Unparalleled coupled ocean-atmosphere summer heatwaves in the New Zealand region: drivers, mechanisms and impacts
During austral summers (DJF) 1934/35, 2017/18 and 2018/19, the New Zealand (NZ) region (approximately 4 million km 2 ) experienced the most intense coupled ocean-atmosphere heatwaves on record. Average air temperature anomalies over land were + 1.7 to 2.1 °C while sea surface temperatures (SST) were...
Saved in:
Published in | Climatic change Vol. 162; no. 2; pp. 485 - 506 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.09.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | During austral summers (DJF) 1934/35, 2017/18 and 2018/19, the New Zealand (NZ) region (approximately 4 million km
2
) experienced the most intense coupled ocean-atmosphere heatwaves on record. Average air temperature anomalies over land were + 1.7 to 2.1 °C while sea surface temperatures (SST) were 1.2 to 1.9 °C above average. All three heatwaves exhibited maximum SST anomalies west of the South Island of NZ. Atmospheric circulation anomalies showed a pattern of blocking centred over the Tasman Sea extending south-east of NZ, accompanied by strongly positive Southern Annular Mode conditions, and reduced trough activity over NZ. Rapid melt of seasonal snow occurred in all three cases. For the two most recent events, combined ice loss in the Southern Alps was estimated at 8.9 km
3
(22% of the 2017 volume). Sauvignon blanc and Pinot noir wine grapes had above average berry number and bunch mass in 2018 but were below average in 2019. Summerfruit harvest (cherries and apricots) was 14 and 2 days ahead of normal in 2017/18 and 2018/19 respectively. Spring wheat simulations suggested earlier flowering and lower grain yields compared to average, and below-average yield and tuber quality in potatoes crops occurred. Major species disruption occurred in marine ecosystems. Hindcasts indicate that the heatwaves were either atmospherically driven or arose from combinations of atmospheric surface warming and oceanic heat advection. |
---|---|
AbstractList | During austral summers (DJF) 1934/35, 2017/18 and 2018/19, the New Zealand (NZ) region (approximately 4 million km
2
) experienced the most intense coupled ocean-atmosphere heatwaves on record. Average air temperature anomalies over land were + 1.7 to 2.1 °C while sea surface temperatures (SST) were 1.2 to 1.9 °C above average. All three heatwaves exhibited maximum SST anomalies west of the South Island of NZ. Atmospheric circulation anomalies showed a pattern of blocking centred over the Tasman Sea extending south-east of NZ, accompanied by strongly positive Southern Annular Mode conditions, and reduced trough activity over NZ. Rapid melt of seasonal snow occurred in all three cases. For the two most recent events, combined ice loss in the Southern Alps was estimated at 8.9 km
3
(22% of the 2017 volume). Sauvignon blanc and Pinot noir wine grapes had above average berry number and bunch mass in 2018 but were below average in 2019. Summerfruit harvest (cherries and apricots) was 14 and 2 days ahead of normal in 2017/18 and 2018/19 respectively. Spring wheat simulations suggested earlier flowering and lower grain yields compared to average, and below-average yield and tuber quality in potatoes crops occurred. Major species disruption occurred in marine ecosystems. Hindcasts indicate that the heatwaves were either atmospherically driven or arose from combinations of atmospheric surface warming and oceanic heat advection. During austral summers (DJF) 1934/35, 2017/18 and 2018/19, the New Zealand (NZ) region (approximately 4 million km²) experienced the most intense coupled ocean-atmosphere heatwaves on record. Average air temperature anomalies over land were + 1.7 to 2.1 °C while sea surface temperatures (SST) were 1.2 to 1.9 °C above average. All three heatwaves exhibited maximum SST anomalies west of the South Island of NZ. Atmospheric circulation anomalies showed a pattern of blocking centred over the Tasman Sea extending south-east of NZ, accompanied by strongly positive Southern Annular Mode conditions, and reduced trough activity over NZ. Rapid melt of seasonal snow occurred in all three cases. For the two most recent events, combined ice loss in the Southern Alps was estimated at 8.9 km³ (22% of the 2017 volume). Sauvignon blanc and Pinot noir wine grapes had above average berry number and bunch mass in 2018 but were below average in 2019. Summerfruit harvest (cherries and apricots) was 14 and 2 days ahead of normal in 2017/18 and 2018/19 respectively. Spring wheat simulations suggested earlier flowering and lower grain yields compared to average, and below-average yield and tuber quality in potatoes crops occurred. Major species disruption occurred in marine ecosystems. Hindcasts indicate that the heatwaves were either atmospherically driven or arose from combinations of atmospheric surface warming and oceanic heat advection. During austral summers (DJF) 1934/35, 2017/18 and 2018/19, the New Zealand (NZ) region (approximately 4 million km2) experienced the most intense coupled ocean-atmosphere heatwaves on record. Average air temperature anomalies over land were + 1.7 to 2.1 °C while sea surface temperatures (SST) were 1.2 to 1.9 °C above average. All three heatwaves exhibited maximum SST anomalies west of the South Island of NZ. Atmospheric circulation anomalies showed a pattern of blocking centred over the Tasman Sea extending south-east of NZ, accompanied by strongly positive Southern Annular Mode conditions, and reduced trough activity over NZ. Rapid melt of seasonal snow occurred in all three cases. For the two most recent events, combined ice loss in the Southern Alps was estimated at 8.9 km3 (22% of the 2017 volume). Sauvignon blanc and Pinot noir wine grapes had above average berry number and bunch mass in 2018 but were below average in 2019. Summerfruit harvest (cherries and apricots) was 14 and 2 days ahead of normal in 2017/18 and 2018/19 respectively. Spring wheat simulations suggested earlier flowering and lower grain yields compared to average, and below-average yield and tuber quality in potatoes crops occurred. Major species disruption occurred in marine ecosystems. Hindcasts indicate that the heatwaves were either atmospherically driven or arose from combinations of atmospheric surface warming and oceanic heat advection. |
