Inertial Method of Viscosity Measurement of the Complex Rheology Medium
Modern lubricants have a complex content and complex rheological properties: the viscosity of oils depends on the shear rate, pressure and temperature. Strange as it is, the complication of the rheological properties of the studied medium requires the simplification of thermomechanical testing condi...
Saved in:
Published in | Procedia engineering Vol. 150; pp. 626 - 634 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1877-7058 1877-7058 |
DOI | 10.1016/j.proeng.2016.07.056 |
Cover
Abstract | Modern lubricants have a complex content and complex rheological properties: the viscosity of oils depends on the shear rate, pressure and temperature. Strange as it is, the complication of the rheological properties of the studied medium requires the simplification of thermomechanical testing conditions. It is due to the necessity of development of the homogeneous distribution of the thermomechanical values and the flow conditions with the known type of the stress-strain state. The authors offer a theoretical justification of a new method of the viscosity measurement of the complex rheology medium which combines the advantages of known rotational and capillary methods. The medium under study moves in the torus-shaped channel under the influence of the inertial forces, during this movement the friction torque is measured and the viscosity is calculated. The problem of a non-stationary and non-isothermal movement of the complex rheology medium in the torus-shaped channel has been studied. Based on the similarity theory and the analysis of the equability of the dimensions, the conditions were determined, under which the strain rate tensor has the simplest form, on the surface of the torus the distributions of the thermomechanical values are homogeneous, and pressure and temperature are homogeneous across the whole object. Based on the movement equation projected on one of the axis in the toroidal coordinates, the method of viscosity calculation was developed. Moreover, the prototype of the test rig and the data acquisition and measurement system were developed which allow to apply the automated experimental study on the subject. |
---|---|
AbstractList | Modern lubricants have a complex content and complex rheological properties: the viscosity of oils depends on the shear rate, pressure and temperature. Strange as it is, the complication of the rheological properties of the studied medium requires the simplification of thermomechanical testing conditions. It is due to the necessity of development of the homogeneous distribution of the thermomechanical values and the flow conditions with the known type of the stress-strain state. The authors offer a theoretical justification of a new method of the viscosity measurement of the complex rheology medium which combines the advantages of known rotational and capillary methods. The medium under study moves in the torus-shaped channel under the influence of the inertial forces, during this movement the friction torque is measured and the viscosity is calculated. The problem of a non-stationary and non-isothermal movement of the complex rheology medium in the torus-shaped channel has been studied. Based on the similarity theory and the analysis of the equability of the dimensions, the conditions were determined, under which the strain rate tensor has the simplest form, on the surface of the torus the distributions of the thermomechanical values are homogeneous, and pressure and temperature are homogeneous across the whole object. Based on the movement equation projected on one of the axis in the toroidal coordinates, the method of viscosity calculation was developed. Moreover, the prototype of the test rig and the data acquisition and measurement system were developed which allow to apply the automated experimental study on the subject. |
Author | Kornaeva, E. Savin, L. Kornaev, A. |
