A Type 2 wavelet brain emotional learning network with double recurrent loops based controller for nonlinear systems
Conventional controllers for nonlinear systems often suffer from co-existences of non-linearity and uncertainty. This paper proposes a novel brain emotional neural network to address such challenges. The proposed network integrates a Type 2 wavelet neural network into a conventional brain emotional...
Saved in:
Published in | Knowledge-based systems Vol. 251; p. 109274 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conventional controllers for nonlinear systems often suffer from co-existences of non-linearity and uncertainty. This paper proposes a novel brain emotional neural network to address such challenges. The proposed network integrates a Type 2 wavelet neural network into a conventional brain emotional learning network which is further enhanced by the introduction of a recurrent structure. The proposed network, therefore, combines the advantages of the Type 2 wavelet function, recurrent mechanism, and brain emotional learning system, so as to obtain optimal performance under uncertain environments. The proposed network works with a compensator to mimic an ideal controller, and the parameters of both the network and compensator are updated based on laws derived from the Lyapunov stability analysis theory. The proposed system was applied to a z-axis microelectromechanical system gyroscope. The experimental results demonstrate that the proposed system outperformed other popular neural-network-based control systems, indicating the superiority of the proposed network-based controller.
[Display omitted]
•Integrating a type-2 wavelet function to a brain emotional network to improve the nonlinear function learning performance.•Introducing a double-loop structure to a brain emotional network to improve the ability of historical information extraction from dynamic systems. |
---|---|
AbstractList | Conventional controllers for nonlinear systems often suffer from co-existences of non-linearity and uncertainty. This paper proposes a novel brain emotional neural network to address such challenges. The proposed network integrates a Type 2 wavelet neural network into a conventional brain emotional learning network which is further enhanced by the introduction of a recurrent structure. The proposed network, therefore, combines the advantages of the Type 2 wavelet function, recurrent mechanism, and brain emotional learning system, so as to obtain optimal performance under uncertain environments. The proposed network works with a compensator to mimic an ideal controller, and the parameters of both the network and compensator are updated based on laws derived from the Lyapunov stability analysis theory. The proposed system was applied to a z-axis microelectromechanical system gyroscope. The experimental results demonstrate that the proposed system outperformed other popular neural-network-based control systems, indicating the superiority of the proposed network-based controller.
[Display omitted]
•Integrating a type-2 wavelet function to a brain emotional network to improve the nonlinear function learning performance.•Introducing a double-loop structure to a brain emotional network to improve the ability of historical information extraction from dynamic systems. |
ArticleNumber | 109274 |
Author | Wang, Zi-Qi Shen, Qiang Li, Li-Jiang Chang, Xiang Yang, Longzhi Zhou, Changle Chao, Fei Shang, Changjing Lin, Chih-Min |