Author | Behrens, Erik Parker, Amber K. Teixeira, Edmar Trought, Michael C. T. Diamond, Howard J. Salinger, M. James Herold, Nicholas Scofield, Claire Mullan, A. Brett Thomsen, Mads S. Sutton, Phil J. Fitzharris, B. Blair Renwick, James Siano, Allan Kerckhoffs, Huub South, Paul M. Fernandez, Denise Johnstone, Paul Smith, Robert O. |
Author_xml | – sequence: 1 givenname: M. James orcidid: 0000-0002-5782-1411 surname: Salinger fullname: Salinger, M. James email: jimbosalinger09@gmail.com organization: Department Agriculture, Food, Environment and Forestry (DAGRI), University of Florence – sequence: 2 givenname: Howard J. surname: Diamond fullname: Diamond, Howard J. organization: NOAA/Air Resources Laboratory – sequence: 3 givenname: Erik surname: Behrens fullname: Behrens, Erik organization: National Institute of Water and Atmospheric Research – sequence: 4 givenname: Denise surname: Fernandez fullname: Fernandez, Denise organization: National Institute of Water and Atmospheric Research – sequence: 5 givenname: B. Blair surname: Fitzharris fullname: Fitzharris, B. Blair organization: Department of Geography, University of Otago – sequence: 6 givenname: Nicholas surname: Herold fullname: Herold, Nicholas organization: The NSW Department of Planning, Industry and Environment, Science Division, Climate and Atmospheric Science – sequence: 7 givenname: Paul surname: Johnstone fullname: Johnstone, Paul organization: New Zealand Institute for Plant and Food Research Limited – sequence: 8 givenname: Huub surname: Kerckhoffs fullname: Kerckhoffs, Huub organization: School of Agriculture and Environment, Massey University – sequence: 9 givenname: A. Brett surname: Mullan fullname: Mullan, A. Brett organization: National Institute of Water and Atmospheric Research – sequence: 10 givenname: Amber K. surname: Parker fullname: Parker, Amber K. organization: Department of Wine, Food and Molecular Biosciences, Lincoln University – sequence: 11 givenname: James surname: Renwick fullname: Renwick, James organization: School of Geography, Environment & Earth Sciences, Victoria University of Wellington – sequence: 12 givenname: Claire surname: Scofield fullname: Scofield, Claire organization: New Zealand Institute for Plant and Food Research Limited – sequence: 13 givenname: Allan surname: Siano fullname: Siano, Allan organization: School of Agriculture and Environment, Massey University – sequence: 14 givenname: Robert O. surname: Smith fullname: Smith, Robert O. organization: Department of Marine Science, University of Otago – sequence: 15 givenname: Paul M. surname: South fullname: South, Paul M. organization: Cawthron Institute – sequence: 16 givenname: Phil J. surname: Sutton fullname: Sutton, Phil J. organization: National Institute of Water and Atmospheric Research, School of Environment, University of Auckland – sequence: 17 givenname: Edmar surname: Teixeira fullname: Teixeira, Edmar organization: New Zealand Institute for Plant and Food Research Limited – sequence: 18 givenname: Mads S. surname: Thomsen fullname: Thomsen, Mads S. organization: Centre of Integrative Ecology and the Marine Ecology Research Group, School of Biological Sciences, University of Canterbury – sequence: 19 givenname: Michael C. T. surname: Trought fullname: Trought, Michael C. T. organization: Innovative Winegrowing |
BookMark | eNp9kU1rHSEUhqUk0Jukf6AroZsuOu1RZ3TSXQnpB4Rmk2y6kXOdY65hRic6k9B_X29voZBFFnIEn0dfeU_YUUyRGHsr4KMAMJ-KgK5vG5BQl1HQdK_YRnRGNaLt4YhtQOiuAYDz1-yklPv9zki9YQ-3ccaM40gjDdyldd7P5Ahjg8uUyryjTLys00SZ7wiXJ3ykwkPky474T3rivwhHjAPPdBdS_MyHHB4plw98IrfDGMpU-P48TDO6pZyxY49joTf_5im7_Xp5c_G9ubr-9uPiy1XjVCeXpoXeOLH1GoxsB28UOhSdOhedbg164ZT0uAX0RigBUsvWa60VDKLfeiFRnbL3h3vnnB5WKoudQnE01qyU1mJla4xWomv7ir57ht6nNceazsr6GrS97lWl-gPlciolk7cuLLjUPy8Zw2gF2H0X9tCFrV3Yv13YrqrymTrnMGH-_bKkDlKpcLyj_D_VC9Yf1rOeCw |
CitedBy_id | crossref_primary_10_1002_rse2_343 crossref_primary_10_1007_s11540_024_09695_3 crossref_primary_10_1080_00288330_2024_2319100 crossref_primary_10_1016_j_scitotenv_2024_176558 crossref_primary_10_1080_00288330_2023_2218102 crossref_primary_10_1038_s43247_024_01982_8 crossref_primary_10_1029_2022JD037209 crossref_primary_10_1038_s41598_024_70034_0 crossref_primary_10_1017_jog_2022_27 crossref_primary_10_1016_j_scitotenv_2023_164316 crossref_primary_10_1080_00288330_2024_2439088 crossref_primary_10_1016_j_cub_2022_11_013 crossref_primary_10_3390_metabo11090580 crossref_primary_10_1002_joc_7908 crossref_primary_10_3389_fclim_2022_1012022 crossref_primary_10_3389_fclim_2022_907919 crossref_primary_10_1016_j_jtherbio_2023_103702 crossref_primary_10_1016_j_marenvres_2025_107090 crossref_primary_10_3390_metabo11080547 crossref_primary_10_1016_j_marenvres_2024_106738 crossref_primary_10_3390_atmos11121267 crossref_primary_10_5194_gmd_16_211_2023 crossref_primary_10_1071_ES23030 crossref_primary_10_3389_fclim_2022_798287 crossref_primary_10_1111_ddi_13407 crossref_primary_10_1007_s00704_024_04937_3 crossref_primary_10_1038_s41467_022_35493_x crossref_primary_10_1080_0028825X_2023_2245786 crossref_primary_10_1088_1748_9326_ad5ab0 crossref_primary_10_1029_2021GL094785 crossref_primary_10_3389_fpls_2021_618039 crossref_primary_10_1038_s41612_023_00521_0 crossref_primary_10_1016_j_jtherbio_2023_103699 crossref_primary_10_1029_2021GL093239 crossref_primary_10_1080_03014223_2023_2256682 crossref_primary_10_31677_2072_6724_2024_72_3_73_83 crossref_primary_10_1016_j_aquaculture_2024_741434 crossref_primary_10_3354_aei00472 crossref_primary_10_1080_00288330_2024_2436661 crossref_primary_10_1071_ES21012 crossref_primary_10_1016_j_gloplacha_2021_103680 crossref_primary_10_1175_JCLI_D_21_0102_1 |
