinc ion battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900993 – volume: 25 start-page: 211 year: 2016 ident: 10.1016/j.chempr.2020.02.001_bib22 article-title: Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)3 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.051 – volume: 53 start-page: 666 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib13 article-title: Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.021 – volume: 15 start-page: 7650 year: 2015 ident: 10.1016/j.chempr.2020.02.001_bib41 article-title: PEDOT encapsulated FeOF nanorod cathodes for high energy lithium-ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03601 – volume: 2 start-page: 668 year: 2019 ident: 10.1016/j.chempr.2020.02.001_bib44 article-title: Gradient oxygen vacancies in V2O5/PEDOT nanocables for high-performance supercapacitors publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01676 – volume: 6 start-page: 380 year: 1994 ident: 10.1016/j.chempr.2020.02.001_bib45 article-title: 51V NMR and EPR study of reaction kinetics and mechanisms in V2O5 gelation by ion exchange of sodium metavanadate solutions publication-title: Chem. Mater. doi: 10.1021/cm00040a009 – volume: 1 start-page: 16119 year: 2016 ident: 10.1016/j.chempr.2020.02.001_bib21 article-title: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode publication-title: Nat. Energy doi: 10.1038/nenergy.2016.119 – volume: 11 start-page: 2 year: 2019 ident: 10.1016/j.chempr.2020.02.001_bib50 article-title: V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode publication-title: Nano Micro Lett. doi: 10.1007/s40820-019-0256-2 – volume: 3 start-page: 2480 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib10 article-title: Recent advances in aqueous zinc-ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01426 – volume: 11 start-page: 2470 year: 2001 ident: 10.1016/j.chempr.2020.02.001_bib34 article-title: Synthesis and characterization of a new organo-inorganic poly(3,4-ethylene dioxythiophene) PEDOT/V2O5 nanocomposite by intercalation publication-title: J. Mater. Chem. doi: 10.1039/b100714i – volume: 5 start-page: 1700322 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib55 article-title: Advanced Energy storage devices: basic principles, analytical methods, and raditional materials design publication-title: Adv. Sci. doi: 10.1002/advs.201700322 – volume: 2 start-page: 293 year: 2008 ident: 10.1016/j.chempr.2020.02.001_bib42 article-title: Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics publication-title: ACS Nano doi: 10.1021/nn700261c – volume: 9 start-page: 1803815 year: 2019 ident: 10.1016/j.chempr.2020.02.001_bib49 article-title: Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803815 – volume: 114 start-page: 11788 year: 2014 ident: 10.1016/j.chempr.2020.02.001_bib3 article-title: Aqueous rechargeable Li and Na ion batteries publication-title: Chem. Rev. doi: 10.1021/cr500232y – volume: 9 start-page: 2906 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib33 article-title: Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery publication-title: Nat. Commun. doi: 10.1038/s41467-018-04949-4 – volume: 7 start-page: 940 year: 2019 ident: 10.1016/j.chempr.2020.02.001_bib58 article-title: Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09338E – volume: 11 start-page: 3157 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib27 article-title: Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01651H – volume: 366 start-page: 645 year: 2019 ident: 10.1016/j.chempr.2020.02.001_bib60 article-title: Reversible epitaxial electrodeposition of metals in battery anodes publication-title: Science doi: 10.1126/science.aax6873 – volume: 4 start-page: 14 year: 2014 ident: 10.1016/j.chempr.2020.02.001_bib59 article-title: Tunable self-discharge process of carbon nanotube based supercapacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.12.005 – volume: 11 start-page: 205 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib32 article-title: Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.10.014 – volume: 1 start-page: 16309 year: 2016 ident: 10.1016/j.chempr.2020.02.001_bib16 article-title: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions publication-title: Nat. Energy doi: 10.1038/nenergy.2016.39 – volume: 2 start-page: 830 year: 2012 ident: 10.1016/j.chempr.2020.02.001_bib4 article-title: Recent progress in aqueous lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200065 – volume: 29 start-page: 1906142 year: 2019 ident: 10.1016/j.chempr.2020.02.001_bib18 article-title: Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906142 – volume: 9 start-page: 1656 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib51 article-title: Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers publication-title: Nat. Commun. doi: 10.1038/s41467-018-04060-8 – volume: 30 start-page: 1703725 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib26 article-title: Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries publication-title: Adv. Mater. doi: 10.1002/adma.201703725 – volume: 350 start-page: 938 year: 2015 ident: 10.1016/j.chempr.2020.02.001_bib5 article-title: “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries publication-title: Science doi: 10.1126/science.aab1595 – volume: 18 start-page: 1506 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib54 article-title: Anomalous Li storage capability in atomically thin two-dimensional sheets of nonlayered MoO2 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05298 – volume: 18 start-page: 2402 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib52 article-title: Na2V6O16.3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05403 – volume: 9 start-page: 