Tensile Properties of Nanosilica/Epoxy Nanocomposites
The effect of nanosilica on the tensile stress-strain response of Epikote 828 epoxy polymer was studied. A 40 wt% nanosilica/epoxy masterbatch was used to prepare a series of nanocomposites with 5–25 wt% nanosilica content. Static uniaxial tensile tests were conducted to investigate the tensile stre...
Saved in:
Published in | Procedia engineering Vol. 41; pp. 1634 - 1640 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1877-7058 1877-7058 |
DOI | 10.1016/j.proeng.2012.07.361 |
Cover
Abstract | The effect of nanosilica on the tensile stress-strain response of Epikote 828 epoxy polymer was studied. A 40 wt% nanosilica/epoxy masterbatch was used to prepare a series of nanocomposites with 5–25 wt% nanosilica content. Static uniaxial tensile tests were conducted to investigate the tensile stress–strain response and tensile properties of unmodified and nanomodified epoxy polymers. In addition, the degree of dispersion of the silica nanosphere particle in the epoxy matrix was investigated using transmission electron microscopy. It was found that the incorporation of a well-disperse nanosilica improved the tensile properties of the polymer. The addition of 25 wt% nanosilica enhanced the tensile modulus and strength of about 38% and 24%, respectively, compared to the neat polymer without sacrificing the failure strain. |
---|---|
AbstractList | The effect of nanosilica on the tensile stress-strain response of Epikote 828 epoxy polymer was studied. A 40 wt% nanosilica/epoxy masterbatch was used to prepare a series of nanocomposites with 5–25 wt% nanosilica content. Static uniaxial tensile tests were conducted to investigate the tensile stress–strain response and tensile properties of unmodified and nanomodified epoxy polymers. In addition, the degree of dispersion of the silica nanosphere particle in the epoxy matrix was investigated using transmission electron microscopy. It was found that the incorporation of a well-disperse nanosilica improved the tensile properties of the polymer. The addition of 25 wt% nanosilica enhanced the tensile modulus and strength of about 38% and 24%, respectively, compared to the neat polymer without sacrificing the failure strain. |
Author | Kasolang, Salmiah Soutis, Costas Abdullah, Shahrul Azam Jumahat, Aidah |
Author_xml | – sequence: 1 givenname: Aidah surname: Jumahat fullname: Jumahat, Aidah email: aidahjumahat@salam.uitm.edu.my organization: Faculty of Mechanical Engineering, Universiti Teknologi MARA, 40450 Shah Alam,Malaysia – sequence: 2 givenname: Costas surname: Soutis fullname: Soutis, Costas organization: Aerospace Engineering, Dept of Mechanical Engineering, University of Sheffield, S1 3JD Sheffield, United Kingdom – sequence: 3 givenname: Shahrul Azam surname: Abdullah fullname: Abdullah, Shahrul Azam organization: Faculty of Mechanical Engineering, Universiti Teknologi MARA, 40450 Shah Alam,Malaysia – sequence: 4 givenname: Salmiah surname: Kasolang fullname: Kasolang, Salmiah organization: Faculty of Mechanical Engineering, Universiti Teknologi MARA, 40450 Shah Alam,Malaysia |
BookMark | eNqFj01LAzEQhoNUsNb-Aw_9A7vNR3eT9SBIqVUo6qGew3YykZQ2WZIg9t-7tR7Eg85lZl54XnguycAHj4RcM1oyyurptuxiQP9Wcsp4SWUpanZGhkxJWUhaqcGP-4KMU9rS40jKKzYk1Rp9cjucvMTQYcwO0yTYyVPrQx87aKeLLnwcvgII-65PM6Yrcm7bXcLx9x6R1_vFev5QrJ6Xj_O7VQGi4rmYNQ1IIxvKVYOgalVzsREoOG_MRrWNYWjBWMNnYKlBtlH9BwjWmlpIWYkRmZ16IYaUIlrdRbdv40Ezqo_2eqtP9vpor6nUvX2P3fzCwOU2u-BzbN3uP_j2BGMv9u4w6gQOPaBxESFrE9zfBZ_HIXvl |
