How segmentation methods affect hippocampal radiomic feature accuracy in Alzheimer’s disease analysis?

Objectives Hippocampal radiomic features (HRFs) can serve as biomarkers in Alzheimer’s disease (AD). However, how different hippocampal segmentation methods affect HRFs in AD is still unknown. The aim of the study was to investigate how different segmentation methods affect HRF accuracy in AD analys...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 32; no. 10; pp. 6965 - 6976
Main Authors Zheng, Qiang, Zhang, Yiyu, Li, Honglun, Tong, Xiangrong, Ouyang, Minhui
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-1084
0938-7994
1432-1084
DOI10.1007/s00330-022-09081-y

Cover

Loading…
Abstract Objectives Hippocampal radiomic features (HRFs) can serve as biomarkers in Alzheimer’s disease (AD). However, how different hippocampal segmentation methods affect HRFs in AD is still unknown. The aim of the study was to investigate how different segmentation methods affect HRF accuracy in AD analysis. Methods A total of 1650 subjects were identified from the Alzheimer’s Disease Neuroimaging Initiative database (ADNI). The mini-mental state examination (MMSE) and Alzheimer’s disease assessment scale (ADAS-cog13) were also adopted. After calculating the HRFs of intensity, shape, and textural features from each side of the hippocampus in structural magnetic resonance imaging (sMRI), the consistency of HRFs calculated from 7 different hippocampal segmentation methods was validated, and the performance of machine learning–based classification of AD vs. normal control (NC) adopting the different HRFs was also examined. Additional 571 subjects from the European DTI Study on Dementia database (EDSD) were to validate the consistency of results. Results Between different segmentations, HRFs showed a high measurement consistency ( R > 0.7), a high significant consistency between NC, mild cognitive impairment (MCI), and AD ( T -value plot, R > 0.8), and consistent significant correlations between HRFs and MMSE/ADAS-cog13 ( p < 0.05). The best NC vs. AD classification was obtained when the hippocampus was sufficiently segmented by primitive majority voting (threshold = 0.2). High consistent results were reproduced from independent EDSD cohort. Conclusions HRFs exhibited high consistency across different hippocampal segmentation methods, and the best performance in AD classification was obtained when HRFs were extracted by the naïve majority voting method with a more sufficient segmentation and relatively low hippocampus segmentation accuracy. Key Points • The hippocampal radiomic features exhibited high measurement/statistical/clinical consistency across different hippocampal segmentation methods. • The best performance in AD classification was obtained when hippocampal radiomics were extracted by the naïve majority voting method with a more sufficient segmentation and relatively low hippocampus segmentation accuracy.
AbstractList Hippocampal radiomic features (HRFs) can serve as biomarkers in Alzheimer's disease (AD). However, how different hippocampal segmentation methods affect HRFs in AD is still unknown. The aim of the study was to investigate how different segmentation methods affect HRF accuracy in AD analysis.OBJECTIVESHippocampal radiomic features (HRFs) can serve as biomarkers in Alzheimer's disease (AD). However, how different hippocampal segmentation methods affect HRFs in AD is still unknown. The aim of the study was to investigate how different segmentation methods affect HRF accuracy in AD analysis.A total of 1650 subjects were identified from the Alzheimer's Disease Neuroimaging Initiative database (ADNI). The mini-mental state examination (MMSE) and Alzheimer's disease assessment scale (ADAS-cog13) were also adopted. After calculating the HRFs of intensity, shape, and textural features from each side of the hippocampus in structural magnetic resonance imaging (sMRI), the consistency of HRFs calculated from 7 different hippocampal segmentation methods was validated, and the performance of machine learning-based classification of AD vs. normal control (NC) adopting the different HRFs was also examined. Additional 571 subjects from the European DTI Study on Dementia database (EDSD) were to validate the consistency of results.METHODSA total of 1650 subjects were identified from the Alzheimer's Disease Neuroimaging Initiative database (ADNI). The mini-mental state examination (MMSE) and Alzheimer's disease assessment scale (ADAS-cog13) were also adopted. After calculating the HRFs of intensity, shape, and textural features from each side of the hippocampus in structural magnetic resonance imaging (sMRI), the consistency of HRFs calculated from 7 different hippocampal segmentation methods was validated, and the performance of machine learning-based classification of AD vs. normal control (NC) adopting the different HRFs was also examined. Additional 571 subjects from the European DTI Study on Dementia database (EDSD) were to validate the consistency of results.Between different segmentations, HRFs showed a high measurement consistency (R > 0.7), a high significant consistency between NC, mild cognitive impairment (MCI), and AD (T-value plot, R > 0.8), and consistent significant correlations between HRFs and MMSE/ADAS-cog13 (p < 0.05). The best NC vs. AD classification was obtained when the hippocampus was sufficiently segmented by primitive majority voting (threshold = 0.2). High consistent results were reproduced from independent EDSD cohort.RESULTSBetween different segmentations, HRFs showed a high measurement consistency (R > 0.7), a high significant consistency between NC, mild cognitive impairment (MCI), and AD (T-value plot, R > 0.8), and consistent significant correlations between HRFs and MMSE/ADAS-cog13 (p < 0.05). The best NC vs. AD classification was obtained when the hippocampus was sufficiently segmented by primitive majority voting (threshold = 0.2). High consistent results were reproduced from independent EDSD cohort.HRFs exhibited high consistency across different hippocampal segmentation methods, and the best performance in AD classification was obtained when HRFs were extracted by the naïve majority voting method with a more sufficient segmentation and relatively low hippocampus segmentation accuracy.CONCLUSIONSHRFs exhibited high consistency across different hippocampal segmentation methods, and the best performance in AD classification was obtained when HRFs were extracted by the naïve majority voting method with a more sufficient segmentation and relatively low hippocampus segmentation accuracy.