Organic-Inorganic-Induced Polymer Intercalation into Layered Composites for Aqueous Zinc-Ion Battery

Rechargeable aqueous zinc-based batteries are very attractive alternative devices for current energy storage by virtue of their low cost and high security. However, the performance of vanadium oxide cathode strongly relies on the distance of interlayer spacing. Here, we employ layered PEDOT-NH4V3O8...

Full description

Saved in:
Bibliographic Details
Published inChem Vol. 6; no. 4; pp. 968 - 984
Main Authors Bin, Duan, Huo, Wangchen, Yuan, Yingbo, Huang, Jianhang, Liu, Yao, Zhang, Yuxin, Dong, Fan, Wang, Yonggang, Xia, Yongyao
Format Journal Article
LanguageEnglish
Published Elsevier Inc 09.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rechargeable aqueous zinc-based batteries are very attractive alternative devices for current energy storage by virtue of their low cost and high security. However, the performance of vanadium oxide cathode strongly relies on the distance of interlayer spacing. Here, we employ layered PEDOT-NH4V3O8 (PEDOT-NVO) as a cathode material, which produces an enlarged interlayer spacing of 10.8 Å (against 7.8 Å for the single NVO) by effectively conducting polymer intercalation. This cathode material exhibits an improved capacity of 356.8 mAh g−1 at 0.05 A g−1 and 163.6 mAh g−1, even at the highest current density of 10 A g−1 (with a high retention from 0.05 to 10 A g−1), and features an ultra-long lifetime of over 5,000 charge-discharge cycles with a capacity retention of 94.1%. A combination of mechanism analyses and theoretical calculations suggest that the oxygen vacancies and larger interlayer spacing through polymer assistance account for the improved electrochemical performance. [Display omitted] •A kind of organic-inorganic intercalated layered composite was synthesized•The PEDOT-NH4V3O8 has enlarged interlayer spacing and oxygen vacancies•The PEDOT-NH4V3O8 cathode exhibits excellent zinc storage performance•The mechanistic and theoretical analysis was investigated by various methods For the high demand of large-scale renewable energy storage system, zinc-ion batteries fulfill this requirement because of their abundance in Earth's total elemental reserves, higher water stability than that of alkaline (Li, Na, and K) metals, and high theoretical capacity. Here, we have developed an enlarged interlayer spacing of layered material that is capable of reversibly accommodating more Zn2+ ion while achieving high-cycle performance cathode materials for the application of zinc-ion batteries. The conducting polymer material has emerged as an important pathway for producing organic-inorganic intercalation compounds with larger interlayer spacing or oxygen vacancies, which are essential for fundamental studies as well as technique application. A kind of organic-inorganic intercalated composite can improve capacity and stability in aqueous rechargeable zinc batteries (ARZBs) as a result of the expanded interplanar spacing distance and oxygen vacancies of ammonium vanadate layered oxide.
AbstractList Rechargeable aqueous zinc-based batteries are very attractive alternative devices for current energy storage by virtue of their low cost and high security. However, the performance of vanadium oxide cathode strongly relies on the distance of interlayer spacing. Here, we employ layered PEDOT-NH4V3O8 (PEDOT-NVO) as a cathode material, which produces an enlarged interlayer spacing of 10.8 Å (against 7.8 Å for the single NVO) by effectively conducting polymer intercalation. This cathode material exhibits an improved capacity of 356.8 mAh g−1 at 0.05 A g−1 and 163.6 mAh g−1, even at the highest current density of 10 A g−1 (with a high retention from 0.05 to 10 A g−1), and features an ultra-long lifetime of over 5,000 charge-discharge cycles with a capacity retention of 94.1%. A combination of mechanism analyses and theoretical calculations suggest that the oxygen vacancies and larger interlayer spacing through polymer assistance account for the improved electrochemical performance. [Display omitted] •A kind of organic-inorganic intercalated layered composite was synthesized•The PEDOT-NH4V3O8 has enlarged interlayer spacing and oxygen vacancies•The PEDOT-NH4V3O8 cathode exhibits excellent zinc storage performance•The mechanistic and theoretical analysis was investigated by various methods For the high demand of large-scale renewable energy storage system, zinc-ion batteries fulfill this requirement because of their abundance in Earth's total elemental reserves, higher water stability than that of alkaline (Li, Na, and K) metals, and high theoretical capacity. Here, we have developed an enlarged interlayer spacing of layered material that is capable of reversibly accommodating more Zn2+ ion while achieving high-cycle performance cathode materials for the application of zinc-ion batteries. The conducting polymer material has emerged as an important pathway for producing organic-inorganic intercalation compounds with larger interlayer spacing or oxygen vacancies, which are essential for fundamental studies as well as technique application. A kind of organic-inorganic intercalated composite can improve capacity and stability in aqueous rechargeable zinc batteries (ARZBs) as a result of the expanded interplanar spacing distance and oxygen vacancies of ammonium vanadate layered oxide.
Author Liu, Yao
Wang, Yonggang
Huo, Wangchen
Huang, Jianhang
Dong, Fan
Xia, Yongyao
Yuan, Yingbo
Zhang, Yuxin
Bin, Duan
Author_xml – sequence: 1
  givenname: Duan
  surname: Bin
  fullname: Bin, Duan
  organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai, 200433, China
– sequence: 2
  givenname: Wangchen
  surname: Huo
  fullname: Huo, Wangchen
  organization: State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
– sequence: 3
  givenname: Yingbo
  surname: Yuan
  fullname: Yuan, Yingbo
  organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai, 200433, China
– sequence: 4
  givenname: Jianhang
  surname: Huang
  fullname: Huang, Jianhang
  organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai, 200433, China
– sequence: 5
  givenname: Yao
  surname: Liu
  fullname: Liu, Yao
  organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai, 200433, China
– sequence: 6
  givenname: Yuxin
  surname: Zhang
  fullname: Zhang, Yuxin
  organization: State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
– sequence: 7
  givenname: Fan
  surname: Dong
  fullname: Dong, Fan
  organization: Research Center for Environmental Science & Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
– sequence: 8
  givenname: Yonggang
  surname: Wang
  fullname: Wang, Yonggang
  organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai, 200433, China
– sequence: 9
  givenname: Yongyao
  surname: Xia
  fullname: Xia, Yongyao
  email: yyxia@fudan.edu.cn
  organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai, 200433, China
BookMark eNqFkMtKAzEUhoNUsNa-gYt5gRlzmasLoRYvhUJd6MZNyGTOaMpMUpOMMG9vakXEhcKBnMX__Zx8p2iijQaEzglOCCb5xTaRr9DvbEIxxQmmCcbkCE1pmpG4olU6-bGfoLlzWxwSJSVFhqeo2dgXoZWMV9p8b80goYkeTDf2YKOV9mCl6IRXRkdKexOtxQg2RJam3xmnPLioNTZavA1gBhc9Kx1qQvha-MCOZ-i4FZ2D-dc7Q0-3N4_L-3i9uVstF-tYsoz6OEuhoiTNaymbssZpDiSXNWGYFg1rcsnSluRF0RZFGaZlEkNZCyEZhoqRMmczdHnoldY4Z6HlUvnPs70VquME870yvuUHZXyvjGPKg5AAp7_gnVW9sON_2NUBg_CxdwWWO6lAB4HKgvS8Mervgg-7korz
CitedBy_id crossref_primary_10_1002_asia_202200067
crossref_primary_10_1016_j_coco_2021_100882
crossref_primary_10_1021_acsnano_1c01389
crossref_primary_10_1021_acsnano_4c17565
crossref_primary_10_1002_smtd_202300255
crossref_primary_10_1016_j_cclet_2023_108487
crossref_primary_10_1016_j_cclet_2023_109213
crossref_primary_10_1007_s40820_024_01339_y
crossref_primary_10_1002_ange_202212031
crossref_primary_10_1557_s43581_022_00033_z
crossref_primary_10_1039_D4TA01656D
crossref_primary_10_1039_D3TA00133D
crossref_primary_10_1002_adfm_202111714
crossref_primary_10_1002_smll_202304668
crossref_primary_10_1039_D3EE02029K
crossref_primary_10_3390_nano11041054
crossref_primary_10_1002_tcr_202200310
crossref_primary_10_1039_D4CC05484A
crossref_primary_10_1002_smll_202207754
crossref_primary_10_1016_j_cej_2023_146901
crossref_primary_10_1016_j_ensm_2021_03_005
crossref_primary_10_1002_smll_202306275
crossref_primary_10_1039_D0TA10336E
crossref_primary_10_1016_j_ensm_2022_05_010
crossref_primary_10_1002_advs_202002722
crossref_primary_10_1021_acsami_4c16336
crossref_primary_10_1016_j_chempr_2023_03_033
crossref_primary_10_1016_j_gce_2023_01_001
crossref_primary_10_1039_D1SE01317C
crossref_primary_10_1002_adma_202314247
crossref_primary_10_1016_j_trechm_2023_02_008
crossref_primary_10_1039_D0EE03206A
crossref_primary_10_1039_D1QM00998B
crossref_primary_10_1016_j_jpowsour_2024_234524
crossref_primary_10_1007_s40820_023_01023_7
crossref_primary_10_1002_inf2_12223
crossref_primary_10_1016_j_apsusc_2022_156259
crossref_primary_10_1016_j_nanoen_2022_107331
crossref_primary_10_1016_j_colsurfa_2023_131459
crossref_primary_10_1002_adfm_202100164
crossref_primary_10_1002_celc_202200178
crossref_primary_10_1002_celc_202200059
crossref_primary_10_1016_j_apsusc_2023_159005
crossref_primary_10_1016_j_electacta_2022_140270
crossref_primary_10_1039_D4CS00779D
crossref_primary_10_1002_celc_202400504
crossref_primary_10_1016_j_colsurfa_2023_131451
crossref_primary_10_1016_j_jechem_2020_10_019
crossref_primary_10_1021_acsanm_4c03283
crossref_primary_10_1002_ange_202400045
crossref_primary_10_1016_j_electacta_2025_146056
crossref_primary_10_1016_j_vacuum_2023_112671
crossref_primary_10_1016_j_cej_2024_152064
crossref_primary_10_1002_adfm_202413893
crossref_primary_10_1021_acsaem_1c00573
crossref_primary_10_3866_PKU_WHXB202310034
crossref_primary_10_1016_j_cej_2022_138116
crossref_primary_10_1021_acsaem_2c02882
crossref_primary_10_1016_j_ensm_2022_10_016
crossref_primary_10_1002_adfm_202006855
crossref_primary_10_1016_j_mattod_2020_08_021
crossref_primary_10_1016_j_pmatsci_2021_100911
crossref_primary_10_1016_j_ensm_2021_07_044
crossref_primary_10_1002_cssc_202200075
crossref_primary_10_1016_j_cej_2023_143971
crossref_primary_10_1016_j_cej_2023_147411
crossref_primary_10_1063_5_0061714
crossref_primary_10_1002_sstr_202100212
crossref_primary_10_1002_aenm_202003823
crossref_primary_10_1016_j_jcis_2024_01_036
crossref_primary_10_3390_inorganics11030118
crossref_primary_10_1016_j_ccr_2021_214124
crossref_primary_10_1002_aenm_202103010
crossref_primary_10_1016_j_mtener_2022_101095
crossref_primary_10_1002_adma_202102701
crossref_primary_10_1002_ange_202320075
crossref_primary_10_1039_D2TA03145K
crossref_primary_10_1002_batt_202400507
crossref_primary_10_1002_adfm_202010445
crossref_primary_10_1016_j_cej_2022_136861
crossref_primary_10_1016_j_ensm_2022_06_027
crossref_primary_10_3389_fchem_2022_892013
crossref_primary_10_1039_D1TA05526G
crossref_primary_10_1016_j_jechem_2020_06_016
crossref_primary_10_1007_s12598_023_02364_3
crossref_primary_10_1016_j_cej_2022_140323
crossref_primary_10_1002_cnma_202000384
crossref_primary_10_1016_j_jechem_2021_01_023
crossref_primary_10_1021_acsenergylett_2c02817
crossref_primary_10_1002_eem2_12502
crossref_primary_10_1002_smsc_202000066
crossref_primary_10_1021_acsami_0c15621
crossref_primary_10_3390_batteries9010005
crossref_primary_10_1002_eem2_12145
crossref_primary_10_1039_D1TA09968J
crossref_primary_10_1016_j_jpowsour_2024_234976
crossref_primary_10_1039_D2NR06786B
crossref_primary_10_1039_D0QM01105C
crossref_primary_10_1016_j_cej_2025_160745
crossref_primary_10_1002_ange_202212231
crossref_primary_10_1016_j_jallcom_2021_162615
crossref_primary_10_1039_D2TA04490K
crossref_primary_10_1002_smtd_202200560
crossref_primary_10_1021_acssuschemeng_4c06052
crossref_primary_10_1002_adfm_202302659
crossref_primary_10_1016_j_ensm_2020_06_014
crossref_primary_10_1002_anie_202211478
crossref_primary_10_1002_ece2_69
crossref_primary_10_1002_aenm_202303967
crossref_primary_10_1016_j_est_2025_116173
crossref_primary_10_1016_j_materresbull_2020_111077
crossref_primary_10_1021_acsaem_4c02629
crossref_primary_10_1021_acs_energyfuels_4c01189
crossref_primary_10_1002_adfm_202005080
crossref_primary_10_1039_D1EE00030F
crossref_primary_10_1002_ange_202310577
crossref_primary_10_1016_j_jechem_2021_08_057
crossref_primary_10_1002_anie_202200598
crossref_primary_10_1016_j_jcis_2022_08_064
crossref_primary_10_1016_j_jcis_2023_06_172