Author_xml | – sequence: 1 givenname: E. surname: Kornaeva fullname: Kornaeva, E. – sequence: 2 givenname: A. surname: Kornaev fullname: Kornaev, A. email: rusakor@inbox.ru – sequence: 3 givenname: L. surname: Savin fullname: Savin, L. |
BookMark | eNqFkN9KwzAUxoNMcM69gRd9gdakTZrUC0GGzsFEEPU2pNnJltE2I8nEvf1a5oV4oefm_P19cL5LNOpcBwhdE5wRTMqbbbbzDrp1lvddhnmGWXmGxkRwnnLMxOhHfYGmIWzxEBznjIzRfNGBj1Y1yTPEjVslziQfNmgXbDz0MxX2Hlro4rCIG0hmrt018JW8bsA1bj3crOy-vULnRjUBpt95gt4fH95mT-nyZb6Y3S9TXbA8plQVNSgBGFPBTKWMKaqSVUTVuM5xQVWlKqzrirJam7LkVChgAoRmNeVK8GKCbk-62rsQPBipbVTRui56ZRtJsBxckVt5ckUOrkjMZe9KD9Nf8M7bVvnDf9jdCYP-sU8LXgZtodP94x50lCtn_xY4AsmHgRA |
CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2022_107967 |
Cites_doi | 10.1016/j.flowmeasinst.2015.04.006 10.1063/1.1717395 10.1016/j.flowmeasinst.2012.09.002 10.1016/0003-2697(75)90208-0 10.1063/1.1851471 |
ContentType | Journal Article |
Copyright | 2016 The Authors |
Copyright_xml | – notice: 2016 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.proeng.2016.07.056 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1877-7058 |
EndPage | 634 |
ExternalDocumentID | 10_1016_j_proeng_2016_07_056 S1877705816313650 |
GroupedDBID | --K 0R~ 0SF 1B1 4.4 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAFWJ AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE ADMUD AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FEDTE FNPLU HVGLF HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 OZT P2P RIG ROL SES SSZ XH2 AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c352t-4a3bea8e00485f9aff396591ab0b2034a9a90cb945bcf66748ae58e8c5b47a873 |
IEDL.DBID | IXB |
ISSN | 1877-7058 |
IngestDate | Tue Jul 01 00:57:30 EDT 2025 Thu Apr 24 23:03:59 EDT 2025 Fri Feb 23 02:22:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | viscometer viscosity hydrodynamics non-Newtonian fluid Rheology |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-4a3bea8e00485f9aff396591ab0b2034a9a90cb945bcf66748ae58e8c5b47a873 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877705816313650 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_proeng_2016_07_056 crossref_primary_10_1016_j_proeng_2016_07_056 elsevier_sciencedirect_doi_10_1016_j_proeng_2016_07_056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016 2016-00-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | Procedia engineering |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | L.M. Milne-Thomson, Theoretical hydrodynamics, fourth ed., Macmilan and Co LTD, London, 1960. S. Bair, High pressure rheology for quantitative elastohydrodynamics, Elsevier, 2007. A.V. Kornaev, L.A. Savin, E.P. Kornaeva, P.G. Antonov, Inertial method of measuring dynamic viscosity coefficient of nanomodified hybrid liquid, Proceedings of the South-West State University. 1 (2013) 139–146. E.H. Zeitfuchs, Speeds viscosity measurement in capillary-type viscometer, National Petroleum News. 33(1941) 121–124. F. Durst, Similarity theory, Fluid Mechanics, An Introduction to the Theory of Fluid Flows, Springer, Berlin, 2008. D. Viswanath, T. Ghosh, D. Prasad, N. Dutt, K. Rany, Viscosity of liquids, Springer, 2007. A. Sieben, A recording bridge viscometer, Anal. Biochem. 63 (1975) 220–230. H. Yukio, Hydrodynamic Lubrication, Springer, Tokyo, 2006. A. Dinsdale, F. Moore, Viscosity and its measurement, Chapman and Hall, London, 1962. Information on http://www.gnu.org/software/octave. G.A. Korn, T.M. Korn, Mathematical Handbook for Scientists and Engineers, Dover Publications, New York, 2000. J.C. Harper, Coaxial cylinder viscometer for non-Newtonian fluids, Rev. Sci. Instrum. 32 (1961) 425–428. M.A. Wilkinson, Non-newtonian fluids, Fluid mechanics, mixing and heat transfer, Pergamon Press, Oxford, 1960. N.E. Kochin, I.A. Kibel, N.V. Roze, Theoretical hydromechanics, translated from the fifth Russian, in: D. Boyanovitch (Eds.), Interscience Publishers, New York, 1965. S.V. Patankar, Numerical heat transfer and fluid flow, McGraw-Hill book company, New York, 1980. N.Y. Parlashkevich, I.N. Kogan, Determining the viscosity of concentrated polymer solutions with an ultrasonic viscometer, Plasticheskie Massy. 