• The hippocampal radiomic features exhibited high measurement/statistical/clinical consistency across different hippocampal segmentation methods. • The best performance in AD classification was obtained when hippocampal radiomics were extracted by the naïve majority voting method with a more sufficient segmentation and relatively low hippocampus segmentation accuracy.KEY POINTS• The hippocampal radiomic features exhibited high measurement/statistical/clinical consistency across different hippocampal segmentation methods. • The best performance in AD classification was obtained when hippocampal radiomics were extracted by the naïve majority voting method with a more sufficient segmentation and relatively low hippocampus segmentation accuracy.
Objectives Hippocampal radiomic features (HRFs) can serve as biomarkers in Alzheimer’s disease (AD). However, how different hippocampal segmentation methods affect HRFs in AD is still unknown. The aim of the study was to investigate how different segmentation methods affect HRF accuracy in AD analysis. Methods A total of 1650 subjects were identified from the Alzheimer’s Disease Neuroimaging Initiative database (ADNI). The mini-mental state examination (MMSE) and Alzheimer’s disease assessment scale (ADAS-cog13) were also adopted. After calculating the HRFs of intensity, shape, and textural features from each side of the hippocampus in structural magnetic resonance imaging (sMRI), the consistency of HRFs calculated from 7 different hippocampal segmentation methods was validated, and the performance of machine learning–based classification of AD vs. normal control (NC) adopting the different HRFs was also examined. Additional 571 subjects from the European DTI Study on Dementia database (EDSD) were to validate the consistency of results. Results Between different segmentations, HRFs showed a high measurement consistency ( R > 0.7), a high significant consistency between NC, mild cognitive impairment (MCI), and AD ( T -value plot, R > 0.8), and consistent significant correlations between HRFs and MMSE/ADAS-cog13 ( p < 0.05). The best NC vs. AD classification was obtained when the hippocampus was sufficiently segmented by primitive majority voting (threshold = 0.2). High consistent results were reproduced from independent EDSD cohort. Conclusions HRFs exhibited high consistency across different hippocampal segmentation methods, and the best performance in AD classification was obtained when HRFs were extracted by the naïve majority voting method with a more sufficient segmentation and relatively low hippocampus segmentation accuracy. Key Points • The hippocampal radiomic features exhibited high measurement/statistical/clinical consistency across different hippocampal segmentation methods. • The best performance in AD classification was obtained when hippocampal radiomics were extracted by the naïve majority voting method with a more sufficient segmentation and relatively low hippocampus segmentation accuracy.
ObjectivesHippocampal radiomic features (HRFs) can serve as biomarkers in Alzheimer’s disease (AD). However, how different hippocampal segmentation methods affect HRFs in AD is still unknown. The aim of the study was to investigate how different segmentation methods affect HRF accuracy in AD analysis.MethodsA total of 1650 subjects were identified from the Alzheimer’s Disease Neuroimaging Initiative database (ADNI). The mini-mental state examination (MMSE) and Alzheimer’s disease assessment scale (ADAS-cog13) were also adopted. After calculating the HRFs of intensity, shape, and textural features from each side of the hippocampus in structural magnetic resonance imaging (sMRI), the consistency of HRFs calculated from 7 different hippocampal segmentation methods was validated, and the performance of machine learning–based classification of AD vs. normal control (NC) adopting the different HRFs was also examined. Additional 571 subjects from the European DTI Study on Dementia database (EDSD) were to validate the consistency of results.ResultsBetween different segmentations, HRFs showed a high measurement consistency (R > 0.7), a high significant consistency between NC, mild cognitive impairment (MCI), and AD (T-value plot, R > 0.8), and consistent significant correlations between HRFs and MMSE/ADAS-cog13 (p < 0.05). The best NC vs. AD classification was obtained when the hippocampus was sufficiently segmented by primitive majority voting (threshold = 0.2). High consistent results were reproduced from independent EDSD cohort.ConclusionsHRFs exhibited high consistency across different hippocampal segmentation methods, and the best performance in AD classification was obtained when HRFs were extracted by the naïve majority voting method with a more sufficient segmentation and relatively low hippocampus segmentation accuracy.Key Points• The hippocampal radiomic features exhibited high measurement/statistical/clinical consistency across different hippocampal segmentation methods.• The best performance in AD classification was obtained when hippocampal radiomics were extracted by the naïve majority voting method with a more sufficient segmentation and relatively low hippocampus segmentation accuracy.
