Tensile Properties of Nanosilica/Epoxy Nanocomposites

The effect of nanosilica on the tensile stress-strain response of Epikote 828 epoxy polymer was studied. A 40 wt% nanosilica/epoxy masterbatch was used to prepare a series of nanocomposites with 5–25 wt% nanosilica content. Static uniaxial tensile tests were conducted to investigate the tensile stre...

Full description

Saved in:
Bibliographic Details
Published inProcedia engineering Vol. 41; pp. 1634 - 1640
Main Authors Jumahat, Aidah, Soutis, Costas, Abdullah, Shahrul Azam, Kasolang, Salmiah
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2012
Subjects
Online AccessGet full text
ISSN1877-7058
1877-7058
DOI10.1016/j.proeng.2012.07.361

Cover

Abstract The effect of nanosilica on the tensile stress-strain response of Epikote 828 epoxy polymer was studied. A 40 wt% nanosilica/epoxy masterbatch was used to prepare a series of nanocomposites with 5–25 wt% nanosilica content. Static uniaxial tensile tests were conducted to investigate the tensile stress–strain response and tensile properties of unmodified and nanomodified epoxy polymers. In addition, the degree of dispersion of the silica nanosphere particle in the epoxy matrix was investigated using transmission electron microscopy. It was found that the incorporation of a well-disperse nanosilica improved the tensile properties of the polymer. The addition of 25 wt% nanosilica enhanced the tensile modulus and strength of about 38% and 24%, respectively, compared to the neat polymer without sacrificing the failure strain.
AbstractList The effect of nanosilica on the tensile stress-strain response of Epikote 828 epoxy polymer was studied. A 40 wt% nanosilica/epoxy masterbatch was used to prepare a series of nanocomposites with 5–25 wt% nanosilica content. Static uniaxial tensile tests were conducted to investigate the tensile stress–strain response and tensile properties of unmodified and nanomodified epoxy polymers. In addition, the degree of dispersion of the silica nanosphere particle in the epoxy matrix was investigated using transmission electron microscopy. It was found that the incorporation of a well-disperse nanosilica improved the tensile properties of the polymer. The addition of 25 wt% nanosilica enhanced the tensile modulus and strength of about 38% and 24%, respectively, compared to the neat polymer without sacrificing the failure strain.
Author Kasolang, Salmiah
Soutis, Costas
Abdullah, Shahrul Azam
Jumahat, Aidah
Author_xml – sequence: 1
  givenname: Aidah
  surname: Jumahat
  fullname: Jumahat, Aidah
  email: aidahjumahat@salam.uitm.edu.my
  organization: Faculty of Mechanical Engineering, Universiti Teknologi MARA, 40450 Shah Alam,Malaysia
– sequence: 2
  givenname: Costas
  surname: Soutis
  fullname: Soutis, Costas
  organization: Aerospace Engineering, Dept of Mechanical Engineering, University of Sheffield, S1 3JD Sheffield, United Kingdom
– sequence: 3
  givenname: Shahrul Azam
  surname: Abdullah
  fullname: Abdullah, Shahrul Azam
  organization: Faculty of Mechanical Engineering, Universiti Teknologi MARA, 40450 Shah Alam,Malaysia
– sequence: 4
  givenname: Salmiah
  surname: Kasolang
  fullname: Kasolang, Salmiah
  organization: Faculty of Mechanical Engineering, Universiti Teknologi MARA, 40450 Shah Alam,Malaysia
BookMark eNqFj01LAzEQhoNUsNb-Aw_9A7vNR3eT9SBIqVUo6qGew3YykZQ2WZIg9t-7tR7Eg85lZl54XnguycAHj4RcM1oyyurptuxiQP9Wcsp4SWUpanZGhkxJWUhaqcGP-4KMU9rS40jKKzYk1Rp9cjucvMTQYcwO0yTYyVPrQx87aKeLLnwcvgII-65PM6Yrcm7bXcLx9x6R1_vFev5QrJ6Xj_O7VQGi4rmYNQ1IIxvKVYOgalVzsREoOG_MRrWNYWjBWMNnYKlBtlH9BwjWmlpIWYkRmZ16IYaUIlrdRbdv40Ezqo_2eqtP9vpor6nUvX2P3fzCwOU2u-BzbN3uP_j2BGMv9u4w6gQOPaBxESFrE9zfBZ_HIXvl
CitedBy_id crossref_primary_10_1177_0021998319893435
crossref_primary_10_1080_25740881_2021_2015778
crossref_primary_10_1016_j_matchemphys_2016_12_055