1 (1965) 49–52. L.A. Savin, A.V. Kornaev, E.P. Kornaeva, P.G. Antonov, RU Patent 2517819. (2014). T. Leeungculsatien, G.P. Lucas, Measurement of velocity profiles in multiphase flow using a multi-electrode electromagnetic flow meter, Flow Measurement and Instrumentation. 31 (2013) 86–95. L. Cordova, N. Furuichi, T. Lederer, Qualification of an ultrasonic flow meter as a transfer standard for measurements at Reynolds numbers up to 4e6 between NMIJ and PTB, Flow Measurement and Instrumentation. 45 (2015) 28–42. M. Brizard, M. Megharfi, E. Mahe, C. Verdier, Design of a high precision fallingball viscometer, Rev. Sci. Instr. 76 (2005) 1–6. S. Middleman, The flow of high polymers, Continuum and molecular rheology, Interscience Publishers, New York, 1968. 10.1016/j.proeng.2016.07.056_bib0035 10.1016/j.proeng.2016.07.056_bib0025 10.1016/j.proeng.2016.07.056_bib0055 10.1016/j.proeng.2016.07.056_bib0045 10.1016/j.proeng.2016.07.056_bib0100 10.1016/j.proeng.2016.07.056_bib0020 10.1016/j.proeng.2016.07.056_bib0075 10.1016/j.proeng.2016.07.056_bib0010 10.1016/j.proeng.2016.07.056_bib0065 10.1016/j.proeng.2016.07.056_bib0040 10.1016/j.proeng.2016.07.056_bib0095 10.1016/j.proeng.2016.07.056_bib0030 10.1016/j.proeng.2016.07.056_bib0085 10.1016/j.proeng.2016.07.056_bib0105 10.1016/j.proeng.2016.07.056_bib0015 10.1016/j.proeng.2016.07.056_bib0005 10.1016/j.proeng.2016.07.056_bib0060 10.1016/j.proeng.2016.07.056_bib0050 10.1016/j.proeng.2016.07.056_bib0080 10.1016/j.proeng.2016.07.056_bib0070 10.1016/j.proeng.2016.07.056_bib0090 |
References_xml | – reference: A. Dinsdale, F. Moore, Viscosity and its measurement, Chapman and Hall, London, 1962. – reference: E.H. Zeitfuchs, Speeds viscosity measurement in capillary-type viscometer, National Petroleum News. 33(1941) 121–124. – reference: D. Viswanath, T. Ghosh, D. Prasad, N. Dutt, K. Rany, Viscosity of liquids, Springer, 2007. – reference: F. Durst, Similarity theory, Fluid Mechanics, An Introduction to the Theory of Fluid Flows, Springer, Berlin, 2008. – reference: T. Leeungculsatien, G.P. Lucas, Measurement of velocity profiles in multiphase flow using a multi-electrode electromagnetic flow meter, Flow Measurement and Instrumentation. 31 (2013) 86–95. – reference: S. Middleman, The flow of high polymers, Continuum and molecular rheology, Interscience Publishers, New York, 1968. – reference: S. Bair, High pressure rheology for quantitative elastohydrodynamics, Elsevier, 2007. – reference: M. Brizard, M. Megharfi, E. Mahe, C. Verdier, Design of a high precision fallingball viscometer, Rev. Sci. Instr. 76 (2005) 1–6. – reference: S.V. Patankar, Numerical heat transfer and fluid flow, McGraw-Hill book company, New York, 1980. – reference: N.Y. Parlashkevich, I.N. Kogan, Determining the viscosity of concentrated polymer solutions with an ultrasonic viscometer, Plasticheskie Massy. 1 (1965) 49–52. – reference: L. Cordova, N. Furuichi, T. Lederer, Qualification of an ultrasonic flow meter as a transfer standard for measurements at Reynolds numbers up to 4e6 between NMIJ and PTB, Flow Measurement and Instrumentation. 45 (2015) 28–42. – reference: Information on http://www.gnu.org/software/octave. – reference: N.E. Kochin, I.A. Kibel, N.V. Roze, Theoretical hydromechanics, translated from the fifth Russian, in: D. Boyanovitch (Eds.), Interscience Publishers, New York, 1965. – reference: L.A. Savin, A.V. Kornaev, E.P. Kornaeva, P.G. Antonov, RU Patent 2517819. (2014). – reference: L.M. Milne-Thomson, Theoretical hydrodynamics, fourth ed., Macmilan and Co LTD, London, 1960. – reference: A.V. Kornaev, L.A. Savin, E.P. Kornaeva, P.G. Antonov, Inertial method of measuring dynamic viscosity coefficient of nanomodified hybrid liquid, Proceedings of the South-West State University. 