Author_xml | – sequence: 1 givenname: Zi-Qi orcidid: 0000-0002-0976-5128 surname: Wang fullname: Wang, Zi-Qi email: wang_zi-qi@foxmail.com organization: Department of Artificial Intelligence, School of Informatics, Xiamen University, 361005, China – sequence: 2 givenname: Li-Jiang orcidid: 0000-0003-3413-3429 surname: Li fullname: Li, Li-Jiang email: lilijiang_xmu@foxmail.com organization: Department of Artificial Intelligence, School of Informatics, Xiamen University, 361005, China – sequence: 3 givenname: Fei orcidid: 0000-0002-6928-2638 surname: Chao fullname: Chao, Fei email: fchao@xmu.edu.cn organization: Department of Artificial Intelligence, School of Informatics, Xiamen University, 361005, China – sequence: 4 givenname: Chih-Min orcidid: 0000-0003-2107-5012 surname: Lin fullname: Lin, Chih-Min email: cml@saturn.yzu.edu.tw organization: Department of Electrical Engineering, Yuan Ze University, Taiwan – sequence: 5 givenname: Longzhi orcidid: 0000-0003-2115-4909 surname: Yang fullname: Yang, Longzhi email: longzhi.yang@northumbria.ac.uk organization: Department of Computer and Information Sciences, Northumbria University, UK – sequence: 6 givenname: Changle surname: Zhou fullname: Zhou, Changle email: dozero@xmu.edu.cn organization: Department of Artificial Intelligence, School of Informatics, Xiamen University, 361005, China – sequence: 7 givenname: Xiang orcidid: 0000-0002-5970-7698 surname: Chang fullname: Chang, Xiang email: xic9@aber.ac.uk organization: Department of Computer Science, Institute of Mathematics, Physics and Computer Science, Aberystwyth, University, SY23 3DB, UK – sequence: 8 givenname: Changjing orcidid: 0000-0001-6375-6276 surname: Shang fullname: Shang, Changjing email: cns@aber.ac.uk organization: Department of Computer Science, Institute of Mathematics, Physics and Computer Science, Aberystwyth, University, SY23 3DB, UK – sequence: 9 givenname: Qiang orcidid: 0000-0001-9333-4605 surname: Shen fullname: Shen, Qiang email: qqs@aber.ac.uk organization: Department of Computer Science, Institute of Mathematics, Physics and Computer Science, Aberystwyth, University, SY23 3DB, UK |
BookMark | eNqFkMtKAzEUhoMo2FbfwEVeYGqSuWTGhVCKNyi4qeuQZM5o2jQpSdrStzelrlzo6sDhfD_n_8bo0nkHCN1RMqWENver6dr5eIxTRhjLq47x6gKNaMtZwSvSXaIR6WpScFLTazSOcUVIvqTtCKUZXh63gBk-yD1YSFgFaRyGjU_GO2mxBRmccZ_YQTr4sMYHk75w73fKAg6gdyGAS9h6v41YyQg91t6l4K2FgAcfcP7WGpdjcP4xwSbeoKtB2gi3P3OCPp6flvPXYvH-8jafLQpd1iwVNaNNo1RPu0YrSgfV1G3HNGMlrRhnlaINVbSVLetrXZKG1HXJec876NTACC0n6OGcq4OPMcAgtEny1CvlklZQIk7-xEqc_YmTP3H2l-HqF7wNZiPD8T_s8YxBLrY3EETUBpyG3mRZSfTe_B3wDfPYkEk |
CitedBy_id | crossref_primary_10_1016_j_neucom_2024_127524 crossref_primary_10_1016_j_softx_2023_101574 crossref_primary_10_1016_j_knosys_2025_113367 |
Cites_doi | 10.1016/j.neucom.2021.01.023 10.1007/s40815-020-00941-7 10.1007/s40815-019-00735-6 10.1109/TPEL.2020.2986893 10.3390/mi11110968 10.1109/TCYB.2019.2919128 10.1016/j.neucom.2020.03.050 10.1016/j.neucom.2021.03.069 10.1016/j.knosys.2021.107539 10.1007/s40815-019-00766-z 10.1109/TNNLS.2019.2919676 10.1016/j.neucom.2020.10.103 10.1109/TNN.2011.2109735 10.1007/s00521-018-3755-z 10.1109/TPEL.2020.2974470 10.1007/s40815-015-0020-9 10.1109/TSMC.2018.2884725 10.1016/j.neucom.2020.03.043 10.1016/j.neucom.2019.07.053 10.1016/j.ymssp.2020.107096 10.1016/j.knosys.2021.107785 10.1109/TNNLS.2017.2672998 10.1016/j.knosys.2021.107100 10.1109/TII.2020.2995142 10.1002/2050-7038.12429 10.1016/j.actaastro.2020.06.028 10.3389/fnbot.2019.00002 10.1016/j.knosys.2021.107404 10.1007/s13042-020-01191-7 10.1016/j.knosys.2022.108263 10.1109/IJCNN48605.2020.9207710 10.1016/j.knosys.2021.107007 10.1007/s11071-018-4651-x |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.knosys.2022.109274 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
ExternalDocumentID | 10_1016_j_knosys_2022_109274 S0950705122006396 |