crossref_primary_10_1002_smll_202307849
crossref_primary_10_3390_molecules25225229
crossref_primary_10_1016_j_jpowsour_2022_232385
crossref_primary_10_1002_smll_202105796
crossref_primary_10_1021_acssuschemeng_3c03386
crossref_primary_10_1002_adfm_202306205
crossref_primary_10_1039_D4SC00292J
crossref_primary_10_1002_ente_202100011
crossref_primary_10_1016_j_colsurfa_2024_134317
crossref_primary_10_1021_acsami_1c04279
crossref_primary_10_1002_adfm_202103070
crossref_primary_10_1021_acsnano_2c09977
crossref_primary_10_1016_j_mtener_2023_101456
crossref_primary_10_1021_acsnano_1c05725
crossref_primary_10_1002_adom_202400459
crossref_primary_10_1002_anie_202310577
crossref_primary_10_2139_ssrn_4176786
crossref_primary_10_1007_s12598_023_02434_6
crossref_primary_10_1016_j_jcis_2021_06_141
crossref_primary_10_1016_j_chphma_2021_11_001
crossref_primary_10_1002_adfm_202210010
crossref_primary_10_1002_ange_202200598
crossref_primary_10_1016_j_ccr_2022_214477
crossref_primary_10_1002_adfm_202100005
crossref_primary_10_1002_adfm_202006495
crossref_primary_10_1039_D1QM00703C
crossref_primary_10_1016_j_jallcom_2023_169271
crossref_primary_10_1039_D2TA05882K
crossref_primary_10_1016_j_ensm_2022_01_059
crossref_primary_10_1039_D0QM00745E
crossref_primary_10_1002_aesr_202100088
crossref_primary_10_1016_j_est_2024_110808
crossref_primary_10_1016_j_jechem_2021_07_027
crossref_primary_10_1016_j_matlet_2020_127813
crossref_primary_10_1039_D4TA06326K
crossref_primary_10_1039_D1TA03620C
crossref_primary_10_1002_eom2_12326
crossref_primary_10_1021_acsami_2c01698
crossref_primary_10_1007_s12274_022_4477_1
crossref_primary_10_1002_cnma_202300615
crossref_primary_10_1039_D2TA08466J
crossref_primary_10_1021_acsaem_1c02324
crossref_primary_10_1002_adfm_202007358
crossref_primary_10_1016_j_ensm_2020_12_010
crossref_primary_10_1016_j_mtener_2023_101474
crossref_primary_10_1039_D3TA04414A
crossref_primary_10_1016_j_jma_2025_02_014
crossref_primary_10_1002_adfm_202312789
crossref_primary_10_1016_j_cej_2024_155645
crossref_primary_10_1021_acsnano_1c11169
crossref_primary_10_1007_s40843_021_1730_1
crossref_primary_10_1016_j_electacta_2023_142702
crossref_primary_10_1016_j_matlet_2025_138273
crossref_primary_10_1002_ange_202211478
crossref_primary_10_1002_cssc_202201118
crossref_primary_10_1039_D3YA00158J
crossref_primary_10_1016_j_egyr_2024_06_007
crossref_primary_10_1093_nsr_nwae336
crossref_primary_10_1021_acsaem_3c02561
crossref_primary_10_1007_s11426_023_1698_6
crossref_primary_10_1016_j_ensm_2021_05_003
crossref_primary_10_1016_j_ensm_2022_04_040
crossref_primary_10_1039_D1TA10545K
crossref_primary_10_1002_smll_202207487
crossref_primary_10_1021_acs_chemrev_3c00389
crossref_primary_10_3390_nano12213896
crossref_primary_10_1016_j_cej_2023_147727
crossref_primary_10_1021_acssuschemeng_3c07140
crossref_primary_10_1021_acs_langmuir_4c03422
crossref_primary_10_1007_s10008_023_05542_6
crossref_primary_10_1002_adma_202100359
crossref_primary_10_3390_nano11061517
crossref_primary_10_1016_j_nanoen_2021_105969
crossref_primary_10_1002_cjoc_202100791
crossref_primary_10_1016_j_jics_2022_100663
crossref_primary_10_1007_s10751_024_02212_5
crossref_primary_10_1039_D2NH00349J
crossref_primary_10_1016_j_jallcom_2025_178455
crossref_primary_10_1002_smll_202201011
crossref_primary_10_1021_acsenergylett_3c01737
crossref_primary_10_1002_smll_202306790
crossref_primary_10_1016_j_cclet_2022_107839
crossref_primary_10_1002_adfm_202400032
crossref_primary_10_1002_smll_202402811
crossref_primary_10_1016_j_nxener_2023_100067
crossref_primary_10_1039_D3EE00462G
crossref_primary_10_1002_smtd_202300660
crossref_primary_10_1002_smtd_202301083
crossref_primary_10_1016_j_cej_2022_139396
crossref_primary_10_1016_j_jssc_2022_123788
crossref_primary_10_1021_acsami_2c02920
crossref_primary_10_1021_acsaem_2c00832
crossref_primary_10_1021_acsami_1c01405
crossref_primary_10_1016_j_gee_2023_02_001
crossref_primary_10_1039_D2QI00362G
crossref_primary_10_1002_advs_202004995
crossref_primary_10_1016_j_cej_2021_134402
crossref_primary_10_1016_j_jcis_2024_03_161
crossref_primary_10_1002_cey2_647
crossref_primary_10_1002_smll_202309029
crossref_primary_10_1021_acsami_1c04596
crossref_primary_10_1002_adfm_202201584
crossref_primary_10_3390_en17225768
crossref_primary_10_1002_anie_202415997
crossref_primary_10_1039_D2MA00063F
crossref_primary_10_1007_s11708_023_0902_8
crossref_primary_10_1002_advs_202206836
crossref_primary_10_1002_aenm_202404597
crossref_primary_10_1016_j_enchem_2021_100052
crossref_primary_10_1002_ente_202000829
crossref_primary_10_1039_D3EE01344H
crossref_primary_10_1007_s40820_023_01136_z
crossref_primary_10_1002_aenm_202301480
crossref_primary_10_1016_j_seppur_2024_129058
crossref_primary_10_1007_s12274_020_3109_x
crossref_primary_10_1039_D0QM00656D
crossref_primary_10_1016_j_fmre_2021_06_017
crossref_primary_10_1002_aenm_202002354
crossref_primary_10_1016_j_jallcom_2022_164434
crossref_primary_10_1016_j_ensm_2024_103544
crossref_primary_10_1016_j_jcis_2024_03_025
crossref_primary_10_1016_j_est_2024_113716
crossref_primary_10_3390_en15238966
crossref_primary_10_1088_1674_4926_44_4_041701
crossref_primary_10_1016_j_compositesb_2024_111305
crossref_primary_10_1039_D2QM00254J
crossref_primary_10_1007_s40843_021_1808_7
crossref_primary_10_1039_D4QI01942C
crossref_primary_10_1016_j_cej_2024_157587
crossref_primary_10_1002_anie_202400045
crossref_primary_10_1002_anie_202212231
crossref_primary_10_1002_adfm_202311412
crossref_primary_10_1016_j_cej_2022_136349
crossref_primary_10_1039_D1EE01472B
crossref_primary_10_1016_j_vacuum_2023_112826
crossref_primary_10_1039_D4TA00376D
crossref_primary_10_1021_acssuschemeng_0c09184
crossref_primary_10_1016_j_jpcs_2023_111558
crossref_primary_10_1016_j_jpowsour_2023_232945
crossref_primary_10_1002_smll_202305030
crossref_primary_10_1002_adfm_202104543
crossref_primary_10_1016_j_jpowsour_2025_236365
crossref_primary_10_1016_j_cej_2022_137681
crossref_primary_10_1016_j_cej_2022_139621
crossref_primary_10_1016_j_ensm_2024_103494
crossref_primary_10_1016_j_mtcomm_2021_102271
crossref_primary_10_1021_acsami_2c19457
crossref_primary_10_1021_acssuschemeng_3c06125
crossref_primary_10_1002_adfm_202301291
