Unparalleled coupled ocean-atmosphere summer heatwaves in the New Zealand region: drivers, mechanisms and impacts

During austral summers (DJF) 1934/35, 2017/18 and 2018/19, the New Zealand (NZ) region (approximately 4 million km 2 ) experienced the most intense coupled ocean-atmosphere heatwaves on record. Average air temperature anomalies over land were + 1.7 to 2.1 °C while sea surface temperatures (SST) were...

Full description

Saved in:
Bibliographic Details
Published inClimatic change Vol. 162; no. 2; pp. 485 - 506
Main Authors Salinger, M. James, Diamond, Howard J., Behrens, Erik, Fernandez, Denise, Fitzharris, B. Blair, Herold, Nicholas, Johnstone, Paul, Kerckhoffs, Huub, Mullan, A. Brett, Parker, Amber K., Renwick, James, Scofield, Claire, Siano, Allan, Smith, Robert O., South, Paul M., Sutton, Phil J., Teixeira, Edmar, Thomsen, Mads S., Trought, Michael C. T.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During austral summers (DJF) 1934/35, 2017/18 and 2018/19, the New Zealand (NZ) region (approximately 4 million km 2 ) experienced the most intense coupled ocean-atmosphere heatwaves on record. Average air temperature anomalies over land were + 1.7 to 2.1 °C while sea surface temperatures (SST) were 1.2 to 1.9 °C above average. All three heatwaves exhibited maximum SST anomalies west of the South Island of NZ. Atmospheric circulation anomalies showed a pattern of blocking centred over the Tasman Sea extending south-east of NZ, accompanied by strongly positive Southern Annular Mode conditions, and reduced trough activity over NZ. Rapid melt of seasonal snow occurred in all three cases. For the two most recent events, combined ice loss in the Southern Alps was estimated at 8.9 km 3 (22% of the 2017 volume). Sauvignon blanc and Pinot noir wine grapes had above average berry number and bunch mass in 2018 but were below average in 2019. Summerfruit harvest (cherries and apricots) was 14 and 2 days ahead of normal in 2017/18 and 2018/19 respectively. Spring wheat simulations suggested earlier flowering and lower grain yields compared to average, and below-average yield and tuber quality in potatoes crops occurred. Major species disruption occurred in marine ecosystems. Hindcasts indicate that the heatwaves were either atmospherically driven or arose from combinations of atmospheric surface warming and oceanic heat advection.
AbstractList During austral summers (DJF) 1934/35, 2017/18 and 2018/19, the New Zealand (NZ) region (approximately 4 million km 2 ) experienced the most intense coupled ocean-atmosphere heatwaves on record. Average air temperature anomalies over land were + 1.7 to 2.1 °C while sea surface temperatures (SST) were 1.2 to 1.9 °C above average. All three heatwaves exhibited maximum SST anomalies west of the South Island of NZ. Atmospheric circulation anomalies showed a pattern of blocking centred over the Tasman Sea extending south-east of NZ, accompanied by strongly positive Southern Annular Mode conditions, and reduced trough activity over NZ. Rapid melt of seasonal snow occurred in all three cases. For the two most recent events, combined ice loss in the Southern Alps was estimated at 8.9 km 3 (22% of the 2017 volume). Sauvignon blanc and Pinot noir wine grapes had above average berry number and bunch mass in 2018 but were below average in 2019. Summerfruit harvest (cherries and apricots) was 14 and 2 days ahead of normal in 2017/18 and 2018/19 respectively. Spring wheat simulations suggested earlier flowering and lower grain yields compared to average, and below-average yield and tuber quality in potatoes crops occurred. Major species disruption occurred in marine ecosystems. Hindcasts indicate that the heatwaves were either atmospherically driven or arose from combinations of atmospheric surface warming and oceanic heat advection.
During austral summers (DJF) 1934/35, 2017/18 and 2018/19, the New Zealand (NZ) region (approximately 4 million km²) experienced the most intense coupled ocean-atmosphere heatwaves on record. Average air temperature anomalies over land were + 1.7 to 2.1 °C while sea surface temperatures (SST) were 1.2 to 1.9 °C above average. All three heatwaves exhibited maximum SST anomalies west of the South Island of NZ. Atmospheric circulation anomalies showed a pattern of blocking centred over the Tasman Sea extending south-east of NZ, accompanied by strongly positive Southern Annular Mode conditions, and reduced trough activity over NZ. Rapid melt of seasonal snow occurred in all three cases. For the two most recent events, combined ice loss in the Southern Alps was estimated at 8.9 km³ (22% of the 2017 volume). Sauvignon blanc and Pinot noir wine grapes had above average berry number and bunch mass in 2018 but were below average in 2019. Summerfruit harvest (cherries and apricots) was 14 and 2 days ahead of normal in 2017/18 and 2018/19 respectively. Spring wheat simulations suggested earlier flowering and lower grain yields compared to average, and below-average yield and tuber quality in potatoes crops occurred. Major species disruption occurred in marine ecosystems. Hindcasts indicate that the heatwaves were either atmospherically driven or arose from combinations of atmospheric surface warming and oceanic heat advection.