GrantInformation_xml | – fundername: Natural Science Foundation of Fujian Province of China grantid: 2021J01002 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K UHS WH7 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c352t-52166bbd196cb11fb65892c223142724b161b18a82d5c306055377d79e9bf2013 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Thu Apr 24 23:00:29 EDT 2025 Tue Jul 01 00:20:22 EDT 2025 Fri Feb 23 02:39:46 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Double recurrent neural loops Brain emotional learning network Neural network control systems Nonlinear systems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-52166bbd196cb11fb65892c223142724b161b18a82d5c306055377d79e9bf2013 |
ORCID | 0000-0002-5970-7698 0000-0001-9333-4605 0000-0002-6928-2638 0000-0002-0976-5128 0000-0003-2115-4909 0000-0003-3413-3429 0000-0001-6375-6276 0000-0003-2107-5012 |
OpenAccessLink | https://hdl.handle.net/2160/ef892a4b-efdd-4caf-8e13-c1a5a02ae4b7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_knosys_2022_109274 crossref_primary_10_1016_j_knosys_2022_109274 elsevier_sciencedirect_doi_10_1016_j_knosys_2022_109274 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-05 |
PublicationDateYYYYMMDD | 2022-09-05 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gao, Zhao, Yan, Spurgeon (b15) 2020 Xiao, Li, Wen (b7) 2021; 231 Fei, Chen (b20) 2020; 35 Cheng, Hou, Lin, Tan, Zhang, Wu (b19) 2011; 22 Huynh, Lin, Le, Zhong (b33) 2020 Junejo, Xu, Mu, Ismail, Liu (b16) 2020; 35 Wang, Jia, Wang, Luo, Li, Kurths, Yuan (b13) 2020; 401 Fei, Feng (b24) 2021; 12 Ren, Zhou, Li, Liu, Sun (b12) 2021; 425 Yue, Yang, Liu, Zang (b8) 2021; 147 Badar, Dilshad (b27) 2020; 30 Huynh, Lin, Le, Nguyen, Hong, Chao (b28) 2020; 22 Fei, Lu (b23) 2018; 29 Wang, Zeng, Hu, Zhou (b5) 2022; 236 Guan, Hu, Qi, Chen, Zhang, Yang (b10) 2021; 437 Wang, Sun, He, Sun (b6) 2020; 50 Zhang, Hu, Wang, Xu, Wang, Sun, Wang (b34) 2021; 222 He, Xu, Wu, Li, Zhong (b11) 2021 Ma, Li, An, Dong (b4) 2021; 224 Hsu, Chen, Wu (b3) 2022; 242 Cao, Jiang, Wang (b1) 2021; 233 Chu, Fei, Hou (b22) 2020; 31 Zhao, Liu, Dian, Guo, Li (b18) 2020; 401 Lin, Chung (b26) 2015; 17 Fei, Fang, Yuan (b14) 2020; 11 Ni, Ahn, Liu, xin Liu (b21) 2019; 363 Le, Huynh, Lin (b29) 2019; 21 Mohammadzadeh, Zhang (b30) 2019; 95 . Tafti, Teshnehlab, Khanesar (b31) 2020; 22 Xie, Sun, Kwan, Wu (b17) 2020; 176 Fang, Chao, Lin, Yang, Shang, Zhou (b25) 2019; 13 J. Zhang, Q. Li, X. Chang, F. Chao, C.-M. Lin, L. Yang, T.T. Huynh, L. Zheng, C. Zhou, C. Shang, A Novel Self-Organizing Emotional CMAC Network for Robotic Control, in: 2020 International Joint Conference on Neural Networks, IJCNN, 2020, pp. 1–6 Chao, Zhou, Lin, Yang, Zhou, Shang (b2) 2020; 50 Fang, Chao, Lin, Zhou, Yang, Chang, Shen, Shang (b9) 2021; 17 Lin, La, Le (b32) 2018; 32 Wang (10.1016/j.knosys.2022.109274_b13) 2020; 401 Zhang (10.1016/j.knosys.2022.109274_b34) 2021; 222 Wang (10.1016/j.knosys.2022.109274_b5) 2022; 236 Huynh (10.1016/j.knosys.2022.109274_b33) 2020 Xiao (10.1016/j.knosys.2022.109274_b7) 2021; 231 Zhao (10.1016/j.knosys.2022.109274_b18) 2020; 401 Junejo (10.1016/j.knosys.2022.109274_b16) 2020; 35 Fang (10.1016/j.knosys.2022.109274_b25) 2019; 13 Hsu (10.1016/j.knosys.2022.109274_b3) 2022; 242 Wang (10.1016/j.knosys.2022.109274_b6) 2020; 50 Ren (10.1016/j.knosys.2022.109274_b12) 2021; 425 Le (10.1016/j.knosys.2022.109274_b29) 2019; 21 Fei (10.1016/j.knosys.2022.109274_b20) 2020; 35 Huynh (10.1016/j.knosys.2022.109274_b28) 2020; 22 Tafti (10.1016/j.knosys.2022.109274_b31) 2020; 22 Chao (10.1016/j.knosys.2022.109274_b2) 2020; 50 Fei (10.1016/j.knosys.2022.109274_b14) 2020; 11 Xie (10.1016/j.knosys.2022.109274_b17) 2020; 176 Lin (10.1016/j.knosys.2022.109274_b26) 2015; 17 Badar (10.1016/j.knosys.2022.109274_b27) 2020; 30 Guan (10.1016/j.knosys.2022.109274_b10) 2021; 437 Cao (10.1016/j.knosys.2022.109274_b1) 2021; 233 Cheng (10.1016/j.knosys.2022.109274_b19) 2011; 22 Fei (10.1016/j.knosys.2022.109274_b23) 2018; 29 He (10.1016/j.knosys.2022.109274_b11) 2021 Ma (10.1016/j.knosys.2022.109274_b4) 2021; 224 Yue (10.1016/j.knosys.2022.109274_b8) 2021; 147 Mohammadzadeh (10.1016/j.knosys.2022.109274_b30) 2019; 95 Fang (10.1016/j.knosys.2022.109274_b9) 2021; 17 10.1016/j.knosys.2022.109274_b35 Gao (10.1016/j.knosys.2022.109274_b15) 2020 Chu (10.1016/j.knosys.2022.109274_b22) 2020; 31 Lin (10.1016/j.knosys.2022.109274_b32) 2018; 32 Ni (10.1016/j.knosys.2022.109274_b21) 2019; 363 Fei (10.1016/j.knosys.2022.109274_b24) 2021; 12 |