crossref_primary_10_1002_adfm_202303102
crossref_primary_10_1016_j_ensm_2021_04_004
crossref_primary_10_1002_ange_202415997
crossref_primary_10_1016_j_cej_2022_134738
crossref_primary_10_1039_D4CC04997G
crossref_primary_10_1039_D3NR06207D
crossref_primary_10_1002_aesr_202100220
crossref_primary_10_1002_anie_202320075
crossref_primary_10_1007_s12274_023_6286_6
crossref_primary_10_1016_j_cej_2022_141140
crossref_primary_10_1016_j_est_2023_106988
crossref_primary_10_1016_j_jechem_2020_10_044
crossref_primary_10_1002_anie_202008960
crossref_primary_10_1016_j_cej_2023_142221
crossref_primary_10_1039_D1TA04420F
crossref_primary_10_1002_adfm_202102011
crossref_primary_10_1016_j_jpowsour_2021_229677
crossref_primary_10_1016_j_chempr_2020_03_006
crossref_primary_10_1021_acsami_1c18950
crossref_primary_10_1002_aenm_202401493
crossref_primary_10_1016_j_est_2024_112002
crossref_primary_10_1016_j_jallcom_2023_171750
crossref_primary_10_1002_adfm_202303211
crossref_primary_10_1002_adma_202310645
crossref_primary_10_1002_batt_202200221
crossref_primary_10_1016_j_jcis_2022_11_101
crossref_primary_10_1039_D3CS00295K
crossref_primary_10_1039_D4TA05938G
crossref_primary_10_1016_j_colsurfa_2023_131703
crossref_primary_10_1016_j_jpowsour_2021_229680
crossref_primary_10_1002_batt_202200461
crossref_primary_10_1021_acsaem_3c00063
crossref_primary_10_1002_elsa_202100090
crossref_primary_10_1021_acsaem_3c02940
crossref_primary_10_1002_aenm_202406171
crossref_primary_10_1021_acs_chemrev_9b00628
crossref_primary_10_1021_acssuschemeng_2c07108
crossref_primary_10_1021_acs_accounts_4c00776
crossref_primary_10_1002_aenm_202202039
crossref_primary_10_1002_smtd_202100544
crossref_primary_10_1002_advs_202206907
crossref_primary_10_1016_j_jpowsour_2024_234434
crossref_primary_10_1021_acsnano_4c12849
crossref_primary_10_2139_ssrn_3978523
crossref_primary_10_1002_anie_202408414
crossref_primary_10_1016_j_ensm_2022_08_040
crossref_primary_10_1021_acs_inorgchem_4c03146
crossref_primary_10_1016_j_jpowsour_2022_231920
crossref_primary_10_1016_j_cjche_2020_05_015
crossref_primary_10_1039_D2CE01467J
crossref_primary_10_1021_acsami_1c21581
crossref_primary_10_1016_j_cej_2022_140194
crossref_primary_10_1016_j_matlet_2023_134262
crossref_primary_10_1021_jacs_3c08264
crossref_primary_10_1002_smtd_202300606
crossref_primary_10_1016_j_cej_2023_146127
crossref_primary_10_1002_adma_202105452
crossref_primary_10_1039_D3NR00466J
crossref_primary_10_1016_j_jallcom_2022_163701
crossref_primary_10_1002_smll_202400692
crossref_primary_10_2174_0115701794314387240604112621
crossref_primary_10_1016_j_est_2024_114448
crossref_primary_10_1002_aenm_202401704
crossref_primary_10_1002_ange_202408414
crossref_primary_10_1016_j_cej_2022_134642
crossref_primary_10_1002_aenm_202204358
crossref_primary_10_1002_anie_202212031
crossref_primary_10_1039_D0EE02111C
crossref_primary_10_1002_ange_202008960
Cites_doi 10.1021/jacs.6b05958
10.1002/aenm.201501882
10.1021/acsenergylett.8b01423
10.1021/acsnano.9b03686
10.1039/b919541f
10.1039/B414922J
10.1039/C8TA08814D
10.1038/s41563-018-0063-z
10.1002/anie.201713291
10.1002/anie.201903941
10.1002/aenm.201801819
10.1016/j.jallcom.2019.06.084
10.1039/C4TA05131A
10.1016/j.nanoen.2016.08.052
10.1002/aenm.201900993
10.1016/j.nanoen.2016.04.051
10.1016/j.nanoen.2018.09.021
10.1021/acs.nanolett.5b03601
10.1021/acsaem.8b01676
10.1021/cm00040a009
10.1038/nenergy.2016.119
10.1007/s40820-019-0256-2
10.1021/acsenergylett.8b01426
10.1039/b100714i
10.1002/advs.201700322
10.1021/nn700261c
10.1002/aenm.201803815
10.1021/cr500232y
10.1038/s41467-018-04949-4
10.1039/C8TA09338E
10.1039/C8EE01651H
10.1126/science.aax6873
10.1016/j.nanoen.2013.12.005
10.1016/j.ensm.2017.10.014
10.1038/nenergy.2016.39
10.1002/aenm.201200065
10.1002/adfm.201906142
10.1038/s41467-018-04060-8
10.1002/adma.201703725
10.1126/science.aab1595
10.1021/acs.nanolett.7b05298
10.1021/acs.nanolett.7b05403
10.1039/C5EE02896E
10.1002/adfm.201802564
10.1002/smll.201702551
10.1002/aenm.201702463
10.1039/C8TA06626D
10.1021/acsenergylett.8b00565
10.1002/adfm.201402924
10.1038/natrevmats.2016.103
10.1038/s41560-018-0108-1
10.1002/anie.201602397
10.1039/C6TA08257B
10.1021/nl404709b
10.1038/s41467-017-00467-x
10.1021/acsenergylett.9b01541
10.1021/acs.chemmater.5b02512
10.1002/aenm.201400930
10.1021/jacs.7b04471
10.1016/j.nanoen.2013.12.014
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.chempr.2020.02.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2451-9294
EndPage 984
ExternalDocumentID 10_1016_j_chempr_2020_02_001
S2451929420300486
GroupedDBID 0R~
AACTN
AAEDW
AALRI
AAVLU
AAXUO
ABMAC
ABVKL
ACGFS
ADJPV
AFTJW
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
O9-
OK1
AAMRU
AAYWO
AAYXX
ABDGV
ABJNI
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
SSZ
ID FETCH-LOGICAL-c352t-54e92146bccd8b046e16cb13027d3d6c34f1677f778778f3c0e8baac30e931863
ISSN 2451-9294
IngestDate Thu Apr 24 23:05:38 EDT 2025
Tue Jul 01 03:15:20 EDT 2025
Thu Jul 20 20:19:52 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords interlayer spacing
aqueous zinc-based batteries
vanadium oxide
polymer intercalation
SDG7: Affordable and clean energy
oxygen vacancies
electrochemical performance
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-54e92146bccd8b046e16cb13027d3d6c34f1677f778778f3c0e8baac30e931863
OpenAccessLink http://www.cell.com/article/S2451929420300486/pdf
PageCount 17
ParticipantIDs crossref_citationtrail_10_1016_j_chempr_2020_02_001
crossref_primary_10_1016_j_chempr_2020_02_001
elsevier_sciencedirect_doi_10_1016_j_chempr_2020_02_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-09
PublicationDateYYYYMMDD 2020-04-09
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-09
  day: 09
PublicationDecade 2020
PublicationTitle Chem
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Pan, Shao, Yan, Cheng, Han, Nie, Wang, Yang, Li, Bhattacharya (bib16) 2016; 1
Yang, Tang, Fang, Shan, Guo, Zhang, Wang, Wang, Zhou, Liang (bib27) 2018; 11
Zheng, Zhao, Tang, Yin, Quilty, Renderos, Liu, Deng, Wang, Bock (bib60) 2019; 366
Liu, Wang, Xu, Jiang, Li, Zhang, Lin, Shen (bib55) 2018; 5
Li, Yang, Jiang, Jin, Huang, Ding, Huang (bib22) 2016; 25
He, Quan, Xu, Yan, Yang, An, He, Mai (bib53) 2017; 13