Author Ouyang, Minhui
Li, Honglun
Zhang, Yiyu
Zheng, Qiang
Tong, Xiangrong
Author_xml – sequence: 1
  givenname: Qiang
  orcidid: 0000-0002-7853-8033
  surname: Zheng
  fullname: Zheng, Qiang
  email: zhengqiang@ytu.edu.cn
  organization: School of Computer and Control Engineering, Yantai University
– sequence: 2
  givenname: Yiyu
  surname: Zhang
  fullname: Zhang, Yiyu
  organization: School of Computer and Control Engineering, Yantai University
– sequence: 3
  givenname: Honglun
  surname: Li
  fullname: Li, Honglun
  organization: Departments of Medical Oncology and Radiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College
– sequence: 4
  givenname: Xiangrong
  surname: Tong
  fullname: Tong, Xiangrong
  organization: School of Computer and Control Engineering, Yantai University
– sequence: 5
  givenname: Minhui
  surname: Ouyang
  fullname: Ouyang, Minhui
  organization: Department of Radiology, Children’s Hospital of Philadelphia
BookMark eNp9kc1O3TAQRi1EJX7KC7CyxKabtGM7N7FXFUJQKiF1A2vL1xlzjZI49SSqworX4PX6JA0NUisWrGYW58yM5jti-33qkbFTAZ8FQP2FAJSCAqQswIAWxbzHDkWpZCFAl_v_9QfsiOgBAIwo60O2u06_OOF9h_3oxph63uG4Sw1xFwL6ke_iMCTvusG1PLsmpi56HtCNU0buvJ-y8zOPPT9vH3cYO8y_n56JN5HQ0UL0rp0p0teP7ENwLeHJaz1md1eXtxfXxc2Pb98vzm8KrzZyLMra68qA2IKqw0Y2pTJG1QCVNsZVW78RQhuNcms0-NBI70UlXFDKiaCNRHXMPq1zh5x-Tkij7SJ5bFvXY5rIyhoqoVVZw4KevUEf0pSXg18oUS6L6lIulF4pnxNRxmB9XF81ZhdbK8C-RGDXCOwSgf0bgZ0XVb5Rhxw7l-f3JbVKtMD9PeZ_V71j_QGHz5zJ
CitedBy_id crossref_primary_10_1007_s00330_024_11336_9
crossref_primary_10_1007_s10278_023_00931_9
crossref_primary_10_1093_cercor_bhad183
crossref_primary_10_3390_jcm12165432
crossref_primary_10_1007_s40520_023_02565_x
crossref_primary_10_3390_make5020035
crossref_primary_10_1007_s00330_023_10217_x
Cites_doi 10.1016/j.neuroimage.2003.11.010
10.1038/ncomms5006
10.1016/j.neuroimage.2017.03.057
10.1037/0033-2909.86.2.420
10.1148/radiol.2015151169
10.1111/jon.12483
10.1016/j.radonc.2015.02.015
10.2174/1567205017666200303105016
10.1016/j.jalz.2019.02.007
10.1002/hbm.23091
10.3389/fninf.2018.00069
10.1016/j.jalz.2011.03.004
10.1002/jmri.21049
10.1109/ACCESS.2018.2871977
10.1016/j.mri.2012.06.010
10.1007/s12021-016-9312-y
10.1002/advs.202000675
10.1002/hbm.25023
10.1056/NEJMra0909142
10.1016/j.scib.2020.04.003
10.12688/f1000research.11334.1
10.1016/j.mri.2015.11.009
10.1002/hbm.22359
10.1016/j.acra.2018.01.020
10.1001/archneurol.2009.266
10.1038/nrclinonc.2017.141
10.3389/fnagi.2018.00290
10.1016/j.jalz.2013.02.005
10.1016/j.ejca.2011.11.036
10.1038/s41598-019-53387-9
10.1016/j.neuroimage.2010.09.018
10.1007/978-3-319-02267-3_3
10.1162/netn_a_00200
ContentType Journal Article
Copyright The Author(s), under exclusive licence to European Society of Radiology 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2022. The Author(s), under exclusive licence to European Society of Radiology.
Copyright_xml – notice: The Author(s), under exclusive licence to European Society of Radiology 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2022. The Author(s), under exclusive licence to European Society of Radiology.