During austral summers (DJF) 1934/35, 2017/18 and 2018/19, the New Zealand (NZ) region (approximately 4 million km2) experienced the most intense coupled ocean-atmosphere heatwaves on record. Average air temperature anomalies over land were + 1.7 to 2.1 °C while sea surface temperatures (SST) were 1.2 to 1.9 °C above average. All three heatwaves exhibited maximum SST anomalies west of the South Island of NZ. Atmospheric circulation anomalies showed a pattern of blocking centred over the Tasman Sea extending south-east of NZ, accompanied by strongly positive Southern Annular Mode conditions, and reduced trough activity over NZ. Rapid melt of seasonal snow occurred in all three cases. For the two most recent events, combined ice loss in the Southern Alps was estimated at 8.9 km3 (22% of the 2017 volume). Sauvignon blanc and Pinot noir wine grapes had above average berry number and bunch mass in 2018 but were below average in 2019. Summerfruit harvest (cherries and apricots) was 14 and 2 days ahead of normal in 2017/18 and 2018/19 respectively. Spring wheat simulations suggested earlier flowering and lower grain yields compared to average, and below-average yield and tuber quality in potatoes crops occurred. Major species disruption occurred in marine ecosystems. Hindcasts indicate that the heatwaves were either atmospherically driven or arose from combinations of atmospheric surface warming and oceanic heat advection.
Author Behrens, Erik
Parker, Amber K.
Teixeira, Edmar
Trought, Michael C. T.
Diamond, Howard J.
Salinger, M. James
Herold, Nicholas
Scofield, Claire
Mullan, A. Brett
Thomsen, Mads S.
Sutton, Phil J.
Fitzharris, B. Blair
Renwick, James
Siano, Allan
Kerckhoffs, Huub
South, Paul M.
Fernandez, Denise
Johnstone, Paul
Smith, Robert O.
Author_xml – sequence: 1
  givenname: M. James
  orcidid: 0000-0002-5782-1411
  surname: Salinger
  fullname: Salinger, M. James
  email: jimbosalinger09@gmail.com
  organization: Department Agriculture, Food, Environment and Forestry (DAGRI), University of Florence
– sequence: 2
  givenname: Howard J.
  surname: Diamond
  fullname: Diamond, Howard J.
  organization: NOAA/Air Resources Laboratory
– sequence: 3
  givenname: Erik
  surname: Behrens
  fullname: Behrens, Erik
  organization: National Institute of Water and Atmospheric Research
– sequence: 4
  givenname: Denise
  surname: Fernandez
  fullname: Fernandez, Denise
  organization: National Institute of Water and Atmospheric Research
– sequence: 5
  givenname: B. Blair
  surname: Fitzharris
  fullname: Fitzharris, B. Blair
  organization: Department of Geography, University of Otago
– sequence: 6
  givenname: Nicholas
  surname: Herold
  fullname: Herold, Nicholas
  organization: The NSW Department of Planning, Industry and Environment, Science Division, Climate and Atmospheric Science
– sequence: 7
  givenname: Paul
  surname: Johnstone
  fullname: Johnstone, Paul
  organization: New Zealand Institute for Plant and Food Research Limited
– sequence: 8
  givenname: Huub
  surname: Kerckhoffs
  fullname: Kerckhoffs, Huub
  organization: School of Agriculture and Environment, Massey University
– sequence: 9
  givenname: A. Brett
  surname: Mullan
  fullname: Mullan, A. Brett
  organization: National Institute of Water and Atmospheric Research
– sequence: 10
  givenname: Amber K.
  surname: Parker
  fullname: Parker, Amber K.
  organization: Department of Wine, Food and Molecular Biosciences, Lincoln University
– sequence: 11
  givenname: James
  surname: Renwick
  fullname: Renwick, James
  organization: School of Geography, Environment & Earth Sciences, Victoria University of Wellington
– sequence: 12
  givenname: Claire
  surname: Scofield
  fullname: Scofield, Claire
  organization: New Zealand Institute for Plant and Food Research Limited
– sequence: 13
  givenname: Allan
  surname: Siano
  fullname: Siano, Allan
  organization: School of Agriculture and Environment, Massey University
– sequence: 14
  givenname: Robert O.
  surname: Smith
  fullname: Smith, Robert O.
  organization: Department of Marine Science, University of Otago
– sequence: 15
  givenname: Paul M.
  surname: South
  fullname: South, Paul M.
  organization: Cawthron Institute
– sequence: 16
  givenname: Phil J.