Yuan, Duan, Zhang, Li, Zhang, Vankelecom (bib7) 2016; 9
Fang, Zhou, Pan, Liang (bib10) 2018; 3
Huang, Wang, Hou, Dong, Liu, Wang, Xia (bib33) 2018; 9
Zhao, Fan, Ding, Hu, Zhong, Lu (bib14) 2019; 4
Liu, Chen, Fang, Wang, Cai, Tang, Zhou, Liang (bib50) 2019; 11
Zhang, Dong, Jia, Bian, Wang, Qiu, Xu, Liu, Jiao, Cheng (bib23) 2018; 3
Soundharrajan, Sambandam, Kim, Alfaruqi, Putro, Jo, Kim, Mathew, Sun, Kim (bib52) 2018; 18
Wan, Zhang, Dai, Wang, Niu, Chen (bib51) 2018; 9
Li, Chen, Fang, Shan, Cao, Huang, Liang, Zhou (bib29) 2019; 801
Pozarnsky, McCormick (bib45) 1994; 6
Wei, Li, Yang, Wang (bib39) 2018; 6
Brückner (bib46) 2010; 39
Li, Dong, Feng, Xu, Ren, Gao, Li, Cheng, Wu, Wu (bib48) 2019; 13
Zhang, Chen, Zhou, Liu (bib17) 2015; 5
Ma, Li, Long, Dong, Fang, Liu, Zhao, Li, Fan, Chen (bib18) 2019; 29
Zhang, Higgins, Park, O'Brien, Long, Coleman, Nicolosi (bib35) 2016; 28
Zhang, Wu, Ding, Yan, Zhou, Ding, Liu (bib13) 2018; 53
Manthiram, Yu, Wang (bib1) 2017; 2
Suo, Borodin, Gao, Olguin, Ho, Fan, Luo, Wang, Xu (bib5) 2015; 350
Deng, Zhang, Dong, Shang (bib20) 2014; 4
Zhang, Cheng, Liu, Zhao, Lei, Chen, Liu, Chen (bib56) 2016; 138
Sun, Wang, Hou, Yang, Fan, Ma, Gao, Han, Hu, Zhu, Wang (bib15) 2017; 139
Lee, Gleason (bib47) 2015; 25
Guo, Sun, Ouyang, Lu (bib43) 2015; 27
Kim, Hong, Park, Kim, Kim, Kang (bib3) 2014; 114
Xia, Zhou, Velusamy, Farah, Li, Jiang, Odeh, Wang, Zhang, Alshareef (bib54) 2018; 18
Murugan, Kale, Kwon, Campet, Vijayamohanan (bib34) 2001; 11
Song, Tan, Chao, Fan (bib12) 2018; 28
Wang, Zhang, Cheng, Feng, Li, Zhang (bib8) 2017; 5
Tang, Zhou, Fang, Liu, Zhu, Wang, Pan, Liang (bib58) 2019; 7
Zhang, Cai, Qin, Wei (bib59) 2014; 4
Zhang, Cheng, Liu, Wang, Long, Liu, Li, Chen (bib9) 2017; 8
Bi, Wu, Liu, Wang, Du, Gao, Wu, Cao (bib44) 2019; 2
Yan, He, Chen, Wang, Wei, Zhao, Xu, An, Shuang, Shao (bib26) 2018; 30
Ni, Chen, Song, Liu, Yang, Cai (bib37) 2019; 7
Li, Wang, Cheng, Jiang (bib57) 2019; 9
He, Zhang, Liao, Yan, Xu, An, Liu, Mai (bib28) 2018; 8
Cai, Darmawan, Cui, Wang, Chen, Magdassi, Lee (bib36) 2016; 6
Yao, Li, Massé, Uchaker, Cao (bib32) 2018; 11
Vadivel Murugan, Quintin, Delville, Campet, Vijayamohanan (bib38) 2005; 15
Suo, Borodin, Sun, Fan, Yang, Wang, Gao, Ma, Schroeder, von Cresce (bib6) 2016; 55
Kundu, Adams, Duffort, Vajargah, Nazar (bib21) 2016; 1
Ming, Liang, Lei, Kandambeth, Eddaoudi, Alshareef (bib31) 2018; 3
Xiong, Aliev, Gnade, Balkus (bib42) 2008; 2
Yue, Wang, Bin, Xu, Du, Lu, Guo (bib40) 2015; 3
Xia, Guo, Li, Zhang, Alshareef (bib30) 2018; 57
Fan, Luo, Lamb, Zhu, Xu, Wang (bib41) 2015; 15
Cano, Banham, Ye, Hintennach, Lu, Fowler, Chen (bib2) 2018; 3
Wang, Yi, Xia (bib4) 2012; 2
Guo, Fang, Zhang, Zhou, Shan, Wang, Wang, Lin, Tang, Liang (bib25) 2018; 8
Xiong, Yu, Wu, Du, Xie, Chen, Zhang, Pennycook, Lee, Xue (bib49) 2019; 9
Fan, Niu (bib24) 2019; 58
Wang, Borodin, Gao, Fan, Sun, Han, Faraone, Dura, Xu, Wang (bib11) 2018; 17
Wei, An, Chen, Mai, Chen, Zhao, Hercule, Xu, Minhas-Khan, Zhang (bib19) 2014; 14
Ni (10.1016/j.chempr.2020.02.001_bib37) 2019; 7
Tang (10.1016/j.chempr.2020.02.001_bib58) 2019; 7
Bi (10.1016/j.chempr.2020.02.001_bib44) 2019; 2
Guo (10.1016/j.chempr.2020.02.001_bib25) 2018; 8
Xiong (10.1016/j.chempr.2020.02.001_bib42) 2008; 2
Fan (10.1016/j.chempr.2020.02.001_bib41) 2015; 15
Zhang (10.1016/j.chempr.2020.02.001_bib9) 2017; 8
Fang (10.1016/j.chempr.2020.02.001_bib10) 2018; 3
Zhang (10.1016/j.chempr.2020.02.001_bib23) 2018; 3
Wang (10.1016/j.chempr.2020.02.001_bib11) 2018; 17
Fan (10.1016/j.chempr.2020.02.001_bib24) 2019; 58
Yan (10.1016/j.chempr.2020.02.001_bib26) 2018; 30
Ming (10.1016/j.chempr.2020.02.001_bib31) 2018; 3
Pozarnsky (10.1016/j.chempr.2020.02.001_bib45) 1994; 6
Lee (10.1016/j.chempr.2020.02.001_bib47) 2015; 25
Soundharrajan (10.1016/j.chempr.2020.02.001_bib52) 2018; 18
Yuan (10.1016/j.chempr.2020.02.001_bib7) 2016; 9
Wei (10.1016/j.chempr.2020.02.001_bib39) 2018; 6
Liu (10.1016/j.chempr.2020.02.001_bib50) 2019; 11
Cano (10.1016/j.chempr.2020.02.001_bib2) 2018; 3
Zhang (10.1016/j.chempr.2020.02.001_bib13) 2018; 53
Brückner (10.1016/j.chempr.2020.02.001_bib46) 2010; 39
Xia (10.1016/j.chempr.2020.02.001_bib54) 2018; 18
Suo (10.1016/j.chempr.2020.02.001_bib5) 2015; 350
Suo (10.1016/j.chempr.2020.02.001_bib6) 2016; 55
Zhang (10.1016/j.chempr.2020.02.001_bib17) 2015; 5
Murugan (10.1016/j.chempr.2020.02.001_bib34) 2001; 11
Zhao (10.1016/j.chempr.2020.02.001_bib14) 2019; 4
Pan (10.1016/j.chempr.2020.02.001_bib16) 2016; 1
Li (10.1016/j.chempr.2020.02.001_bib22) 2016; 25
Zhang (10.1016/j.chempr.2020.02.001_bib59) 2014; 4
Xiong (10.1016/j.chempr.2020.02.001_bib49) 2019; 9
Zheng (10.1016/j.chempr.2020.02.001_bib60) 2019; 366
Deng (10.1016/j.chempr.2020.02.001_bib20) 2014; 4
Sun (10.1016/j.chempr.2020.02.001_bib15) 2017; 139
Xia (10.1016/j.chempr.2020.02.001_bib30) 2018; 57
Wei (10.1016/j.chempr.2020.02.001_bib19) 2014; 14
Yao (10.1016/j.chempr.2020.02.001_bib32) 2018; 11
Wan (10.1016/j.chempr.2020.02.001_bib51) 2018; 9
Zhang (10.1016/j.chempr.2020.02.001_bib35) 2016; 28
Yang (10.1016/j.chempr.2020.02.001_bib27) 2018; 11
Wang (10.1016/j.chempr.2020.02.001_bib8) 2017; 5
Yue (10.1016/j.chempr.2020.02.001_bib40) 2015; 3
Li (10.1016/j.chempr.2020.02.001_bib48) 2019; 13
Vadivel Murugan (10.1016/j.chempr.2020.02.001_bib38) 2005; 15
He (10.1016/j.chempr.2020.02.001_bib28) 2018; 8
Zhang (10.1016/j.chempr.2020.02.001_bib56) 2016; 138
Ma (10.1016/j.chempr.2020.02.001_bib18) 2019; 29
Kundu (10.1016/j.chempr.2020.02.001_bib21) 2016; 1
Song (10.1016/j.chempr.2020.02.001_bib12) 2018; 28
Wang (10.1016/j.chempr.2020.02.001_bib4) 2012; 2
Huang (10.1016/j.chempr.2020.02.001_bib33) 2018; 9
Cai (10.1016/j.chempr.2020.02.001_bib36) 2016; 6
Li (10.1016/j.chempr.2020.02.001_bib57) 2019; 9
Li (10.1016/j.chempr.2020.02.001_bib29) 2019; 801
Kim (10.1016/j.chempr.2020.02.001_bib3) 2014; 114
Liu (10.1016/j.chempr.2020.02.001_bib55) 2018; 5
Guo (10.1016/j.chempr.2020.02.001_bib43) 2015; 27
Manthiram (10.1016/j.chempr.2020.02.001_bib1) 2017; 2
He (10.1016/j.chempr.2020.02.001_bib53) 2017; 13
References_xml – volume: 8
  start-page: 405
  year: 2017
  ident: bib9
  article-title: Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities
  publication-title: Nat. Commun.
