Oxide Nanostructured Coating for Power Lines with Anti-Icing Effect
This paper presents the results of the development of a technology to obtain a nanostructured coating for the protection of overhead wires and the possibility of their application in the electric power industry. The paper provides an analysis of available data on methods of combating ice in differen...
Saved in:
Published in | Coatings (Basel) Vol. 12; no. 9; p. 1346 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents the results of the development of a technology to obtain a nanostructured coating for the protection of overhead wires and the possibility of their application in the electric power industry. The paper provides an analysis of available data on methods of combating ice in different countries, ways to protect the surface of metals from environmental influences, and new materials used for protection. We studied the possibility of using a protective nanostructured coating to protect overhead wires. A technology for obtaining a protective nanostructured coating based on silicon oxide and methods for applying it to the wire of overhead lines are proposed. The analysis of the elemental composition and surface morphology of overhead line wires with protective coating is carried out by scanning electron microscopy. The influence of the nanostructured coating on the high-frequency signal bandwidth and wire resistance using a PCIe-6351 data acquisition board, equipped with a BNC-2120 terminal module generating a frequency signal were determined using the National Instruments LabVIEW software package. The subject of the study was a 110 kV overhead power line with a protective coating developed in this work. By analyzing the calculation, we obtained the operating requirements of the developed nanostructured coating. As a result, we developed a protective coating satisfying the working conditions and investigated its properties. In the final phase of the experiment, we tested the electrical characteristics of overhead wires with the developed protective coating. |
---|---|
AbstractList | This paper presents the results of the development of a technology to obtain a nanostructured coating for the protection of overhead wires and the possibility of their application in the electric power industry. The paper provides an analysis of available data on methods of combating ice in different countries, ways to protect the surface of metals from environmental influences, and new materials used for protection. We studied the possibility of using a protective nanostructured coating to protect overhead wires. A technology for obtaining a protective nanostructured coating based on silicon oxide and methods for applying it to the wire of overhead lines are proposed. The analysis of the elemental composition and surface morphology of overhead line wires with protective coating is carried out by scanning electron microscopy. The influence of the nanostructured coating on the high-frequency signal bandwidth and wire resistance using a PCIe-6351 data acquisition board, equipped with a BNC-2120 terminal module generating a frequency signal were determined using the National Instruments LabVIEW software package. The subject of the study was a 110 kV overhead power line with a protective coating developed in this work. By analyzing the calculation, we obtained the operating requirements of the developed nanostructured coating. As a result, we developed a protective coating satisfying the working conditions and investigated its properties. In the final phase of the experiment, we tested the electrical characteristics of overhead wires with the developed protective coating. |