crossref_primary_10_1016_j_matpr_2020_06_082
crossref_primary_10_1080_03602559_2015_1132456
crossref_primary_10_4028_p_p961bu
crossref_primary_10_1039_D0BM00414F
crossref_primary_10_1088_2053_1591_aa99e7
crossref_primary_10_1002_app_48449
crossref_primary_10_1007_s10570_021_04300_z
crossref_primary_10_1016_j_engfracmech_2015_08_013
crossref_primary_10_1088_2053_1591_ac5ef4
crossref_primary_10_1016_j_ultras_2024_107249
crossref_primary_10_4028_www_scientific_net_AMM_393_206
crossref_primary_10_1016_j_compositesb_2024_111462
crossref_primary_10_1002_pen_25560
crossref_primary_10_1002_pc_28369
crossref_primary_10_3390_polym14193969
crossref_primary_10_1002_pc_26426
crossref_primary_10_1088_2053_1591_aaeaf0
crossref_primary_10_1007_s10853_013_7840_5
crossref_primary_10_1007_s10971_016_4252_4
crossref_primary_10_3934_matersci_2022013
crossref_primary_10_1177_07316844241247897
crossref_primary_10_1088_1361_665X_aceb27
crossref_primary_10_1051_matecconf_201820306013
crossref_primary_10_1088_1757_899X_1094_1_012142
crossref_primary_10_1007_s11668_018_0544_z
crossref_primary_10_1002_app_48637
crossref_primary_10_1016_j_coco_2024_101842
crossref_primary_10_1007_s11668_020_01013_6
crossref_primary_10_3390_app6090267
crossref_primary_10_3390_polym14071450
crossref_primary_10_1007_s12633_019_00197_3
crossref_primary_10_1016_j_matpr_2022_06_568
crossref_primary_10_1016_j_tafmec_2018_05_007
crossref_primary_10_1007_s12633_020_00828_0
crossref_primary_10_1088_1742_6596_1432_1_012046
crossref_primary_10_1002_pc_24395
crossref_primary_10_1002_pc_27761
crossref_primary_10_1002_mawe_201800071
crossref_primary_10_1515_rams_2023_0126
crossref_primary_10_1177_1847980419855842
crossref_primary_10_1179_1432891714Z_0000000001020
crossref_primary_10_1177_0021998317699982
Cites_doi 10.1007/b137162
10.1016/j.polymer.2006.11.038
10.1016/j.compstruct.2009.08.010
10.1016/j.compscitech.2004.11.003
10.1177/0021998306067321
10.1007/s10853-010-4683-1
ContentType Journal Article
Copyright 2012
Copyright_xml – notice: 2012
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.proeng.2012.07.361
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1877-7058
EndPage 1640
ExternalDocumentID 10_1016_j_proeng_2012_07_361
S1877705812027610
GroupedDBID --K
0R~
0SF
1B1
4.4
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADMUD
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FEDTE
FNPLU
HVGLF
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
OZT
P2P
RIG
ROL
SES
SSZ
XH2
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c352t-499c7d790289ec868623b3e3229db8a9d1efcdfd24cf0de1b8cdfcecffd637753
IEDL.DBID IXB
ISSN 1877-7058
IngestDate Tue Jul 01 02:19:10 EDT 2025
Thu Apr 24 23:07:36 EDT 2025
Fri Feb 23 02:27:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords epoxy resin
tensile properties
stress-strain response
Nanocomposites
nanosilica
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-499c7d790289ec868623b3e3229db8a9d1efcdfd24cf0de1b8cdfcecffd637753
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877705812027610
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_proeng_2012_07_361
crossref_citationtrail_10_1016_j_proeng_2012_07_361
elsevier_sciencedirect_doi_10_1016_j_proeng_2012_07_361
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012
2012-00-00
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationTitle Procedia engineering
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jumahat, A., Soutis, C., Jones, F.R., Hodzic, A., 2010. Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading, Composite structures 92(2), pp. 295-305.
www.hanse-chemie.com. Hanse chemie AG, Charlottenburger Str. 9, 21502 Geesthacht, Germany.
Thostenson, E.T., Li, C., Chou, T.W., 2005. Review: nanocomposites in context, Composites Science and Technology 65, pp. 491-516.