References_xml | – volume: 13 year: 2019 ident: b25 article-title: An improved fuzzy brain emotional learning model network controller for humanoid robots publication-title: Front. Neurorobot. – reference: J. Zhang, Q. Li, X. Chang, F. Chao, C.-M. Lin, L. Yang, T.T. Huynh, L. Zheng, C. Zhou, C. Shang, A Novel Self-Organizing Emotional CMAC Network for Robotic Control, in: 2020 International Joint Conference on Neural Networks, IJCNN, 2020, pp. 1–6, – volume: 35 start-page: 9906 year: 2020 end-page: 9924 ident: b20 article-title: Dynamic terminal sliding-mode control for single-phase active power filter using new feedback recurrent neural network publication-title: IEEE Trans. Power Electron. – volume: 233 year: 2021 ident: b1 article-title: Anti-synchronization of delayed memristive neural networks with leakage term and reaction–diffusion terms publication-title: Knowl.-Based Syst. – volume: 22 start-page: 714 year: 2011 end-page: 726 ident: b19 article-title: Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks publication-title: IEEE Trans. Neural Netw. – volume: 222 year: 2021 ident: b34 article-title: Self-organizing deep belief modular echo state network for time series prediction publication-title: Knowl.-Based Syst. – volume: 224 year: 2021 ident: b4 article-title: Compensator-critic structure-based neuro-optimal control of modular robot manipulators with uncertain environmental contacts using non-zero-sum games publication-title: Knowl.-Based Syst. – volume: 12 start-page: 611 year: 2021 end-page: 624 ident: b24 article-title: Adaptive super-twisting sliding mode control for micro gyroscope based on double loop fuzzy neural network structure publication-title: Int. J. Mach. Learn. Cybern. – volume: 17 start-page: 2282 year: 2021 end-page: 2291 ident: b9 article-title: Visual-guided robotic object grasping using dual neural network controllers publication-title: IEEE Trans. Ind. Inf. – start-page: 1 year: 2020 end-page: 7 ident: b33 article-title: A mixed Gaussian membership function fuzzy CMAC for a three-link robot publication-title: 29th IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2020, Glasgow, UK, July 19-24, 2020 – volume: 50 start-page: 3778 year: 2020 end-page: 3792 ident: b2 article-title: Type-2 fuzzy hybrid controller network for robotic systems publication-title: IEEE Trans. Cybern. – volume: 147 year: 2021 ident: b8 article-title: Cooperative control for multiple quadrotors under position deviations and aerodynamic drag publication-title: Mech. Syst. Signal Process. – volume: 31 start-page: 1297 year: 2020 end-page: 1309 ident: b22 article-title: Adaptive global sliding-mode control for dynamic systems using double hidden layer recurrent neural network structure publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 32 start-page: 2217 year: 2018 end-page: 2229 ident: b32 article-title: DC–DC converters design using a type-2 wavelet fuzzy cerebellar model articulation controller publication-title: Neural Comput. Appl. – volume: 21 start-page: 2524 year: 2019 end-page: 2541 ident: b29 article-title: Self-evolving interval type-2 wavelet cerebellar model articulation control design for uncertain nonlinear systems using PSO publication-title: Int. J. Fuzzy Syst. – volume: 236 year: 2022 ident: b5 article-title: Multiple finite-time synchronization of delayed inertial neural networks via a unified control scheme publication-title: Knowl.