Audience | Academic |
Author | Kushch, Elena Nikolaevna Varavka, Valery Nikolaevich Kolodkin, Maxim Andreevich Zvada, Pavel Aleksandrovich Zvezdilin, Roman Aleksandrovich Kravtsov, Alexander Aleksandrovich Maglakelidze, David Guramievich Arefeva, Lyudmila Pavlovna Shariati, Mohammad Ali Kostyukov, Dmitry Aleksandrovich Gvozdenko, Alexey Alekseevich Nagdalian, Andrey Ashotovich Blinov, Andrey Vladimirovcih Yasnaya, Maria Anatolevna Lazareva, Natalia Viatcheslavovna Goncharov, Vadim Nikolaevich Golik, Alexey Borisovich |
Author_xml | – sequence: 1 givenname: Andrey Vladimirovcih surname: Blinov fullname: Blinov, Andrey Vladimirovcih – sequence: 2 givenname: Dmitry Aleksandrovich surname: Kostyukov fullname: Kostyukov, Dmitry Aleksandrovich – sequence: 3 givenname: Maria Anatolevna surname: Yasnaya fullname: Yasnaya, Maria Anatolevna – sequence: 4 givenname: Pavel Aleksandrovich surname: Zvada fullname: Zvada, Pavel Aleksandrovich – sequence: 5 givenname: Lyudmila Pavlovna surname: Arefeva fullname: Arefeva, Lyudmila Pavlovna – sequence: 6 givenname: Valery Nikolaevich surname: Varavka fullname: Varavka, Valery Nikolaevich – sequence: 7 givenname: Roman Aleksandrovich surname: Zvezdilin fullname: Zvezdilin, Roman Aleksandrovich – sequence: 8 givenname: Alexander Aleksandrovich orcidid: 0000-0002-0645-1166 surname: Kravtsov fullname: Kravtsov, Alexander Aleksandrovich – sequence: 9 givenname: David Guramievich orcidid: 0000-0002-7740-042X surname: Maglakelidze fullname: Maglakelidze, David Guramievich – sequence: 10 givenname: Alexey Borisovich orcidid: 0000-0003-2580-9474 surname: Golik fullname: Golik, Alexey Borisovich – sequence: 11 givenname: Alexey Alekseevich surname: Gvozdenko fullname: Gvozdenko, Alexey Alekseevich – sequence: 12 givenname: Natalia Viatcheslavovna surname: Lazareva fullname: Lazareva, Natalia Viatcheslavovna – sequence: 13 givenname: Elena Nikolaevna surname: Kushch fullname: Kushch, Elena Nikolaevna – sequence: 14 givenname: Vadim Nikolaevich surname: Goncharov fullname: Goncharov, Vadim Nikolaevich – sequence: 15 givenname: Maxim Andreevich surname: Kolodkin fullname: Kolodkin, Maxim Andreevich – sequence: 16 givenname: Mohammad Ali orcidid: 0000-0001-9376-5771 surname: Shariati fullname: Shariati, Mohammad Ali – sequence: 17 givenname: Andrey Ashotovich orcidid: 0000-0002-6782-2821 surname: Nagdalian fullname: Nagdalian, Andrey Ashotovich |
BookMark | eNp1kE1LAzEQhoNUsNbePS543ppks7vJsSzVFor1oOclm4-a0iY1yVL996asBymYOWSYeZ8Z5r0FI-usAuAewVlRMPgoHI_GbgPCkKGCVFdgjGHN8oogPPqT34BpCDuYXpJRxMag2XwZqbIXbl2Ivhex90pmzTAv085nr-6kfLY2VoXsZOJHNrfR5Ctx7i-0ViLegWvN90FNf_8JeH9avDXLfL15XjXzdS6KEse8xLLTrC47RCWhddFBgSTsoMSMUF5TLSUTglewQqWAFWUEas1YIRBlAmFZTMDDMPfo3WevQmx3rvc2rWxxjaoS4ZKypJoNqi3fq9ZY7aLnIoVUByOSb9qk-rwmJWEUE5KAagCEdyF4pVthYrrf2QSafYtgeza5vTQ5gfACPHpz4P77f-QHaZGB_g |
CitedBy_id | crossref_primary_10_3390_coatings13030537 crossref_primary_10_1016_j_optlastec_2023_110394 crossref_primary_10_3390_mi14020363 |