1 (2013) 139–146. – reference: G.A. Korn, T.M. Korn, Mathematical Handbook for Scientists and Engineers, Dover Publications, New York, 2000. – reference: J.C. Harper, Coaxial cylinder viscometer for non-Newtonian fluids, Rev. Sci. Instrum. 32 (1961) 425–428. – reference: A. Sieben, A recording bridge viscometer, Anal. Biochem. 63 (1975) 220–230. – reference: H. Yukio, Hydrodynamic Lubrication, Springer, Tokyo, 2006. – reference: M.A. Wilkinson, Non-newtonian fluids, Fluid mechanics, mixing and heat transfer, Pergamon Press, Oxford, 1960. – ident: 10.1016/j.proeng.2016.07.056_bib0100 doi: 10.1016/j.flowmeasinst.2015.04.006 – ident: 10.1016/j.proeng.2016.07.056_bib0025 – ident: 10.1016/j.proeng.2016.07.056_bib0050 – ident: 10.1016/j.proeng.2016.07.056_bib0095 – ident: 10.1016/j.proeng.2016.07.056_bib0020 doi: 10.1063/1.1717395 – ident: 10.1016/j.proeng.2016.07.056_bib0075 – ident: 10.1016/j.proeng.2016.07.056_bib0105 doi: 10.1016/j.flowmeasinst.2012.09.002 – ident: 10.1016/j.proeng.2016.07.056_bib0045 – ident: 10.1016/j.proeng.2016.07.056_bib0080 – ident: 10.1016/j.proeng.2016.07.056_bib0035 doi: 10.1016/0003-2697(75)90208-0 – ident: 10.1016/j.proeng.2016.07.056_bib0005 – ident: 10.1016/j.proeng.2016.07.056_bib0015 – ident: 10.1016/j.proeng.2016.07.056_bib0040 – ident: 10.1016/j.proeng.2016.07.056_bib0030 doi: 10.1063/1.1851471 – ident: 10.1016/j.proeng.2016.07.056_bib0060 – ident: 10.1016/j.proeng.2016.07.056_bib0065 – ident: 10.1016/j.proeng.2016.07.056_bib0090 – ident: 10.1016/j.proeng.2016.07.056_bib0085 – ident: 10.1016/j.proeng.2016.07.056_bib0055 – ident: 10.1016/j.proeng.2016.07.056_bib0070 – ident: 10.1016/j.proeng.2016.07.056_bib0010 |
SSID | ssj0000070251 |
Score | 2.043114 |
Snippet | Modern lubricants have a complex content and complex rheological properties: the viscosity of oils depends on the shear rate, pressure and temperature. Strange... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 626 |
SubjectTerms | hydrodynamics non-Newtonian fluid Rheology viscometer viscosity |
Title | Inertial Method of Viscosity Measurement of the Complex Rheology Medium |
URI | https://dx.doi.org/10.1016/j.proeng.2016.07.056 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA7Dkx7Enzh_0YPXsLZJ2vSoY3MK86BOdgtJmmhldkM30It_u3lpOyaIgpdCk_egPJIvr-F730PojChuGbMxlqHhmDId44znOY4lzRPKjE5864ThTTIY0esxG7dQt6mFAVpljf0Vpnu0rkc6dTQ7s6Lo3EUgZRcy7jIK4GrBfztUlUIR3_hiec8Cejax78II9hgcmgo6T_NyOGXKR-B41Sqeyc8n1Mqp099Cm3W6GJxXX7SNWqbcQRsrIoK76PKqBG60sxr6btDB1AYPxZsGNtaHG1veAcKES_cCgICJeQ9un3xXX7DJi8XLHhr1e_fdAa7bI2DtsqY5ppIoI7mBTchsJq0loA4YSRWqOCRUZjILtcooU9om0FREGsYN10zRVPKU7KO1clqaAxQ4pEmYilQa5pJmJuWaaMls4nanpsRGbUSakAhda4dDC4uJaEhiz6IKpIBAijAVLpBthJdes0o74w_7tIm2-LYGhIP3Xz0P_-15hNbhrbpUOUZr89eFOXFpxlyd-nXknsPP3hfrb9G7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA2lLtSF-MT6nIXb0HkkM5mlFmurbRfaSnchySQ6UqdFW9C_N3cepYIouE1yYbgkJ3cuJ-cgdBFIZig1PhauZphQ5eOYJQn2BUlCQrUKc-uE_iDsjMjtmI5rqFW9hQFaZYn9BabnaF2ONMtsNmdp2nzwQMrOpcxWFMDVsv_ta7YaCEFAvzu-WjZaQNDGz20YIQBDRPWELud5WaDS2ROQvEoZz_DnK2rl2mlvo62yXnQui0_aQTWd7aLNFRXBPXTTzYAcbVf1cztoZ2qcx_RdAR3r044tm4AwYes9BzBgoj-c--fc1hfWJOnidR-N2tfDVgeX_ghY2bJpjokIpBZMwymkJhbGBCAP6AnpSt8NiIhF7CoZEyqVCcFVRGjKNFNUkkiwKDhA9Wya6UPkWKgJqfRk5CaCxDpiKlCCmtAeT0UC4zVQUKWEq1I8HDwsJrxiib3wIpEcEsndiNtENhBeRs0K8Yw_1kdVtvm3TcAtvv8aefTvyHO03hn2e7zXHdwdow2YKTosJ6g-f1voU1tzzOVZvqe-AJmO064 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inertial+Method+of+Viscosity+Measurement+of+the+Complex+Rheology+Medium&rft.jtitle=Procedia+engineering&rft.au=Kornaeva%2C+E.&rft.au=Kornaev%2C+A.&rft.au=Savin%2C+L.&rft.date=2016&rft.pub=Elsevier+Ltd&rft.issn=1877-7058&rft.eissn=1877-7058&rft.volume=150&rft.spage=626&rft.epage=634&rft_id=info:doi/10.1016%2Fj.proeng.2016.07.056&rft.externalDocID=S1877705816313650 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7058&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7058&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7058&client=summon |