-Based Syst. – volume: 50 start-page: 3713 year: 2020 end-page: 3725 ident: b6 article-title: Deterministic policy gradient with integral compensator for robust quadrotor control publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 401 start-page: 281 year: 2020 end-page: 294 ident: b18 article-title: Sliding-mode-control-theory-based adaptive general type-2 fuzzy neural network control for power-line inspection robots publication-title: Neurocomputing – volume: 29 start-page: 1275 year: 2018 end-page: 1286 ident: b23 article-title: Adaptive sliding mode control of dynamic systems using double loop recurrent neural network structure publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 22 start-page: 351 year: 2020 end-page: 367 ident: b31 article-title: Recurrent interval type-2 fuzzy wavelet neural network with stable learning algorithm: Application to model-based predictive control publication-title: Int. J. Fuzzy Syst. – volume: 363 start-page: 351 year: 2019 end-page: 365 ident: b21 article-title: Prescribed performance fixed-time recurrent neural network control for uncertain nonlinear systems publication-title: Neurocomputing – volume: 17 start-page: 117 year: 2015 end-page: 128 ident: b26 article-title: Fuzzy brain emotional learning control system design for nonlinear systems publication-title: Int. J. Fuzzy Syst. – reference: . – volume: 425 start-page: 82 year: 2021 end-page: 95 ident: b12 article-title: Prescribed-time leader-following consensus for stochastic second-order multi-agent systems subject to actuator failures via sliding mode control strategy publication-title: Neurocomputing – volume: 401 start-page: 364 year: 2020 end-page: 376 ident: b13 article-title: Fixed-time synchronization of fractional order memristive MAM neural networks by sliding mode control publication-title: Neurocomputing – volume: 437 start-page: 312 year: 2021 end-page: 324 ident: b10 article-title: Observer-based hsliding mode control for networked systems subject to communication channel fading and randomly varying nonlinearities publication-title: Neurocomputing – year: 2021 ident: b11 article-title: Adaptive consensus tracking of multi-robotic systems via using integral sliding mode control publication-title: Neurocomputing – volume: 22 start-page: 2546 year: 2020 end-page: 2564 ident: b28 article-title: Wavelet interval type-2 fuzzy quad-function-link brain emotional control algorithm for the synchronization of 3D nonlinear chaotic systems publication-title: Int. J. Fuzzy Syst. – volume: 11 year: 2020 ident: b14 article-title: Adaptive fuzzy sliding mode control for a micro gyroscope with backstepping controller publication-title: Micromachines – volume: 30 year: 2020 ident: b27 article-title: Adaptive type-2 NeuroFuzzy wavelet-based supplementary damping controls for STATCOM publication-title: Int. Trans. Electr. Energy Syst. – volume: 242 year: 2022 ident: b3 article-title: Broad-learning recurrent Hermite neural control for unknown nonlinear systems publication-title: Knowl.-Based Syst. – year: 2020 ident: b15 article-title: Linearized bregman iteration based model-free adaptive sliding mode control for a class of non-linear systems publication-title: IET Control Theory Appl. – volume: 95 start-page: 1661 year: 2019 end-page: 1672 ident: b30 article-title: Dynamic programming strategy based on a type-2 fuzzy wavelet neural network publication-title: Nonlinear Dynam. – volume: 231 year: 2021 ident: b7 article-title: Mittag-Leffler synchronization and stability analysis for neural networks in the fractional-order multi-dimension field publication-title: Knowl.