DBID AAYXX
CITATION
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
DOI 10.1007/s00330-022-09081-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database (ProQuest)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 6976
ExternalDocumentID 10_1007_s00330_022_09081_y
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61802330, 61802331, 61801415
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7QO
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
ID FETCH-LOGICAL-c352t-47c86901b037f52d439937006899a6bc511898e2b980cfd2cc161af33a1f892e3
IEDL.DBID U2A
ISSN 1432-1084
0938-7994
IngestDate Fri Sep 05 03:49:42 EDT 2025
Fri Jul 25 19:10:26 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Tue Jul 01 03:08:35 EDT 2025
Fri Feb 21 02:45:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Hippocampus segmentation
Alzheimer’s disease
Magnetic resonance imaging
Radiomic features
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-47c86901b037f52d439937006899a6bc511898e2b980cfd2cc161af33a1f892e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7853-8033
PQID 2714189742
PQPubID 54162
PageCount 12
ParticipantIDs proquest_miscellaneous_2706183470
proquest_journals_2714189742
crossref_citationtrail_10_1007_s00330_022_09081_y
crossref_primary_10_1007_s00330_022_09081_y
springer_journals_10_1007_s00330_022_09081_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Coroller, Grossmann, Hou (CR26) 2015; 114
Lambin, Leijenaar, Deist (CR25) 2017; 14
Feng, Ding (CR28) 2020; 17
Petersen (CR4) 2016; 22
Shrout, Fleiss (CR21) 1979; 86
Chaddad, Desrosiers, Niazi (CR8) 2018; 6
CR17
Jack, Bernstein, Fox (CR20) 2008; 27
Freedman, Venugopalan, Wisman (CR29) 2017; 6
Lambin, Rios-Velazquez, Leijenaar (CR7) 2012; 48
Zheng, Wu, Fan (CR36) 2018; 12
Hao, Wang, Zhang (CR16) 2014; 35
Handels, Wolfs, Aalten, Joore, Verhey, Severens (CR1) 2014; 10
Zhao, Ding, Han (CR10) 2020; 65
Velasco-Annis, Akhondi-Asl, Stamm, Warfield (CR30) 2018; 28
Sorensen, Igel, Liv Hansen (CR9) 2016; 37
Coupe, Manjon, Fonov, Pruessner, Robles, Collins (CR13) 2011; 54
Querfurth, LaFerla (CR3) 2010; 362
Petersen, Roberts, Knopman (CR5) 2009; 66
Feng, Wang, Zhao (CR11) 2018; 10
Li, Habes, Wolk (CR33) 2019; 15
Mohs, Rosen, Davis (CR19) 1983; 19
Jin, Zhou, Han (CR32) 2020; 7
Beheshti, Demirel, Alzheimer’s Disease Neuroimaging (CR35) 2016; 34
Rohlfing, Brandt, Menzel, Maurer (CR12) 2004; 21
Zheng, Wu, Fan (CR18) 2018; 12
Gillies, Kinahan, Hricak (CR24) 2016; 278
Kumar, Gu, Basu (CR23) 2012; 30
CR22
Jack, Albert, Knopman (CR2) 2011; 7
Zhu, Tang, Cheng, Wu, Fan (CR14) 2019; 9
Jin, Wang, Zalesky (CR31) 2020; 41
Rathore, Habes, Iftikhar, Shacklett, Davatzikos (CR34) 2017; 155
Zhu, Cheng, Yang, Fan (CR15) 2017; 15
Aerts, Velazquez, Leijenaar (CR6) 2014; 5
Huang, Cheng, Huang (CR27) 2018; 25
RC Petersen (9081_CR4) 2016; 22
I Beheshti (9081_CR35) 2016; 34
F Feng (9081_CR11) 2018; 10
V Kumar (9081_CR23) 2012; 30
S Rathore (9081_CR34) 2017; 155
L Sorensen (9081_CR9) 2016; 37
H Zhu (9081_CR14) 2019; 9
H Zhu (9081_CR15) 2017; 15
HW Querfurth (9081_CR3) 2010; 362
Q Zheng (9081_CR18) 2018; 12
A Chaddad (9081_CR8) 2018; 6
TP Coroller (9081_CR26) 2015; 114
D Jin (9081_CR31) 2020; 41
HJ Aerts (9081_CR6) 2014; 5
T Rohlfing (9081_CR12) 2004; 21
RC Mohs (9081_CR19) 1983; 19
C Velasco-Annis (9081_CR30) 2018; 28
CR Jack Jr (9081_CR20) 2008; 27
PE Shrout (9081_CR21) 1979; 86
Q Feng (9081_CR28) 2020; 17
LP Freedman (9081_CR29) 2017; 6
RL Handels (9081_CR1) 2014; 10
K Zhao (9081_CR10) 2020; 65
RJ Gillies (9081_CR24) 2016; 278
P Lambin (9081_CR25) 2017; 14
9081_CR17
X Huang (9081_CR27) 2018; 25
CR Jack Jr (9081_CR2) 2011; 7
H Li (9081_CR33) 2019; 15
RC Petersen (9081_CR5) 2009; 66
P Lambin (9081_CR7) 2012; 48
9081_CR22
P Coupe (9081_CR13) 2011; 54
Y Hao (9081_CR16) 2014; 35
D Jin (9081_CR32) 2020; 7
Q Zheng (9081_CR36) 2018; 12
References_xml – ident: CR22
– volume: 21
  start-page: 1428
  year: 2004
  end-page: 1442
  ident: CR12
  article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.11.010
– volume: 19
  start-page: 448
  year: 1983
  end-page: 450
  ident: CR19
  article-title: The Alzheimer’s disease assessment scale: an instrument for assessing treatment efficacy
  publication-title: Psychopharmacol Bull
– volume: 5
  start-page: 4006
  year: 2014