Cites_doi | 10.1016/j.csr.2014.09.014 10.1175/jcli-d-16-0836.1 10.5670/oceanog.2018.205 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2 10.1175/1520-0493(1986)114<0371:TSOANZ>2.0.CO;2 10.1016/j.agrformet.2013.06.005 10.1007/BF00133218 10.3389/fmars.2019.00084 10.20870/oeno-one.2019.53.3.2329 10.1175/BAMS-D-19-0193.1 10.1007/BF02987885 10.1002/qj.4971024310 10.1088/1748-9326/ab012a 10.3389/fmars.2019.00228 10.3389/fmars.2019.0005d 10.1016/j.gloplacha.2012.04.002 10.1038/ncomms16101 10.1002/(SICI)1097-0088(20000315)20:3<299::AID-JOC474>3.0.CO;2-B 10.5670/oceanog.2017.213 10.1175/JCLI-D-18-0872.1 10.1002/qj.828 10.1038/s41467-018-03732-9 10.1002/qj.776 10.1175/BAMS-D-18-0116.1 10.1088/1748-9326/10/2/024012 10.1029/2010GL045384 10.3189/S0260305500016098 10.1002/qj.49709139009 10.1007/s00382-015-2525-1 10.1038/NGEO1296 10.1175/2009JCLI2786.1 10.1175/JCLI-D-12-00823.1 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2 10.1016/j.envsoft.2014.07.009 10.1016/j.pocean.2015.1012.1014 10.1071/FP09209 10.1080/00288330.2018.1562945 10.3390/d11040056 10.1016/j.scitotenv.2017.10.247 |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2020 Springer Nature B.V. 2020. |
Copyright_xml | – notice: Springer Nature B.V. 2020 – notice: Springer Nature B.V. 2020. |
DBID | AAYXX CITATION 3V. 7ST 7TG 7TN 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W F28 FR3 FRNLG F~G GNUQQ GUQSH H97 HCIFZ K60 K6~ KL. KR7 L.- L.G L6V M0C M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U R05 SOI 7S9 L.6 |
DOI | 10.1007/s10584-020-02730-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ABI/INFORM Global Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) University of Michigan ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection Oceanic Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1573-1480 |
EndPage | 506 |
ExternalDocumentID | 10_1007_s10584_020_02730_5 |
GeographicLocations | New Zealand Alps region Tasman Sea |
GeographicLocations_xml | – name: New Zealand – name: Tasman Sea – name: Alps region |
GrantInformation_xml | – fundername: Ministry of Business, Innovation and Employment grantid: CARIM; CAWX1801; Deep South; Deep South funderid: http://dx.doi.org/10.13039/501100003524 – fundername: Brian Mason Trust grantid: Impact of Marine Heatwaves |
GroupedDBID | -5A -5G -5~ -BR -DZ -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29B 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5GY 5QI 5VS 67M 67Z 6J9 6NX 6TJ 78A 7WY 7XC 88I 8FE 8FG 8FH 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKOMP BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LLZTM M0C M2O M2P M4Y M7R M7S MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT OVD P0- P19 P62 PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R05 R4E R89 R9I RHV RNI RNS ROL RPX RSV RXW RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 X6Y XJT Y6R YLTOR Z45 Z5M Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8O Z8P Z8Q Z8S Z8T Z8U Z8W Z8Z Z92 ZCA ZMTXR ZY4 ~02 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7TG 7TN 7UA 7XB 8FD 8FK ABRTQ C1K F1W F28 FR3 H97 KL. KR7 L.- L.G MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c352t-4087c1bf60724df73aca153915647af1c32fab0af713102624f66630d18bf12a3 |
IEDL.DBID | U2A |
ISSN | 0165-0009 |
IngestDate | Fri Jul 11 14:24:36 EDT 2025 Sat Aug 16 15:21:24 EDT 2025 Tue Jul 01 03:17:13 EDT 2025 Thu Apr 24 23:05:11 EDT 2025 Fri Feb 21 02:38:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Anthropogenic global warming Marine ecosystems Atmospheric heatwave Terrestrial ecosystems Marine heatwave Crops |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-4087c1bf60724df73aca153915647af1c32fab0af713102624f66630d18bf12a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5782-1411 |
PQID | 2647048683 |
PQPubID | 36297 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2477631548 proquest_journals_2647048683 crossref_citationtrail_10_1007_s10584_020_02730_5 crossref_primary_10_1007_s10584_020_02730_5 springer_journals_10_1007_s10584_020_02730_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200900 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200900 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An Interdisciplinary, International Journal Devoted to the Description, Causes and Implications of Climatic Change |
PublicationTitle | Climatic change |
PublicationTitleAbbrev | Climatic Change |
PublicationYear | 2020 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | FogtRLPerlwitzJMonaghanAJBromwichDHJonesJMMarshallGJHistorical SAM variability. Part II: twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 modelsJ Clim2009225346536510.1175/2009JCLI2786.1 Mullan AB, Stuart SJ, Hadfield MG, Smith MJ (2010) Report on the review of NIWA’s ‘Seven-Station’ temperature series NIWA information series no. 78. 175 pp. https://www.niwa.co.nz/sites/niwa.co.nz/files/import/attachments/Report-on-the-Review-of-NIWAas-Seven-Station-Temperature-Series_v3.pdf Rezaei EE, Siebert S, Ewert F (2015) Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming. Environ Res Lett 10(24012). https://doi.org/10.1088/1748-9326/10/2/024012 HillerLThorntonREManaging physiological disorders. Chapter 23: 235–246.In D. A. Johnson (Ed.), potato health management20082MinnesotaAPS PressISBN 978-0-89054-353-5 Mullan AB, Sood A, Stuart S (2016) Climate change projections for New Zealand: atmosphere projections based on simulations from the IPCC fifth assessment Wellington: Ministry for the Environment https://www.mfe.govt.nz/sites/default/files/media/Climate%20Change/Climate-change-projections-2nd-edition-final.pdf LevyDVeilleuxREAdaptation of potato to high temperatures and salinity—a reviewAmer J Potato Res20078448750610.1007/BF02987885 KidsonJWAn analysis of New Zealand synoptic types and their use in defining weather regimesInt J Climatol200020329931510.1002/(SICI)1097-0088(20000315)20:3<299::AID-JOC474>3.0.CO;2-B SalingerMJNew Zealand climate: the temperature record, historical data and some agricultural implicationsClim Chang1979210912610.1007/BF00133218 MolitorDJunkJClimate change is implicating a two-fold impact on air temperature increase in the ripening period under the conditions of the Luxembourgish grapegrowing regionOeno-one2019340942210.20870/oeno-one.2019.53.3.2329 ThompsonDWJSolomonSKushnerPJEnglandMHGriseKMKarolyDJSignatures of the Antarctic ozone hole in southern hemisphere surface climate changeNat Geosci201141174174910.1038/NGEO1296 SuttonPJBowenMOcean temperature change around New Zealand over the last 36 yearsN Z J Mar Freshw Res201953330532610.1080/00288330.2018.1562945 ThomsenMSSouthPCommunities and attachment networks associated with primary, secondary and alternative foundation species; a case of stressed and disturbed stands of southern bull kelpDiversity20191145610.3390/d11040056 KistlerRCollinsWSahaSWhiteGWoollenJKalnayEThe NCEP–NCAR 50–year reanalysis: monthly means CD–ROM and documentationBull Am Meteorol Soc200182224726810.