– volume: 139
  start-page: 9775
  year: 2017
  end-page: 9778
  ident: bib15
  article-title: Zn/MnO
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 29152849
  year: 2017
  ident: bib53
  article-title: High-performance aqueous zinc-ion battery based on layered H
  publication-title: Small
– volume: 114
  start-page: 11788
  year: 2014
  end-page: 11827
  ident: bib3
  article-title: Aqueous rechargeable Li and Na ion batteries
  publication-title: Chem. Rev.
– volume: 28
  start-page: 1802564
  year: 2018
  ident: bib12
  article-title: Recent advances in Zn-ion batteries
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 902
  year: 2005
  end-page: 909
  ident: bib38
  article-title: Entrapment of poly(3,4-ethylenedioxythiophene) between VS
  publication-title: J. Mater. Chem.
– volume: 11
  start-page: 3157
  year: 2018
  end-page: 3162
  ident: bib27
  article-title: Li+ intercalated V
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 14
  year: 2014
  end-page: 22
  ident: bib59
  article-title: Tunable self-discharge process of carbon nanotube based supercapacitors
  publication-title: Nano Energy
– volume: 11
  start-page: 205
  year: 2018
  end-page: 259
  ident: bib32
  article-title: Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 49
  year: 2014
  end-page: 55
  ident: bib20
  article-title: 1D nanostructured sodium vanadium oxide as a novel anode material for aqueous sodium ion batteries
  publication-title: Nano Energy
– volume: 8
  start-page: 1801819
  year: 2018
  ident: bib25
  article-title: Mechanistic insights of Zn
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 279
  year: 2018
  end-page: 289
  ident: bib2
  article-title: Batteries and fuel cells for emerging electric vehicle markets
  publication-title: Nat. Energy
– volume: 11
  start-page: 2
  year: 2019
  end-page: 11
  ident: bib50
  article-title: V
  publication-title: Nano Micro Lett.
– volume: 3
  start-page: 1366
  year: 2018
  end-page: 1372
  ident: bib23
  article-title: Rechargeable aqueous Zn-V
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 1077
  year: 2015
  end-page: 1088
  ident: bib40
  article-title: Facile one-pot synthesis of Pd–PEDOT/graphene nanocomposites with hierarchical structure and high electrocatalytic performance for ethanol oxidation
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1323
  year: 2019
  end-page: 1333
  ident: bib37
  article-title: Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 16103
  year: 2017
  ident: bib1
  article-title: Lithium battery chemistries enabled by solid-state electrolytes
  publication-title: Nat. Rev. Mater.
– volume: 29
  start-page: 1906142
  year: 2019
  ident: bib18
  article-title: Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 16309
  year: 2016
  ident: bib16
  article-title: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions
  publication-title: Nat. Energy
– volume: 18
  start-page: 1506
  year: 2018
  end-page: 1515
  ident: bib54
  article-title: Anomalous Li storage capability in atomically thin two-dimensional sheets of nonlayered MoO
  publication-title: Nano Lett.
– volume: 9
  start-page: 1656
  year: 2018
  ident: bib51
  article-title: Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers
  publication-title: Nat. Commun.
– volume: 28
  start-page: 495
  year: 2016
  end-page: 505
  ident: bib35
  article-title: Highly flexible and transparent solid-state supercapacitors based on RuO
  publication-title: Nano Energy
– volume: 27
  start-page: 5813
  year: 2015
  end-page: 5819
  ident: bib43
  article-title: Layered V
  publication-title: Chem. Mater.
– volume: 1
  start-page: 16119
  year: 2016
  ident: bib21
  article-title: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode
  publication-title: Nat. Energy
– volume: 801
  start-page: 82
  year: 2019
  end-page: 89
  ident: bib29
  article-title: Synthesis of polycrystalline K
  publication-title: J. Alloys Compd.
– volume: 39
  start-page: 4673
  year: 2010
  end-page: 4684
  ident: bib46
  article-title: In situ electron paramagnetic resonance: a unique tool for analysing structure-reactivity relationships in heterogeneous catalysis
  publication-title: Chem. Soc. Rev.
– volume: 17
  start-page: 543
  year: 2018
  end-page: 549
  ident: bib11
  article-title: Highly reversible zinc metal anode for aqueous batteries
  publication-title: Nat. Mater.
– volume: 138
  start-page: 12894
  year: 2016
  end-page: 12901
  ident: bib56
  article-title: Cation-deficient spinel ZnMn
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 16358
  year: 2019
  end-page: 16367
  ident: bib24
  article-title: Design strategies of vanadium-based aqueous zinc-ion batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 1702463
  year: 2018
  ident: bib28
  article-title: Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1803815
  year: 2019
  ident: bib49
  article-title: Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 20402
  year: 2018
  end-page: 20410
  ident: bib39
  article-title: Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH
  publication-title: J. Mater. Chem. A
– volume: 350
  start-page: 938
  year: 2015
  end-page: 943
  ident: bib5
  article-title: “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries
  publication-title: Science
– volume: 5
  start-page: 593
  year: 2017
  end-page: 599
  ident: bib8
  article-title: Rational design and synthesis of LiTi
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 2259
  year: 2019
  end-page: 2270
  ident: bib14
  article-title: Challenges in zinc electrodes for alkaline zinc-air batteries: obstacles to commercialization
  publication-title: ACS Energy Lett.
– volume: 14
  start-page: 1042
  year: 2014
  end-page: 1048
  ident: bib19
  article-title: One-pot synthesized bicontinuous hierarchical Li
  publication-title: Nano Lett.
– volume: 7
  start-page: 940
  year: 2019
  end-page: 945
  ident: bib58
  article-title: Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 9227
  year: 2019
  end-page: 9236
  ident: bib48
  article-title: Controllably enriched oxygen vacancies through polymer assistance in titanium pyrophosphate as a super anode for Na/K-ion batteries
  publication-title: ACS Nano
– volume: 5
  start-page: 1400930
  year: 2015
  ident: bib17
  article-title: Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 1703725
  year: 2018
  ident: bib26
  article-title: Water-lubricated intercalation in V
  publication-title: Adv. Mater.
– volume: 3
  start-page: 2480
  year: 2018
  end-page: 2501
  ident: bib10
  article-title: Recent advances in aqueous zinc-ion batteries
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 668
  year: 2019
  end-page: 677
  ident: bib44
  article-title: Gradient oxygen vacancies in V
  publication-title: ACS Appl. Energy Mater.
– volume: 25
  start-page: 211
  year: 2016
  end-page: 217
  ident: bib22
  article-title: Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na
  publication-title: Nano Energy
– volume: 53
  start-page: 666
  year: 2018
  end-page: 674
  ident: bib13
  article-title: Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes
  publication-title: Nano Energy
– volume: 2
  start-page: 293
  year: 2008
  end-page: 301
  ident: bib42
  article-title: Fabrication of silver vanadium oxide and V
  publication-title: ACS Nano
– volume: 15
  start-page: 7650
  year: 2015
  end-page: 7656
  ident: bib41
  article-title: PEDOT encapsulated FeOF nanorod cathodes for high energy lithium-ion batteries
  publication-title: Nano Lett.