  ident: CR6
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
  doi: 10.1038/ncomms5006
– volume: 155
  start-page: 530
  year: 2017
  end-page: 548
  ident: CR34
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.057
– volume: 86
  start-page: 420
  year: 1979
  ident: CR21
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol Bull
  doi: 10.1037/0033-2909.86.2.420
– volume: 278
  start-page: 563
  year: 2016
  end-page: 577
  ident: CR24
  article-title: Radiomics: images are more than pictures, they are data
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 28
  start-page: 162
  year: 2018
  end-page: 172
  ident: CR30
  article-title: Reproducibility of brain MRI segmentation algorithms: empirical comparison of Local MAP PSTAPLE, FreeSurfer, and FSL-FIRST
  publication-title: J Neuroimaging
  doi: 10.1111/jon.12483
– volume: 114
  start-page: 345
  year: 2015
  end-page: 350
  ident: CR26
  article-title: CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2015.02.015
– volume: 17
  start-page: 297
  year: 2020
  end-page: 309
  ident: CR28
  article-title: MRI radiomics classification and prediction in Alzheimer’s disease and mild cognitive impairment: a review
  publication-title: Curr Alzheimer Res
  doi: 10.2174/1567205017666200303105016
– volume: 15
  start-page: 1059
  year: 2019
  end-page: 1070
  ident: CR33
  article-title: A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2019.02.007
– volume: 37
  start-page: 1148
  year: 2016
  end-page: 1161
  ident: CR9
  article-title: Early detection of Alzheimer’s disease using MRI hippocampal texture
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23091
– volume: 12
  start-page: 69
  year: 2018
  ident: CR36
  article-title: Integrating semi-supervised and supervised learning methods for label fusion in multi-atlas based image segmentation
  publication-title: Front Neuroinf
  doi: 10.3389/fninf.2018.00069
– volume: 7
  start-page: 257
  year: 2011
  end-page: 262
  ident: CR2
  article-title: Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.004
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: CR20
  article-title: The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21049
– volume: 6
  start-page: 58213
  year: 2018
  end-page: 58221
  ident: CR8
  article-title: Deep radiomic analysis of MRI related to Alzheimer’s disease
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2871977
– volume: 30
  start-page: 1234
  year: 2012
  end-page: 1248
  ident: CR23
  article-title: Radiomics: the process and the challenges
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.06.010
– volume: 15
  start-page: 41
  year: 2017
  end-page: 50
  ident: CR15
  article-title: Metric learning for multi-atlas based segmentation of hippocampus
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-016-9312-y
– volume: 7
  start-page: 2000675
  year: 2020
  ident: CR32
  article-title: Generalizable, reproducible, and neuroscientifically interpretable imaging biomarkers for Alzheimer’s disease
  publication-title: Adv Sci (Weinh)
  doi: 10.1002/advs.202000675
– volume: 41
  start-page: 3379
  year: 2020
  end-page: 3391
  ident: CR31
  article-title: Grab-AD: generalizability and reproducibility of altered brain activity and diagnostic classification in Alzheimer’s disease
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.25023
– volume: 362
  start-page: 329
  year: 2010
  end-page: 344
  ident: CR3
  article-title: Alzheimer’s disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra0909142
– ident: CR17
– volume: 65
  start-page: 1103
  year: 2020
  end-page: 1113
  ident: CR10
  article-title: Independent and reproducible hippocampal radiomic biomarkers for multisite Alzheimer’s disease: diagnosis, longitudinal progress and biological basis
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2020.04.003
– volume: 6
  start-page: 604
  year: 2017
  ident: CR29
  article-title: Reproducibility2020: progress and priorities
  publication-title: F1000Res
  doi: 10.12688/f1000research.11334.1
– volume: 34
  start-page: 252
  year: 2016
  end-page: 263
  ident: CR35
  article-title: Feature-ranking-based Alzheimer’s disease classification from structural MRI
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2015.11.009