Cites_doi | 10.1021/la404005b 10.1109/28.903150 10.1007/s10971-010-2272-z 10.1016/j.ceramint.2019.10.231 10.1016/j.matchemphys.2019.121913 10.1109/TDEI.2017.006725 10.1016/S1672-6529(11)60092-9 10.1016/j.jala.2006.07.012 10.1016/j.apsusc.2010.06.062 10.1109/TPWRD.2004.838518 10.3390/coatings9060362 10.3390/coatings8020071 10.1049/hve2.12200 10.1016/j.tsf.2004.06.087 10.1016/S0169-8095(97)00057-4 10.1016/j.apsusc.2013.08.097 10.1007/s10971-008-1677-4 10.1016/j.colsurfa.2009.10.029 10.4028/www.scientific.net/SSP.159.153 10.3390/coatings8040120 10.1126/science.1222453 10.1016/j.physe.2013.04.032 10.1021/la301420p 10.1177/0885328214545095 10.1088/2053-1591/ab8d64 10.1109/TPWRS.2014.2321008 10.1088/1757-899X/1029/1/012060 10.1016/j.surfcoat.2009.01.030 10.1016/j.apsusc.2016.01.226 10.1109/FarEastCon50210.2020.9271389 10.1021/ja910462x 10.1016/j.matlet.2015.12.146 10.3390/coatings10080737 10.1016/j.ceramint.2014.10.137 10.1016/j.segan.2019.100294 10.1016/j.apsusc.2013.12.009 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/coatings12091346 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-6412 |
ExternalDocumentID | A745498244 10_3390_coatings12091346 |
GeographicLocations | United States Germany Russia Czech Republic United States--US |
GeographicLocations_xml | – name: Russia – name: Germany – name: United States – name: Czech Republic – name: United States--US |
GroupedDBID | .4S .DC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BENPR BGLVJ CCPQU CITATION D1I HCIFZ IAO ITC KB. KQ8 MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC TUS 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c352t-52dbf975b18d4873b0c1d0b0d2948a78fdd9cca60615c068940ff993c189c12d3 |
IEDL.DBID | BENPR |
ISSN | 2079-6412 |
IngestDate | Fri Jul 25 11:52:57 EDT 2025 Tue Jul 01 05:44:36 EDT 2025 Tue Jul 01 00:58:23 EDT 2025 Thu Apr 24 23:08:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-52dbf975b18d4873b0c1d0b0d2948a78fdd9cca60615c068940ff993c189c12d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0645-1166 0000-0002-7740-042X 0000-0001-9376-5771 0000-0003-2580-9474 0000-0002-6782-2821 |
OpenAccessLink | https://www.proquest.com/docview/2716512589?pq-origsite=%requestingapplication% |
PQID | 2716512589 |
PQPubID | 2032415 |
ParticipantIDs | proquest_journals_2716512589 gale_infotracacademiconefile_A745498244 crossref_citationtrail_10_3390_coatings12091346 crossref_primary_10_3390_coatings12091346 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Coatings (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Laforte (ref_3) 1998; 46 Chen (ref_11) 2010; 353 Blinov (ref_31) 2021; 1029 Syafiq (ref_10) 2020; 239 Cerrai (ref_4) 2020; 21 Xu (ref_8) 2012; 9 Mazur (ref_21) 2016; 380 ref_33 ref_30 Menini (ref_6) 2009; 203 Grzesiak (ref_29) 2014; 29 Li (ref_12) 2020; 7 Wang (ref_5) 2011; 31 Parale (ref_28) 2020; 46 Lee (ref_15) 2013; 29 Dou (ref_24) 2016; 167 Farimani (ref_25) 2013; 53 Xu (ref_19) 2012; 28 Radev (ref_23) 2010; 159 Brumsickle (ref_38) 2001; 37 Farzaneh (ref_1) 2005; 20 Ruszczak (ref_2) 2015; 30 Gurav (ref_32) 2015; 41 ref_44 ref_43 Mahadik (ref_17) 2010; 257 ref_20 ref_42 Oluwajobi (ref_39) 2012; 3 ref_41 ref_40 Elliott (ref_34) 2007; 12 Kurita (ref_35) 2010; 132 Sirimahachai (ref_22) 2010; 56 ref_27 Qing (ref_9) 2013; 285 Tawfick (ref_13) 2013; 339 Zhang (ref_36) 2022; 7 Arshad (ref_37) 2017; 24 Shang (ref_16) 2005; 472 ref_7 Sivolapov (ref_18) 2021; 3 Meng (ref_26) 2008; 46 Polizos (ref_14) 2014; 292 |
References_xml | – volume: 29 start-page: 15051 year: 2013 ident: ref_15 article-title: Transparent Superhydrophobic/Translucent Superamphiphobic Coatings Based on Silica–Fluoropolymer Hybrid Nanoparticles publication-title: Langmuir doi: 10.1021/la404005b – volume: 37 start-page: 212 year: 2001 ident: ref_38 article-title: Dynamic Sag Correctors: Cost-Effective Industrial Power Line Conditioning publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.903150 – volume: 56 start-page: 53 year: 2010 ident: ref_22 article-title: Nanosized TiO2 Particles Decorated on SiO2 Spheres (TiO2/SiO2): Synthesis and Photocatalytic Activities publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-010-2272-z – volume: 46 start-page: 4939 year: 2020 ident: ref_28 article-title: Hydrophobic TiO2–SiO2 Composite Aerogels Synthesized via in Situ Epoxy-Ring Opening Polymerization and Sol-Gel Process for Enhanced Degradation Activity publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.10.231 – volume: 31 start-page: 123 year: 2011 ident: ref_5 article-title: Influence of Hydrophobic Coating on Ice Accretion on Aluminum Conductor publication-title: Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electr. Eng. – volume: 239 start-page: 121913 year: 2020 ident: ref_10 article-title: Facile Synthesize of Transparent Hydrophobic Nano- CaCO3 Based Coatings for Self-Cleaning and Anti-Fogging publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.121913 – volume: 24 start-page: 3630 year: 2017 ident: ref_37 article-title: Properties and Applications of Superhydrophobic Coatings in High Voltage Outdoor Insulation: A Review publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2017.006725 – volume: 9 start-page: 11 year: 2012 ident: ref_8 article-title: Fabrication of Bionic Superhydrophobic Manganese Oxide/Polystyrene Nanocomposite Coating publication-title: J. Bionic Eng. doi: 10.1016/S1672-6529(11)60092-9 – volume: 12 start-page: 17 year: 2007 ident: ref_34 article-title: National Instruments LabVIEW: A Programming Environment for Laboratory Automation and Measurement publication-title: J. Lab. Autom. doi: 10.1016/j.jala.2006.07.012 – volume: 257 start-page: 333 year: 2010 ident: ref_17 article-title: Transparent Superhydrophobic Silica Coatings on Glass by Sol–Gel Method publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.06.062 – volume: 20 start-page: 1080 year: 2005 ident: ref_1 article-title: Statistical Analysis of Field Data for Precipitation Icing Accretion on Overhead Power Lines publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2004.838518 – ident: ref_27 doi: 10.3390/coatings9060362 – ident: ref_7 doi: 10.3390/coatings8020071 – volume: 3 start-page: 627 year: 2012 ident: ref_39 article-title: Effect of Sag on Transmission Line publication-title: J. Emerg. Trends Eng. Appl. Sci. – volume: 7 start-page: 692 year: 2022 ident: ref_36 article-title: Experimental Verification of the Potential of Superhydrophobic Surfaces in Reducing Audible Noise on HVAC Overhead Line Conductors publication-title: High Volt. doi: 10.1049/hve2.12200 – ident: ref_42 – volume: 472 start-page: 37 year: 2005 ident: ref_16 article-title: Optically Transparent Superhydrophobic Silica-Based Films publication-title: Thin Solid Films doi: 10.1016/j.tsf.2004.06.087 – ident: ref_44 – volume: 46 start-page: 143 year: 1998 ident: ref_3 article-title: State-of-the-Art on Power Line De-Icing publication-title: Atmos. Res. doi: 10.1016/S0169-8095(97)00057-4 – volume: 285 start-page: 583 year: 2013 ident: ref_9 article-title: Facile Approach in Fabricating Superhydrophobic ZnO/Polystyrene Nanocomposite Coating publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.08.097 – volume: 46 start-page: 195 year: 2008 ident: ref_26 article-title: Sol-Gel Immobilization of SiO2/TiO2 on Hydrophobic Clay and Its Removal of Methyl Orange from Water publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-008-1677-4 – volume: 3 start-page: 59 year: 2021 ident: ref_18 article-title: Formation of effective concentration of film forming superhydrophobic coatings based on silicon dioxide publication-title: Technol. Audit. Prod. Reserves – volume: 353 start-page: 97 year: 2010 ident: ref_11 