CitedBy_id | crossref_primary_10_1177_0021998319893435 crossref_primary_10_1080_25740881_2021_2015778 crossref_primary_10_1016_j_matchemphys_2016_12_055 crossref_primary_10_1016_j_matpr_2020_06_082 crossref_primary_10_1080_03602559_2015_1132456 crossref_primary_10_4028_p_p961bu crossref_primary_10_1039_D0BM00414F crossref_primary_10_1088_2053_1591_aa99e7 crossref_primary_10_1002_app_48449 crossref_primary_10_1007_s10570_021_04300_z crossref_primary_10_1016_j_engfracmech_2015_08_013 crossref_primary_10_1088_2053_1591_ac5ef4 crossref_primary_10_1016_j_ultras_2024_107249 crossref_primary_10_4028_www_scientific_net_AMM_393_206 crossref_primary_10_1016_j_compositesb_2024_111462 crossref_primary_10_1002_pen_25560 crossref_primary_10_1002_pc_28369 crossref_primary_10_3390_polym14193969 crossref_primary_10_1002_pc_26426 crossref_primary_10_1088_2053_1591_aaeaf0 crossref_primary_10_1007_s10853_013_7840_5 crossref_primary_10_1007_s10971_016_4252_4 crossref_primary_10_3934_matersci_2022013 crossref_primary_10_1177_07316844241247897 crossref_primary_10_1088_1361_665X_aceb27 crossref_primary_10_1051_matecconf_201820306013 crossref_primary_10_1088_1757_899X_1094_1_012142 crossref_primary_10_1007_s11668_018_0544_z crossref_primary_10_1002_app_48637 crossref_primary_10_1016_j_coco_2024_101842 crossref_primary_10_1007_s11668_020_01013_6 crossref_primary_10_3390_app6090267 crossref_primary_10_3390_polym14071450 crossref_primary_10_1007_s12633_019_00197_3 crossref_primary_10_1016_j_matpr_2022_06_568 crossref_primary_10_1016_j_tafmec_2018_05_007 crossref_primary_10_1007_s12633_020_00828_0 crossref_primary_10_1088_1742_6596_1432_1_012046 crossref_primary_10_1002_pc_24395 crossref_primary_10_1002_pc_27761 crossref_primary_10_1002_mawe_201800071 crossref_primary_10_1515_rams_2023_0126 crossref_primary_10_1177_1847980419855842 crossref_primary_10_1179_1432891714Z_0000000001020 crossref_primary_10_1177_0021998317699982 |
Cites_doi | 10.1007/b137162 10.1016/j.polymer.2006.11.038 10.1016/j.compstruct.2009.08.010 10.1016/j.compscitech.2004.11.003 10.1177/0021998306067321 10.1007/s10853-010-4683-1 |
ContentType | Journal Article |
Copyright | 2012 |
Copyright_xml | – notice: 2012 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.proeng.2012.07.361 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1877-7058 |
EndPage | 1640 |
ExternalDocumentID | 10_1016_j_proeng_2012_07_361 S1877705812027610 |
GroupedDBID | --K 0R~ 0SF 1B1 4.4 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAFWJ AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE ADMUD AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FEDTE FNPLU HVGLF HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 OZT P2P RIG ROL SES SSZ XH2 AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c352t-499c7d790289ec868623b3e3229db8a9d1efcdfd24cf0de1b8cdfcecffd637753 |
IEDL.DBID | IXB |
ISSN | 1877-7058 |
IngestDate | Tue Jul 01 02:19:10 EDT 2025 Thu Apr 24 23:07:36 EDT 2025 Fri Feb 23 02:27:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | epoxy resin tensile properties stress-strain response Nanocomposites nanosilica |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-499c7d790289ec868623b3e3229db8a9d1efcdfd24cf0de1b8cdfcecffd637753 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877705812027610 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_proeng_2012_07_361 crossref_citationtrail_10_1016_j_proeng_2012_07_361 elsevier_sciencedirect_doi_10_1016_j_proeng_2012_07_361 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012 2012-00-00 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – year: 2012 text: 2012 |