– volume: 12
  start-page: 69
  year: 2018
  ident: CR18
  article-title: Integrating semi-supervised and supervised learning methods for label fusion in multi-atlas based image segmentation
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2018.00069
– volume: 35
  start-page: 2674
  year: 2014
  end-page: 2697
  ident: CR16
  article-title: Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22359
– volume: 25
  start-page: 1285
  year: 2018
  end-page: 1297
  ident: CR27
  article-title: CT-based radiomics signature to discriminate high-grade from low-grade colorectal adenocarcinoma
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2018.01.020
– volume: 66
  start-page: 1447
  year: 2009
  end-page: 1455
  ident: CR5
  article-title: Mild cognitive impairment: ten years later
  publication-title: Arch Neurol
  doi: 10.1001/archneurol.2009.266
– volume: 14
  start-page: 749
  year: 2017
  end-page: 762
  ident: CR25
  article-title: Radiomics: the bridge between medical imaging and personalized medicine
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2017.141
– volume: 10
  start-page: 290
  year: 2018
  ident: CR11
  article-title: Radiomic features of hippocampal subregions in Alzheimer’s disease and amnestic mild cognitive impairment
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2018.00290
– volume: 10
  start-page: 225
  year: 2014
  end-page: 237
  ident: CR1
  article-title: Diagnosing Alzheimer’s disease: a systematic review of economic evaluations
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2013.02.005
– volume: 22
  start-page: 404
  year: 2016
  end-page: 418
  ident: CR4
  article-title: Mild cognitive impairment
  publication-title: Continuum (Minneap Minn)
– volume: 48
  start-page: 441
  year: 2012
  end-page: 446
  ident: CR7
  article-title: Radiomics: extracting more information from medical images using advanced feature analysis
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2011.11.036
– volume: 9
  start-page: 16839
  year: 2019
  ident: CR14
  article-title: Multi-atlas label fusion with random local binary pattern features: application to hippocampus segmentation
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-53387-9
– volume: 54
  start-page: 940
  year: 2011
  end-page: 954
  ident: CR13
  article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.018
– volume: 41
  start-page: 3379
  year: 2020
  ident: 9081_CR31
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.25023
– volume: 14
  start-page: 749
  year: 2017
  ident: 9081_CR25
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2017.141
– volume: 10
  start-page: 225
  year: 2014
  ident: 9081_CR1
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2013.02.005
– ident: 9081_CR17
  doi: 10.1007/978-3-319-02267-3_3
– volume: 12
  start-page: 69
  year: 2018
  ident: 9081_CR18
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2018.00069
– volume: 15
  start-page: 1059
  year: 2019
  ident: 9081_CR33
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2019.02.007
– volume: 17
  start-page: 297
  year: 2020
  ident: 9081_CR28
  publication-title: Curr Alzheimer Res
  doi: 10.2174/1567205017666200303105016
– volume: 7
  start-page: 2000675
  year: 2020
  ident: 9081_CR32
  publication-title: Adv Sci (Weinh)
  doi: 10.1002/advs.202000675
– volume: 19
  start-page: 448
  year: 1983
  ident: 9081_CR19
  publication-title: Psychopharmacol Bull
– volume: 10
  start-page: 290
  year: 2018
  ident: 9081_CR11
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2018.00290
– volume: 12
  start-page: 69
  year: 2018
  ident: 9081_CR36
  publication-title: Front Neuroinf
  doi: 10.3389/fninf.2018.00069
– volume: 22
  start-page: 404
  year: 2016
  ident: 9081_CR4
  publication-title: Continuum (Minneap Minn)
– volume: 5
  start-page: 4006
  year: 2014
  ident: 9081_CR6
  publication-title: Nat Commun
  doi: 10.1038/ncomms5006
– volume: 35
  start-page: 2674
  year: 2014
  ident: 9081_CR16
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22359
– volume: 15
  start-page: 41
  year: 2017
  ident: 9081_CR15
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-016-9312-y
– volume: 9
  start-page: 16839
  year: 2019
  ident: 9081_CR14
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-53387-9