article-title: Carbonization Synthesis of Hydrophobic CaCO3 at Room Temperature publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2009.10.029 – volume: 159 start-page: 153 year: 2010 ident: ref_23 article-title: Nanosized Silicon Carbide Obtained from Rice Husks publication-title: Solid State Phenom. doi: 10.4028/www.scientific.net/SSP.159.153 – ident: ref_20 doi: 10.3390/coatings8040120 – volume: 339 start-page: 535 year: 2013 ident: ref_13 article-title: Carbon Nanotubes: Present and Future Commercial Applications publication-title: Science doi: 10.1126/science.1222453 – volume: 53 start-page: 207 year: 2013 ident: ref_25 article-title: Study of Structural and Magnetic Properties of Superparamagnetic Fe3O4/SiO2 Core–Shell Nanocomposites Synthesized with Hydrophilic Citrate-Modified Fe3O4 Seeds via a Sol–Gel Approach publication-title: Phys. E Low-Dimens. Syst. Nanostructures doi: 10.1016/j.physe.2013.04.032 – volume: 28 start-page: 7512 year: 2012 ident: ref_19 article-title: Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles publication-title: Langmuir doi: 10.1021/la301420p – volume: 29 start-page: 699 year: 2014 ident: ref_29 article-title: Biological Effects of Sol–Gel Derived ZrO2 and SiO2/ZrO2 Coatings on Stainless Steel Surface—In Vitro Model Using Mesenchymal Stem Cells publication-title: J. Biomater. Appl. doi: 10.1177/0885328214545095 – ident: ref_33 – volume: 7 start-page: 055009 year: 2020 ident: ref_12 article-title: Fabrication of Robust Conductive and Superhydrophobic Coating Based on Carbon Nanotubes publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab8d64 – volume: 30 start-page: 457 year: 2015 ident: ref_2 article-title: Extreme Value Analysis of Wet Snow Loads on Power Lines publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2014.2321008 – volume: 1029 start-page: 012060 year: 2021 ident: ref_31 article-title: Microstructure and Elemental Composition of Multicomponent Systems Based on Silicon, Titanium and Zirconium Oxides publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/1029/1/012060 – volume: 203 start-page: 1941 year: 2009 ident: ref_6 article-title: Elaboration of Al2O3/PTFE Icephobic Coatings for Protecting Aluminum Surfaces publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2009.01.030 – volume: 380 start-page: 165 year: 2016 ident: ref_21 article-title: Functional Photocatalytically Active and Scratch Resistant Antireflective Coating Based on TiO2 and SiO2 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.01.226 – ident: ref_41 – ident: ref_40 doi: 10.1109/FarEastCon50210.2020.9271389 – ident: ref_43 – volume: 132 start-page: 4524 year: 2010 ident: ref_35 article-title: Surface Junction Effects on the Electron Conduction of Molecular Wires publication-title: J. Am. Chem. Soc. doi: 10.1021/ja910462x – volume: 167 start-page: 69 year: 2016 ident: ref_24 article-title: An Efficient Way to Prepare Hydrophobic Antireflective SiO2 Film by Sol–Gel Method publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.12.146 – ident: ref_30 doi: 10.3390/coatings10080737 – volume: 41 start-page: 3017 year: 2015 ident: ref_32 article-title: Superhydrophobic Coatings Prepared from Methyl-Modified Silica Particles Using Simple Dip-Coating Method publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.10.137 – volume: 21 start-page: 100294 year: 2020 ident: ref_4 article-title: Outage Prediction Models for Snow and Ice Storms publication-title: Sustain. Energy Grids Netw. doi: 10.1016/j.segan.2019.100294 – volume: 292 start-page: 563 year: 2014 ident: ref_14 article-title: Scalable Superhydrophobic Coatings Based on Fluorinated Diatomaceous Earth: Abrasion Resistance versus Particle Geometry publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.12.009 |