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2 MarshallGJTrends in the southern annular mode from observations and reanalysesJ Clim2003164134414310.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2 Thomsen MS, Mondardini L, Alestra T, Gerrity S, Tait L, South PM, Lilley SA, Schiel DR (2019) Local extinction of bull kelp (Durvillaea spp.) due to a marine Heatwave. Front Mar Sci. https://doi.org/10.3389/fmars.2019.00084 OjedaHDeloireACarbonneauAInfluence of water deficits on grape berry growthVitis200140141145https://www.researchgate.net/publication/285702011_Influence_of_water_deficits_on_grape_berry_growth HartmannDLAMGKTRusticucciMAlexanderLVBrönnimannSCharabiYDentenerFJDlugokenckyEGEasterlingDRKaplanASodenBJThornePWWildMZhaiPMStockerTFQinDPlattnerK-GTignorMAllenSKBoschungJNauelsAXiaYBexVMidgleyPMObservations: atmosphere and surfaceClimate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change2013CambridgeCambridge University Press TrenberthKEZhangYFasulloJTChengLObservation-based estimates of global and Basin Ocean Meridional heat transport time seriesJ Clim2019324567458310.1175/JCLI-D-18-0872.1 Heidemann H, Ribbe J (2019) Marine heat waves and the influence of El Niño off Southeast Queensland, Australia, Frontiers of marine science, 20 February 2019. https://doi.org/10.3389/fmars.2019.0005d SianoABRoskrugeNKerchkhoffsLHJSofkova-BobchevaSYield and tuber quality variability in commercial potato cultivars under abiotic stress in New ZealandAgron N Z201848149163https://www.agronomysociety.nz/files/ASNZ_2018_14._Potato_yield_and_tuber_quality.pdf HuangBThornePWBanzonVFBoyerTChepurinGLawrimoreJHExtended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisonsJ Clim201730208179820510.1175/jcli-d-16-0836.1 Perkins-Kirkpatrick SE, King SE, Cougnon AD, Grosese EA, Oliver MR, Holbrook NJ, Lewis SC, Pourasghar F (2018) The role of natural variability and anthropogenic climate change in the 2017/18 Tasman Sea marine heatwave. Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-18-0116.1 SahaSThe NCEP climate forecast systemJ Clim2006193483351710.1175/JCLI-D-12-00823.1 DeeDPUppalaSMSimmonsAJBerrisfordPPoliPKobayashiSThe ERA-interim reanalysis: configuration and performance of the data assimilation systemQ J R Meteorol Soc201113765655359710.1002/qj.828 Garr CE, Fitzharris BB (1996) Using seasonal snow to forecast inflows into South island hydro lakes. In: Prospects and Needs for Climate Forecasting, The Royal Society of New Zealand Miscellaneous Series 34: 63–67 [ISBN 0-908654-61-8] HenleyBJGergisJKarolyDJPowerSBKennedyJFollandCKA tripole index for the Interdecadal Pacific OscillationClim Dyn20154511–123077309010.1007/s00382-015-2525-1Accessed on 05 27 2019 at https://www.esrl.noaa.gov/psd/data/timeseries/IPOTPI TroughtMCTKdGDundonCJohnstoneRPartridgeSFruitset - possible implications on wine qualityTransforming flowers to fruit2005MilduraAustralian Society of Viticulture and Oenology3236 JayneSRRoemmichDZilbermanNRiserSCJohnsonKSJohnsonKCPiotrowiczSRThe Argo program: present and futureOceanography201730182810.5670/oceanog.2017.213 Salinger MJ, Chinn TJ, Fitzharris BB (2019b) Annual ice volume changes 1949–2019 for the New Zealand Southern Alps. Int J Climatol (submitted) FitzharrisBGarrGESimulation of past variability in seasonal snow in the southern Alps, New ZealandAnn Glaciol19952137738210.3189/S0260305500016098 Hobday A, Oliver E, Gupta AS, Benthuysen J, Burrows M, Donat M, Holbrook N, Moore P, Thomsen M, Wernberg T, Smale D (2018) categorizing and naming marine heatwaves. Oceanogr 31(2) Oliver ECJ, Benthuysen JA, Bindoff NL, Hobday AJ, Holbrook NJ, Mundy CN, Perkins-Kirkpatrick SE (2017) The unprecedented 2015/16 Tasman Sea marine heatwave. Nat Commun:8. https://doi.org/10.1038/ncomms16101 BehrensEFernandezDSuttonPMeridional oceanic heat transport influences marine heatwaves in the Tasman Sea on interannual to decadal timescalesFront Mar Sciee2019622810.3389/fmars.2019.00228 Arblaster JM, Meehl GA, Karoly DJ (2011) Future climate change in the southern hemisphere: competing effects of ozone and greenhouse gases. Geophys Res Lett 38(2). https://doi.org/10.1029/2010GL045384 BlundenJArndtDSA look at 2018 takeaway points from the state of the climate 2018 supplementBull Amer Met Soc201920191527153810.1175/BAMS-D-19-0193.1 Salinger MJ, Diamond HJ (2020). Surface temperature trends in the New Zealand region 1871–2018. Submited to Weather and Climate BenthuysenJFengMZhongLSpatial patterns of warming off Western Australia during the 2011 Ningaloo Nino: quantifying impacts of remote and local forcing ContShelf Res20149123224610.1016/j.csr.2014.09.014 Holzworth DP, Huth NI, deVoil PG, ZurcherEJ HNI, McLean G, Chenu K, van Oosterom EJ, Snow V, Murphy C, Moore AD, Brown H, Whish JM, Verrall S, Fainges J, Bell LW, Peake AS, Poulton PL, Hochman Z, Thorburn PJ, Gaydon DS, Dalgliesh NP, Rodriguez D, Cox H, Chapman S, Doherty A, Teixeira E, Sharp J, Cichota R, Vogeler I, Li FY, Wang E, Hammer GL, Robertson MJ, Dimes JP, Whitbread AM, Hunt J, van Rees H, McClelland T, Carberry PS, Hargreaves JNG, MacLeod N, McDonald C, Harsdorf J, Wedgwood S, Keating BA (2014) APSIM—evolution towards a new generation of agricultural systems simulation. Environ Model Softw 62. https://doi.org/10.1016/j.envsoft.2014.07.009 CompoGPWhitakerJSSardeshmukhPDMatsuiNAllanRJYinXThe twentieth century reanalysis projectQ J R Meteorol Soc201113765412810.1002/qj.776 de Lautour S (1999) The climatology of seasonal snow. MSc Thesis, Department of Geography, University of Otago HobdayAAlexanderLVPerkinsSESmaleDAStraubSCOliverECJBenthuysenJABurrowsMTDonatMGFengMHolbrookNJMoorePJScannellHASen GuptaAWernbergTA hierarchical approach to defining marine heatwavesProg Oceanogr201614122723810.1016/j.pocean.2015.1012.1014Outcome of Workshop #1 GreerDHWestonCHeat stress affects flowering, berry growth, sugar accumulation and photosynthesis of *Vitis vinifera* cv. Semillon grapevines grown in a controlled environmentFunct Plant Biol20103720621410.1071/FP09209 Gregan P (2019) Vintage 2019 small but stunning. https://www.nzwine.com/media/13040/vintage-2019-small-but-stunning.pdf TeixeiraEIde RuiterJAusseilA-GA-GDaigneaultAJohnstonePHolmesATaitAEwertFAdapting crop rotations to climate change in regional impact modelling assessmentsSci Total Environ2018616–61778579510.1016/j.scitotenv.2017.10.247 GordonNDThe southern oscillation and New Zealand weatherMon Weather Rev198611437138710.1175/1520-0493(1986)114<0371:TSOANZ>2.0.CO;2 OliverECJDonatMGMoorePJSmaleDAAlexanderLVBenthuysenJAFengMGuptaASHobdayAJHolbrookNJPerkins-KirkpatrickSEStraubSCWernbergTLonger and more frequent marine heatwaves over the past centuryNat Commun20189132410.1038/s41467-018-03732-9 ChinnTJFitzharrisBBSalingerMJWillsmanAAnnual ice volume changes 1976–2008 for the New Zealand Southern AlpsGlob Planet Change201292–9310511810.1016/j.gloplacha.2012.04.002 ParkerAGarcia de Cortazar-AtauriIChuineIBarbeauGBoisBBoursiquotJ-MCahurelJ-YClaverieMDufourcqTGenyLGuimberteauGHofmannRWJacquetOLacombeTMonamyCOjedaHPanigaiLPayanJ-CLovelleBRRouchaudESchneiderCSpringJ-LStorchiPTomasiDTrambouzeWTroughtMvan LeeuwenCClassification of varieties for their timing of flowering and véraison using a modelling approach: a case study for the grapevine species Vitis vinifera LAgric For Meteorol201318024926410.1016/j.agrf BJ Henley (2730_CR18) 2015; 45 EI Teixeira (2730_CR48) 2018; 616–617 DP Dee (2730_CR9) 2011; 137 2730_CR8 2730_CR1 2730_CR39 R Kistler (2730_CR27) 2001; 82 2730_CR38 TJ Chinn (2730_CR5) 2001; 40 2730_CR36 2730_CR34 D Levy (2730_CR28) 2007; 84 2730_CR32 JW Kidson (2730_CR26) 2000; 20 2730_CR31 J Benthuysen (2730_CR3) 2014; 91 D Molitor (2730_CR30) 2019; 3 MS Thomsen (2730_CR50) 2019; 11 GP Compo (2730_CR7) 2011; 137 DH Greer (2730_CR14) 2010; 37 AB Siano (2730_CR46) 2018; 48 AJ Troup (2730_CR55) 1965; 91 TJ Chinn (2730_CR6) 2012; 92–93 2730_CR45 MCT Trought (2730_CR54) 2005 2730_CR44 2730_CR43 ECJ Oliver (2730_CR35) 2018; 9 2730_CR42 E Behrens (2730_CR2) 2019; 6 SR Jayne (2730_CR24) 2017; 30 MJ Salinger (2730_CR41) 1979; 2 RL Fogt (2730_CR11) 2009; 22 S Saha (2730_CR40) 2006; 19 DWJ Thompson (2730_CR49) 2011; 4 A Hobday (2730_CR20) 2016; 141 2730_CR17 2730_CR15 GJ Marshall (2730_CR29) 2003; 16 2730_CR12 2730_CR51 B Fitzharris (2730_CR10) 1995; 21 H Ojeda (2730_CR33) 2001; 40 KE Trenberth (2730_CR53) 2019; 32 A Parker (2730_CR37) 2013; 180 PJ Sutton (2730_CR47) 2019; 53 2730_CR25 2730_CR22 L Hiller (2730_CR19) 2008 2730_CR21 DL Hartmann (2730_CR16) 2013 ND Gordon (2730_CR13) 1986; 114 J Blunden (2730_CR4) 2019; 2019 B Huang (2730_CR23) 2017; 30 KE Trenberth (2730_CR52) 1976; 102 |
References_xml | – reference: BlundenJArndtDSA look at 2018 takeaway points from the state of the climate 2018 supplementBull Amer Met Soc201920191527153810.1175/BAMS-D-19-0193.1 – reference: Heidemann H, Ribbe J (2019) Marine heat waves and the influence of El Niño off Southeast Queensland, Australia, Frontiers of marine science, 20 February 2019. https://doi.org/10.3389/fmars.2019.0005d – reference: ChinnTJFitzharrisBBSalingerMJWillsmanAAnnual ice volume changes 1976–2008 for the New Zealand Southern AlpsGlob Planet Change201292–9310511810.1016/j.gloplacha.2012.04.002 – reference: Garr CE, Fitzharris BB (1996) Using seasonal snow to forecast inflows into South island hydro lakes. In: Prospects and Needs for Climate Forecasting, The Royal Society of New Zealand Miscellaneous Series 34: 63–67 [ISBN 0-908654-61-8] – reference: HartmannDLAMGKTRusticucciMAlexanderLVBrönnimannSCharabiYDentenerFJDlugokenckyEGEasterlingDRKaplanASodenBJThornePWWildMZhaiPMStockerTFQinDPlattnerK-GTignorMAllenSKBoschungJNauelsAXiaYBexVMidgleyPMObservations: atmosphere and surfaceClimate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change2013CambridgeCambridge University Press – reference: SahaSThe NCEP climate forecast systemJ Clim2006193483351710.1175/JCLI-D-12-00823.1 – reference: HillerLThorntonREManaging physiological disorders. Chapter 23: 235–246.In D. A. Johnson (Ed.), potato health management20082MinnesotaAPS PressISBN 978-0-89054-353-5 – reference: FitzharrisBGarrGESimulation of past variability in seasonal snow in the southern Alps, New ZealandAnn Glaciol19952137738210.3189/S0260305500016098 – reference: Holzworth DP, Huth NI, deVoil PG, ZurcherEJ HNI, McLean G, Chenu K, van Oosterom EJ, Snow V, Murphy C, Moore AD, Brown H, Whish JM, Verrall S, Fainges J, Bell LW, Peake AS, Poulton PL, Hochman Z, Thorburn PJ, Gaydon DS, Dalgliesh NP, Rodriguez D, Cox H, Chapman S, Doherty A, Teixeira E, Sharp J, Cichota R, Vogeler I, Li FY, Wang E, Hammer GL, Robertson MJ, Dimes JP, Whitbread AM, Hunt J, van Rees H, McClelland T, Carberry PS, Hargreaves JNG, MacLeod N, McDonald C, Harsdorf J, Wedgwood S, Keating BA (2014) APSIM—evolution towards a new generation of agricultural systems simulation. Environ Model Softw 62. https://doi.org/10.1016/j.envsoft.2014.07.009 – reference: SianoABRoskrugeNKerchkhoffsLHJSofkova-BobchevaSYield and tuber quality variability in commercial potato cultivars under abiotic stress in New ZealandAgron N Z201848149163https://www.agronomysociety.nz/files/ASNZ_2018_14._Potato_yield_and_tuber_quality.pdf – reference: MolitorDJunkJClimate change is implicating a two-fold impact on air temperature increase in the ripening period under the conditions of the Luxembourgish grapegrowing regionOeno-one2019340942210.20870/oeno-one.2019.53.3.2329 – reference: Salinger MJ, McGann RP, Coutts L, Collen B, Fouhy E (1992) South Pacific historical climate network. Temperature trends in New Zealand and outlying islands, 1920-1990. New Zealand meteorological service, 46pp, Wellington. ISBN 0-477-01598-0 – reference: SuttonPJBowenMOcean temperature change around New Zealand over the last 36 yearsN Z J Mar Freshw Res201953330532610.1080/00288330.2018.1562945 – reference: HobdayAAlexanderLVPerkinsSESmaleDAStraubSCOliverECJBenthuysenJABurrowsMTDonatMGFengMHolbrookNJMoorePJScannellHASen GuptaAWernbergTA hierarchical approach to defining marine heatwavesProg