Fabrication of Gd2O3-doped CeO2 thin films through DC reactive sputtering and their application in solid oxide fuel cells

Physical vapor deposition (PVD) can be used to produce high-quality Gd 2 O 3 -doped CeO 2 (GDC) films. Among various PVD methods, reactive sputtering provides unique benefits, such as high deposition rates and easy upscaling for industrial applications. GDC thin films were successfully fabricated th...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of minerals, metallurgy and materials Vol. 30; no. 6; pp. 1190 - 1197
Main Authors Liang, Fuyuan, Yang, Jiaran, Wang, Haiqing, Wu, Junwei
Format Journal Article
LanguageEnglish
Published Beijing University of Science and Technology Beijing 01.06.2023
Springer Nature B.V
School of Materials Science and Engineering,Harbin Institute of Technology(Shenzhen),Shenzhen 518055,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Physical vapor deposition (PVD) can be used to produce high-quality Gd 2 O 3 -doped CeO 2 (GDC) films. Among various PVD methods, reactive sputtering provides unique benefits, such as high deposition rates and easy upscaling for industrial applications. GDC thin films were successfully fabricated through reactive sputtering using a Gd 0.2 Ce 0.8 (at%) metallic target, and their application in solid oxide fuel cells, such as buffer layers between yttria-stabilized zirconia (YSZ)/La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3−δ and as sublayers in the steel/coating system, was evaluated. First, the direct current (DC) reactive-sputtering behavior of the GdCe metallic target was determined. Then, the GDC films were deposited on NiO—YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films. The results demonstrated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering. Furthermore, the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer. In addition, the insertion of a GDC sublayer between the SUS441 interconnects and the Mn—Co spinel coatings contributed to the reduction of the oxidation rate for SUS441 at operating temperatures, according to the area-specific resistance tests.
AbstractList Physical vapor deposition (PVD) can be used to produce high-quality Gd2O3-doped CeO2 (GDC) films. Among various PVD methods, reactive sputtering provides unique benefits, such as high deposition rates and easy upscaling for industrial applications. GDC thin films were successfully fabricated through reactive sputtering using a Gd0.2Ce0.8 (at%) metallic target, and their application in solid oxide fuel cells, such as buffer layers between yttria-stabilized zirconia (YSZ)/La0.6Sr0.4Co0.2Fe0.8O3−δ and as sublayers in the steel/coating system, was evaluated. First, the direct current (DC) reactive-sputtering behavior of the GdCe metallic target was determined. Then, the GDC films were deposited on NiO—YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films. The results demonstrated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering. Furthermore, the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer. In addition, the insertion of a GDC sublayer between the SUS441 interconnects and the Mn—Co spinel coatings contributed to the reduction of the oxidation rate for SUS441 at operating temperatures, according to the area-specific resistance tests.
Physical vapor deposition (PVD) can be used to produce high-quality Gd2O3-doped CeO2 (GDC) films. Among various PVD meth-ods, reactive sputtering provides unique benefits, such as high deposition rates and easy upscaling for industrial applications. GDC thin films were successfully fabricated through reactive sputtering using a Gd0.2Ce0.8 (at%) metallic target, and their application in solid oxide fuel cells, such as buffer layers between yttria-stabilized zirconia (YSZ)/La0.6Sr0.4Co0.2Fe0.8O3?δ and as sublayers in the steel/coating system, was evalu-ated. First, the direct current (DC) reactive-sputtering behavior of the GdCe metallic target was determined. Then, the GDC films were depos-ited on NiO–YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films. The results demon-strated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering. Furthermore, the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer. In addi-tion, the insertion of a GDC sublayer between the SUS441 interconnects and the Mn–Co spinel coatings contributed to the reduction of the ox-idation rate for SUS441 at operating temperatures, according to the area-specific resistance tests.
Physical vapor deposition (PVD) can be used to produce high-quality Gd 2 O 3 -doped CeO 2 (GDC) films. Among various PVD methods, reactive sputtering provides unique benefits, such as high deposition rates and easy upscaling for industrial applications. GDC thin films were successfully fabricated through reactive sputtering using a Gd 0.2 Ce 0.8 (at%) metallic target, and their application in solid oxide fuel cells, such as buffer layers between yttria-stabilized zirconia (YSZ)/La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3−δ and as sublayers in the steel/coating system, was evaluated. First, the direct current (DC) reactive-sputtering behavior of the GdCe metallic target was determined. Then, the GDC films were deposited on NiO—YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films. The results demonstrated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering. Furthermore, the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer. In addition, the insertion of a GDC sublayer between the SUS441 interconnects and the Mn—Co spinel coatings contributed to the reduction of the oxidation rate for SUS441 at operating temperatures, according to the area-specific resistance tests.