SSID | ssj0000913819 |
Score | 2.2291074 |
Snippet | This paper presents the results of the development of a technology to obtain a nanostructured coating for the protection of overhead wires and the possibility... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1346 |
SubjectTerms | Analysis Blackouts Contact angle Data acquisition Data processing Deicing Electric properties Electric utilities Electricity Hydrophobic surfaces Mechanical properties Nanoparticles Nanostructure Power lines Protective coatings Research methodology Silica Silicon Silicon oxides Software Wire Zinc oxides |
Title | Oxide Nanostructured Coating for Power Lines with Anti-Icing Effect |
URI | https://www.proquest.com/docview/2716512589 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA62vehBfGK1lhwE8bB0s68mJ6mltYqtRSz0tmySDRRkt9oKnvztzuymtYj0uGRfzCSTbyYz3xBy1dbKRKERjjZFSY5kjnQD5QjjYYNtmfhF8vhwFA0mweM0nNqA28KmVa5sYmGoda4wRt7yANjD5hRycTt_d7BrFJ6u2hYaFVIDE8zB-ard9Ubjl3WUBVkvYc8rzyd98O9bKk8wn3iBNaPMR9y7sR_9b5WLraZ_QPYtRqSdUqmHZCfNjsjeBnPgMek-f810SsE25iUD7OdHqmm3_CoFIErH2P6MPmFWO8VgK-1ky5nzoHC8pCw-IZN-77U7cGw_BEcBTFqCz6ilEe1QMq7Bz_Clq5h2pas9EfCkzY3WAhQSIUpRbsRF4BoD-EMxLhTztH9KqlmepWeE-oFkqUgjEXIV-AngAuUyE2hQk8CwaJ20VlKJlSULx54VbzE4DSjH-K8c6-Rm_cS8JMrYcu81CjrGNQRvVYktBYB_QzaquNMOwG3lgDzqpLHSRWwX1yL-nQrn24cvyK6H1QpFSliDVEEf6SVgiKVskgrv3zftdIGr4XfvB5EoyRY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTgMxDLVYDsABsYqy5gBCHEadJTNNDghVhdJCCxxaidswSSYSEmqBFgE_xTdizwIVQtw4Z1bHiZ8d-xlgv2a0jUIrHWOzkhzlOcrl2pHWpwbbKgmy5PHuVdTq84vb8HYKPspaGEqrLPfEbKM2Q00x8qqPwB6NUyjkyeOTQ12j6HS1bKGRq8Vl-v6KLtvouH2K83vg-82zXqPlFF0FHI1gY4yel1FW1kLlCYNoPVCu9oyrXONLLpKasMZI_K2IbL12IyG5ay1ace0JqT3fBPjcaZjlQSBpRYnm-VdMhzg20cLmp6E47lb1MKHs5RFVqHoBoewJ6_e7DcgMW3MJFgtEyuq5Ci3DVDpYgYUJnsJVaFy_3ZuU4U48zPlmX55Twxr5WxnCXnZDzdZYh3LoGYV2WX0wvnfamsZzguQ16P-LnNZhZjAcpBvAAq68VKaRDIXmQYIoRLue5QaVQlIQtgLVUiqxLqjJqUPGQ4wuCskx_inHChx93fGY03L8ce0hCTqmFYtP1UlReIDfRtxXcb3G0UkWiHMqsF3ORVws5VH8rXibfw_vwVyr1-3EnfbV5RbM-1QnkSWjbcMMzk26g-hlrHYzlWFw9986-gmnZwIK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60guhBfGJ97kERD6Gbd_YgUqvFaq1FLHiL2d0sCNKqrah_zV_nTB5aRHrznGSTzM7ufDM78w3AXqiVCXwjLG2ykhxpW5J7yhLGoQbbMnGz5PGrTnDe8y7u_Lsp-CxrYSitstwTs41aDxTFyGsOAns0Tn4kaqZIi-ieNo-fni3qIEUnrWU7jVxFLtOPN3TfhketU5zrfcdpnt02zq2iw4ClEHiM0AvT0ojQl3akEbm7kitbc8m1I7woCSOjtcBfDMjuKx5EwuPGoEVXdiSU7WgXx52GmRC9Il6BmZOzTvfmO8JDjJtob_OzUdcVvKYGCeUyD6le1XYJc4_Zwr8tQmbmmouwUOBTVs8Vagmm0v4yzI-xFq5A4_r9QacM9-VBzj77-pJq1sjfyhAEsy61XmNtyqhnFOhl9f7owWopup7TJa9C718ktQaV_qCfrgNzPWmnIg2EHynPTRCTKG4bT6OKCArJVqFWSiVWBVE59ct4jNFhITnGv-VYhcPvJ55yko4J9x6QoGNavziqSooyBPw2YsKK66GHLnOEqKcKW-VcxMXCHsY_argx-fIuzKJ-xu1W53IT5hwqmsgy07agglOTbiOUGcmdQmcY3P-3mn4BzHgHnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxide+Nanostructured+Coating+for+Power+Lines+with+Anti-Icing+Effect&rft.jtitle=Coatings+%28Basel%29&rft.au=Blinov%2C+Andrey+Vladimirovcih&rft.au=Kostyukov%2C+Dmitry+Aleksandrovich&rft.au=Yasnaya%2C+Maria+Anatolevna&rft.au=Zvada%2C+Pavel+Aleksandrovich&rft.date=2022-09-01&rft.issn=2079-6412&rft.eissn=2079-6412&rft.volume=12&rft.issue=9&rft.spage=1346&rft_id=info:doi/10.3390%2Fcoatings12091346&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_coatings12091346 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-6412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-6412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-6412&client=summon |