PublicationDecade | 2010 |
PublicationTitle | Procedia engineering |
PublicationYear | 2012 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jumahat, A., Soutis, C., Jones, F.R., Hodzic, A., 2010. Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading, Composite structures 92(2), pp. 295-305. www.hanse-chemie.com. Hanse chemie AG, Charlottenburger Str. 9, 21502 Geesthacht, Germany. Thostenson, E.T., Li, C., Chou, T.W., 2005. Review: nanocomposites in context, Composites Science and Technology 65, pp. 491-516. Jumahat, A., Soutis, C., Jones, F.R., Hodzic, A. 2010. Effect of silica nanoparticles on compressive properties of an epoxy polymer, Journal of Materials Science 45, pp. 5973-5983. www.nanoresins.ag. Nanoresins AG, Charlottenburger Str. 9, 21502 Geesthacht, Germany. Koo, J.H., 2006. Polymer nanocomposites processing, characterization and applications. McGraw Hill. Jumahat, A., 2011. Effect of nanofillers on thermo-mechanical properties of polymers and composite laminates. University of Sheffield, United Kingdom, PhD thesis. Hussain, F., Hojjati, M., Okamoto, M., Gorga R.E., 2006. Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview, Journal of Composite Materials 40(17), pp. 1511-1575. Friedrich, K., Fakirov. S, Zhang. Z., 2005. Polymer composites from nano- to macro-scale. Springer. Pinnavaia, T.J., Beall, G.W., 2000. Polymer-clay nanocomposites. John Wiley & sons. Zhou, .G., (2007). Preparation, structure, and properties of advanced polymer composites with long fibers and nanoparticles. The Ohio State University, USA, PhD thesis. Johnsen, B.B., Kinloch, A.J., Mohammed, R.D., Taylor, A.C., Sprenger, S., 2007. Toughening mechanisms of nanoparticle-modified epoxy polymers, Polymer 48, pp. 530-541. 10.1016/j.proeng.2012.07.361_bib0050 10.1016/j.proeng.2012.07.361_bib0040 10.1016/j.proeng.2012.07.361_bib0030 10.1016/j.proeng.2012.07.361_bib0020 10.1016/j.proeng.2012.07.361_bib0010 10.1016/j.proeng.2012.07.361_bib0055 10.1016/j.proeng.2012.07.361_bib0045 10.1016/j.proeng.2012.07.361_bib0035 10.1016/j.proeng.2012.07.361_bib0025 10.1016/j.proeng.2012.07.361_bib0015 10.1016/j.proeng.2012.07.361_bib0005 10.1016/j.proeng.2012.07.361_bib0060 |
References_xml | – reference: Zhou, .G., (2007). Preparation, structure, and properties of advanced polymer composites with long fibers and nanoparticles. The Ohio State University, USA, PhD thesis. – reference: Pinnavaia, T.J., Beall, G.W., 2000. Polymer-clay nanocomposites. John Wiley & sons. – reference: Johnsen, B.B., Kinloch, A.J., Mohammed, R.D., Taylor, A.C., Sprenger, S., 2007. Toughening mechanisms of nanoparticle-modified epoxy polymers, Polymer 48, pp. 530-541. – reference: Jumahat, A., Soutis, C., Jones, F.R., Hodzic, A., 2010. Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading, Composite structures 92(2), pp. 295-305. – reference: Jumahat, A., Soutis, C., Jones, F.R., Hodzic, A. 2010. Effect of silica nanoparticles on compressive properties of an epoxy polymer, Journal of Materials Science 45, pp. 5973-5983. – reference: Friedrich, K., Fakirov. S, Zhang. Z., 2005. Polymer composites from nano- to macro-scale. Springer. – reference: Thostenson, E.T., Li, C., Chou, T.W., 2005. Review: nanocomposites in context, Composites Science and Technology 65, pp. 491-516. – reference: www.hanse-chemie.com. Hanse chemie AG, Charlottenburger Str. 9, 21502 Geesthacht, Germany. – reference: Koo, J.H., 2006. Polymer nanocomposites processing, characterization and applications. McGraw Hill. – reference: Hussain, F., Hojjati, M., Okamoto, M., Gorga R.E., 2006. Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview, Journal of Composite Materials 40(17), pp. 1511-1575. – reference: Jumahat, A., 2011. Effect of nanofillers on thermo-mechanical properties of polymers and composite laminates. University of Sheffield, United Kingdom, PhD thesis. – reference: www.nanoresins.ag. Nanoresins AG, Charlottenburger Str. 9, 21502 Geesthacht, Germany. – ident: 10.1016/j.proeng.2012.07.361_bib0015 doi: 10.1007/b137162 – ident: 10.1016/j.proeng.2012.07.361_bib0045 doi: 10.1016/j.polymer.2006.11.038 – ident: 10.1016/j.proeng.2012.07.361_bib0055 – ident: 10.1016/j.proeng.2012.07.361_bib0020 – ident: 10.1016/j.proeng.2012.07.361_bib0010 – ident: 10.1016/j.proeng.2012.07.361_bib0040 – ident: 10.1016/j.proeng.2012.07.361_bib0005 – ident: 10.1016/j.proeng.2012.07.361_bib0035 – ident: 10.1016/j.proeng.2012.07.361_bib0050 doi: 10.1016/j.compstruct.2009.08.010 – ident: 10.1016/j.proeng.2012.07.361_bib0025 doi: 10.1016/j.compscitech.2004.11.003 – ident: 10.1016/j.proeng.2012.07.361_bib0030 doi: 10.1177/0021998306067321 – ident: 10.1016/j.proeng.2012.07.361_bib0060 doi: 10.1007/s10853-010-4683-1 |
SSID | ssj0000070251 |
Score | 2.1226325 |
Snippet | The effect of nanosilica on the tensile stress-strain response of Epikote 828 epoxy polymer was studied. A 40 wt% nanosilica/epoxy masterbatch was used to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1634 |
SubjectTerms | epoxy resin Nanocomposites nanosilica stress-strain response tensile properties |
Title | Tensile Properties of Nanosilica/Epoxy Nanocomposites |
URI | https://dx.doi.org/10.1016/j.proeng.2012.07.361 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lJz2IT6wv9uA17Hs3OWppKUJFsIXewuYllbJbagt68bc7k90tFUTBSyBhBpZJdmYyfPOFkNs0MTZlTFNbyIgmlgWUycINueUxY9IV3MaP2WiaPMzSWYf0214YhFU2vr_26c5bNyt-Y01_OZ_7zyFS2QUpRCi4WmWuzQq7SrGJb3a_rbMgn03kXmFEeYoKbQedg3mBnzLlC2K8ImTxjLPw5wi1E3WGh-SgSRe9u_qLjkjHlMdkf4dE8ISkE8SgL4z3hHX1FRKkepX1wG1WsAx74A-W1fuHW0AAOaK0zNspmQ4Hk_6INo8hUAU50prCzUTlOkeyFW4Uw8aOWMYG_keuJSu4Do1V2uooUTbQJpQMZsooa3UW53ApOSPdsirNOfFg24KwYCbnkoO05iCtC61MYnlWBGGPxK0BhGqYwvHBioVoIWGvojabQLOJIBdgth6hW61lzZTxh3ze2lZ823EBzvxXzYt_a16SPZzVJZQr0l2vNuYakoq1vHGnBsbx5-ALU5_OAA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPagH8Yn1mYPXJe9k96ilpWpbBFvobcm-pFLSUivov3cmj1JBFLwEMtmBMJPMzgzffEvITRwZGzOmqc1kQCPLPMpkVlxSy0PGZNFwGwyT3jh6mMSTBmnXszAIq6xifxnTi2hdSdzKmu5iOnWffaSy82LYoaC0SnDMaguygQQJ9O8nd-tGCxLaBMUxjKhAUaMeoStwXhCoTP6CIK8AaTzDxP95i9rYdrr7ZK_KF53b8pUOSMPkh2R3g0XwiMQjBKHPjPOEjfUlMqQ6c-tA3JyDGJzgdhbzj89CgAhyhGmZt2My7nZG7R6tTkOgCpKkFYXSRKU6RbYVbhTDyY5QhgZ-SK4ly7j2jVXa6iBS1tPGlwzulFHW6iRMoSo5Ic18nptT4oDfPD9jJuWSw2rNYbXOtDKR5Unm-S0S1gYQqqIKxxMrZqLGhL2K0mwCzSa8VIDZWoSutRYlVcYf69PatuKbywVE8181z_6teU22e6NBX_Tvh4_nZAeflP2UC9JcLd_NJWQYK3lVfEFf56LP8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensile+Properties+of+Nanosilica%2FEpoxy+Nanocomposites&rft.jtitle=Procedia+engineering&rft.au=Jumahat%2C+Aidah&rft.au=Soutis%2C+Costas&rft.au=Abdullah%2C+Shahrul+Azam&rft.au=Kasolang%2C+Salmiah&rft.date=2012&rft.issn=1877-7058&rft.eissn=1877-7058&rft.volume=41&rft.spage=1634&rft.epage=1640&rft_id=info:doi/10.1016%2Fj.proeng.2012.07.361&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_proeng_2012_07_361 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7058&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7058&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7058&client=summon |