– volume: 25
  start-page: 1285
  year: 2018
  ident: 9081_CR27
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2018.01.020
– volume: 48
  start-page: 441
  year: 2012
  ident: 9081_CR7
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2011.11.036
– volume: 54
  start-page: 940
  year: 2011
  ident: 9081_CR13
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.018
– volume: 28
  start-page: 162
  year: 2018
  ident: 9081_CR30
  publication-title: J Neuroimaging
  doi: 10.1111/jon.12483
– volume: 27
  start-page: 685
  year: 2008
  ident: 9081_CR20
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21049
– volume: 362
  start-page: 329
  year: 2010
  ident: 9081_CR3
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra0909142
– ident: 9081_CR22
  doi: 10.1162/netn_a_00200
– volume: 86
  start-page: 420
  year: 1979
  ident: 9081_CR21
  publication-title: Psychol Bull
  doi: 10.1037/0033-2909.86.2.420
– volume: 65
  start-page: 1103
  year: 2020
  ident: 9081_CR10
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2020.04.003
– volume: 155
  start-page: 530
  year: 2017
  ident: 9081_CR34
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.057
– volume: 6
  start-page: 604
  year: 2017
  ident: 9081_CR29
  publication-title: F1000Res
  doi: 10.12688/f1000research.11334.1
– volume: 6
  start-page: 58213
  year: 2018
  ident: 9081_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2871977
– volume: 30
  start-page: 1234
  year: 2012
  ident: 9081_CR23
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.06.010
– volume: 7
  start-page: 257
  year: 2011
  ident: 9081_CR2
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.004
– volume: 278
  start-page: 563
  year: 2016
  ident: 9081_CR24
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 34
  start-page: 252
  year: 2016
  ident: 9081_CR35
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2015.11.009
– volume: 37
  start-page: 1148
  year: 2016
  ident: 9081_CR9
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23091
– volume: 66
  start-page: 1447
  year: 2009
  ident: 9081_CR5
  publication-title: Arch Neurol
  doi: 10.1001/archneurol.2009.266
– volume: 114
  start-page: 345
  year: 2015
  ident: 9081_CR26
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2015.02.015
– volume: 21
  start-page: 1428
  year: 2004
  ident: 9081_CR12
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.11.010
SSID ssj0009147
Score 2.4311786
Snippet Objectives Hippocampal radiomic features (HRFs) can serve as biomarkers in Alzheimer’s disease (AD). However, how different hippocampal segmentation methods...
ObjectivesHippocampal radiomic features (HRFs) can serve as biomarkers in Alzheimer’s disease (AD). However, how different hippocampal segmentation methods...
Hippocampal radiomic features (HRFs) can serve as biomarkers in Alzheimer's disease (AD). However, how different hippocampal segmentation methods affect HRFs...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6965
SubjectTerms Accuracy
Alzheimer's disease
Biomarkers
Classification
Cognitive ability
Consistency
Dementia disorders
Diagnostic Radiology
Head and Neck
Hippocampus
Image segmentation
Imaging
Internal Medicine
Interventional Radiology
Machine learning
Magnetic resonance imaging
Mathematical analysis
Medical imaging
Medicine
Medicine & Public Health
Neurodegenerative diseases
Neuroimaging
Neuroradiology
Radiology
Radiomics
Ultrasound
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NahsxEB5SG0ovoUlbus0PCvTWiq60snd1CmmwMQGbUGrIbdHOSrXBWbtem-Cc8hp5vT5JJVm2SSA5r1aC0Yzmk-bnA_hqPYgUQjKqFNNUGGZtro0x1bIodMnjEhNX4NwftHtDcXXTugkPbnVIq9ycif6gLqfo3sh_8JQJlln0y89nf6ljjXLR1UCh8Qaa9gjOWg1o_uwMrn_t2u4yTzFmr-0ZTaUUoWzGF885GrOYumz2WFrHSFdPXdMObz4LkXrP030P-wEykov1Hh_Anq4O4W0_BMU_wKg3vSO1_nMbyogqsqaFronyyRpkNJ7NrMuyhj8hc1WOXSEyMdq39CQKcTlXuCLjilxM7kd6fKvn_x4eaxJiN0SFviXnH2HY7fy-7NFAoEDR4qoFFSl6wqkiTlLT4qXwaMRVhUip2gW624XMNC9kFqMpOaLFf8okiWImk1wnn6BRTSv9GQhyoaXkGaZMiXYipMG4LJkxgmmBKCJgG9nlGLqLO5KLSb7ti-zlnVt5517e-SqCb9t_ZuveGq-OPt5sSR7srM53WhHB2faztRAX9lCVni7dGItZskSkcQTfN1u5m-LlFb-8vuIRvONOe3xm3zE0FvOlPrEIZVGcBjX8D3Lr40I
  priority: 102
  providerName: ProQuest
Title How segmentation methods affect hippocampal radiomic feature accuracy in Alzheimer’s disease analysis?