Jumahat, A., Soutis, C., Jones, F.R., Hodzic, A. 2010. Effect of silica nanoparticles on compressive properties of an epoxy polymer, Journal of Materials Science 45, pp. 5973-5983.
www.nanoresins.ag. Nanoresins AG, Charlottenburger Str. 9, 21502 Geesthacht, Germany.
Koo, J.H., 2006. Polymer nanocomposites processing, characterization and applications. McGraw Hill.
Jumahat, A., 2011. Effect of nanofillers on thermo-mechanical properties of polymers and composite laminates. University of Sheffield, United Kingdom, PhD thesis.
Hussain, F., Hojjati, M., Okamoto, M., Gorga R.E., 2006. Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview, Journal of Composite Materials 40(17), pp. 1511-1575.
Friedrich, K., Fakirov. S, Zhang. Z., 2005. Polymer composites from nano- to macro-scale. Springer.
Pinnavaia, T.J., Beall, G.W., 2000. Polymer-clay nanocomposites. John Wiley & sons.
Zhou, .G., (2007). Preparation, structure, and properties of advanced polymer composites with long fibers and nanoparticles. The Ohio State University, USA, PhD thesis.
Johnsen, B.B., Kinloch, A.J., Mohammed, R.D., Taylor, A.C., Sprenger, S., 2007. Toughening mechanisms of nanoparticle-modified epoxy polymers, Polymer 48, pp. 530-541.
10.1016/j.proeng.2012.07.361_bib0050
10.1016/j.proeng.2012.07.361_bib0040
10.1016/j.proeng.2012.07.361_bib0030
10.1016/j.proeng.2012.07.361_bib0020
10.1016/j.proeng.2012.07.361_bib0010
10.1016/j.proeng.2012.07.361_bib0055
10.1016/j.proeng.2012.07.361_bib0045
10.1016/j.proeng.2012.07.361_bib0035
10.1016/j.proeng.2012.07.361_bib0025
10.1016/j.proeng.2012.07.361_bib0015
10.1016/j.proeng.2012.07.361_bib0005
10.1016/j.proeng.2012.07.361_bib0060
References_xml – reference: Zhou, .G., (2007). Preparation, structure, and properties of advanced polymer composites with long fibers and nanoparticles. The Ohio State University, USA, PhD thesis.
– reference: Pinnavaia, T.J., Beall, G.W., 2000. Polymer-clay nanocomposites. John Wiley & sons.
– reference: Johnsen, B.B., Kinloch, A.J., Mohammed, R.D., Taylor, A.C., Sprenger, S., 2007. Toughening mechanisms of nanoparticle-modified epoxy polymers, Polymer 48, pp. 530-541.
– reference: Jumahat, A., Soutis, C., Jones, F.R., Hodzic, A., 2010. Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading, Composite structures 92(2), pp. 295-305.
– reference: Jumahat, A., Soutis, C., Jones, F.R., Hodzic, A. 2010. Effect of silica nanoparticles on compressive properties of an epoxy polymer, Journal of Materials Science 45, pp. 5973-5983.
– reference: Friedrich, K., Fakirov. S, Zhang. Z., 2005. Polymer composites from nano- to macro-scale. Springer.
– reference: Thostenson, E.T., Li, C., Chou, T.W., 2005. Review: nanocomposites in context, Composites Science and Technology 65, pp. 491-516.
– reference: www.hanse-chemie.com. Hanse chemie AG, Charlottenburger Str. 9, 21502 Geesthacht, Germany.
– reference: Koo, J.H., 2006. Polymer nanocomposites processing, characterization and applications. McGraw Hill.
– reference: Hussain, F., Hojjati, M., Okamoto, M., Gorga R.E., 2006. Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview, Journal of Composite Materials 40(17), pp. 1511-1575.
– reference: Jumahat, A., 2011. Effect of nanofillers on thermo-mechanical properties of polymers and composite laminates. University of Sheffield, United Kingdom, PhD thesis.
– reference: www.nanoresins.ag. Nanoresins AG, Charlottenburger Str. 9, 21502 Geesthacht, Germany.