441 year: 2016 ident: 10.1016/j.chempr.2020.02.001_bib7 article-title: Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02896E – volume: 28 start-page: 1802564 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib12 article-title: Recent advances in Zn-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802564 – volume: 13 start-page: 29152849 year: 2017 ident: 10.1016/j.chempr.2020.02.001_bib53 article-title: High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode publication-title: Small doi: 10.1002/smll.201702551 – volume: 8 start-page: 1702463 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib28 article-title: Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702463 – volume: 6 start-page: 20402 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib39 article-title: Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH4)2V10O25·8H2O nanobelts publication-title: J. Mater. Chem. A doi: 10.1039/C8TA06626D – volume: 3 start-page: 1366 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib23 article-title: Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00565 – volume: 25 start-page: 85 year: 2015 ident: 10.1016/j.chempr.2020.02.001_bib47 article-title: Enhanced optical property with tunable band gap of cross-linked PEDOT copolymers via oxidative chemical vapor deposition publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201402924 – volume: 2 start-page: 16103 year: 2017 ident: 10.1016/j.chempr.2020.02.001_bib1 article-title: Lithium battery chemistries enabled by solid-state electrolytes publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.103 – volume: 3 start-page: 279 year: 2018 ident: 10.1016/j.chempr.2020.02.001_bib2 article-title: Batteries and fuel cells for emerging electric vehicle markets publication-title: Nat. Energy doi: 10.1038/s41560-018-0108-1 – volume: 55 start-page: 7136 year: 2016 ident: 10.1016/j.chempr.2020.02.001_bib6 article-title: Advanced high-voltage aqueous lithium-ion battery enabled by "water-in-Bisalt" electrolyte publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602397 – volume: 5 start-page: 593 year: 2017 ident: 10.1016/j.chempr.2020.02.001_bib8 article-title: Rational design and synthesis of LiTi2(PO4)3-xFx anode materials for high-performance aqueous lithium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08257B – volume: 14 start-page: 1042 year: 2014 ident: 10.1016/j.chempr.2020.02.001_bib19 article-title: One-pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries publication-title: Nano Lett. doi: 10.1021/nl404709b – volume: 8 start-page: 405 year: 2017 ident: 10.1016/j.chempr.2020.02.001_bib9 article-title: Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities publication-title: Nat. Commun. doi: 10.1038/s41467-017-00467-x – volume: 4 start-page: 2259 year: 2019 ident: 10.1016/j.chempr.2020.02.001_bib14 article-title: Challenges in zinc electrodes for alkaline zinc-air batteries: obstacles to commercialization publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01541 – volume: 27 start-page: 5813 year: 2015 ident: 10.1016/j.chempr.2020.02.001_bib43 article-title: Layered V2O5/PEDOT nanowires and ultrathin nanobelts fabricated with a silk reelinglike process publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02512 – volume: 5 start-page: 1400930 year: 2015 ident: 10.1016/j.chempr.2020.02.001_bib17 article-title: Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400930 – volume: 139 start-page: 9775 year: 2017 ident: 10.1016/j.chempr.2020.02.001_bib15 article-title: Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04471 – volume: 4 start-page: 49 year: 2014 ident: 10.1016/j.chempr.2020.02.001_bib20 article-title: 1D nanostructured sodium vanadium oxide as a novel anode material for aqueous sodium ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.12.014 |
SSID | ssj0001821750 |
Score | 2.592842 |
Snippet | Rechargeable aqueous zinc-based batteries are very attractive alternative devices for current energy storage by virtue of their low cost and high security.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 968 |
SubjectTerms | aqueous zinc-based batteries electrochemical performance interlayer spacing oxygen vacancies polymer intercalation vanadium oxide |
Title | Organic-Inorganic-Induced Polymer Intercalation into Layered Composites for Aqueous Zinc-Ion Battery |
URI | https://dx.doi.org/10.1016/j.chempr.2020.02.001 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcAB8RSlgHzghlwlseMkxxUCLS0ghFq15RLFjhdRtdmq2hzKr-_nR-KUlkKRoiiyHG8282XeniHkjVzkDQ7FdFbBQBGNZKXONeNK6yrhrTEum_DzFznfE9sH-UEMxbjdJSu1pX9du6_kf6iKMdDV7pK9BWXHRTGAa9AXZ1AY53-isd9IqdnHbjletb2N6H9dHp-fmDPv8AMZmpDTCE3zU3Nu-3M6TmAztoyryPB2BgFh02G__-ywDCb7ypuXor62ukD0qnt-1Ud4zXvnd91vuh-Awjh82Hsn6yGkpFrGycFTvQ2AWq_11P-QJS5tpYpsKhN5yqBkiSlPlRPoiAl_rHwPnSBqK98d7goX9w6Foy0868mpLdqaJb6wahql1hCp_02YjSmGQ_baUe1Xqe0qdZLZJL67ZD2DVQG2uD7b-ba_E51yJSw019V3_FfDdkuXE3j1ga5XZyYqyu5D8iDYFnTmgfKI3DHdY3J_UnHyCWn_CBkaIEMvQYZayNAAGRohQwEZGiBDB8jQAJmnZO_D-913cxYabTAN_XvFcmEq2-Ad32dbqkRIk0qtXEi75a3UXCxSWRSLAty9KBdcJ6ZUTaN5YirIBMmfkbVu2ZnnhBawQExeatEUKVQd2NNcYHWhVWvKysgNwof3VetQhd42QzmubyLYBmHjXae-Cstf5hcDKeqgSXoNsQbEbrzzxS1_aZPcix_FS7K2OuvNK6ipK_U6gOsCETWU4w |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic-Inorganic-Induced+Polymer+Intercalation+into+Layered+Composites+for+Aqueous+Zinc-Ion+Battery&rft.jtitle=Chem&rft.au=Bin%2C+Duan&rft.au=Huo%2C+Wangchen&rft.au=Yuan%2C+Yingbo&rft.au=Huang%2C+Jianhang&rft.date=2020-04-09&rft.issn=2451-9294&rft.volume=6&rft.issue=4&rft.spage=968&rft.epage=984&rft_id=info:doi/10.1016%2Fj.chempr.2020.02.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chempr_2020_02_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9294&client=summon |