Author Liang, Fuyuan
Wu, Junwei
Yang, Jiaran
Wang, Haiqing
AuthorAffiliation School of Materials Science and Engineering,Harbin Institute of Technology(Shenzhen),Shenzhen 518055,China
AuthorAffiliation_xml – name: School of Materials Science and Engineering,Harbin Institute of Technology(Shenzhen),Shenzhen 518055,China
Author_xml – sequence: 1
  givenname: Fuyuan
  surname: Liang
  fullname: Liang, Fuyuan
  organization: School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen)
– sequence: 2
  givenname: Jiaran
  surname: Yang
  fullname: Yang, Jiaran
  organization: School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen)
– sequence: 3
  givenname: Haiqing
  surname: Wang
  fullname: Wang, Haiqing
  organization: School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen)
– sequence: 4
  givenname: Junwei
  surname: Wu
  fullname: Wu, Junwei
  email: junwei.wu@hit.edu.cn
  organization: School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen)
BookMark eNp9kU9vFCEYh4mpiW31A3gj8Wiw_JmF5WhWW5s02Ysm3ggzvGxZpzACY3e_vayjaWKiJ97D8_yA93eBzmKKgNBrRt8xStVVYVwyQSgXhEtOyfEZOmdrqQmj4utZm6XqSKe0foEuStlTKpWi6hwdr22fw2BrSBEnj28c3wri0gQOb2DLcb0PEfswPpQ25jTv7vGHDc5ghxp-AC7TXCvkEHfYRtcQCBnbaRr_ZDa7pDE4nA7BAfYzjHiAcSwv0XNvxwKvfp-X6Mv1x8-bT-Rue3O7eX9HBrHilXSaUa4d71a664ByKqTv19KxwUshZG85VUrxDpRnymrQTitvWd-JZni1Epfo7ZL7aKO3cWf2ac6x3Wj6_be9Oxx6A7ztjUrKdKPfLPSU0_cZSn3CuWZ61a3lWjRKLdSQUykZvBlC_fXfmm0YDaPm1IpZWjEt3ZxaMcdmsr_MKYcHm4__dfjilOm0aMhPb_q39BOKnqDN
CitedBy_id crossref_primary_10_1021_acs_nanolett_4c05909
crossref_primary_10_1016_j_ceramint_2024_11_397
crossref_primary_10_1007_s12613_023_2715_5
crossref_primary_10_1039_D4TA03852E
crossref_primary_10_59761_RCR5097
crossref_primary_10_1007_s12613_024_2910_z
crossref_primary_10_1016_j_cej_2024_149523
crossref_primary_10_1007_s12613_023_2771_x
Cites_doi 10.1149/2.0141710jes
10.1016/j.ijhydene.2013.11.101
10.1039/D2EE00485B
10.1016/S1359-6454(00)00261-5
10.1126/sciadv.abj8590
10.1016/j.jmat.2021.09.001
10.1038/s41929-019-0310-y
10.1111/j.1551-2916.2011.04749.x
10.1016/j.ijhydene.2016.03.195
10.1149/09101.1149ecst
10.1016/j.ijhydene.2020.02.187
10.1016/j.ijhydene.2022.08.237
10.1021/acs.energyfuels.0c02338
10.1021/acsami.9b13999
10.1016/j.jpowsour.2014.03.080
10.1149/10301.1713ecst
10.1126/science.1204090
10.1126/science.aba6118
10.1039/C7TA01589E
10.1002/aenm.202201805
10.1016/j.jpowsour.2021.230432
10.1016/j.jeurceramsoc.2021.05.020
10.1016/j.ijhydene.2020.02.178
10.1016/j.ceramint.2015.08.143
10.1016/j.surfcoat.2020.126095
10.1016/j.jpowsour.2014.05.044
10.1016/j.surfcoat.2005.02.166
10.1016/j.ijhydene.2020.06.234
10.1016/j.xcrp.2020.100072
10.1016/j.ijhydene.2017.01.178
10.1002/aenm.201300003
10.1002/wene.246
10.1016/j.jpowsour.2018.02.003
10.1021/acsaem.8b00039
10.1149/1.3570009
10.1021/acsaem.8b00847
10.1016/j.jelechem.2019.113591
10.1149/2.0031811jes
10.1002/adma.201700132
10.1016/j.ceramint.2021.12.168
10.1016/j.seppur.2022.121627
10.1016/j.ceramint.2019.09.083
10.1016/j.ijhydene.2020.11.169
10.1038/35104620
ContentType Journal Article
Copyright University of Science and Technology Beijing 2023
University of Science and Technology Beijing 2023.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: University of Science and Technology Beijing 2023
– notice: University of Science and Technology Beijing 2023.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
HCIFZ
KB.
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s12613-023-2620-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest SciTech Premium Collection
Materials Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Materials Science Collection


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1869-103X
EndPage 1197
ExternalDocumentID bjkjdxxb_e202306019
10_1007_s12613_023_2620_y
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
1N0
1~5
2B.
2C0
2KG
2LR
2VQ
30V
4.4
406
408
40D
4G.
67Z
7-5
71M
8RM
92H
92I
96X
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CAJEB
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
OZT
P2P
P9N
PCBAR
PDBOC
PT4
Q--
R9I
RIG
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
D1I
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
4A8
93N
PMFND
PSX
ID FETCH-LOGICAL-c352t-491029d245944e02036fb86d1cf6336ba2077724e7f17a9e9d97fa1b43459f753
IEDL.DBID BENPR
ISSN 1674-4799
IngestDate Thu May 29 04:00:21 EDT 2025
Fri Jul 25 11:02:38 EDT 2025
Tue Jul 01 01:18:47 EDT 2025
Thu Apr 24 22:51:21 EDT 2025
Fri Feb 21 02:43:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords doped CeO
physical vapor deposition
solid oxide fuel cell
electrical conductivity
Gd
O
metallic interconnects
Gd2O3-doped CeO2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-491029d245944e02036fb86d1cf6336ba2077724e7f17a9e9d97fa1b43459f753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2919548683
PQPubID 2043631
PageCount 8
ParticipantIDs wanfang_journals_bjkjdxxb_e202306019
proquest_journals_2919548683
crossref_citationtrail_10_1007_s12613_023_2620_y
crossref_primary_10_1007_s12613_023_2620_y
springer_journals_10_1007_s12613_023_2620_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle International journal of minerals, metallurgy and materials
PublicationTitleAbbrev Int J Miner Metall Mater
PublicationTitle_FL International Journal of Minerals, Metallurgy and Materials
PublicationYear 2023
Publisher University of Science and Technology Beijing
Springer Nature B.V
School of Materials Science and Engineering,Harbin Institute of Technology(Shenzhen),Shenzhen 518055,China
Publisher_xml – name: University of Science and Technology Beijing
– name: Springer Nature B.V
– name: School of Materials Science and Engineering,Harbin Institute of Technology(Shenzhen),Shenzhen 518055,China
References FanHKeaneMSinghPHanMFElectrochemical performance and stability of lanthanum strontium cobalt ferrite oxygen electrode with gadolinia doped ceria barrier layer for reversible solid oxide fuel cellJ. Power Sources20142686341:CAS:528:DC%2BC2cXht1Wqtb7N10.1016/j.jpowsour.2014.03.080
XuMGYuJSongYFRanRWangWShaoZPAdvances in ceramic thin films fabricated by pulsed laser deposition for intermediate-temperature solid oxide fuel cellsEnergy Fuels2020349105681:CAS:528:DC%2BB3cXhsFSju7bF10.1021/acs.energyfuels.0c02338
D. Udomsilp, J. Rechberger, R. Neubauer, et al., Metal-supported solid oxide fuel cells with exceptionally high power density for range extender systems, Cell Rep. Phys. Sci., 1(2020), No. 6, art. No. 100072.
WangGYJiaCSunZHChenMHanMFIn situ densification of gadolinium-doped ceria interlayer by infiltration process in SOFCECS Trans.2019911114910.1149/09101.1149ecst
SteeleBCHeinzelAMaterials for fuel-cell technologiesNature200141468613451:CAS:528:DC%2BD3MXovFGitrs%3D10.1038/35104620
SzászJWankmüllerFWildeVNature and functionality of La0.58Sr0.4Co0.2Fe0.8O3−δ/Gd0.2Ce0.8O2−δ/Y0.16Zr0.84O2−δ interfaces in SOFCsJ. Electrochem. Soc.201816510F89810.1149/2.0031811jes
DeplaDBuyleGHaemersJDe GryseRDischarge voltage measurements during magnetron sputteringSurf. Coat. Technol.200620014–1543291:CAS:528:DC%2BD28XitVamur0%3D10.1016/j.surfcoat.2005.02.166
Z.W. Lyu, S.X. Liu, Y.G. Wang, et al., Quantifying the performance evolution of solid oxide fuel cells during initial aging process, J. Power Sources, 510(2021), art. No. 230432.
NiDWEspositoVDensification of Ce0.9Gd0.1O1.95 barrier layer by in-situ solid state reactionJ. Power Sources20142663931:CAS:528:DC%2BC2cXhtVWqsLbE10.1016/j.jpowsour.2014.05.044
Y. Yang, Y.X. Zhang, and M.F. Yan, A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology, Sep. Purif. Technol., 298(2022), art. No. 121627.
MoralesMPesceASlodczykAEnhanced performance of gadolinia-doped ceria diffusion barrier layers fabricated by pulsed laser deposition for large-area solid oxide fuel cellsACS Appl. Energy Mater.20181519551:CAS:528:DC%2BC1cXotFylu7k%3D10.1021/acsaem.8b00039
LiangFYYangJRZhaoYYA review of thin film electrolytes fabricated by physical vapor deposition for solid oxide fuel cellsInt. J. Hydrogen Energy20224787369261:CAS:528:DC%2BB38XitlKmur3O10.1016/j.ijhydene.2022.08.237
WangKLLiuYJFergusJWInteractions between SOFC interconnect coating materials and chromiaJ. Am. Ceram. Soc.2011941244901:CAS:528:DC%2BC3MXhs1Wlu77F10.1111/j.1551-2916.2011.04749.x
PrakashBSPavitraRKumarSSArunaSTElectrolyte bi-layering strategy to improve the performance of an intermediate temperature solid oxide fuel cell: A reviewJ. Power Sources201838113610.1016/j.jpowsour.2018.02.003
WildeVStörmerHSzászJWankmüllerFIvers-TifféeEGerthsenDGd0.2Ce0.8O2 diffusion barrier layer between (La0.58Sr0.4)(Co0.2Fe0.8)O3−δ cathode and Y0.16Zr0.84O2 electrolyte for solid oxide fuel cells: Effect of barrier layer sintering temperature on microstructureACS Appl. Energy Mater.201811267901:CAS:528:DC%2BC1cXitlegs7nP10.1021/acsaem.8b00847
FrancoTHaydnMMückeRDevelopment of metal-supported solid oxide fuel cellsECS Trans.20113513431:CAS:528:DC%2BC3MXptVansrc%3D10.1149/1.3570009
S. Sarner, A. Schreiber, N.H. Menzler, and O. Guillon, Recycling strategies for solid oxide cells, Adv. Energy Mater., 12(2022), No. 35, art. No. 2201805.
SønderbySPopaPLLuJStrontium diffusion in magnetron sputtered gadolinia-doped ceria thin film barrier coatings for solid oxide fuel cellsAdv. Energy Mater.20133792310.1002/aenm.201300003
A. Hauch, R. Küngas, P. Blennow, et al., Recent advances in solid oxide cell technology for electrolysis, Science, 370(2020), No. 6513, art. No. eaba6118.
GengSJZhaoQQLiYHSputtered MnCu metallic coating on ferritic stainless steel for solid oxide fuel cell interconnects applicationInt. J. Hydrogen Energy20174215102981:CAS:528:DC%2BC2sXivVOlu7k%3D10.1016/j.ijhydene.2017.01.178
HassanMAMamatOBMehdiMReview: Influence of alloy addition and spinel coatings on Cr-based metallic interconnects of solid oxide fuel cellsInt. J. Hydrogen Energy20204546251911:CAS:528:DC%2BB3cXhsVGksrjF10.1016/j.ijhydene.2020.06.234
G.Y. Wang, Y.L. Zhang, and M.F. Han, Densification of Ce0.9Gd0.1O2−δ interlayer to improve the stability of La0.6 Sr0.4Co0.2Fe0.8O3−δ/Ce0.9Gd0.1O2−δ interface and SOFC, J. Electroanal. Chem., 857(2020), art. No. 113591.
CoppolaNPolverinoPCarapellaGOptimization of the electrical performances in solid oxide fuel cells with room temperature sputter deposited Gd0.1Ce0.9O1.95 buffer layers by controlling their granularity via the in-air annealing stepInt. J. Hydrogen Energy20204523129971:CAS:528:DC%2BB3cXltVags7c%3D10.1016/j.ijhydene.2020.02.187
J. Kim, S. Im, S.H. Oh, et al., Naturally diffused sintering aid for highly conductive bilayer electrolytes in solid oxide cells, Sci. Adv., 7(2021), No. 40, art. No. eabj8590.
MahJCWMuchtarASomaluMRGhazaliMJMetallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniquesInt. J. Hydrogen Energy2017421492191:CAS:528:DC%2BC28Xmt1entrk%3D10.1016/j.ijhydene.2016.03.195
ToorSYCroisetEReducing sintering temperature while maintaining high conductivity for SOFC electrolyte: Copper as sintering aid for samarium doped ceriaCeram. Int.202046111481:CAS:528:DC%2BC1MXhvVSnsrzL10.1016/j.ceramint.2019.09.083
BoldrinPBrandonNPProgress and outlook for solid oxide fuel cells for transportation applicationsNat. Catal.2019275711:CAS:528:DC%2BC1MXhtlGrs7vF10.1038/s41929-019-0310-y
WangYGJiaCLyuZWPerformance and stability analysis of SOFC containing thin and dense gadolinium-doped ceria interlayer sintered at low temperatureJ. Materiomics2022823471:CAS:528:DC%2BB38Xit1SltrbO10.1016/j.jmat.2021.09.001
BrylewskiTMolinSMarczyńskiMInfluence of Gd deposition on the oxidation behavior and electrical properties of a layered system consisting of Crofer 22 APU and MnCo2O4 spinelInt. J. Hydrogen Energy202146967751:CAS:528:DC%2BB3cXisFSgtb7P10.1016/j.ijhydene.2020.11.169
TsogaAGuptaANaoumidisANikolopoulosPGadolinia-doped ceria and yttria stabilized zirconia interfaces: Regarding their application for SOFC technologyActa Mater.20004818–1947091:CAS:528:DC%2BD3cXotlaktbY%3D10.1016/S1359-6454(00)00261-5
Y. Zhang, R. Knibbe, J. Sunarso, et al., Recent progress on advanced materials for solid-oxide fuel cells operating below 500°C, Adv. Mater., 29(2017), No. 48, art. No. 1700132.
ChoiHJNaYHSeoDWWooSKKimSDDensification of gadolinia-doped ceria diffusion barriers for SOECs and IT-SOFCs by a sol—gel processCeram. Int.20164215451:CAS:528:DC%2BC2MXhsVyqsb7F10.1016/j.ceramint.2015.08.143
HongSYangHLimYPrinzFBKimYBGrain-controlled gadolinia-doped ceria (GDC) functional layer for interface reaction enhanced low-temperature solid oxide fuel cellsACS Appl. Mater. Interfaces20191144413381:CAS:528:DC%2BC1MXhvFClu7%2FP10.1021/acsami.9b13999
WachsmanEDLeeKTLowering the temperature of solid oxide fuel cellsScience201133460589351:CAS:528:DC%2BC3MXhsVGktL%2FK10.1126/science.1204090
Develos-BagarinaoKYokokawaHKishimotoHIshiyamaTYamajiKHoritaTElucidating the origin of oxide ion blocking effects at GDC/SrZr(Y)O3/YSZ interfacesJ. Mater. Chem. A201751887331:CAS:528:DC%2BC2sXmtVSjs7k%3D10.1039/C7TA01589E
M. Mickan, P. Coddet, J. Vulliet, A. Caillard, T. Sauvage, and A.L. Thomann, Optimized magnetron sputtering process for the deposition of gadolinia doped ceria layers with controlled structural properties, Surf. Coat. Technol., 398(2020), art. No. 126095.
V.V. Krishnan, Recent developments in metal-supported solid oxide fuel cells, WIREs Energy Environ., 6(2017), No. 5, art. No. e246.
SuYPZhongZJiaoZJA novel multi-physics coupled heterogeneous single-cell numerical model for solid oxide fuel cell based on 3D microstructure reconstructionsEnergy Environ. Sci.202215624101:CAS:528:DC%2BB38XhtV2gu77K10.1039/D2EE00485B
LimYLeeHParkJKimYBLow-temperature constrained sintering of YSZ electrolyte with Bi2O3 sintering sacrificial layer for anode-supported solid oxide fuel cellsCeram. Int.202248796731:CAS:528:DC%2BB3MXislOntbrI10.1016/j.ceramint.2021.12.168
LyuQZhuTLQuHXLower down both ohmic and cathode polarization resistances of solid oxide fuel cell via hydrothermal modified gadolinia doped ceria barrier layerJ. Eur. Ceram. Soc.2021411259311:CAS:528:DC%2BB3MXhtFSmsbvO10.1016/j.jeurceramsoc.2021.05.020
TsengHPYungTYLiuCKChengYNLeeRYOxidation characteristics and electrical properties of La- or Ce-doped MnCo2O4 as protective layer on SUS441 for metallic interconnects in solid oxide fuel cellsInt. J. Hydrogen Energy20204522125551:CAS:528:DC%2BB3cXkvF2mtbk%3D10.1016/j.ijhydene.2020.02.178
CuiTHLiangFYSunRTPreparation, evaluation, and application of SUS430/441 interconnect with Mn—Co coating in solid oxide fuel cellsECS Trans.2021103117131:CAS:528:DC%2BB3MXhs12gtrrO10.1149/10301.1713ecst
LuZGDarvishSHardyJTempletonJStevensonJZhongYSrZrO3 formation at the interlayer/electrolyte interface during (La1−xSrx)1−δCo1−yFeyO3 cathode sinteringJ. Electrochem. Soc.201716410F30971:CAS:528:DC%2BC2sXhsVKqs7nO10.1149/2.0141710jes
ZengYXWuJWBakerAPLiuXBMagnetron-sputtered Mn/Co (40:60) coating on ferritic stainless steel SUS430 for solid oxide fuel cell interconnect applicationsInt. J. Hydrogen Energy20143928160611:CAS:528:DC%2BC3sXitVWhs73L10.1016/j.ijhydene.2013.11.101
ZG Lu (2620_CR8) 2017; 164
T Franco (2620_CR28) 2011; 35
P Boldrin (2620_CR5) 2019; 2
S Hong (2620_CR24) 2019; 11
J Szász (2620_CR42) 2018; 165
2620_CR29
TH Cui (2620_CR38) 2021; 103
2620_CR7
SY Toor (2620_CR15) 2020; 46
GY Wang (2620_CR19) 2019; 91
MG Xu (2620_CR22) 2020; 34
2620_CR1
MA Hassan (2620_CR31) 2020; 45
K Develos-Bagarinao (2620_CR9) 2017; 5
YG Wang (2620_CR27) 2022; 8
D Depla (2620_CR40) 2006; 200
2620_CR21
2620_CR41
Y Lim (2620_CR14) 2022; 48
HP Tseng (2620_CR34) 2020; 45
A Tsoga (2620_CR43) 2000; 48
BC Steele (2620_CR3) 2001; 414
JCW Mah (2620_CR33) 2017; 42
2620_CR16
2620_CR37
KL Wang (2620_CR44) 2011; 94
BS Prakash (2620_CR23) 2018; 381
DW Ni (2620_CR17) 2014; 266
HJ Choi (2620_CR18) 2016; 42
H Fan (2620_CR36) 2014; 268
T Brylewski (2620_CR35) 2021; 46
SJ Geng (2620_CR32) 2017; 42
YP Su (2620_CR6) 2022; 15
Q Lyu (2620_CR20) 2021; 41
N Coppola (2620_CR25) 2020; 45
S Sønderby (2620_CR10) 2013; 3
ED Wachsman (2620_CR4) 2011; 334
2620_CR13
2620_CR12
YX Zeng (2620_CR39) 2014; 39
V Wilde (2620_CR11) 2018; 1
M Morales (2620_CR26) 2018; 1
FY Liang (2620_CR2) 2022; 47
2620_CR30
References_xml – reference: S. Sarner, A. Schreiber, N.H. Menzler, and O. Guillon, Recycling strategies for solid oxide cells, Adv. Energy Mater., 12(2022), No. 35, art. No. 2201805.
– reference: ChoiHJNaYHSeoDWWooSKKimSDDensification of gadolinia-doped ceria diffusion barriers for SOECs and IT-SOFCs by a sol—gel processCeram. Int.20164215451:CAS:528:DC%2BC2MXhsVyqsb7F10.1016/j.ceramint.2015.08.143
– reference: V.V. Krishnan, Recent developments in metal-supported solid oxide fuel cells, WIREs Energy Environ., 6(2017), No. 5, art. No. e246.
– reference: LuZGDarvishSHardyJTempletonJStevensonJZhongYSrZrO3 formation at the interlayer/electrolyte interface during (La1−xSrx)1−δCo1−yFeyO3 cathode sinteringJ. Electrochem. Soc.201716410F30971:CAS:528:DC%2BC2sXhsVKqs7nO10.1149/2.0141710jes
– reference: TsengHPYungTYLiuCKChengYNLeeRYOxidation characteristics and electrical properties of La- or Ce-doped MnCo2O4 as protective layer on SUS441 for metallic interconnects in solid oxide fuel cellsInt. J. Hydrogen Energy20204522125551:CAS:528:DC%2BB3cXkvF2mtbk%3D10.1016/j.ijhydene.2020.02.178
– reference: Y. Zhang, R. Knibbe, J. Sunarso, et al., Recent progress on advanced materials for solid-oxide fuel cells operating below 500°C, Adv. Mater., 29(2017), No. 48, art. No. 1700132.
– reference: J. Kim, S. Im, S.H. Oh, et al., Naturally diffused sintering aid for highly conductive bilayer electrolytes in solid oxide cells, Sci. Adv., 7(2021), No. 40, art. No. eabj8590.
– reference: GengSJZhaoQQLiYHSputtered MnCu metallic coating on ferritic stainless steel for solid oxide fuel cell interconnects applicationInt. J. Hydrogen Energy20174215102981:CAS:528:DC%2BC2sXivVOlu7k%3D10.1016/j.ijhydene.2017.01.178
– reference: Z.W. Lyu, S.X. Liu, Y.G. Wang, et al., Quantifying the performance evolution of solid oxide fuel cells during initial aging process, J. Power Sources, 510(2021), art. No. 230432.
– reference: BrylewskiTMolinSMarczyńskiMInfluence of Gd deposition on the oxidation behavior and electrical properties of a layered system consisting of Crofer 22 APU and MnCo2O4 spinelInt. J. Hydrogen Energy202146967751:CAS:528:DC%2BB3cXisFSgtb7P10.1016/j.ijhydene.2020.11.169
– reference: PrakashBSPavitraRKumarSSArunaSTElectrolyte bi-layering strategy to improve the performance of an intermediate temperature solid oxide fuel cell: A reviewJ. Power Sources201838113610.1016/j.jpowsour.2018.02.003
– reference: MoralesMPesceASlodczykAEnhanced performance of gadolinia-doped ceria diffusion barrier layers fabricated by pulsed laser deposition for large-area solid oxide fuel cellsACS Appl. Energy Mater.20181519551:CAS:528:DC%2BC1cXotFylu7k%3D10.1021/acsaem.8b00039
– reference: MahJCWMuchtarASomaluMRGhazaliMJMetallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniquesInt. J. Hydrogen Energy2017421492191:CAS:528:DC%2BC28Xmt1entrk%3D10.1016/j.ijhydene.2016.03.195
– reference: FanHKeaneMSinghPHanMFElectrochemical performance and stability of lanthanum strontium cobalt ferrite oxygen electrode with gadolinia doped ceria barrier layer for reversible solid oxide fuel cellJ. Power Sources20142686341:CAS:528:DC%2BC2cXht1Wqtb7N10.1016/j.jpowsour.2014.03.080
– reference: CuiTHLiangFYSunRTPreparation, evaluation, and application of SUS430/441 interconnect with Mn—Co coating in solid oxide fuel cellsECS Trans.2021103117131:CAS:528:DC%2BB3MXhs12gtrrO10.1149/10301.1713ecst
– reference: DeplaDBuyleGHaemersJDe GryseRDischarge voltage measurements during magnetron sputteringSurf. Coat. Technol.200620014–1543291:CAS:528:DC%2BD28XitVamur0%3D10.1016/j.surfcoat.2005.02.166
– reference: SzászJWankmüllerFWildeVNature and functionality of La0.58Sr0.4Co0.2Fe0.8O3−δ/Gd0.2Ce0.8O2−δ/Y0.16Zr0.84O2−δ interfaces in SOFCsJ. Electrochem. Soc.201816510F89810.1149/2.0031811jes
– reference: WangGYJiaCSunZHChenMHanMFIn situ densification of gadolinium-doped ceria interlayer by infiltration process in SOFCECS Trans.2019911114910.1149/09101.1149ecst
– reference: A. Hauch, R. Küngas, P. Blennow, et al., Recent advances in solid oxide cell technology for electrolysis, Science, 370(2020), No. 6513, art. No. eaba6118.
– reference: LyuQZhuTLQuHXLower down both ohmic and cathode polarization resistances of solid oxide fuel cell via hydrothermal modified gadolinia doped ceria barrier layerJ. Eur. Ceram. Soc.2021411259311:CAS:528:DC%2BB3MXhtFSmsbvO10.1016/j.jeurceramsoc.2021.05.020
– reference: TsogaAGuptaANaoumidisANikolopoulosPGadolinia-doped ceria and yttria stabilized zirconia interfaces: Regarding their application for SOFC technologyActa Mater.20004818–1947091:CAS:528:DC%2BD3cXotlaktbY%3D10.1016/S1359-6454(00)00261-5
– reference: WildeVStörmerHSzászJWankmüllerFIvers-TifféeEGerthsenDGd0.2Ce0.8O2 diffusion barrier layer between (La0.58Sr0.4)(Co0.2Fe0.8)O3−δ cathode and Y0.16Zr0.84O2 electrolyte for solid oxide fuel cells: Effect of barrier layer sintering temperature on microstructureACS Appl. Energy Mater.201811267901:CAS:528:DC%2BC1cXitlegs7nP10.1021/acsaem.8b00847
– reference: HassanMAMamatOBMehdiMReview: Influence of alloy addition and spinel coatings on Cr-based metallic interconnects of solid oxide fuel cellsInt. J. Hydrogen Energy20204546251911:CAS:528:DC%2BB3cXhsVGksrjF10.1016/j.ijhydene.2020.06.234
– reference: D. Udomsilp, J. Rechberger, R. Neubauer, et al., Metal-supported solid oxide fuel cells with exceptionally high power density for range extender systems, Cell Rep. Phys. Sci., 1(2020), No. 6, art. No. 100072.
– reference: SønderbySPopaPLLuJStrontium diffusion in magnetron sputtered gadolinia-doped ceria thin film barrier coatings for solid oxide fuel cellsAdv. Energy Mater.20133792310.1002/aenm.201300003
– reference: XuMGYuJSongYFRanRWangWShaoZPAdvances in ceramic thin films fabricated by pulsed laser deposition for intermediate-temperature solid oxide fuel cellsEnergy Fuels2020349105681:CAS:528:DC%2BB3cXhsFSju7bF10.1021/acs.energyfuels.0c02338
– reference: CoppolaNPolverinoPCarapellaGOptimization of the electrical performances in solid oxide fuel cells with room temperature sputter deposited Gd0.1Ce0.9O1.95 buffer layers by controlling their granularity via the in-air annealing stepInt. J. Hydrogen Energy20204523129971:CAS:528:DC%2BB3cXltVags7c%3D10.1016/j.ijhydene.2020.02.187
– reference: G.Y. Wang, Y.L. Zhang, and M.F. Han, Densification of Ce0.9Gd0.1O2−δ interlayer to improve the stability of La0.6 Sr0.4Co0.2Fe0.8O3−δ/Ce0.9Gd0.1O2−δ interface and SOFC, J. Electroanal. Chem., 857(2020), art. No. 113591.
– reference: M. Mickan, P. Coddet, J. Vulliet, A. Caillard, T. Sauvage, and A.L. Thomann, Optimized magnetron sputtering process for the deposition of gadolinia doped ceria layers with controlled structural properties, Surf. Coat. Technol., 398(2020), art. No. 126095.
– reference: BoldrinPBrandonNPProgress and outlook for solid oxide fuel cells for transportation applicationsNat. Catal.2019275711:CAS:528:DC%2BC1MXhtlGrs7vF10.1038/s41929-019-0310-y
– reference: ToorSYCroisetEReducing sintering temperature while maintaining high conductivity for SOFC electrolyte: Copper as sintering aid for samarium doped ceriaCeram. Int.202046111481:CAS:528:DC%2BC1MXhvVSnsrzL10.1016/j.ceramint.2019.09.083
– reference: HongSYangHLimYPrinzFBKimYBGrain-controlled gadolinia-doped ceria (GDC) functional layer for interface reaction enhanced low-temperature solid oxide fuel cellsACS Appl. Mater. Interfaces20191144413381:CAS:528:DC%2BC1MXhvFClu7%2FP10.1021/acsami.9b13999
– reference: ZengYXWuJWBakerAPLiuXBMagnetron-sputtered Mn/Co (40:60) coating on ferritic stainless steel SUS430 for solid oxide fuel cell interconnect applicationsInt. J. Hydrogen Energy20143928160611:CAS:528:DC%2BC3sXitVWhs73L10.1016/j.ijhydene.2013.11.101
– reference: Develos-BagarinaoKYokokawaHKishimotoHIshiyamaTYamajiKHoritaTElucidating the origin of oxide ion blocking effects at GDC/SrZr(Y)O3/YSZ interfacesJ. Mater. Chem. A201751887331:CAS:528:DC%2BC2sXmtVSjs7k%3D10.1039/C7TA01589E
– reference: Y. Yang, Y.X. Zhang, and M.F. Yan, A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology, Sep. Purif. Technol., 298(2022), art. No. 121627.
– reference: FrancoTHaydnMMückeRDevelopment of metal-supported solid oxide fuel cellsECS Trans.20113513431:CAS:528:DC%2BC3MXptVansrc%3D10.1149/1.3570009
– reference: NiDWEspositoVDensification of Ce0.9Gd0.1O1.95 barrier layer by in-situ solid state reactionJ. Power Sources20142663931:CAS:528:DC%2BC2cXhtVWqsLbE10.1016/j.jpowsour.2014.05.044
– reference: SteeleBCHeinzelAMaterials for fuel-cell technologiesNature200141468613451:CAS:528:DC%2BD3MXovFGitrs%3D10.1038/35104620
– reference: WangYGJiaCLyuZWPerformance and stability analysis of SOFC containing thin and dense gadolinium-doped ceria interlayer sintered at low temperatureJ. Materiomics2022823471:CAS:528:DC%2BB38Xit1SltrbO10.1016/j.jmat.2021.09.001
– reference: WachsmanEDLeeKTLowering the temperature of solid oxide fuel cellsScience201133460589351:CAS:528:DC%2BC3MXhsVGktL%2FK10.1126/science.1204090
– reference: LimYLeeHParkJKimYBLow-temperature constrained sintering of YSZ electrolyte with Bi2O3 sintering sacrificial layer for anode-supported solid oxide fuel cellsCeram. Int.202248796731:CAS:528:DC%2BB3MXislOntbrI10.1016/j.ceramint.2021.12.168
– reference: WangKLLiuYJFergusJWInteractions between SOFC interconnect coating materials and chromiaJ. Am. Ceram. Soc.2011941244901:CAS:528:DC%2BC3MXhs1Wlu77F10.1111/j.1551-2916.2011.04749.x
– reference: SuYPZhongZJiaoZJA novel multi-physics coupled heterogeneous single-cell numerical model for solid oxide fuel cell based on 3D microstructure reconstructionsEnergy Environ. Sci.202215624101:CAS:528:DC%2BB38XhtV2gu77K10.1039/D2EE00485B
– reference: LiangFYYangJRZhaoYYA review of thin film electrolytes fabricated by physical vapor deposition for solid oxide fuel cellsInt. J. Hydrogen Energy20224787369261:CAS:528:DC%2BB38XitlKmur3O10.1016/j.ijhydene.2022.08.237
– volume: 164
  start-page: F3097
  issue: 10
  year: 2017
  ident: 2620_CR8
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0141710jes
– volume: 39
  start-page: 16061
  issue: 28
  year: 2014
  ident: 2620_CR39
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.11.101
– volume: 15
  start-page: 2410
  issue: 6
  year: 2022
  ident: 2620_CR6
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE00485B
– volume: 48
  start-page: 4709
  issue: 18–19
  year: 2000
  ident: 2620_CR43
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(00)00261-5
– ident: 2620_CR13
  doi: 10.1126/sciadv.abj8590
– volume: 8
  start-page: 347
  issue: 2
  year: 2022
  ident: 2620_CR27
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2021.09.001
– volume: 2
  start-page: 571
  issue: 7
  year: 2019
  ident: 2620_CR5
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0310-y
– volume: 94
  start-page: 4490
  issue: 12
  year: 2011
  ident: 2620_CR44
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2011.04749.x
– volume: 42
  start-page: 9219
  issue: 14
  year: 2017
  ident: 2620_CR33
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.03.195
– volume: 91
  start-page: 1149
  issue: 1
  year: 2019
  ident: 2620_CR19
  publication-title: ECS Trans.
  doi: 10.1149/09101.1149ecst
– volume: 45
  start-page: 12997
  issue: 23
  year: 2020
  ident: 2620_CR25
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.02.187
– volume: 47
  start-page: 36926
  issue: 87
  year: 2022
  ident: 2620_CR2
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.08.237
– volume: 34
  start-page: 10568
  issue: 9
  year: 2020
  ident: 2620_CR22
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c02338
– volume: 11
  start-page: 41338
  issue: 44
  year: 2019
  ident: 2620_CR24
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13999
– volume: 268
  start-page: 634
  year: 2014
  ident: 2620_CR36
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.03.080
– volume: 103
  start-page: 1713
  issue: 1
  year: 2021
  ident: 2620_CR38
  publication-title: ECS Trans.
  doi: 10.1149/10301.1713ecst
– volume: 334
  start-page: 935
  issue: 6058
  year: 2011
  ident: 2620_CR4
  publication-title: Science
  doi: 10.1126/science.1204090
– ident: 2620_CR12
  doi: 10.1126/science.aba6118
– volume: 5
  start-page: 8733
  issue: 18
  year: 2017
  ident: 2620_CR9
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01589E
– ident: 2620_CR7
  doi: 10.1002/aenm.202201805
– ident: 2620_CR37
  doi: 10.1016/j.jpowsour.2021.230432
– volume: 41
  start-page: 5931
  issue: 12
  year: 2021
  ident: 2620_CR20
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2021.05.020
– volume: 45
  start-page: 12555
  issue: 22
  year: 2020
  ident: 2620_CR34
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.02.178
– volume: 42
  start-page: 545
  issue: 1
  year: 2016
  ident: 2620_CR18
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.08.143
– ident: 2620_CR41
  doi: 10.1016/j.surfcoat.2020.126095
– volume: 266
  start-page: 393
  year: 2014
  ident: 2620_CR17
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.05.044
– volume: 200
  start-page: 4329
  issue: 14–15
  year: 2006
  ident: 2620_CR40
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2005.02.166
– volume: 45
  start-page: 25191
  issue: 46
  year: 2020
  ident: 2620_CR31
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.06.234
– ident: 2620_CR30
  doi: 10.1016/j.xcrp.2020.100072
– volume: 42
  start-page: 10298
  issue: 15
  year: 2017
  ident: 2620_CR32
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.01.178
– volume: 3
  start-page: 923
  issue: 7
  year: 2013
  ident: 2620_CR10
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300003
– ident: 2620_CR29
  doi: 10.1002/wene.246
– volume: 381
  start-page: 136
  year: 2018
  ident: 2620_CR23
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.003
– volume: 1
  start-page: 1955
  issue: 5
  year: 2018
  ident: 2620_CR26
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00039
– volume: 35
  start-page: 343
  issue: 1
  year: 2011
  ident: 2620_CR28
  publication-title: ECS Trans.
  doi: 10.1149/1.3570009
– volume: 1
  start-page: 6790
  issue: 12
  year: 2018
  ident: 2620_CR11
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00847
– ident: 2620_CR16
  doi: 10.1016/j.jelechem.2019.113591
– volume: 165
  start-page: F898
  issue: 10
  year: 2018
  ident: 2620_CR42
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0031811jes
– ident: 2620_CR1
  doi: 10.1002/adma.201700132
– volume: 48
  start-page: 9673
  issue: 7
  year: 2022
  ident: 2620_CR14
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2021.12.168
– ident: 2620_CR21
  doi: 10.1016/j.seppur.2022.121627
– volume: 46
  start-page: 1148
  issue: 1
  year: 2020
  ident: 2620_CR15
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.09.083
– volume: 46
  start-page: 6775
  issue: 9
  year: 2021
  ident: 2620_CR35
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.11.169
– volume: 414
  start-page: 345
  issue: 6861
  year: 2001
  ident: 2620_CR3
  publication-title: Nature
  doi: 10.1038/35104620
SSID ssj0067707
Score 2.3319256
Snippet Physical vapor deposition (PVD) can be used to produce high-quality Gd 2 O 3 -doped CeO 2 (GDC) films. Among various PVD methods, reactive sputtering provides...
Physical vapor deposition (PVD) can be used to produce high-quality Gd2O3-doped CeO2 (GDC) films. Among various PVD methods, reactive sputtering provides...
Physical vapor deposition (PVD) can be used to produce high-quality Gd2O3-doped CeO2 (GDC) films. Among various PVD meth-ods, reactive sputtering provides...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1190
SubjectTerms Buffer layers
Ceramics
Cerium oxides
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Corrosion and Coatings
Direct current
Electrochemical analysis
Electrochemistry
Fabrication
Flow rates
Fuel cells
Fuel technology
Gadolinium oxides
Glass
High temperature
Industrial applications
Materials Science
Metallic Materials
Natural Materials
Operating temperature
Oxidation rate
Physical vapor deposition
Solid oxide fuel cells
Sputtering
Surfaces and Interfaces
Thin Films
Tribology
Yttria-stabilized zirconia
Yttrium oxide
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnuJR0A1MIEuJ4yT1iAqlYoCFSmxRHNvQUpKKBKn995zdhBQJITHHd4ny-fGd70XIheY-i5jNbsezhXLOGRVZnFKlZBxGgmf49Tba4iEajvj9c_hc53GXTbR745J0O3Wb7IZk3_ocA2qLqNPFOtkI0XS3cVwjdt1sv1EcuxxpG11vr41E48r8TcXPw6hlmN9OUZfKk5s0f1k5dQY7ZLumi3C9xHeXrOl8j2ytFBHcJ4tBKj_qmzcoDNwp9hhQVcy0gr5-ZFC9jnMw4-l7CXVXHrjpA5JFt9VBOXO9qlEXpLkC5zmAFb82oDRO0LGCYj5WGsynnoK97y8PyGhw-9Qf0rqhAs2QZ1WUIzdgQjEeCs6180Ea2YuUn5koCCKZMi9Gts11bPw4FVooEZvUlzxACYOGzSHp5EWujwgEvvKNZEajecIzz0t7WsvQN1whIRA8OCZe82eTrK42bpteTJO2TrIFI0EwEgtGsjgml98is2Wpjb8Gdxu4knrVlQkTrn5d1MPXXzUQto__UHZRo9wOlpO3iZrPZaKZM9OQCp_8S-kp2bSSy7CyLulUH5_6DAlMJc_dhP0CDKrmDQ
  priority: 102
  providerName: Springer Nature
Title Fabrication of Gd2O3-doped CeO2 thin films through DC reactive sputtering and their application in solid oxide fuel cells
URI https://link.springer.com/article/10.1007/s12613-023-2620-y
https://www.proquest.com/docview/2919548683
https://d.wanfangdata.com.cn/periodical/bjkjdxxb-e202306019
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6x7QUOiKcoLNUc9gSyaBw3iU-olLYrkHYRotJyiuLYXrqUpGy6UvvvGbvOtlx6TWwnyjjjb-abB8CZERFPuMtup7OFCSE4k2VaMK1VOkykKOntXbTFRXI-F1-uhlfB4daEsMpWJ3pFrevS-cg_cOlrkyVZ_HH1l7muUY5dDS00TqBLKjjLOtD9NLn49r3VxUma-oRpF2rvfEiy5TV98hwZD47DjJkrys62_59Me7h5z5D6vJ7KFtX1wRE0fQKPA3bE0U7YT-GBqZ7Bo4OKgs9hOy3UbXDDYW1xpvllzHS9MhrH5pLj-teiQrtY_mkwtOjBz2Mk5Oj1HjYr37ia1sKi0uhpBDwguZFm025daKw3C23Q3pklOud_8wLm08mP8TkL3RVYSaBrzQQBBS41F0MphPGEpFVZoqPSJnGcqIIPUoLewqQ2SgtppJapLSIlYpphycp5CZ2qrswrwDjSkVXcGrJVRDkYFJkxahhZoQkdSBH3YNB-2bwMpcddB4xlvi-a7ISRkzByJ4x824N391NWu7obxwaftuLKwy_Y5PsN04P3rQj3t48sdhakvB-sbn7f6M1G5YZ7m41w8evjz3wDD93QXVDZKXTWt3fmLcGXterDSTad9aE7mv38OumHHUtX53z0DyKm7fc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENZ0ygE4MDyHQIE9lAuMhlhSrOjAdDopaUpLe2lnehOWJZWUYIc6nSZ_it_YlWLX4ZJbz9bKHu9qH_r2Qci2EwlLWahuR9tChRCMqlxm1Foje6kSOX59yLY4Tkdn4vt573yD_GtqYUJaZaMTo6K2ZR7uyL8wFXuTpX2-M_1Lw9SogK42IzSWYnHoFjcYslVfD_aQvx8ZG347HYxoPVWA5uhszKhAA8mUZaKnhHARiPOmn9ok9ynnqclYV6LLKZz0icyUU1ZJnyVGcKTwMkyJQJX_QHC05KEyfbjfaP5UylieHRL7w42ValDUWKqHoUpATDkNLeDp4n872Dq3d3hsrCIqfFZcrBi84VPypPZUYXcpWs_Ihiuek8cr_QtfkMUwM1f1pR-UHvYtO-HUllNnYeBOGMx-jQvw48mfCuqBQLA3APRTo5aFahrHZONekBUWImgBK5A6IDWejbGFcj62Dvy1m0CAGqqX5Oxe_vorslmUhXtNgCc28YZ5h5GRyLvdrO-c6SVeWPRFlOAd0m3-rM7rRudh3sZEty2aAzM0MkMHZuhFh3y6I5kuu3ysW7zVsEvXB77SrXh2yOeGhe3jNZtt11xuF5vL35d2PjfasRghohf-Zv07P5CHo9MfR_ro4PjwLXkUyJbpbFtkc3Z17d6h4zQz76O0Avl538fjFtfsI88
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLYQSNM4TGNsooyxd4DLkEXjuHF94IDadTAm2IFK3Lw4trdCl1YkiPav4l_cs5uQTpqQduAc-8Xy87M_-3s_CNmzPGIJ89HteLZQzjmjMhMpNUaLTiJ5hqP33hbnycmQf73qXK2QhzoWJni715TkIqbBZ2nKy8OpcYdN4BsCf88_xtQnVKfzyqvyzM7v8c5WHJ32UcH7jA0-X_ZOaFVWgGaINkrK8YRk0jDekZzbwMQ53U1MlLkkjhOdsrZAzMmtcJFIpZVGCpdGmsfYwwlfJgL3_DXug4_RgIbsuN76EyFCfLb37PdPVrKmUf815L8PwgbdPhKyIYwod2n-c-nEG7wmryqoCseLtbVBVmz-hqwvJTDcJPNBqm-rVz-YOPhi2EVMzWRqDfTsBYPy1ygHNxr_LqCqCAT9HiBQDdssFNNQJxtlQZobCKwFLHHqgL3ROEYGJrORseDu7Bg811C8JcNnmfV3ZDWf5HaLQByZyGnmLF6NeNZup11rdSdy3CAYkTxukXY9syqrMp37ghtj1eRo9spQqAzllaHmLfLpsct0kebjqcY7tbpUZfGFYjLkzku6-PuDWoXN5yeE7VVabhrr65trM5tpZVm4IiIM3_4voR_Ji-_9gfp2en72nrz0QhbebTtktby9sx8QR5V6N6xdID-e21j-AMS0JQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Gd2O3-doped+CeO2+thin+films+through+DC+reactive+sputtering+and+their+application+in+solid+oxide+fuel+cells&rft.jtitle=%E7%9F%BF%E7%89%A9%E5%86%B6%E9%87%91%E4%B8%8E%E6%9D%90%E6%96%99%E5%AD%A6%E6%8A%A5&rft.au=Fuyuan+Liang&rft.au=Jiaran+Yang&rft.au=Haiqing+Wang&rft.au=Junwei+Wu&rft.date=2023-06-01&rft.pub=School+of+Materials+Science+and+Engineering%2CHarbin+Institute+of+Technology%28Shenzhen%29%2CShenzhen+518055%2CChina&rft.issn=1674-4799&rft.volume=30&rft.issue=6&rft.spage=1190&rft.epage=1197&rft_id=info:doi/10.1007%2Fs12613-023-2620-y&rft.externalDocID=bjkjdxxb_e202306019
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjkjdxxb-e%2Fbjkjdxxb-e.jpg