-Based Syst. – volume: 35 start-page: 12110 year: 2020 end-page: 12121 ident: b16 article-title: Adaptive speed control of PMSM drive system based a new sliding-mode reaching law publication-title: IEEE Trans. Power Electron. – volume: 176 start-page: 156 year: 2020 end-page: 172 ident: b17 article-title: Motion control of a space manipulator using fuzzy sliding mode control with reinforcement learning publication-title: Acta Astronaut. – volume: 437 start-page: 312 year: 2021 ident: 10.1016/j.knosys.2022.109274_b10 article-title: Observer-based hsliding mode control for networked systems subject to communication channel fading and randomly varying nonlinearities publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.01.023 – volume: 22 start-page: 2546 year: 2020 ident: 10.1016/j.knosys.2022.109274_b28 article-title: Wavelet interval Type-2 fuzzy quad-function-link brain emotional control algorithm for the synchronization of 3D nonlinear chaotic systems publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-020-00941-7 – volume: 21 start-page: 2524 year: 2019 ident: 10.1016/j.knosys.2022.109274_b29 article-title: Self-evolving interval Type-2 wavelet cerebellar model articulation control design for uncertain nonlinear systems using PSO publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-019-00735-6 – volume: 35 start-page: 12110 year: 2020 ident: 10.1016/j.knosys.2022.109274_b16 article-title: Adaptive speed control of PMSM drive system based a new sliding-mode reaching law publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2020.2986893 – volume: 11 year: 2020 ident: 10.1016/j.knosys.2022.109274_b14 article-title: Adaptive fuzzy sliding mode control for a micro gyroscope with backstepping controller publication-title: Micromachines doi: 10.3390/mi11110968 – volume: 50 start-page: 3778 issue: 8 year: 2020 ident: 10.1016/j.knosys.2022.109274_b2 article-title: Type-2 fuzzy hybrid controller network for robotic systems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2919128 – year: 2020 ident: 10.1016/j.knosys.2022.109274_b15 article-title: Linearized bregman iteration based model-free adaptive sliding mode control for a class of non-linear systems publication-title: IET Control Theory Appl. – volume: 401 start-page: 281 year: 2020 ident: 10.1016/j.knosys.2022.109274_b18 article-title: Sliding-mode-control-theory-based adaptive general Type-2 fuzzy neural network control for power-line inspection robots publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.03.050 – year: 2021 ident: 10.1016/j.knosys.2022.109274_b11 article-title: Adaptive consensus tracking of multi-robotic systems via using integral sliding mode control publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.069 – volume: 233 year: 2021 ident: 10.1016/j.knosys.2022.109274_b1 article-title: Anti-synchronization of delayed memristive neural networks with leakage term and reaction–diffusion terms publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107539 – volume: 22 start-page: 351 year: 2020 ident: 10.1016/j.knosys.2022.109274_b31 article-title: Recurrent interval Type-2 fuzzy wavelet neural network with stable learning algorithm: Application to model-based predictive control publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-019-00766-z – volume: 31 start-page: 1297 year: 2020 ident: 10.1016/j.knosys.2022.109274_b22 article-title: Adaptive global sliding-mode control for dynamic systems using double hidden layer recurrent neural network structure publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2919676 – volume: 425 start-page: 82 year: 2021 ident: 10.1016/j.knosys.2022.109274_b12 article-title: Prescribed-time leader-following consensus for stochastic second-order multi-agent systems subject to actuator failures via sliding mode control strategy publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.103 – volume: 22 start-page: 714 year: 2011 ident: 10.1016/j.knosys.2022.109274_b19 article-title: Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2011.2109735 – volume: 32 start-page: 2217 year: 2018 ident: 10.1016/j.knosys.2022.109274_b32 article-title: DC–DC converters design using a Type-2 wavelet fuzzy cerebellar model articulation controller publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3755-z – volume: 35 start-page: 9906 year: 2020 ident: 10.1016/j.knosys.2022.109274_b20 article-title: Dynamic terminal sliding-mode control for single-phase active power filter using new feedback recurrent neural network publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2020.2974470 – volume: 17 start-page: 117 year: 2015 ident: 10.1016/j.knosys.2022.109274_b26 article-title: Fuzzy brain emotional learning control system design for nonlinear systems publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-015-0020-9 – volume: 50 start-page: 3713 year: 2020 ident: 10.1016/j.knosys.2022.109274_b6 article-title: Deterministic policy gradient with integral compensator for robust quadrotor control publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2018.2884725 – volume: 401 start-page: 364 year: 2020 ident: 10.1016/j.knosys.2022.109274_b13 article-title: Fixed-time synchronization of fractional order memristive MAM neural networks by sliding mode control publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.03.043 – volume: 363 start-page: 351 year: 2019 ident: 10.1016/j.knosys.2022.109274_b21 article-title: Prescribed performance fixed-time recurrent neural network control for uncertain nonlinear systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.07.053 – volume: 147 year: 2021 ident: 10.1016/j.knosys.2022.109274_b8 article-title: Cooperative control for multiple quadrotors under position deviations and aerodynamic drag publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107096 – volume: 236 year: 2022 ident: 10.1016/j.knosys.2022.109274_b5 article-title: Multiple finite-time synchronization of delayed inertial neural networks via a unified control scheme publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107785 – volume: 29 start-page: 1275 year: 2018 ident: 10.1016/j.knosys.2022.109274_b23 article-title: Adaptive sliding mode control of dynamic systems using double loop recurrent neural network structure publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2672998 – start-page: 1 year: 2020 ident: 10.1016/j.knosys.2022.109274_b33 article-title: A mixed Gaussian membership function fuzzy CMAC for a three-link robot – volume: 224 year: 2021 ident: 10.1016/j.knosys.2022.109274_b4 article-title: Compensator-critic structure-based neuro-optimal control of modular robot manipulators with uncertain environmental contacts using non-zero-sum games publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107100 – volume: 17 start-page: 2282 issue: 3 year: 2021 ident: 10.1016/j.knosys.2022.109274_b9 article-title: Visual-guided robotic object grasping using dual neural network controllers publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2020.2995142 – volume: 30 year: 2020 ident: 10.1016/j.knosys.2022.109274_b27 article-title: Adaptive Type-2 NeuroFuzzy wavelet-based supplementary damping controls for STATCOM publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1002/2050-7038.12429 – volume: 176 start-page: 156 year: 2020 ident: 10.1016/j.knosys.2022.109274_b17 article-title: Motion control of a space manipulator using fuzzy sliding mode control with reinforcement learning publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2020.06.028 – volume: 13 year: 2019 ident: 10.1016/j.knosys.2022.109274_b25 article-title: An improved