Oceanogr201614122723810.1016/j.pocean.2015.1012.1014Outcome of Workshop #1 – reference: TroughtMCTKdGDundonCJohnstoneRPartridgeSFruitset - possible implications on wine qualityTransforming flowers to fruit2005MilduraAustralian Society of Viticulture and Oenology3236 – reference: TroupAJThe ‘southern oscillation’Quart J Roy Met Soc19659139049050610.1002/qj.49709139009 – reference: CompoGPWhitakerJSSardeshmukhPDMatsuiNAllanRJYinXThe twentieth century reanalysis projectQ J R Meteorol Soc201113765412810.1002/qj.776 – reference: HenleyBJGergisJKarolyDJPowerSBKennedyJFollandCKA tripole index for the Interdecadal Pacific OscillationClim Dyn20154511–123077309010.1007/s00382-015-2525-1Accessed on 05 27 2019 at https://www.esrl.noaa.gov/psd/data/timeseries/IPOTPI – reference: Mullan AB, Sood A, Stuart S (2016) Climate change projections for New Zealand: atmosphere projections based on simulations from the IPCC fifth assessment Wellington: Ministry for the Environment https://www.mfe.govt.nz/sites/default/files/media/Climate%20Change/Climate-change-projections-2nd-edition-final.pdf – reference: Thomsen MS, Mondardini L, Alestra T, Gerrity S, Tait L, South PM, Lilley SA, Schiel DR (2019) Local extinction of bull kelp (Durvillaea spp.) due to a marine Heatwave. Front Mar Sci. https://doi.org/10.3389/fmars.2019.00084 – reference: Hobday A, Oliver E, Gupta AS, Benthuysen J, Burrows M, Donat M, Holbrook N, Moore P, Thomsen M, Wernberg T, Smale D (2018) categorizing and naming marine heatwaves. Oceanogr 31(2) – reference: Gregan P (2019) Vintage 2019 small but stunning. https://www.nzwine.com/media/13040/vintage-2019-small-but-stunning.pdf – reference: ThompsonDWJSolomonSKushnerPJEnglandMHGriseKMKarolyDJSignatures of the Antarctic ozone hole in southern hemisphere surface climate changeNat Geosci201141174174910.1038/NGEO1296 – reference: BenthuysenJFengMZhongLSpatial patterns of warming off Western Australia during the 2011 Ningaloo Nino: quantifying impacts of remote and local forcing ContShelf Res20149123224610.1016/j.csr.2014.09.014 – reference: Parker AK (2012) Modelling phenology and maturation of the grapevine Vitis vinifera L.: Varietal differences and the role of leaf area to fruit weight ratio manipulations Lincoln University PhD thesis Lincoln University – reference: KistlerRCollinsWSahaSWhiteGWoollenJKalnayEThe NCEP–NCAR 50–year reanalysis: monthly means CD–ROM and documentationBull Am Meteorol Soc200182224726810.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2 – reference: Rezaei EE, Siebert S, Ewert F (2015) Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming. Environ Res Lett 10(24012). https://doi.org/10.1088/1748-9326/10/2/024012 – reference: OjedaHDeloireACarbonneauAInfluence of water deficits on grape berry growthVitis200140141145https://www.researchgate.net/publication/285702011_Influence_of_water_deficits_on_grape_berry_growth – reference: BehrensEFernandezDSuttonPMeridional oceanic heat transport influences marine heatwaves in the Tasman Sea on interannual to decadal timescalesFront Mar Sciee2019622810.3389/fmars.2019.00228 – reference: Mullan AB, Stuart SJ, Hadfield MG, Smith MJ (2010) Report on the review of NIWA’s ‘Seven-Station’ temperature series NIWA information series no. 78. 175 pp. https://www.niwa.co.nz/sites/niwa.co.nz/files/import/attachments/Report-on-the-Review-of-NIWAas-Seven-Station-Temperature-Series_v3.pdf – reference: Salinger MJ, Diamond HJ (2020). Surface temperature trends in the New Zealand region 1871–2018. Submited to Weather and Climate – reference: TrenberthKEZhangYFasulloJTChengLObservation-based estimates of global and Basin Ocean Meridional heat transport time seriesJ Clim2019324567458310.1175/JCLI-D-18-0872.1 – reference: GreerDHWestonCHeat stress affects flowering, berry growth, sugar accumulation and photosynthesis of *Vitis vinifera* cv. Semillon grapevines grown in a controlled environmentFunct Plant Biol20103720621410.1071/FP09209 – reference: OliverECJDonatMGMoorePJSmaleDAAlexanderLVBenthuysenJAFengMGuptaASHobdayAJHolbrookNJPerkins-KirkpatrickSEStraubSCWernbergTLonger and more frequent marine heatwaves over the past centuryNat Commun20189132410.1038/s41467-018-03732-9 – reference: Salinger MJ, Renwick JA, Behrens E, Mullan AB, Diamond HJ, Sirguey P, Smith RO, Trought MCT, Alexander LV, Cullen NC, Fitzharris BB, Hepburn CD, Parker AK, Sutton PJ (2019a) The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: drivers, mechanisms and impacts. Environ Res Lett 14(4). https://doi.org/10.1088/1748-9326/ab012a – reference: de Lautour S (1999) The climatology of seasonal snow. MSc Thesis, Department of Geography, University of Otago – reference: GordonNDThe southern oscillation and New Zealand weatherMon Weather Rev198611437138710.1175/1520-0493(1986)114<0371:TSOANZ>2.0.CO;2 – reference: HuangBThornePWBanzonVFBoyerTChepurinGLawrimoreJHExtended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisonsJ Clim201730208179820510.1175/jcli-d-16-0836.1 – reference: FogtRLPerlwitzJMonaghanAJBromwichDHJonesJMMarshallGJHistorical SAM variability. Part II: twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 modelsJ Clim2009225346536510.1175/2009JCLI2786.1 – reference: TeixeiraEIde RuiterJAusseilA-GA-GDaigneaultAJohnstonePHolmesATaitAEwertFAdapting crop rotations to climate change in regional impact modelling assessmentsSci Total Environ2018616–61778579510.1016/j.scitotenv.2017.10.247 – reference: ThomsenMSSouthPCommunities and attachment networks associated with primary, secondary and alternative foundation species; a case of stressed and disturbed stands of southern bull kelpDiversity20191145610.3390/d11040056 – reference: ParkerAGarcia de Cortazar-AtauriIChuineIBarbeauGBoisBBoursiquotJ-MCahurelJ-YClaverieMDufourcqTGenyLGuimberteauGHofmannRWJacquetOLacombeTMonamyCOjedaHPanigaiLPayanJ-CLovelleBRRouchaudESchneiderCSpringJ-LStorchiPTomasiDTrambouzeWTroughtMvan LeeuwenCClassification of varieties for their timing of flowering and véraison using a modelling approach: a case study for the grapevine species Vitis vinifera LAgric For Meteorol201318024926410.1016/j.agrformet.2013.06.005 – reference: Kidson E (1935) The summer of 1934/35 in new Zealand NZ met.Office Note 16 12pp – reference: KidsonJWAn analysis of New Zealand synoptic types and their use in defining weather regimesInt J Climatol200020329931510.1002/(SICI)1097-0088(20000315)20:3<299::AID-JOC474>3.0.CO;2-B – reference: Salinger MJ, Chinn TJ, Fitzharris BB (2019b) Annual ice volume changes 1949–2019 for the New Zealand Southern Alps. Int J Climatol (submitted) – reference: JayneSRRoemmichDZilbermanNRiserSCJohnsonKSJohnsonKCPiotrowiczSRThe Argo program: present and futureOceanography201730182810.5670/oceanog.2017.213 – reference: Oliver ECJ, Benthuysen JA, Bindoff NL, Hobday AJ, Holbrook NJ, Mundy CN, Perkins-Kirkpatrick SE (2017) The unprecedented 2015/16 Tasman Sea marine heatwave. Nat Commun:8. https://doi.org/10.1038/ncomms16101 – reference: LevyDVeilleuxREAdaptation of potato to high temperatures and salinity—a reviewAmer J Potato Res20078448750610.1007/BF02987885 – reference: Arblaster JM, Meehl GA, Karoly DJ (2011) Future climate change in the southern hemisphere: competing effects of ozone and greenhouse gases. Geophys Res Lett 38(2). https://doi.org/10.1029/2010GL045384 – reference: ChinnTJDistribution of the glacial water resources of New ZealandJ Hydrol N Z2001402139187https://www.jstor.org/stable/43922047 – reference: Perkins-Kirkpatrick SE, King SE, Cougnon AD, Grosese EA, Oliver MR, Holbrook NJ, Lewis SC, Pourasghar F (2018) The role of natural variability and anthropogenic climate change in the 2017/18 Tasman Sea marine heatwave. Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-18-0116.1 – reference: MarshallGJTrends in the southern annular mode from observations and reanalysesJ Clim2003164134414310.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2 – reference: SalingerMJNew Zealand climate: the temperature record, historical data and some agricultural implicationsClim Chang1979210912610.1007/BF00133218 – reference: DeeDPUppalaSMSimmonsAJBerrisfordPPoliPKobayashiSThe ERA-interim reanalysis: configuration and performance of the data assimilation systemQ J R Meteorol Soc201113765655359710.1002/qj.828 – reference: TrenberthKEFluctuations and trends in indices of the southern hemispheric circulationQuart J Roy Met Soc1976102431657510.1002/qj.4971024310 – volume: 91 start-page: 232 year: 2014 ident: 2730_CR3 publication-title: Shelf Res doi: 10.1016/j.csr.2014.09.014 – ident: 2730_CR25 – volume: 30 start-page: 8179 issue: 20 year: 2017 ident: 2730_CR23 publication-title: J Clim doi: 10.1175/jcli-d-16-0836.1 – ident: 2730_CR21 doi: 10.5670/oceanog.2018.205 – volume: 82 start-page: 247 issue: 2 year: 2001 ident: 2730_CR27 publication-title: Bull Am Meteorol Soc doi: 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2 – volume: 114 start-page: 371 year: 1986 ident: 2730_CR13 publication-title: Mon Weather Rev doi: 10.1175/1520-0493(1986)114<0371:TSOANZ>2.0.CO;2 – volume: 180 start-page: 249 year: 2013 ident: 2730_CR37 publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2013.06.005 – volume: 2 start-page: 109 year: 1979 ident: 2730_CR41 publication-title: Clim Chang doi: 10.1007/BF00133218 – ident: 2730_CR51 doi: 10.3389/fmars.2019.00084 – ident: 2730_CR12 – volume: 3 start-page: 409 year: 2019 ident: 2730_CR30 publication-title: Oeno-one doi: 10.20870/oeno-one.2019.53.3.2329 – volume: 2019 start-page: 1527 year: 2019 ident: 2730_CR4 publication-title: Bull Amer Met Soc doi: 10.1175/BAMS-D-19-0193.1 – volume: 48 start-page: 149 year: 2018 ident: 2730_CR46 publication-title: Agron N Z – ident: 2730_CR8 – volume: 84 start-page: 487 year: 2007 ident: 2730_CR28 publication-title: Amer J Potato Res doi: 10.1007/BF02987885 – volume: 102 start-page: 65 issue: 431 year: 1976 ident: 2730_CR52 publication-title: Quart J Roy Met Soc doi: 10.1002/qj.4971024310 – ident: 2730_CR31 – ident: 2730_CR44 doi: 10.1088/1748-9326/ab012a – volume: 40 start-page: 139 issue: 2 year: 2001 ident: 2730_CR5 publication-title: J Hydrol N Z – volume: 6 start-page: 228 year: 2019 ident: 2730_CR2 publication-title: Front Mar Sciee doi: 10.3389/fmars.2019.00228 – ident: 2730_CR17 doi: 10.3389/fmars.2019.0005d – volume: 92–93 start-page: 105 year: 2012 ident: 2730_CR6 publication-title: Glob Planet Change doi: 10.1016/j.gloplacha.2012.04.002 – ident: 2730_CR43 – ident: 2730_CR36 – ident: 2730_CR34 doi: 10.1038/ncomms16101 – volume: 20 start-page: 299 issue: 3 year: 2000 ident: 2730_CR26 publication-title: Int J Climatol doi: 10.1002/(SICI)1097-0088(20000315)20:3<299::AID-JOC474>3.0.CO;2-B – volume: 30 start-page: 18 year: 2017 ident: 2730_CR24 publication-title: Oceanography doi: 10.5670/oceanog.2017.213 – volume: 32 start-page: 4567 year: 2019 ident: 2730_CR53 publication-title: J Clim doi: 10.1175/JCLI-D-18-0872.1 – volume: 137 start-page: 553 issue: 656 year: 2011 ident: 2730_CR9 publication-title: Q J R Meteorol Soc doi: 10.1002/qj.828 – start-page: 32 volume-title: Transforming flowers to fruit year: 2005 ident: 2730_CR54 – volume-title: Managing physiological disorders. Chapter 23: 235–246.In D. A. Johnson (Ed.), potato health management year: 2008 ident: 2730_CR19 – volume: 9 start-page: 1324 year: 2018 ident: 2730_CR35 publication-title: Nat Commun doi: 10.1038/s41467-018-03732-9 – ident: 2730_CR15 – ident: 2730_CR32 – volume: 137 start-page: 1 issue: 654 year: 2011 ident: 2730_CR7 publication-title: Q J R Meteorol Soc doi: 10.1002/qj.776 – ident: 2730_CR38 doi: 10.1175/BAMS-D-18-0116.1 – ident: 2730_CR39 doi: 10.1088/1748-9326/10/2/024012 – ident: 2730_CR1 doi: 10.1029/2010GL045384 – ident: 2730_CR42 – volume: 21 start-page: 377 year: 1995 ident: 2730_CR10 publication-title: Ann Glaciol doi: 10.3189/S0260305500016098 – volume: 91 start-page: 490 issue: 390 year: 1965 ident: 2730_CR55 publication-title: Quart J Roy Met Soc doi: 10.1002/qj.49709139009 – volume: 45 start-page: 3077 issue: 11–12 year: 2015 ident: 2730_CR18 publication-title: Clim Dyn doi: 10.1007/s00382-015-2525-1 – volume: 4 start-page: 741 issue: 11 year: 2011 ident: 2730_CR49 publication-title: Nat Geosci doi: 10.1038/NGEO1296 – volume: 22 start-page: 5346 year: 2009 ident: 2730_CR11 publication-title: J Clim doi: 10.1175/2009JCLI2786.1 – volume: 19 start-page: 3483 year: 2006 ident: 2730_CR40 publication-title: J Clim doi: 10.1175/JCLI-D-12-00823.1 – volume: 16 start-page: 4134 year: 2003 ident: 2730_CR29 publication-title: J Clim doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2 – ident: 2730_CR22 doi: 10.1016/j.envsoft.2014.07.009 – volume: 141 start-page: 227 year: 2016 ident: 2730_CR20 publication-title: Prog Oceanogr doi: 10.1016/j.pocean.2015.1012.1014 – ident: 2730_CR45 – volume: 37 start-page: 206 year: 2010 ident: 2730_CR14 publication-title: Funct Plant Biol doi: 10.1071/FP09209 – volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: 2730_CR16 – volume: 40 start-page: 141 year: 2001 ident: 2730_CR33 publication-title: Vitis – volume: 53 start-page: 305 issue: 3 year: 2019 ident: 2730_CR47 publication-title: N Z J Mar Freshw Res doi: 10.1080/00288330.2018.1562945 – volume: 11 start-page: 56 issue: 4 year: 2019 ident: 2730_CR50 publication-title: Diversity doi: 10.3390/d11040056 – volume: 616–617 start-page: 785 year: 2018 ident: 2730_CR48 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.10.247 |
SSID | ssj0009726 |
Score | 2.5235505 |
Snippet | During austral summers (DJF) 1934/35, 2017/18 and 2018/19, the New Zealand (NZ) region (approximately 4 million km
2
) experienced the most intense coupled... During austral summers (DJF) 1934/35, 2017/18 and 2018/19, the New Zealand (NZ) region (approximately 4 million km2) experienced the most intense coupled... During austral summers (DJF) 1934/35, 2017/18 and 2018/19, the New Zealand (NZ) region (approximately 4 million km²) experienced the most intense coupled... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 485 |
SubjectTerms | 20th century Ablation Advection Air temperature Alps region Anomalies Antarctic Oscillation Apricots Atmosphere Atmospheric circulation Atmospheric circulation anomalies Atmospheric circulation patterns Atmospheric Sciences Cherries Climate change Climate Change/Climate Change Impacts Earth and Environmental Science Earth Sciences Flowering General circulation models Heat Heat transport Heat waves Heatwaves Ice Marine ecosystems New Zealand Ocean warming Ocean-atmosphere system Oceans Sea level Sea surface Sea surface temperature Sea surface temperature anomalies snow Spring wheat Summer Surface temperature Tasman Sea Temperature Temperature anomalies Terrestrial ecosystems Wines |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6vfgifmJ1SgTxxRX7kX7MF9GxMQSHiAPfSpqmMNjare303_cuS1cU3FMpSRvaS-5-l9z9jpAbS0rXFT54qlwIkwk_hSXl2eCl-AxJcRMpVJTv2B9N2Mun96k33EodVlnrRKWok1zgHvk9GO4A6eFC93GxNLFqFJ6u6hIau6QNKjgE56v9PBi_vTe0u4EquIY5O5g_3dNpMzp5Doyvie4TcrpYpvfbNDV4888RqbI8wwOyryEjfVrL-JDsyOyIGK-AdvNCbYrTW9qfTQF6qrtjspxkyOg9m4FJSajIVwu8gqHimcmreV4ilYCk-FGyoKiNv_mXLOk0owAHKeg9qkMeKdZtyLMHmhQqfqNL5xJThaflvKTYvk6yLE_IZDj46I9MXVrBFIC4KvAaw0DYcepbgcOSNHC54KD7ekgdE_DUFq6T8tjiKfiwAEF8h6Xg57hWYodxajvcPSWtLM_kGaEAATCb1Qt9ZrEktDgXSSy5z3oCkxG5Qez6r0ZC845j-YtZ1DAmoyQikESkJBF5BrnbPLNYs25s7d2phRXpFVhGzXwxyPWmGdYOHojwTOYr6MMCUK_otBmkWwu5ecX_I55vH_GC7DlqXmEoWoe0qmIlLwG7VPGVnqA_zUHp8Q priority: 102 providerName: ProQuest |
Title | Unparalleled coupled ocean-atmosphere summer heatwaves in the New Zealand region: drivers, mechanisms and impacts |
URI | https://link.springer.com/article/10.1007/s10584-020-02730-5 https://www.proquest.com/docview/2647048683 https://www.proquest.com/docview/2477631548 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6svXgRnxgfZQXxooE8No96a6UPFIuIBT2FzWYDhTapTat_35ltYlVU8LSEbDaQ2Z35JjvftwBnllKuK33MVIWUJpd-ikvKszFL8TmJ4iZK6irfgd8f8psn76kkhRVVtXu1Jak99SeyGwZLk9Id0mCxTK8GdY9yd5zFQ6e1ktoN9CFrxNMhznSzpMr8PMbXcLTCmN-2RXW06W7BZgkTWWtp121YU9kOGHeIcPOZ_hHOztn1eIRwU1_twsswIxXv8RjDSMJkvphSi8FJZKaYT_KC5AMUo3mnZow88Jt4VQUbZQwhIENfx8oyR0ZnNeTZFUtmumbjkk0U0YNHxaRgdH9JrCz2YNjtPF73zfI4BVMiyppjphgG0o5T3wocnqSBK6RAf9ckuZhApLZ0nVTElkgxb0XY4Ts8xdzGtRI7jFPbEe4-rGd5pg6AYdgnBqsX-tziSWgJIZNYCZ83JREQhQF29VUjWWqN05EX42ilkkyWiNASkbZE5Blw8fHMdKm08Wfv48pYUbnqigjBXUASgqFrwOnHbVwvtAkiMpUvsA8P0KVSombAZWXk1RC_v_Hwf92PYMPR84zK0Y5hfT5bqBPEL_O4AbWw22tAvdVttwfU9p5vO9i2O4P7h4aezO9Pn-rq |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4FeoBLBZSqpkAXqeUCVm3v-hEkVFXQEBqSE5G4uev1WoqU2CFOQPwpfiMzGxurSHDjZFl-STuvb7wz3wB8d7TmXAWYqUqlbKGCDE3KdzFLCQSR4qZamSrfQdAdir83_k0LHuteGCqrrH2icdRpoegf-U8M3CHRw0X81_TWpqlRtLtaj9BYqkVPP9xjylaeXp6jfH94XufP9VnXrqYK2ArBxhwTpihUbpIFTuiJNAu5VBLNvk2sKaHMXMW9TCaOzDB9w-gbeCJDiM-d1I2SzPUkx_euwAfBeZssKupcNCS_oRnvRh1C1K3drpp0qlY9DPU2JWvEIOPY_v-BsEG3LzZkTZzrbMDHCqCy30uN2oSWzrfA6iO2LmbmFzw7ZGfjEQJdc_YJboc58YePxxjAUqaKxZSOGBZlbsv5pCiJuEAzWkI9Y-T77-WdLtkoZwg-GXpZVhVYMpoSUeQnLJ2ZapFjNtHUmDwqJyWj68uWznIbhu-y5J9hNS9y_QUYAg7qnfWjQDgijRwpVZpoGYi2otZHaYFbr2qsKpZzGrYxjht-ZpJEjJKIjSRi34Kj52emS46PN-_erYUVV_Zexo12WnDwfBktlbZfZK6LBd4jQnTmlCJacFwLuXnF61_cefuL32Cte92_iq8uB72vsO4ZHaMiuF1Ync8Weg9R0zzZN6rK4N9728YTsQAj3A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS9xAFD7oCsWXom2lqdqOYPtSg7lMLisUadVFa7uIdMG3OJnMwMJusrvZVfrX-us8Z3ZiaKG--RRCbjDnnjnfdwD2PaXCUMZYqQopXS5jjSYV-VilxJxIcQslTZdvPz4f8O830c0K_GmwMNRW2fhE46iLStI_8kMM3AnRw6XhobZtEVenvePJ1KUJUrTT2ozTWKrIpfp9j-Vb_eXiFGX9MQh6Z79Ozl07YcCVmHjMsXhKE-nnOvaSgBc6CYUU6AK6xKCSCO3LMNAi94TGUg4jcRxwjel-6BV-mms_ECG-dxXWEqyKvA6sfTvrX123lL-JGfZGeCHCbnctZMcC9zDwu1S6EZ-M50Z_h8U21_1ne9ZEvd4GvLTpKvu61K9NWFHlK3B-YqZdzcwPefaJnYyGmPaas9cwHZTEJj4aYTgrmKwWEzpikBSlK-bjqiYaA8VoEdWMUSS4F3eqZsOSYSrK0Ocy227JaGZEVR6xYmZ6Rw7YWBFMeViPa0bXlwDP-g0MnmXRt6BTVqV6CwzTD0LSRmnMPV6knhCyyJWIeVcSEFI44DermknLeU6jN0ZZy9ZMkshQEpmRRBY58PnxmcmS8ePJu3caYWXW-uus1VUH9h4vo93SZowoVbXAe3iCrp0KRgcOGiG3r_j_F989_cUP8ALtIvtx0b_chvXAqBh1xO1AZz5bqF1Moeb5e6urDG6f2zweAGgAKW4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unparalleled+coupled+ocean-atmosphere+summer+heatwaves+in+the+New+Zealand+region%3A+drivers%2C+mechanisms+and+impacts&rft.jtitle=Climatic+change&rft.au=Salinger%2C+M.+James&rft.au=Diamond%2C+Howard+J.&rft.au=Behrens%2C+Erik&rft.au=Fernandez%2C+Denise&rft.date=2020-09-01&rft.issn=0165-0009&rft.eissn=1573-1480&rft.volume=162&rft.issue=2&rft.spage=485&rft.epage=506&rft_id=info:doi/10.1007%2Fs10584-020-02730-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10584_020_02730_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0009&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0009&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0009&client=summon |