– ident: 10.1016/j.proeng.2012.07.361_bib0015
  doi: 10.1007/b137162
– ident: 10.1016/j.proeng.2012.07.361_bib0045
  doi: 10.1016/j.polymer.2006.11.038
– ident: 10.1016/j.proeng.2012.07.361_bib0055
– ident: 10.1016/j.proeng.2012.07.361_bib0020
– ident: 10.1016/j.proeng.2012.07.361_bib0010
– ident: 10.1016/j.proeng.2012.07.361_bib0040
– ident: 10.1016/j.proeng.2012.07.361_bib0005
– ident: 10.1016/j.proeng.2012.07.361_bib0035
– ident: 10.1016/j.proeng.2012.07.361_bib0050
  doi: 10.1016/j.compstruct.2009.08.010
– ident: 10.1016/j.proeng.2012.07.361_bib0025
  doi: 10.1016/j.compscitech.2004.11.003
– ident: 10.1016/j.proeng.2012.07.361_bib0030
  doi: 10.1177/0021998306067321
– ident: 10.1016/j.proeng.2012.07.361_bib0060
  doi: 10.1007/s10853-010-4683-1
SSID ssj0000070251
Score 2.1226325
Snippet The effect of nanosilica on the tensile stress-strain response of Epikote 828 epoxy polymer was studied. A 40 wt% nanosilica/epoxy masterbatch was used to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1634
SubjectTerms epoxy resin
Nanocomposites
nanosilica
stress-strain response
tensile properties
Title Tensile Properties of Nanosilica/Epoxy Nanocomposites
URI https://dx.doi.org/10.1016/j.proeng.2012.07.361
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lJz2IT6wv9uA17Hs3OWppKUJFsIXewuYllbJbagt68bc7k90tFUTBSyBhBpZJdmYyfPOFkNs0MTZlTFNbyIgmlgWUycINueUxY9IV3MaP2WiaPMzSWYf0214YhFU2vr_26c5bNyt-Y01_OZ_7zyFS2QUpRCi4WmWuzQq7SrGJb3a_rbMgn03kXmFEeYoKbQedg3mBnzLlC2K8ImTxjLPw5wi1E3WGh-SgSRe9u_qLjkjHlMdkf4dE8ISkE8SgL4z3hHX1FRKkepX1wG1WsAx74A-W1fuHW0AAOaK0zNspmQ4Hk_6INo8hUAU50prCzUTlOkeyFW4Uw8aOWMYG_keuJSu4Do1V2uooUTbQJpQMZsooa3UW53ApOSPdsirNOfFg24KwYCbnkoO05iCtC61MYnlWBGGPxK0BhGqYwvHBioVoIWGvojabQLOJIBdgth6hW61lzZTxh3ze2lZ823EBzvxXzYt_a16SPZzVJZQr0l2vNuYakoq1vHGnBsbx5-ALU5_OAA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPagH8Yn1mYPXJe9k96ilpWpbBFvobcm-pFLSUivov3cmj1JBFLwEMtmBMJPMzgzffEvITRwZGzOmqc1kQCPLPMpkVlxSy0PGZNFwGwyT3jh6mMSTBmnXszAIq6xifxnTi2hdSdzKmu5iOnWffaSy82LYoaC0SnDMaguygQQJ9O8nd-tGCxLaBMUxjKhAUaMeoStwXhCoTP6CIK8AaTzDxP95i9rYdrr7ZK_KF53b8pUOSMPkh2R3g0XwiMQjBKHPjPOEjfUlMqQ6c-tA3JyDGJzgdhbzj89CgAhyhGmZt2My7nZG7R6tTkOgCpKkFYXSRKU6RbYVbhTDyY5QhgZ-SK4ly7j2jVXa6iBS1tPGlwzulFHW6iRMoSo5Ic18nptT4oDfPD9jJuWSw2rNYbXOtDKR5Unm-S0S1gYQqqIKxxMrZqLGhL2K0mwCzSa8VIDZWoSutRYlVcYf69PatuKbywVE8181z_6teU22e6NBX_Tvh4_nZAeflP2UC9JcLd_NJWQYK3lVfEFf56LP8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensile+Properties+of+Nanosilica%2FEpoxy+Nanocomposites&rft.jtitle=Procedia+engineering&rft.au=Jumahat%2C+Aidah&rft.au=Soutis%2C+Costas&rft.au=Abdullah%2C+Shahrul+Azam&rft.au=Kasolang%2C+Salmiah&rft.date=2012&rft.issn=1877-7058&rft.eissn=1877-7058&rft.volume=41&rft.spage=1634&rft.epage=1640&rft_id=info:doi/10.1016%2Fj.proeng.2012.07.361&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_proeng_2012_07_361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7058&client=summon