fuzzy brain emotional learning model network controller for humanoid robots publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2019.00002 – volume: 231 year: 2021 ident: 10.1016/j.knosys.2022.109274_b7 article-title: Mittag-Leffler synchronization and stability analysis for neural networks in the fractional-order multi-dimension field publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107404 – volume: 12 start-page: 611 year: 2021 ident: 10.1016/j.knosys.2022.109274_b24 article-title: Adaptive super-twisting sliding mode control for micro gyroscope based on double loop fuzzy neural network structure publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-020-01191-7 – volume: 242 year: 2022 ident: 10.1016/j.knosys.2022.109274_b3 article-title: Broad-learning recurrent Hermite neural control for unknown nonlinear systems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108263 – ident: 10.1016/j.knosys.2022.109274_b35 doi: 10.1109/IJCNN48605.2020.9207710 – volume: 222 year: 2021 ident: 10.1016/j.knosys.2022.109274_b34 article-title: Self-organizing deep belief modular echo state network for time series prediction publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107007 – volume: 95 start-page: 1661 year: 2019 ident: 10.1016/j.knosys.2022.109274_b30 article-title: Dynamic programming strategy based on a Type-2 fuzzy wavelet neural network publication-title: Nonlinear Dynam. doi: 10.1007/s11071-018-4651-x |
SSID | ssj0002218 |
Score | 2.368282 |
Snippet | Conventional controllers for nonlinear systems often suffer from co-existences of non-linearity and uncertainty. This paper proposes a novel brain emotional... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109274 |
SubjectTerms | Brain emotional learning network Double recurrent neural loops Neural network control systems Nonlinear systems |
Title | A Type 2 wavelet brain emotional learning network with double recurrent loops based controller for nonlinear systems |
URI | https://dx.doi.org/10.1016/j.knosys.2022.109274 |
Volume | 251 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I8qjuoE1tHGdpB6riqqA6AKVukWxY6NC1VZtKsTCb-cudnhICCTGRHYcnc93n63P3zF2EeZKGKNNIE1HBUJbi3FQyqCdSaVsrLUt1fXvhvFgJG7G0bjGetVdGKJV-tjvYnoZrf2bprdmczGZNO8RHKC_YsLiZZ4l2W0hEvLyy7dPmgfn5RkfNQ6odXV9ruR4Pc_mq1cS7eacdJV4In5OT19STn-XbXusCF33O3usZmb7bKeqwwB-WR6wogu0nQQOLxnVkShAUeEHMK5ED37C14Z4hJljfQMdv0I-X6upgSUduZNIE0zn88UKKLHl4DnsUxwIcS3MnKRGtgSn_bw6ZKP-1UNvEPhqCoFGkFXgjjOMY6VyXHJahaFViD0k1wgPQsETLhRiPxV2sg7PI40biVYUtZMkT6SRyiJMaB-xDRzLHDOIMCjYOGvlQpGiH_qBkhahoJaY7Yxt1Vm7MmKqvdQ4VbyYphWn7Cl1pk_J9KkzfZ0FH70WTmrjj_ZJNT_pN5dJMRv82vPk3z1P2RY9lSSz6IxtFMu1OUdUUqhG6XYNttm9vh0M3wG-9eRB |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOMCFN-KND1yrrVkfy3FCoMFgF0DiVjVpgoBpm7ZOiH-P3aQIJAQS17ZuKtfx9yVyPgOchYWKjNEmkKargkhbS3lQyqCTS6VsorWt1PVvh0n_Ibp-jB8bcF6fheGySp_7XU6vsrW_0vLebE2fn1t3RA4oXgmwRIWzyRIsszpV3ITl3tWgP_xMyEJU23z8fMAG9Qm6qszrdTyZv7NutxAsrSTS6GeE-oI6lxuw5uki9twXbULDjLdgvW7FgH5mbkPZQ15RosC3nFtJlKi49wMa16WHXuHbQzzh2BV-I-_AYjFZqJHBGe-6s04TjiaT6RwZ2wr0ZewjGoioLY6dqkY-Qyf_PN-Bh8uL-_N-4BsqBJp4VkmLzjBJlCpo1mkVhlYR_ZBCE0MII5GKSBH9U2E374oi1rSWaMdxJ02LVBqpLDGFzi40aSyzBxhTXrBJ3i4ixaJ-FApKWmKDWhLgGdveh07txEx7tXFuejHK6rKyl8y5PmPXZ871-xB8Wk2d2sYfz6f1_8m-RU1GgPCr5cG_LU9hpX9_e5PdXA0Hh7DKd6qas_gImuVsYY6JpJTqxAfhB5X55vI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Type+2+wavelet+brain+emotional+learning+network+with+double+recurrent+loops+based+controller+for+nonlinear+systems&rft.jtitle=Knowledge-based+systems&rft.au=Wang%2C+Zi-Qi&rft.au=Li%2C+Li-Jiang&rft.au=Chao%2C+Fei&rft.au=Lin%2C+Chih-Min&rft.date=2022-09-05&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016%2Fj.knosys.2022.109274&rft.externalDocID=S0950705122006396 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |