Fabrication of Gd2O3-doped CeO2 thin films through DC reactive sputtering and their application in solid oxide fuel cells
Physical vapor deposition (PVD) can be used to produce high-quality Gd 2 O 3 -doped CeO 2 (GDC) films. Among various PVD methods, reactive sputtering provides unique benefits, such as high deposition rates and easy upscaling for industrial applications. GDC thin films were successfully fabricated th...
Saved in:
Published in | International journal of minerals, metallurgy and materials Vol. 30; no. 6; pp. 1190 - 1197 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
University of Science and Technology Beijing
01.06.2023
Springer Nature B.V School of Materials Science and Engineering,Harbin Institute of Technology(Shenzhen),Shenzhen 518055,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Physical vapor deposition (PVD) can be used to produce high-quality Gd
2
O
3
-doped CeO
2
(GDC) films. Among various PVD methods, reactive sputtering provides unique benefits, such as high deposition rates and easy upscaling for industrial applications. GDC thin films were successfully fabricated through reactive sputtering using a Gd
0.2
Ce
0.8
(at%) metallic target, and their application in solid oxide fuel cells, such as buffer layers between yttria-stabilized zirconia (YSZ)/La
0.6
Sr
0.4
Co
0.2
Fe
0.8
O
3−δ
and as sublayers in the steel/coating system, was evaluated. First, the direct current (DC) reactive-sputtering behavior of the GdCe metallic target was determined. Then, the GDC films were deposited on NiO—YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films. The results demonstrated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering. Furthermore, the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer. In addition, the insertion of a GDC sublayer between the SUS441 interconnects and the Mn—Co spinel coatings contributed to the reduction of the oxidation rate for SUS441 at operating temperatures, according to the area-specific resistance tests. |
---|---|
AbstractList | Physical vapor deposition (PVD) can be used to produce high-quality Gd2O3-doped CeO2 (GDC) films. Among various PVD methods, reactive sputtering provides unique benefits, such as high deposition rates and easy upscaling for industrial applications. GDC thin films were successfully fabricated through reactive sputtering using a Gd0.2Ce0.8 (at%) metallic target, and their application in solid oxide fuel cells, such as buffer layers between yttria-stabilized zirconia (YSZ)/La0.6Sr0.4Co0.2Fe0.8O3−δ and as sublayers in the steel/coating system, was evaluated. First, the direct current (DC) reactive-sputtering behavior of the GdCe metallic target was determined. Then, the GDC films were deposited on NiO—YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films. The results demonstrated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering. Furthermore, the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer. In addition, the insertion of a GDC sublayer between the SUS441 interconnects and the Mn—Co spinel coatings contributed to the reduction of the oxidation rate for SUS441 at operating temperatures, according to the area-specific resistance tests. Physical vapor deposition (PVD) can be used to produce high-quality Gd2O3-doped CeO2 (GDC) films. Among various PVD meth-ods, reactive sputtering provides unique benefits, such as high deposition rates and easy upscaling for industrial applications. GDC thin films were successfully fabricated through reactive sputtering using a Gd0.2Ce0.8 (at%) metallic target, and their application in solid oxide fuel cells, such as buffer layers between yttria-stabilized zirconia (YSZ)/La0.6Sr0.4Co0.2Fe0.8O3?δ and as sublayers in the steel/coating system, was evalu-ated. First, the direct current (DC) reactive-sputtering behavior of the GdCe metallic target was determined. Then, the GDC films were depos-ited on NiO–YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films. The results demon-strated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering. Furthermore, the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer. In addi-tion, the insertion of a GDC sublayer between the SUS441 interconnects and the Mn–Co spinel coatings contributed to the reduction of the ox-idation rate for SUS441 at operating temperatures, according to the area-specific resistance tests. Physical vapor deposition (PVD) can be used to produce high-quality Gd 2 O 3 -doped CeO 2 (GDC) films. Among various PVD methods, reactive sputtering provides unique benefits, such as high deposition rates and easy upscaling for industrial applications. GDC thin films were successfully fabricated through reactive sputtering using a Gd 0.2 Ce 0.8 (at%) metallic target, and their application in solid oxide fuel cells, such as buffer layers between yttria-stabilized zirconia (YSZ)/La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3−δ and as sublayers in the steel/coating system, was evaluated. First, the direct current (DC) reactive-sputtering behavior of the GdCe metallic target was determined. Then, the GDC films were deposited on NiO—YSZ/YSZ half-cells to investigate the influence of oxygen flow rate on the quality of annealed GDC films. The results demonstrated that reactive sputtering can be used to prepare thin and dense GDC buffer layers without high-temperature sintering. Furthermore, the cells with a sputtered GDC buffer layer showed better electrochemical performance than those with a screen-printed GDC buffer layer. In addition, the insertion of a GDC sublayer between the SUS441 interconnects and the Mn—Co spinel coatings contributed to the reduction of the oxidation rate for SUS441 at operating temperatures, according to the area-specific resistance tests. |
Author | Liang, Fuyuan Wu, Junwei Yang, Jiaran Wang, Haiqing |
AuthorAffiliation | School of Materials Science and Engineering,Harbin Institute of Technology(Shenzhen),Shenzhen 518055,China |
AuthorAffiliation_xml | – name: School of Materials Science and Engineering,Harbin Institute of Technology(Shenzhen),Shenzhen 518055,China |
Author_xml | – sequence: 1 givenname: Fuyuan surname: Liang fullname: Liang, Fuyuan organization: School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) – sequence: 2 givenname: Jiaran surname: Yang fullname: Yang, Jiaran organization: School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) – sequence: 3 givenname: Haiqing surname: Wang fullname: Wang, Haiqing organization: School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) – sequence: 4 givenname: Junwei surname: Wu fullname: Wu, Junwei email: junwei.wu@hit.edu.cn organization: School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) |
BookMark | eNp9kU9vFCEYh4mpiW31A3gj8Wiw_JmF5WhWW5s02Ysm3ggzvGxZpzACY3e_vayjaWKiJ97D8_yA93eBzmKKgNBrRt8xStVVYVwyQSgXhEtOyfEZOmdrqQmj4utZm6XqSKe0foEuStlTKpWi6hwdr22fw2BrSBEnj28c3wri0gQOb2DLcb0PEfswPpQ25jTv7vGHDc5ghxp-AC7TXCvkEHfYRtcQCBnbaRr_ZDa7pDE4nA7BAfYzjHiAcSwv0XNvxwKvfp-X6Mv1x8-bT-Rue3O7eX9HBrHilXSaUa4d71a664ByKqTv19KxwUshZG85VUrxDpRnymrQTitvWd-JZni1Epfo7ZL7aKO3cWf2ac6x3Wj6_be9Oxx6A7ztjUrKdKPfLPSU0_cZSn3CuWZ61a3lWjRKLdSQUykZvBlC_fXfmm0YDaPm1IpZWjEt3ZxaMcdmsr_MKYcHm4__dfjilOm0aMhPb_q39BOKnqDN |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_4c05909 crossref_primary_10_1016_j_ceramint_2024_11_397 crossref_primary_10_1007_s12613_023_2715_5 crossref_primary_10_1039_D4TA03852E crossref_primary_10_59761_RCR5097 crossref_primary_10_1007_s12613_024_2910_z crossref_primary_10_1016_j_cej_2024_149523 crossref_primary_10_1007_s12613_023_2771_x |
Cites_doi | 10.1149/2.0141710jes 10.1016/j.ijhydene.2013.11.101 10.1039/D2EE00485B 10.1016/S1359-6454(00)00261-5 10.1126/sciadv.abj8590 10.1016/j.jmat.2021.09.001 10.1038/s41929-019-0310-y 10.1111/j.1551-2916.2011.04749.x 10.1016/j.ijhydene.2016.03.195 10.1149/09101.1149ecst 10.1016/j.ijhydene.2020.02.187 10.1016/j.ijhydene.2022.08.237 10.1021/acs.energyfuels.0c02338 10.1021/acsami.9b13999 10.1016/j.jpowsour.2014.03.080 10.1149/10301.1713ecst 10.1126/science.1204090 10.1126/science.aba6118 10.1039/C7TA01589E 10.1002/aenm.202201805 10.1016/j.jpowsour.2021.230432 10.1016/j.jeurceramsoc.2021.05.020 10.1016/j.ijhydene.2020.02.178 10.1016/j.ceramint.2015.08.143 10.1016/j.surfcoat.2020.126095 10.1016/j.jpowsour.2014.05.044 10.1016/j.surfcoat.2005.02.166 10.1016/j.ijhydene.2020.06.234 10.1016/j.xcrp.2020.100072 10.1016/j.ijhydene.2017.01.178 10.1002/aenm.201300003 10.1002/wene.246 10.1016/j.jpowsour.2018.02.003 10.1021/acsaem.8b00039 10.1149/1.3570009 10.1021/acsaem.8b00847 10.1016/j.jelechem.2019.113591 10.1149/2.0031811jes 10.1002/adma.201700132 10.1016/j.ceramint.2021.12.168 10.1016/j.seppur.2022.121627 10.1016/j.ceramint.2019.09.083 10.1016/j.ijhydene.2020.11.169 10.1038/35104620 |
ContentType | Journal Article |
Copyright | University of Science and Technology Beijing 2023 University of Science and Technology Beijing 2023. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: University of Science and Technology Beijing 2023 – notice: University of Science and Technology Beijing 2023. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO HCIFZ KB. PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s12613-023-2620-y |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest SciTech Premium Collection Materials Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1869-103X |
EndPage | 1197 |
ExternalDocumentID | bjkjdxxb_e202306019 10_1007_s12613_023_2620_y |
GroupedDBID | --K -EM -SB -S~ 06D 0R~ 0VY 188 1B1 1N0 1~5 2B. 2C0 2KG 2LR 2VQ 30V 4.4 406 408 40D 4G. 67Z 7-5 71M 8RM 92H 92I 96X AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAXUO AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BENPR BGLVJ BGNMA BHPHI BKSAR CAG CAJEB CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HMJXF HRMNR HVGLF HZ~ IKXTQ IWAJR IXD J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y NPVJJ NQJWS NU0 O9- O9J OZT P2P P9N PCBAR PDBOC PT4 Q-- R9I RIG ROL RSV S1Z S27 S3B SCL SCM SDG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UGNYK UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 WK8 Z5O Z7R Z7V Z7X Z7Y Z7Z Z85 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ D1I DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI 4A8 93N PMFND PSX |
ID | FETCH-LOGICAL-c352t-491029d245944e02036fb86d1cf6336ba2077724e7f17a9e9d97fa1b43459f753 |
IEDL.DBID | BENPR |
ISSN | 1674-4799 |
IngestDate | Thu May 29 04:00:21 EDT 2025 Fri Jul 25 11:02:38 EDT 2025 Tue Jul 01 01:18:47 EDT 2025 Thu Apr 24 22:51:21 EDT 2025 Fri Feb 21 02:43:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | doped CeO physical vapor deposition solid oxide fuel cell electrical conductivity Gd O metallic interconnects Gd2O3-doped CeO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-491029d245944e02036fb86d1cf6336ba2077724e7f17a9e9d97fa1b43459f753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2919548683 |
PQPubID | 2043631 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_bjkjdxxb_e202306019 proquest_journals_2919548683 crossref_citationtrail_10_1007_s12613_023_2620_y crossref_primary_10_1007_s12613_023_2620_y springer_journals_10_1007_s12613_023_2620_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | International journal of minerals, metallurgy and materials |
PublicationTitleAbbrev | Int J Miner Metall Mater |
PublicationTitle_FL | International Journal of Minerals, Metallurgy and Materials |
PublicationYear | 2023 |
Publisher | University of Science and Technology Beijing Springer Nature B.V School of Materials Science and Engineering,Harbin Institute of Technology(Shenzhen),Shenzhen 518055,China |
Publisher_xml | – name: University of Science and Technology Beijing – name: Springer Nature B.V – name: School of Materials Science and Engineering,Harbin Institute of Technology(Shenzhen),Shenzhen 518055,China |
References | FanHKeaneMSinghPHanMFElectrochemical performance and stability of lanthanum strontium cobalt ferrite oxygen electrode with gadolinia doped ceria barrier layer for reversible solid oxide fuel cellJ. Power Sources20142686341:CAS:528:DC%2BC2cXht1Wqtb7N10.1016/j.jpowsour.2014.03.080 XuMGYuJSongYFRanRWangWShaoZPAdvances in ceramic thin films fabricated by pulsed laser deposition for intermediate-temperature solid oxide fuel cellsEnergy Fuels2020349105681:CAS:528:DC%2BB3cXhsFSju7bF10.1021/acs.energyfuels.0c02338 D. Udomsilp, J. Rechberger, R. Neubauer, et al., Metal-supported solid oxide fuel cells with exceptionally high power density for range extender systems, Cell Rep. Phys. Sci., 1(2020), No. 6, art. No. 100072. WangGYJiaCSunZHChenMHanMFIn situ densification of gadolinium-doped ceria interlayer by infiltration process in SOFCECS Trans.2019911114910.1149/09101.1149ecst SteeleBCHeinzelAMaterials for fuel-cell technologiesNature200141468613451:CAS:528:DC%2BD3MXovFGitrs%3D10.1038/35104620 SzászJWankmüllerFWildeVNature and functionality of La0.58Sr0.4Co0.2Fe0.8O3−δ/Gd0.2Ce0.8O2−δ/Y0.16Zr0.84O2−δ interfaces in SOFCsJ. Electrochem. Soc.201816510F89810.1149/2.0031811jes DeplaDBuyleGHaemersJDe GryseRDischarge voltage measurements during magnetron sputteringSurf. Coat. Technol.200620014–1543291:CAS:528:DC%2BD28XitVamur0%3D10.1016/j.surfcoat.2005.02.166 Z.W. Lyu, S.X. Liu, Y.G. Wang, et al., Quantifying the performance evolution of solid oxide fuel cells during initial aging process, J. Power Sources, 510(2021), art. No. 230432. NiDWEspositoVDensification of Ce0.9Gd0.1O1.95 barrier layer by in-situ solid state reactionJ. Power Sources20142663931:CAS:528:DC%2BC2cXhtVWqsLbE10.1016/j.jpowsour.2014.05.044 Y. Yang, Y.X. Zhang, and M.F. Yan, A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology, Sep. Purif. Technol., 298(2022), art. No. 121627. MoralesMPesceASlodczykAEnhanced performance of gadolinia-doped ceria diffusion barrier layers fabricated by pulsed laser deposition for large-area solid oxide fuel cellsACS Appl. Energy Mater.20181519551:CAS:528:DC%2BC1cXotFylu7k%3D10.1021/acsaem.8b00039 LiangFYYangJRZhaoYYA review of thin film electrolytes fabricated by physical vapor deposition for solid oxide fuel cellsInt. J. Hydrogen Energy20224787369261:CAS:528:DC%2BB38XitlKmur3O10.1016/j.ijhydene.2022.08.237 WangKLLiuYJFergusJWInteractions between SOFC interconnect coating materials and chromiaJ. Am. Ceram. Soc.2011941244901:CAS:528:DC%2BC3MXhs1Wlu77F10.1111/j.1551-2916.2011.04749.x PrakashBSPavitraRKumarSSArunaSTElectrolyte bi-layering strategy to improve the performance of an intermediate temperature solid oxide fuel cell: A reviewJ. Power Sources201838113610.1016/j.jpowsour.2018.02.003 WildeVStörmerHSzászJWankmüllerFIvers-TifféeEGerthsenDGd0.2Ce0.8O2 diffusion barrier layer between (La0.58Sr0.4)(Co0.2Fe0.8)O3−δ cathode and Y0.16Zr0.84O2 electrolyte for solid oxide fuel cells: Effect of barrier layer sintering temperature on microstructureACS Appl. Energy Mater.201811267901:CAS:528:DC%2BC1cXitlegs7nP10.1021/acsaem.8b00847 FrancoTHaydnMMückeRDevelopment of metal-supported solid oxide fuel cellsECS Trans.20113513431:CAS:528:DC%2BC3MXptVansrc%3D10.1149/1.3570009 S. Sarner, A. Schreiber, N.H. Menzler, and O. Guillon, Recycling strategies for solid oxide cells, Adv. Energy Mater., 12(2022), No. 35, art. No. 2201805. SønderbySPopaPLLuJStrontium diffusion in magnetron sputtered gadolinia-doped ceria thin film barrier coatings for solid oxide fuel cellsAdv. Energy Mater.20133792310.1002/aenm.201300003 A. Hauch, R. Küngas, P. Blennow, et al., Recent advances in solid oxide cell technology for electrolysis, Science, 370(2020), No. 6513, art. No. eaba6118. GengSJZhaoQQLiYHSputtered MnCu metallic coating on ferritic stainless steel for solid oxide fuel cell interconnects applicationInt. J. Hydrogen Energy20174215102981:CAS:528:DC%2BC2sXivVOlu7k%3D10.1016/j.ijhydene.2017.01.178 HassanMAMamatOBMehdiMReview: Influence of alloy addition and spinel coatings on Cr-based metallic interconnects of solid oxide fuel cellsInt. J. Hydrogen Energy20204546251911:CAS:528:DC%2BB3cXhsVGksrjF10.1016/j.ijhydene.2020.06.234 G.Y. Wang, Y.L. Zhang, and M.F. Han, Densification of Ce0.9Gd0.1O2−δ interlayer to improve the stability of La0.6 Sr0.4Co0.2Fe0.8O3−δ/Ce0.9Gd0.1O2−δ interface and SOFC, J. Electroanal. Chem., 857(2020), art. No. 113591. CoppolaNPolverinoPCarapellaGOptimization of the electrical performances in solid oxide fuel cells with room temperature sputter deposited Gd0.1Ce0.9O1.95 buffer layers by controlling their granularity via the in-air annealing stepInt. J. Hydrogen Energy20204523129971:CAS:528:DC%2BB3cXltVags7c%3D10.1016/j.ijhydene.2020.02.187 J. Kim, S. Im, S.H. Oh, et al., Naturally diffused sintering aid for highly conductive bilayer electrolytes in solid oxide cells, Sci. Adv., 7(2021), No. 40, art. No. eabj8590. MahJCWMuchtarASomaluMRGhazaliMJMetallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniquesInt. J. Hydrogen Energy2017421492191:CAS:528:DC%2BC28Xmt1entrk%3D10.1016/j.ijhydene.2016.03.195 ToorSYCroisetEReducing sintering temperature while maintaining high conductivity for SOFC electrolyte: Copper as sintering aid for samarium doped ceriaCeram. Int.202046111481:CAS:528:DC%2BC1MXhvVSnsrzL10.1016/j.ceramint.2019.09.083 BoldrinPBrandonNPProgress and outlook for solid oxide fuel cells for transportation applicationsNat. Catal.2019275711:CAS:528:DC%2BC1MXhtlGrs7vF10.1038/s41929-019-0310-y WangYGJiaCLyuZWPerformance and stability analysis of SOFC containing thin and dense gadolinium-doped ceria interlayer sintered at low temperatureJ. Materiomics2022823471:CAS:528:DC%2BB38Xit1SltrbO10.1016/j.jmat.2021.09.001 BrylewskiTMolinSMarczyńskiMInfluence of Gd deposition on the oxidation behavior and electrical properties of a layered system consisting of Crofer 22 APU and MnCo2O4 spinelInt. J. Hydrogen Energy202146967751:CAS:528:DC%2BB3cXisFSgtb7P10.1016/j.ijhydene.2020.11.169 TsogaAGuptaANaoumidisANikolopoulosPGadolinia-doped ceria and yttria stabilized zirconia interfaces: Regarding their application for SOFC technologyActa Mater.20004818–1947091:CAS:528:DC%2BD3cXotlaktbY%3D10.1016/S1359-6454(00)00261-5 Y. Zhang, R. Knibbe, J. Sunarso, et al., Recent progress on advanced materials for solid-oxide fuel cells operating below 500°C, Adv. Mater., 29(2017), No. 48, art. No. 1700132. ChoiHJNaYHSeoDWWooSKKimSDDensification of gadolinia-doped ceria diffusion barriers for SOECs and IT-SOFCs by a sol—gel processCeram. Int.20164215451:CAS:528:DC%2BC2MXhsVyqsb7F10.1016/j.ceramint.2015.08.143 HongSYangHLimYPrinzFBKimYBGrain-controlled gadolinia-doped ceria (GDC) functional layer for interface reaction enhanced low-temperature solid oxide fuel cellsACS Appl. Mater. Interfaces20191144413381:CAS:528:DC%2BC1MXhvFClu7%2FP10.1021/acsami.9b13999 WachsmanEDLeeKTLowering the temperature of solid oxide fuel cellsScience201133460589351:CAS:528:DC%2BC3MXhsVGktL%2FK10.1126/science.1204090 Develos-BagarinaoKYokokawaHKishimotoHIshiyamaTYamajiKHoritaTElucidating the origin of oxide ion blocking effects at GDC/SrZr(Y)O3/YSZ interfacesJ. Mater. Chem. A201751887331:CAS:528:DC%2BC2sXmtVSjs7k%3D10.1039/C7TA01589E M. Mickan, P. Coddet, J. Vulliet, A. Caillard, T. Sauvage, and A.L. Thomann, Optimized magnetron sputtering process for the deposition of gadolinia doped ceria layers with controlled structural properties, Surf. Coat. Technol., 398(2020), art. No. 126095. V.V. Krishnan, Recent developments in metal-supported solid oxide fuel cells, WIREs Energy Environ., 6(2017), No. 5, art. No. e246. SuYPZhongZJiaoZJA novel multi-physics coupled heterogeneous single-cell numerical model for solid oxide fuel cell based on 3D microstructure reconstructionsEnergy Environ. Sci.202215624101:CAS:528:DC%2BB38XhtV2gu77K10.1039/D2EE00485B LimYLeeHParkJKimYBLow-temperature constrained sintering of YSZ electrolyte with Bi2O3 sintering sacrificial layer for anode-supported solid oxide fuel cellsCeram. Int.202248796731:CAS:528:DC%2BB3MXislOntbrI10.1016/j.ceramint.2021.12.168 LyuQZhuTLQuHXLower down both ohmic and cathode polarization resistances of solid oxide fuel cell via hydrothermal modified gadolinia doped ceria barrier layerJ. Eur. Ceram. Soc.2021411259311:CAS:528:DC%2BB3MXhtFSmsbvO10.1016/j.jeurceramsoc.2021.05.020 TsengHPYungTYLiuCKChengYNLeeRYOxidation characteristics and electrical properties of La- or Ce-doped MnCo2O4 as protective layer on SUS441 for metallic interconnects in solid oxide fuel cellsInt. J. Hydrogen Energy20204522125551:CAS:528:DC%2BB3cXkvF2mtbk%3D10.1016/j.ijhydene.2020.02.178 CuiTHLiangFYSunRTPreparation, evaluation, and application of SUS430/441 interconnect with Mn—Co coating in solid oxide fuel cellsECS Trans.2021103117131:CAS:528:DC%2BB3MXhs12gtrrO10.1149/10301.1713ecst LuZGDarvishSHardyJTempletonJStevensonJZhongYSrZrO3 formation at the interlayer/electrolyte interface during (La1−xSrx)1−δCo1−yFeyO3 cathode sinteringJ. Electrochem. Soc.201716410F30971:CAS:528:DC%2BC2sXhsVKqs7nO10.1149/2.0141710jes ZengYXWuJWBakerAPLiuXBMagnetron-sputtered Mn/Co (40:60) coating on ferritic stainless steel SUS430 for solid oxide fuel cell interconnect applicationsInt. J. Hydrogen Energy20143928160611:CAS:528:DC%2BC3sXitVWhs73L10.1016/j.ijhydene.2013.11.101 ZG Lu (2620_CR8) 2017; 164 T Franco (2620_CR28) 2011; 35 P Boldrin (2620_CR5) 2019; 2 S Hong (2620_CR24) 2019; 11 J Szász (2620_CR42) 2018; 165 2620_CR29 TH Cui (2620_CR38) 2021; 103 2620_CR7 SY Toor (2620_CR15) 2020; 46 GY Wang (2620_CR19) 2019; 91 MG Xu (2620_CR22) 2020; 34 2620_CR1 MA Hassan (2620_CR31) 2020; 45 K Develos-Bagarinao (2620_CR9) 2017; 5 YG Wang (2620_CR27) 2022; 8 D Depla (2620_CR40) 2006; 200 2620_CR21 2620_CR41 Y Lim (2620_CR14) 2022; 48 HP Tseng (2620_CR34) 2020; 45 A Tsoga (2620_CR43) 2000; 48 BC Steele (2620_CR3) 2001; 414 JCW Mah (2620_CR33) 2017; 42 2620_CR16 2620_CR37 KL Wang (2620_CR44) 2011; 94 BS Prakash (2620_CR23) 2018; 381 DW Ni (2620_CR17) 2014; 266 HJ Choi (2620_CR18) 2016; 42 H Fan (2620_CR36) 2014; 268 T Brylewski (2620_CR35) 2021; 46 SJ Geng (2620_CR32) 2017; 42 YP Su (2620_CR6) 2022; 15 Q Lyu (2620_CR20) 2021; 41 N Coppola (2620_CR25) 2020; 45 S Sønderby (2620_CR10) 2013; 3 ED Wachsman (2620_CR4) 2011; 334 2620_CR13 2620_CR12 YX Zeng (2620_CR39) 2014; 39 V Wilde (2620_CR11) 2018; 1 M Morales (2620_CR26) 2018; 1 FY Liang (2620_CR2) 2022; 47 2620_CR30 |
References_xml | – reference: S. Sarner, A. Schreiber, N.H. Menzler, and O. Guillon, Recycling strategies for solid oxide cells, Adv. Energy Mater., 12(2022), No. 35, art. No. 2201805. – reference: ChoiHJNaYHSeoDWWooSKKimSDDensification of gadolinia-doped ceria diffusion barriers for SOECs and IT-SOFCs by a sol—gel processCeram. Int.20164215451:CAS:528:DC%2BC2MXhsVyqsb7F10.1016/j.ceramint.2015.08.143 – reference: V.V. Krishnan, Recent developments in metal-supported solid oxide fuel cells, WIREs Energy Environ., 6(2017), No. 5, art. No. e246. – reference: LuZGDarvishSHardyJTempletonJStevensonJZhongYSrZrO3 formation at the interlayer/electrolyte interface during (La1−xSrx)1−δCo1−yFeyO3 cathode sinteringJ. Electrochem. Soc.201716410F30971:CAS:528:DC%2BC2sXhsVKqs7nO10.1149/2.0141710jes – reference: TsengHPYungTYLiuCKChengYNLeeRYOxidation characteristics and electrical properties of La- or Ce-doped MnCo2O4 as protective layer on SUS441 for metallic interconnects in solid oxide fuel cellsInt. J. Hydrogen Energy20204522125551:CAS:528:DC%2BB3cXkvF2mtbk%3D10.1016/j.ijhydene.2020.02.178 – reference: Y. Zhang, R. Knibbe, J. Sunarso, et al., Recent progress on advanced materials for solid-oxide fuel cells operating below 500°C, Adv. Mater., 29(2017), No. 48, art. No. 1700132. – reference: J. Kim, S. Im, S.H. Oh, et al., Naturally diffused sintering aid for highly conductive bilayer electrolytes in solid oxide cells, Sci. Adv., 7(2021), No. 40, art. No. eabj8590. – reference: GengSJZhaoQQLiYHSputtered MnCu metallic coating on ferritic stainless steel for solid oxide fuel cell interconnects applicationInt. J. Hydrogen Energy20174215102981:CAS:528:DC%2BC2sXivVOlu7k%3D10.1016/j.ijhydene.2017.01.178 – reference: Z.W. Lyu, S.X. Liu, Y.G. Wang, et al., Quantifying the performance evolution of solid oxide fuel cells during initial aging process, J. Power Sources, 510(2021), art. No. 230432. – reference: BrylewskiTMolinSMarczyńskiMInfluence of Gd deposition on the oxidation behavior and electrical properties of a layered system consisting of Crofer 22 APU and MnCo2O4 spinelInt. J. Hydrogen Energy202146967751:CAS:528:DC%2BB3cXisFSgtb7P10.1016/j.ijhydene.2020.11.169 – reference: PrakashBSPavitraRKumarSSArunaSTElectrolyte bi-layering strategy to improve the performance of an intermediate temperature solid oxide fuel cell: A reviewJ. Power Sources201838113610.1016/j.jpowsour.2018.02.003 – reference: MoralesMPesceASlodczykAEnhanced performance of gadolinia-doped ceria diffusion barrier layers fabricated by pulsed laser deposition for large-area solid oxide fuel cellsACS Appl. Energy Mater.20181519551:CAS:528:DC%2BC1cXotFylu7k%3D10.1021/acsaem.8b00039 – reference: MahJCWMuchtarASomaluMRGhazaliMJMetallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniquesInt. J. Hydrogen Energy2017421492191:CAS:528:DC%2BC28Xmt1entrk%3D10.1016/j.ijhydene.2016.03.195 – reference: FanHKeaneMSinghPHanMFElectrochemical performance and stability of lanthanum strontium cobalt ferrite oxygen electrode with gadolinia doped ceria barrier layer for reversible solid oxide fuel cellJ. Power Sources20142686341:CAS:528:DC%2BC2cXht1Wqtb7N10.1016/j.jpowsour.2014.03.080 – reference: CuiTHLiangFYSunRTPreparation, evaluation, and application of SUS430/441 interconnect with Mn—Co coating in solid oxide fuel cellsECS Trans.2021103117131:CAS:528:DC%2BB3MXhs12gtrrO10.1149/10301.1713ecst – reference: DeplaDBuyleGHaemersJDe GryseRDischarge voltage measurements during magnetron sputteringSurf. Coat. Technol.200620014–1543291:CAS:528:DC%2BD28XitVamur0%3D10.1016/j.surfcoat.2005.02.166 – reference: SzászJWankmüllerFWildeVNature and functionality of La0.58Sr0.4Co0.2Fe0.8O3−δ/Gd0.2Ce0.8O2−δ/Y0.16Zr0.84O2−δ interfaces in SOFCsJ. Electrochem. Soc.201816510F89810.1149/2.0031811jes – reference: WangGYJiaCSunZHChenMHanMFIn situ densification of gadolinium-doped ceria interlayer by infiltration process in SOFCECS Trans.2019911114910.1149/09101.1149ecst – reference: A. Hauch, R. Küngas, P. Blennow, et al., Recent advances in solid oxide cell technology for electrolysis, Science, 370(2020), No. 6513, art. No. eaba6118. – reference: LyuQZhuTLQuHXLower down both ohmic and cathode polarization resistances of solid oxide fuel cell via hydrothermal modified gadolinia doped ceria barrier layerJ. Eur. Ceram. Soc.2021411259311:CAS:528:DC%2BB3MXhtFSmsbvO10.1016/j.jeurceramsoc.2021.05.020 – reference: TsogaAGuptaANaoumidisANikolopoulosPGadolinia-doped ceria and yttria stabilized zirconia interfaces: Regarding their application for SOFC technologyActa Mater.20004818–1947091:CAS:528:DC%2BD3cXotlaktbY%3D10.1016/S1359-6454(00)00261-5 – reference: WildeVStörmerHSzászJWankmüllerFIvers-TifféeEGerthsenDGd0.2Ce0.8O2 diffusion barrier layer between (La0.58Sr0.4)(Co0.2Fe0.8)O3−δ cathode and Y0.16Zr0.84O2 electrolyte for solid oxide fuel cells: Effect of barrier layer sintering temperature on microstructureACS Appl. Energy Mater.201811267901:CAS:528:DC%2BC1cXitlegs7nP10.1021/acsaem.8b00847 – reference: HassanMAMamatOBMehdiMReview: Influence of alloy addition and spinel coatings on Cr-based metallic interconnects of solid oxide fuel cellsInt. J. Hydrogen Energy20204546251911:CAS:528:DC%2BB3cXhsVGksrjF10.1016/j.ijhydene.2020.06.234 – reference: D. Udomsilp, J. Rechberger, R. Neubauer, et al., Metal-supported solid oxide fuel cells with exceptionally high power density for range extender systems, Cell Rep. Phys. Sci., 1(2020), No. 6, art. No. 100072. – reference: SønderbySPopaPLLuJStrontium diffusion in magnetron sputtered gadolinia-doped ceria thin film barrier coatings for solid oxide fuel cellsAdv. Energy Mater.20133792310.1002/aenm.201300003 – reference: XuMGYuJSongYFRanRWangWShaoZPAdvances in ceramic thin films fabricated by pulsed laser deposition for intermediate-temperature solid oxide fuel cellsEnergy Fuels2020349105681:CAS:528:DC%2BB3cXhsFSju7bF10.1021/acs.energyfuels.0c02338 – reference: CoppolaNPolverinoPCarapellaGOptimization of the electrical performances in solid oxide fuel cells with room temperature sputter deposited Gd0.1Ce0.9O1.95 buffer layers by controlling their granularity via the in-air annealing stepInt. J. Hydrogen Energy20204523129971:CAS:528:DC%2BB3cXltVags7c%3D10.1016/j.ijhydene.2020.02.187 – reference: G.Y. Wang, Y.L. Zhang, and M.F. Han, Densification of Ce0.9Gd0.1O2−δ interlayer to improve the stability of La0.6 Sr0.4Co0.2Fe0.8O3−δ/Ce0.9Gd0.1O2−δ interface and SOFC, J. Electroanal. Chem., 857(2020), art. No. 113591. – reference: M. Mickan, P. Coddet, J. Vulliet, A. Caillard, T. Sauvage, and A.L. Thomann, Optimized magnetron sputtering process for the deposition of gadolinia doped ceria layers with controlled structural properties, Surf. Coat. Technol., 398(2020), art. No. 126095. – reference: BoldrinPBrandonNPProgress and outlook for solid oxide fuel cells for transportation applicationsNat. Catal.2019275711:CAS:528:DC%2BC1MXhtlGrs7vF10.1038/s41929-019-0310-y – reference: ToorSYCroisetEReducing sintering temperature while maintaining high conductivity for SOFC electrolyte: Copper as sintering aid for samarium doped ceriaCeram. Int.202046111481:CAS:528:DC%2BC1MXhvVSnsrzL10.1016/j.ceramint.2019.09.083 – reference: HongSYangHLimYPrinzFBKimYBGrain-controlled gadolinia-doped ceria (GDC) functional layer for interface reaction enhanced low-temperature solid oxide fuel cellsACS Appl. Mater. Interfaces20191144413381:CAS:528:DC%2BC1MXhvFClu7%2FP10.1021/acsami.9b13999 – reference: ZengYXWuJWBakerAPLiuXBMagnetron-sputtered Mn/Co (40:60) coating on ferritic stainless steel SUS430 for solid oxide fuel cell interconnect applicationsInt. J. Hydrogen Energy20143928160611:CAS:528:DC%2BC3sXitVWhs73L10.1016/j.ijhydene.2013.11.101 – reference: Develos-BagarinaoKYokokawaHKishimotoHIshiyamaTYamajiKHoritaTElucidating the origin of oxide ion blocking effects at GDC/SrZr(Y)O3/YSZ interfacesJ. Mater. Chem. A201751887331:CAS:528:DC%2BC2sXmtVSjs7k%3D10.1039/C7TA01589E – reference: Y. Yang, Y.X. Zhang, and M.F. Yan, A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology, Sep. Purif. Technol., 298(2022), art. No. 121627. – reference: FrancoTHaydnMMückeRDevelopment of metal-supported solid oxide fuel cellsECS Trans.20113513431:CAS:528:DC%2BC3MXptVansrc%3D10.1149/1.3570009 – reference: NiDWEspositoVDensification of Ce0.9Gd0.1O1.95 barrier layer by in-situ solid state reactionJ. Power Sources20142663931:CAS:528:DC%2BC2cXhtVWqsLbE10.1016/j.jpowsour.2014.05.044 – reference: SteeleBCHeinzelAMaterials for fuel-cell technologiesNature200141468613451:CAS:528:DC%2BD3MXovFGitrs%3D10.1038/35104620 – reference: WangYGJiaCLyuZWPerformance and stability analysis of SOFC containing thin and dense gadolinium-doped ceria interlayer sintered at low temperatureJ. Materiomics2022823471:CAS:528:DC%2BB38Xit1SltrbO10.1016/j.jmat.2021.09.001 – reference: WachsmanEDLeeKTLowering the temperature of solid oxide fuel cellsScience201133460589351:CAS:528:DC%2BC3MXhsVGktL%2FK10.1126/science.1204090 – reference: LimYLeeHParkJKimYBLow-temperature constrained sintering of YSZ electrolyte with Bi2O3 sintering sacrificial layer for anode-supported solid oxide fuel cellsCeram. Int.202248796731:CAS:528:DC%2BB3MXislOntbrI10.1016/j.ceramint.2021.12.168 – reference: WangKLLiuYJFergusJWInteractions between SOFC interconnect coating materials and chromiaJ. Am. Ceram. Soc.2011941244901:CAS:528:DC%2BC3MXhs1Wlu77F10.1111/j.1551-2916.2011.04749.x – reference: SuYPZhongZJiaoZJA novel multi-physics coupled heterogeneous single-cell numerical model for solid oxide fuel cell based on 3D microstructure reconstructionsEnergy Environ. Sci.202215624101:CAS:528:DC%2BB38XhtV2gu77K10.1039/D2EE00485B – reference: LiangFYYangJRZhaoYYA review of thin film electrolytes fabricated by physical vapor deposition for solid oxide fuel cellsInt. J. Hydrogen Energy20224787369261:CAS:528:DC%2BB38XitlKmur3O10.1016/j.ijhydene.2022.08.237 – volume: 164 start-page: F3097 issue: 10 year: 2017 ident: 2620_CR8 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0141710jes – volume: 39 start-page: 16061 issue: 28 year: 2014 ident: 2620_CR39 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.11.101 – volume: 15 start-page: 2410 issue: 6 year: 2022 ident: 2620_CR6 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE00485B – volume: 48 start-page: 4709 issue: 18–19 year: 2000 ident: 2620_CR43 publication-title: Acta Mater. doi: 10.1016/S1359-6454(00)00261-5 – ident: 2620_CR13 doi: 10.1126/sciadv.abj8590 – volume: 8 start-page: 347 issue: 2 year: 2022 ident: 2620_CR27 publication-title: J. Materiomics doi: 10.1016/j.jmat.2021.09.001 – volume: 2 start-page: 571 issue: 7 year: 2019 ident: 2620_CR5 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0310-y – volume: 94 start-page: 4490 issue: 12 year: 2011 ident: 2620_CR44 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2011.04749.x – volume: 42 start-page: 9219 issue: 14 year: 2017 ident: 2620_CR33 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.03.195 – volume: 91 start-page: 1149 issue: 1 year: 2019 ident: 2620_CR19 publication-title: ECS Trans. doi: 10.1149/09101.1149ecst – volume: 45 start-page: 12997 issue: 23 year: 2020 ident: 2620_CR25 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.02.187 – volume: 47 start-page: 36926 issue: 87 year: 2022 ident: 2620_CR2 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.08.237 – volume: 34 start-page: 10568 issue: 9 year: 2020 ident: 2620_CR22 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c02338 – volume: 11 start-page: 41338 issue: 44 year: 2019 ident: 2620_CR24 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13999 – volume: 268 start-page: 634 year: 2014 ident: 2620_CR36 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.03.080 – volume: 103 start-page: 1713 issue: 1 year: 2021 ident: 2620_CR38 publication-title: ECS Trans. doi: 10.1149/10301.1713ecst – volume: 334 start-page: 935 issue: 6058 year: 2011 ident: 2620_CR4 publication-title: Science doi: 10.1126/science.1204090 – ident: 2620_CR12 doi: 10.1126/science.aba6118 – volume: 5 start-page: 8733 issue: 18 year: 2017 ident: 2620_CR9 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01589E – ident: 2620_CR7 doi: 10.1002/aenm.202201805 – ident: 2620_CR37 doi: 10.1016/j.jpowsour.2021.230432 – volume: 41 start-page: 5931 issue: 12 year: 2021 ident: 2620_CR20 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2021.05.020 – volume: 45 start-page: 12555 issue: 22 year: 2020 ident: 2620_CR34 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.02.178 – volume: 42 start-page: 545 issue: 1 year: 2016 ident: 2620_CR18 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.08.143 – ident: 2620_CR41 doi: 10.1016/j.surfcoat.2020.126095 – volume: 266 start-page: 393 year: 2014 ident: 2620_CR17 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.05.044 – volume: 200 start-page: 4329 issue: 14–15 year: 2006 ident: 2620_CR40 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2005.02.166 – volume: 45 start-page: 25191 issue: 46 year: 2020 ident: 2620_CR31 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.06.234 – ident: 2620_CR30 doi: 10.1016/j.xcrp.2020.100072 – volume: 42 start-page: 10298 issue: 15 year: 2017 ident: 2620_CR32 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.01.178 – volume: 3 start-page: 923 issue: 7 year: 2013 ident: 2620_CR10 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300003 – ident: 2620_CR29 doi: 10.1002/wene.246 – volume: 381 start-page: 136 year: 2018 ident: 2620_CR23 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.003 – volume: 1 start-page: 1955 issue: 5 year: 2018 ident: 2620_CR26 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00039 – volume: 35 start-page: 343 issue: 1 year: 2011 ident: 2620_CR28 publication-title: ECS Trans. doi: 10.1149/1.3570009 – volume: 1 start-page: 6790 issue: 12 year: 2018 ident: 2620_CR11 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00847 – ident: 2620_CR16 doi: 10.1016/j.jelechem.2019.113591 – volume: 165 start-page: F898 issue: 10 year: 2018 ident: 2620_CR42 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0031811jes – ident: 2620_CR1 doi: 10.1002/adma.201700132 – volume: 48 start-page: 9673 issue: 7 year: 2022 ident: 2620_CR14 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.12.168 – ident: 2620_CR21 doi: 10.1016/j.seppur.2022.121627 – volume: 46 start-page: 1148 issue: 1 year: 2020 ident: 2620_CR15 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.09.083 – volume: 46 start-page: 6775 issue: 9 year: 2021 ident: 2620_CR35 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.11.169 – volume: 414 start-page: 345 issue: 6861 year: 2001 ident: 2620_CR3 publication-title: Nature doi: 10.1038/35104620 |
SSID | ssj0067707 |
Score | 2.3319256 |
Snippet | Physical vapor deposition (PVD) can be used to produce high-quality Gd
2
O
3
-doped CeO
2
(GDC) films. Among various PVD methods, reactive sputtering provides... Physical vapor deposition (PVD) can be used to produce high-quality Gd2O3-doped CeO2 (GDC) films. Among various PVD methods, reactive sputtering provides... Physical vapor deposition (PVD) can be used to produce high-quality Gd2O3-doped CeO2 (GDC) films. Among various PVD meth-ods, reactive sputtering provides... |
SourceID | wanfang proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1190 |
SubjectTerms | Buffer layers Ceramics Cerium oxides Characterization and Evaluation of Materials Chemistry and Materials Science Composites Corrosion and Coatings Direct current Electrochemical analysis Electrochemistry Fabrication Flow rates Fuel cells Fuel technology Gadolinium oxides Glass High temperature Industrial applications Materials Science Metallic Materials Natural Materials Operating temperature Oxidation rate Physical vapor deposition Solid oxide fuel cells Sputtering Surfaces and Interfaces Thin Films Tribology Yttria-stabilized zirconia Yttrium oxide |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnuJR0A1MIEuJ4yT1iAqlYoCFSmxRHNvQUpKKBKn995zdhBQJITHHd4ny-fGd70XIheY-i5jNbsezhXLOGRVZnFKlZBxGgmf49Tba4iEajvj9c_hc53GXTbR745J0O3Wb7IZk3_ocA2qLqNPFOtkI0XS3cVwjdt1sv1EcuxxpG11vr41E48r8TcXPw6hlmN9OUZfKk5s0f1k5dQY7ZLumi3C9xHeXrOl8j2ytFBHcJ4tBKj_qmzcoDNwp9hhQVcy0gr5-ZFC9jnMw4-l7CXVXHrjpA5JFt9VBOXO9qlEXpLkC5zmAFb82oDRO0LGCYj5WGsynnoK97y8PyGhw-9Qf0rqhAs2QZ1WUIzdgQjEeCs6180Ea2YuUn5koCCKZMi9Gts11bPw4FVooEZvUlzxACYOGzSHp5EWujwgEvvKNZEajecIzz0t7WsvQN1whIRA8OCZe82eTrK42bpteTJO2TrIFI0EwEgtGsjgml98is2Wpjb8Gdxu4knrVlQkTrn5d1MPXXzUQto__UHZRo9wOlpO3iZrPZaKZM9OQCp_8S-kp2bSSy7CyLulUH5_6DAlMJc_dhP0CDKrmDQ priority: 102 providerName: Springer Nature |
Title | Fabrication of Gd2O3-doped CeO2 thin films through DC reactive sputtering and their application in solid oxide fuel cells |
URI | https://link.springer.com/article/10.1007/s12613-023-2620-y https://www.proquest.com/docview/2919548683 https://d.wanfangdata.com.cn/periodical/bjkjdxxb-e202306019 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6x7QUOiKcoLNUc9gSyaBw3iU-olLYrkHYRotJyiuLYXrqUpGy6UvvvGbvOtlx6TWwnyjjjb-abB8CZERFPuMtup7OFCSE4k2VaMK1VOkykKOntXbTFRXI-F1-uhlfB4daEsMpWJ3pFrevS-cg_cOlrkyVZ_HH1l7muUY5dDS00TqBLKjjLOtD9NLn49r3VxUma-oRpF2rvfEiy5TV98hwZD47DjJkrys62_59Me7h5z5D6vJ7KFtX1wRE0fQKPA3bE0U7YT-GBqZ7Bo4OKgs9hOy3UbXDDYW1xpvllzHS9MhrH5pLj-teiQrtY_mkwtOjBz2Mk5Oj1HjYr37ia1sKi0uhpBDwguZFm025daKw3C23Q3pklOud_8wLm08mP8TkL3RVYSaBrzQQBBS41F0MphPGEpFVZoqPSJnGcqIIPUoLewqQ2SgtppJapLSIlYpphycp5CZ2qrswrwDjSkVXcGrJVRDkYFJkxahhZoQkdSBH3YNB-2bwMpcddB4xlvi-a7ISRkzByJ4x824N391NWu7obxwaftuLKwy_Y5PsN04P3rQj3t48sdhakvB-sbn7f6M1G5YZ7m41w8evjz3wDD93QXVDZKXTWt3fmLcGXterDSTad9aE7mv38OumHHUtX53z0DyKm7fc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENZ0ygE4MDyHQIE9lAuMhlhSrOjAdDopaUpLe2lnehOWJZWUYIc6nSZ_it_YlWLX4ZJbz9bKHu9qH_r2Qci2EwlLWahuR9tChRCMqlxm1Foje6kSOX59yLY4Tkdn4vt573yD_GtqYUJaZaMTo6K2ZR7uyL8wFXuTpX2-M_1Lw9SogK42IzSWYnHoFjcYslVfD_aQvx8ZG347HYxoPVWA5uhszKhAA8mUZaKnhHARiPOmn9ok9ynnqclYV6LLKZz0icyUU1ZJnyVGcKTwMkyJQJX_QHC05KEyfbjfaP5UylieHRL7w42ValDUWKqHoUpATDkNLeDp4n872Dq3d3hsrCIqfFZcrBi84VPypPZUYXcpWs_Ihiuek8cr_QtfkMUwM1f1pR-UHvYtO-HUllNnYeBOGMx-jQvw48mfCuqBQLA3APRTo5aFahrHZONekBUWImgBK5A6IDWejbGFcj62Dvy1m0CAGqqX5Oxe_vorslmUhXtNgCc28YZ5h5GRyLvdrO-c6SVeWPRFlOAd0m3-rM7rRudh3sZEty2aAzM0MkMHZuhFh3y6I5kuu3ysW7zVsEvXB77SrXh2yOeGhe3jNZtt11xuF5vL35d2PjfasRghohf-Zv07P5CHo9MfR_ro4PjwLXkUyJbpbFtkc3Z17d6h4zQz76O0Avl538fjFtfsI88 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLYQSNM4TGNsooyxd4DLkEXjuHF94IDadTAm2IFK3Lw4trdCl1YkiPav4l_cs5uQTpqQduAc-8Xy87M_-3s_CNmzPGIJ89HteLZQzjmjMhMpNUaLTiJ5hqP33hbnycmQf73qXK2QhzoWJni715TkIqbBZ2nKy8OpcYdN4BsCf88_xtQnVKfzyqvyzM7v8c5WHJ32UcH7jA0-X_ZOaFVWgGaINkrK8YRk0jDekZzbwMQ53U1MlLkkjhOdsrZAzMmtcJFIpZVGCpdGmsfYwwlfJgL3_DXug4_RgIbsuN76EyFCfLb37PdPVrKmUf815L8PwgbdPhKyIYwod2n-c-nEG7wmryqoCseLtbVBVmz-hqwvJTDcJPNBqm-rVz-YOPhi2EVMzWRqDfTsBYPy1ygHNxr_LqCqCAT9HiBQDdssFNNQJxtlQZobCKwFLHHqgL3ROEYGJrORseDu7Bg811C8JcNnmfV3ZDWf5HaLQByZyGnmLF6NeNZup11rdSdy3CAYkTxukXY9syqrMp37ghtj1eRo9spQqAzllaHmLfLpsct0kebjqcY7tbpUZfGFYjLkzku6-PuDWoXN5yeE7VVabhrr65trM5tpZVm4IiIM3_4voR_Ji-_9gfp2en72nrz0QhbebTtktby9sx8QR5V6N6xdID-e21j-AMS0JQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Gd2O3-doped+CeO2+thin+films+through+DC+reactive+sputtering+and+their+application+in+solid+oxide+fuel+cells&rft.jtitle=%E7%9F%BF%E7%89%A9%E5%86%B6%E9%87%91%E4%B8%8E%E6%9D%90%E6%96%99%E5%AD%A6%E6%8A%A5&rft.au=Fuyuan+Liang&rft.au=Jiaran+Yang&rft.au=Haiqing+Wang&rft.au=Junwei+Wu&rft.date=2023-06-01&rft.pub=School+of+Materials+Science+and+Engineering%2CHarbin+Institute+of+Technology%28Shenzhen%29%2CShenzhen+518055%2CChina&rft.issn=1674-4799&rft.volume=30&rft.issue=6&rft.spage=1190&rft.epage=1197&rft_id=info:doi/10.1007%2Fs12613-023-2620-y&rft.externalDocID=bjkjdxxb_e202306019 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjkjdxxb-e%2Fbjkjdxxb-e.jpg |