URI https://link.springer.com/article/10.1007/s00330-022-09081-y
https://www.proquest.com/docview/2714189742
https://www.proquest.com/docview/2706183470
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swED_6B0ZfyvpnNF0bVOhba7BkJbaeSlaShpWWMRpIn4x8lpZA6oQ4YaRP_Rr9evskkxQ5oWMb9MV-sGSjk873O-5-dwDnxoIIzgUNpKQq4JoanWtiGCiRZSpnYY6RJTjf3Te7Pf613-h7UlhZZbtXIUn3p16R3WzbsTCw2eehMIYsWGzCdsP47jaRr8da61K7lMeeHvP3eW9N0BpX_hEKdRam8xF2PTQkreVe7sGGKvbhw50Pfh_AoDv-SUr148nThQqybP9cEumSMshgOJkY02QUfESmMh9awjHRypXuJBJxPpW4IMOCtEbPAzV8UtNfL68l8TEaIn19kqtD6HXaD9fdwDdKCNDgp1nAY3SNpbIwinWD5dyhDsv-EEI2M7RehEgUy0QSos4ZosF5UkeRpDoRTEWfYKsYF-oICDKuhGAJxlTyZsSFxjDPqdacKo7Ia0Ar2aXoq4jbZhajdFX_2Mk7NfJOnbzTRQ0uVnMmyxoa_x19Um1J6vWpTFlMuVmD8eNrcLZ6bDTBhjdkocZzO8ZgkyTicViDy2or16_49xeP3zf8M-wwe5pcRt8JbM2mc3VqkMksq8Nm3I_NNenc1GG7dfN42zb3L-37b9_r7pD-BgaB4j8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD4amwTcIH61wgAjwRVY2I7XxBdoGrCpY2uF0CbtLjgn9lqpTUvTaipXvAYvwUPxJNiu0wokdrfrOLZ0fH6-5Px8AC9dBFFSKk615oZKy53NtZFRo4rClIKVmPgG526v3TmTn853zzfgV9ML48sqG58YHHU5Rv-P_K1IueSZQ79ib_KNetYon11tKDSWanFsFpfuk61-d_TR3e8rIQ4PTj90aGQVoOjAxozKFAMLU8GS1O6KUoYQ7VsllNLtAj3kVpkRhcoY2lIgOlCkbZJobjMlTOL2vQFbDmYoZ0Vb7w96n7-sx_zyQGnGlHMjqVIytumEZj1Pm8aor55nygViuvg7FK7x7T8p2RDpDu_CnQhRyf5Sp-7Bhqnuw81uTMI_gH5nfElqczGKbUsVWdJQ10SH4hDSH0wmLkQ6RzMkU10OfOMzsSaMECUacT7VuCCDiuwPv_fNYGSmv3_8rEnMFREd56TsPYSzaxHtI9isxpXZBoJCGqVEhinXsp1IZZGVJbdWciMRZQt4I7sc4zRzT6oxzFdzmIO8cyfvPMg7X7Tg9eqdyXKWx5Wrd5oryaNd1_laC1vwYvXYWaRPs-jKjOd-jcNIWSJT1oI3zVWut_j_iY-vPvE53Oqcdk_yk6Pe8RO4LbwmharCHdicTefmqUNHs-JZVEkCX6_bCv4AzgIeRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD4anTRxg_gVhQFGgiuwZjteE1-gabBVHWPVhJi0u-A49lqpS0vTaipXvAavwuPwJBy7TiuQ2N2u49jS8fn5kvPzAbzCCKKkVJxqzS2VjqPNdQyjVhWFLQUrTeIbnE_6nd6Z_Hi-e74Bv5peGF9W2fjE4KjLsfH_yHdEyiXPEP2KHRfLIk4PunuTb9QzSPlMa0OnsVSRY7u4ws-3-t3RAd71ayG6h18-9GhkGKAGgceMytQERqaCJanbFaUM4dq3TSilO4Xx8FtlVhQqY8aVwhgESNolieYuU8ImuO8t2EwxKmYt2Hx_2D_9vB75ywO9GVPoUlKlZGzZCY17nkKNUV9JzxQGZbr4Oyyuse4_6dkQ9bp34U6Eq2R_qV_3YMNW92HrJCbkH8CgN74itb24jC1MFVlSUtdEh0IRMhhOJhgu0emMyFSXQ98ETZwN40SJNmY-1WZBhhXZH30f2OGlnf7-8bMmMW9EdJyZsvcQzm5EtI-gVY0r-xiIEdIqJTKTci07iVTOsLLkzklupTGyDbyRXW7iZHNPsDHKVzOZg7xzlHce5J0v2vBm9c5kOdfj2tXbzZXk0cbrfK2RbXi5eozW6VMuurLjuV-DeClLZMra8La5yvUW_z_xyfUnvoAt1P7801H_-CncFl6RQoHhNrRm07l9hkBpVjyPGkng600bwR8TpCJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+segmentation+methods+affect+hippocampal+radiomic+feature+accuracy+in+Alzheimer%E2%80%99s+disease+analysis%3F&rft.jtitle=European+radiology&rft.au=Zheng%2C+Qiang&rft.au=Zhang%2C+Yiyu&rft.au=Li%2C+Honglun&rft.au=Tong%2C+Xiangrong&rft.date=2022-10-01&rft.issn=1432-1084&rft.eissn=1432-1084&rft.volume=32&rft.issue=10&rft.spage=6965&rft.epage=6976&rft_id=info:doi/10.1007%2Fs00330-022-09081-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00330_022_09081_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1084&client=summon