– volume: 9
  start-page: 1900993
  year: 2019
  ident: bib57
  article-title: An ultrastable presodiated titanium fisulfide anode for aqueous “Rocking-Chair” zinc ion battery
  publication-title: Adv. Energy Mater.
– volume: 57
  start-page: 3943
  year: 2018
  end-page: 3948
  ident: bib30
  article-title: Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode
  publication-title: Angew. Chem. Int. Ed.
– volume: 366
  start-page: 645
  year: 2019
  end-page: 648
  ident: bib60
  article-title: Reversible epitaxial electrodeposition of metals in battery anodes
  publication-title: Science
– volume: 3
  start-page: 2602
  year: 2018
  end-page: 2609
  ident: bib31
  article-title: Layered Mg
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 830
  year: 2012
  end-page: 840
  ident: bib4
  article-title: Recent progress in aqueous lithium-ion batteries
  publication-title: Adv. Energy Mater.
– volume: 25
  start-page: 85
  year: 2015
  end-page: 93
  ident: bib47
  article-title: Enhanced optical property with tunable band gap of cross-linked PEDOT copolymers via oxidative chemical vapor deposition
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 2906
  year: 2018
  ident: bib33
  article-title: Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1501882
  year: 2016
  ident: bib36
  article-title: Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors
  publication-title: Adv. Energy Mater.
– volume: 55
  start-page: 7136
  year: 2016
  end-page: 7141
  ident: bib6
  article-title: Advanced high-voltage aqueous lithium-ion battery enabled by "water-in-Bisalt" electrolyte
  publication-title: Angew. Chem. Int. Ed.
– volume: 18
  start-page: 2402
  year: 2018
  end-page: 2410
  ident: bib52
  article-title: Na
  publication-title: Nano Lett.
– volume: 5
  start-page: 1700322
  year: 2018
  ident: bib55
  article-title: Advanced Energy storage devices: basic principles, analytical methods, and raditional materials design
  publication-title: Adv. Sci.
– volume: 9
  start-page: 441
  year: 2016
  end-page: 447
  ident: bib7
  article-title: Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 2470
  year: 2001
  end-page: 2475
  ident: bib34
  article-title: Synthesis and characterization of a new organo-inorganic poly(3,4-ethylene dioxythiophene) PEDOT/V
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 380
  year: 1994
  end-page: 385
  ident: bib45
  article-title: V NMR and EPR study of reaction kinetics and mechanisms in V
  publication-title: Chem. Mater.
– volume: 138
  start-page: 12894
  year: 2016
  ident: 10.1016/j.chempr.2020.02.001_bib56
  article-title: Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05958
– volume: 6
  start-page: 1501882
  year: 2016
  ident: 10.1016/j.chempr.2020.02.001_bib36
  article-title: Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501882
– volume: 3
  start-page: 2602
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib31
  article-title: Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01423
– volume: 13
  start-page: 9227
  year: 2019
  ident: 10.1016/j.chempr.2020.02.001_bib48
  article-title: Controllably enriched oxygen vacancies through polymer assistance in titanium pyrophosphate as a super anode for Na/K-ion batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b03686
– volume: 39
  start-page: 4673
  year: 2010
  ident: 10.1016/j.chempr.2020.02.001_bib46
  article-title: In situ electron paramagnetic resonance: a unique tool for analysing structure-reactivity relationships in heterogeneous catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b919541f
– volume: 15
  start-page: 902
  year: 2005
  ident: 10.1016/j.chempr.2020.02.001_bib38
  article-title: Entrapment of poly(3,4-ethylenedioxythiophene) between VS 2 layers to form a new organic–inorganic intercalative nanocomposite
  publication-title: J. Mater. Chem.
  doi: 10.1039/B414922J
– volume: 7
  start-page: 1323
  year: 2019
  ident: 10.1016/j.chempr.2020.02.001_bib37
  article-title: Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08814D
– volume: 17
  start-page: 543
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib11
  article-title: Highly reversible zinc metal anode for aqueous batteries
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0063-z
– volume: 57
  start-page: 3943
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib30
  article-title: Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201713291
– volume: 58
  start-page: 16358
  year: 2019
  ident: 10.1016/j.chempr.2020.02.001_bib24
  article-title: Design strategies of vanadium-based aqueous zinc-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903941
– volume: 8
  start-page: 1801819
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib25
  article-title: Mechanistic insights of Zn2+ storage in sodium vanadates
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801819
– volume: 801
  start-page: 82
  year: 2019
  ident: 10.1016/j.chempr.2020.02.001_bib29
  article-title: Synthesis of polycrystalline K0.25V2O5 nanoparticles as cathode for aqueous zinc-ion battery
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.06.084
– volume: 3
  start-page: 1077
  year: 2015
  ident: 10.1016/j.chempr.2020.02.001_bib40
  article-title: Facile one-pot synthesis of Pd–PEDOT/graphene nanocomposites with hierarchical structure and high electrocatalytic performance for ethanol oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05131A
– volume: 28
  start-page: 495
  year: 2016
  ident: 10.1016/j.chempr.2020.02.001_bib35
  article-title: Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT: PSS conductive ultrathin films
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.052
– volume: 9
  start-page: 1900993
  year: 2019
  ident: 10.1016/j.chempr.2020.02.001_bib57
  article-title: An ultrastable presodiated titanium fisulfide anode for aqueous “Rocking-Chair” zinc ion battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900993
– volume: 25
  start-page: 211
  year: 2016
  ident: 10.1016/j.chempr.2020.02.001_bib22
  article-title: Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)3
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.051
– volume: 53
  start-page: 666
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib13
  article-title: Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.021
– volume: 15
  start-page: 7650
  year: 2015
  ident: 10.1016/j.chempr.2020.02.001_bib41
  article-title: PEDOT encapsulated FeOF nanorod cathodes for high energy lithium-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03601
– volume: 2
  start-page: 668
  year: 2019
  ident: 10.1016/j.chempr.2020.02.001_bib44
  article-title: Gradient oxygen vacancies in V2O5/PEDOT nanocables for high-performance supercapacitors
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01676
– volume: 6
  start-page: 380
  year: 1994
  ident: 10.1016/j.chempr.2020.02.001_bib45
  article-title: 51V NMR and EPR study of reaction kinetics and mechanisms in V2O5 gelation by ion exchange of sodium metavanadate solutions
  publication-title: Chem. Mater.
  doi: 10.1021/cm00040a009
– volume: 1
  start-page: 16119
  year: 2016
  ident: 10.1016/j.chempr.2020.02.001_bib21
  article-title: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.119
– volume: 11
  start-page: 2
  year: 2019
  ident: 10.1016/j.chempr.2020.02.001_bib50
  article-title: V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-019-0256-2
– volume: 3
  start-page: 2480
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib10
  article-title: Recent advances in aqueous zinc-ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01426
– volume: 11
  start-page: 2470
  year: 2001
  ident: 10.1016/j.chempr.2020.02.001_bib34
  article-title: Synthesis and characterization of a new organo-inorganic poly(3,4-ethylene dioxythiophene) PEDOT/V2O5 nanocomposite by intercalation
  publication-title: J. Mater. Chem.
  doi: 10.1039/b100714i
– volume: 5
  start-page: 1700322
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib55
  article-title: Advanced Energy storage devices: basic principles, analytical methods, and raditional materials design
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700322
– volume: 2
  start-page: 293
  year: 2008
  ident: 10.1016/j.chempr.2020.02.001_bib42
  article-title: Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics
  publication-title: ACS Nano
  doi: 10.1021/nn700261c
– volume: 9
  start-page: 1803815
  year: 2019
  ident: 10.1016/j.chempr.2020.02.001_bib49
  article-title: Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803815
– volume: 114
  start-page: 11788
  year: 2014
  ident: 10.1016/j.chempr.2020.02.001_bib3
  article-title: Aqueous rechargeable Li and Na ion batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr500232y
– volume: 9
  start-page: 2906
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib33
  article-title: Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04949-4
– volume: 7
  start-page: 940
  year: 2019
  ident: 10.1016/j.chempr.2020.02.001_bib58
  article-title: Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09338E
– volume: 11
  start-page: 3157
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib27
  article-title: Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01651H
– volume: 366
  start-page: 645
  year: 2019
  ident: 10.1016/j.chempr.2020.02.001_bib60
  article-title: Reversible epitaxial electrodeposition of metals in battery anodes
  publication-title: Science
  doi: 10.1126/science.aax6873
– volume: 4
  start-page: 14
  year: 2014
  ident: 10.1016/j.chempr.2020.02.001_bib59
  article-title: Tunable self-discharge process of carbon nanotube based supercapacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.12.005
– volume: 11
  start-page: 205
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib32
  article-title: Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.10.014
– volume: 1
  start-page: 16309
  year: 2016
  ident: 10.1016/j.chempr.2020.02.001_bib16
  article-title: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.39
– volume: 2
  start-page: 830
  year: 2012
  ident: 10.1016/j.chempr.2020.02.001_bib4
  article-title: Recent progress in aqueous lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200065
– volume: 29
  start-page: 1906142
  year: 2019
  ident: 10.1016/j.chempr.2020.02.001_bib18
  article-title: Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906142
– volume: 9
  start-page: 1656
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib51
  article-title: Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04060-8
– volume: 30
  start-page: 1703725
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib26
  article-title: Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703725
– volume: 350
  start-page: 938
  year: 2015
  ident: 10.1016/j.chempr.2020.02.001_bib5
  article-title: “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries
  publication-title: Science
  doi: 10.1126/science.aab1595
– volume: 18
  start-page: 1506
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib54
  article-title: Anomalous Li storage capability in atomically thin two-dimensional sheets of nonlayered MoO2
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05298
– volume: 18
  start-page: 2402
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib52
  article-title: Na2V6O16.3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05403
– volume: 9
  start-page: 441
  year: 2016
  ident: 10.1016/j.chempr.2020.02.001_bib7
  article-title: Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02896E
– volume: 28
  start-page: 1802564
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib12
  article-title: Recent advances in Zn-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802564
– volume: 13
  start-page: 29152849
  year: 2017
  ident: 10.1016/j.chempr.2020.02.001_bib53
  article-title: High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode
  publication-title: Small
  doi: 10.1002/smll.201702551
– volume: 8
  start-page: 1702463
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib28
  article-title: Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702463
– volume: 6
  start-page: 20402
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib39
  article-title: Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH4)2V10O25·8H2O nanobelts
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA06626D
– volume: 3
  start-page: 1366
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib23
  article-title: Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00565
– volume: 25
  start-page: 85
  year: 2015
  ident: 10.1016/j.chempr.2020.02.001_bib47
  article-title: Enhanced optical property with tunable band gap of cross-linked PEDOT copolymers via oxidative chemical vapor deposition
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201402924
– volume: 2
  start-page: 16103
  year: 2017
  ident: 10.1016/j.chempr.2020.02.001_bib1
  article-title: Lithium battery chemistries enabled by solid-state electrolytes
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.103
– volume: 3
  start-page: 279
  year: 2018
  ident: 10.1016/j.chempr.2020.02.001_bib2
  article-title: Batteries and fuel cells for emerging electric vehicle markets
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0108-1
– volume: 55
  start-page: 7136
  year: 2016
  ident: 10.1016/j.chempr.2020.02.001_bib6
  article-title: Advanced high-voltage aqueous lithium-ion battery enabled by "water-in-Bisalt" electrolyte
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201602397
– volume: 5
  start-page: 593
  year: 2017
  ident: 10.1016/j.chempr.2020.02.001_bib8
  article-title: Rational design and synthesis of LiTi2(PO4)3-xFx anode materials for high-performance aqueous lithium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08257B
– volume: 14
  start-page: 1042
  year: 2014
  ident: 10.1016/j.chempr.2020.02.001_bib19
  article-title: One-pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl404709b
– volume: 8
  start-page: 405
  year: 2017
  ident: 10.1016/j.chempr.2020.02.001_bib9
  article-title: Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00467-x
– volume: 4
  start-page: 2259
  year: 2019
  ident: 10.1016/j.chempr.2020.02.001_bib14
  article-title: Challenges in zinc electrodes for alkaline zinc-air batteries: obstacles to commercialization
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01541
– volume: 27
  start-page: 5813
  year: 2015
  ident: 10.1016/j.chempr.2020.02.001_bib43
  article-title: Layered V2O5/PEDOT nanowires and ultrathin nanobelts fabricated with a silk reelinglike process
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02512
– volume: 5
  start-page: 1400930
  year: 2015
  ident: 10.1016/j.chempr.2020.02.001_bib17
  article-title: Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400930
– volume: 139
  start-page: 9775
  year: 2017
  ident: 10.1016/j.chempr.2020.02.001_bib15
  article-title: Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04471
– volume: 4
  start-page: 49
  year: 2014
  ident: 10.1016/j.chempr.2020.02.001_bib20
  article-title: 1D nanostructured sodium vanadium oxide as a novel anode material for aqueous sodium ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.12.014
SSID ssj0001821750
Score 2.592842
Snippet Rechargeable aqueous zinc-based batteries are very attractive alternative devices for current energy storage by virtue of their low cost and high security....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 968
SubjectTerms aqueous zinc-based batteries
electrochemical performance
interlayer spacing
oxygen vacancies
polymer intercalation
vanadium oxide
Title Organic-Inorganic-Induced Polymer Intercalation into Layered Composites for Aqueous Zinc-Ion Battery
URI https://dx.doi.org/10.1016/j.chempr.2020.02.001
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcAB8RSlgHzghlwlseMkxxUCLS0ghFq15RLFjhdRtdmq2hzKr-_nR-KUlkKRoiiyHG8282XeniHkjVzkDQ7FdFbBQBGNZKXONeNK6yrhrTEum_DzFznfE9sH-UEMxbjdJSu1pX9du6_kf6iKMdDV7pK9BWXHRTGAa9AXZ1AY53-isd9IqdnHbjletb2N6H9dHp-fmDPv8AMZmpDTCE3zU3Nu-3M6TmAztoyryPB2BgFh02G__-ywDCb7ypuXor62ukD0qnt-1Ud4zXvnd91vuh-Awjh82Hsn6yGkpFrGycFTvQ2AWq_11P-QJS5tpYpsKhN5yqBkiSlPlRPoiAl_rHwPnSBqK98d7goX9w6Foy0868mpLdqaJb6wahql1hCp_02YjSmGQ_baUe1Xqe0qdZLZJL67ZD2DVQG2uD7b-ba_E51yJSw019V3_FfDdkuXE3j1ga5XZyYqyu5D8iDYFnTmgfKI3DHdY3J_UnHyCWn_CBkaIEMvQYZayNAAGRohQwEZGiBDB8jQAJmnZO_D-913cxYabTAN_XvFcmEq2-Ad32dbqkRIk0qtXEi75a3UXCxSWRSLAty9KBdcJ6ZUTaN5YirIBMmfkbVu2ZnnhBawQExeatEUKVQd2NNcYHWhVWvKysgNwof3VetQhd42QzmubyLYBmHjXae-Cstf5hcDKeqgSXoNsQbEbrzzxS1_aZPcix_FS7K2OuvNK6ipK_U6gOsCETWU4w
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic-Inorganic-Induced+Polymer+Intercalation+into+Layered+Composites+for+Aqueous+Zinc-Ion+Battery&rft.jtitle=Chem&rft.au=Bin%2C+Duan&rft.au=Huo%2C+Wangchen&rft.au=Yuan%2C+Yingbo&rft.au=Huang%2C+Jianhang&rft.date=2020-04-09&rft.issn=2451-9294&rft.volume=6&rft.issue=4&rft.spage=968&rft.epage=984&rft_id=info:doi/10.1016%2Fj.chempr.2020.02.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chempr_2020_02_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9294&client=summon