  surname: Sutton
  fullname: Sutton, Phil J.
  organization: National Institute of Water and Atmospheric Research, School of Environment, University of Auckland
– sequence: 17
  givenname: Edmar
  surname: Teixeira
  fullname: Teixeira, Edmar
  organization: New Zealand Institute for Plant and Food Research Limited
– sequence: 18
  givenname: Mads S.
  surname: Thomsen
  fullname: Thomsen, Mads S.
  organization: Centre of Integrative Ecology and the Marine Ecology Research Group, School of Biological Sciences, University of Canterbury
– sequence: 19
  givenname: Michael C. T.
  surname: Trought
  fullname: Trought, Michael C. T.
  organization: Innovative Winegrowing
BookMark eNp9kU1rHSEUhqUk0Jukf6AroZsuOu1RZ3TSXQnpB4Rmk2y6kXOdY65hRic6k9B_X29voZBFFnIEn0dfeU_YUUyRGHsr4KMAMJ-KgK5vG5BQl1HQdK_YRnRGNaLt4YhtQOiuAYDz1-yklPv9zki9YQ-3ccaM40gjDdyldd7P5Ahjg8uUyryjTLys00SZ7wiXJ3ykwkPky474T3rivwhHjAPPdBdS_MyHHB4plw98IrfDGMpU-P48TDO6pZyxY49joTf_5im7_Xp5c_G9ubr-9uPiy1XjVCeXpoXeOLH1GoxsB28UOhSdOhedbg164ZT0uAX0RigBUsvWa60VDKLfeiFRnbL3h3vnnB5WKoudQnE01qyU1mJla4xWomv7ir57ht6nNceazsr6GrS97lWl-gPlciolk7cuLLjUPy8Zw2gF2H0X9tCFrV3Yv13YrqrymTrnMGH-_bKkDlKpcLyj_D_VC9Yf1rOeCw
CitedBy_id crossref_primary_10_1002_rse2_343
crossref_primary_10_1007_s11540_024_09695_3
crossref_primary_10_1080_00288330_2024_2319100
crossref_primary_10_1016_j_scitotenv_2024_176558
crossref_primary_10_1080_00288330_2023_2218102
crossref_primary_10_1038_s43247_024_01982_8
crossref_primary_10_1029_2022JD037209
crossref_primary_10_1038_s41598_024_70034_0
crossref_primary_10_1017_jog_2022_27
crossref_primary_10_1016_j_scitotenv_2023_164316
crossref_primary_10_1080_00288330_2024_2439088
crossref_primary_10_1016_j_cub_2022_11_013
crossref_primary_10_3390_metabo11090580
crossref_primary_10_1002_joc_7908
crossref_primary_10_3389_fclim_2022_1012022
crossref_primary_10_3389_fclim_2022_907919
crossref_primary_10_1016_j_jtherbio_2023_103702
crossref_primary_10_1016_j_marenvres_2025_107090
crossref_primary_10_3390_metabo11080547
crossref_primary_10_1016_j_marenvres_2024_106738
crossref_primary_10_3390_atmos11121267
crossref_primary_10_5194_gmd_16_211_2023
crossref_primary_10_1071_ES23030
crossref_primary_10_3389_fclim_2022_798287
crossref_primary_10_1111_ddi_13407
crossref_primary_10_1007_s00704_024_04937_3
crossref_primary_10_1038_s41467_022_35493_x
crossref_primary_10_1080_0028825X_2023_2245786
crossref_primary_10_1088_1748_9326_ad5ab0
crossref_primary_10_1029_2021GL094785
crossref_primary_10_3389_fpls_2021_618039
crossref_primary_10_1038_s41612_023_00521_0
crossref_primary_10_1016_j_jtherbio_2023_103699
crossref_primary_10_1029_2021GL093239
crossref_primary_10_1080_03014223_2023_2256682
crossref_primary_10_31677_2072_6724_2024_72_3_73_83
crossref_primary_10_1016_j_aquaculture_2024_741434
crossref_primary_10_3354_aei00472
crossref_primary_10_1080_00288330_2024_2436661
crossref_primary_10_1071_ES21012
crossref_primary_10_1016_j_gloplacha_2021_103680
crossref_primary_10_1175_JCLI_D_21_0102_1
Cites_doi 10.1016/j.csr.2014.09.014
10.1175/jcli-d-16-0836.1
10.5670/oceanog.2018.205
10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
10.1175/1520-0493(1986)114<0371:TSOANZ>2.0.CO;2
10.1016/j.agrformet.2013.06.005
10.1007/BF00133218
10.3389/fmars.2019.00084
10.20870/oeno-one.2019.53.3.2329
10.1175/BAMS-D-19-0193.1
10.1007/BF02987885
10.1002/qj.4971024310
10.1088/1748-9326/ab012a
10.3389/fmars.2019.00228
10.3389/fmars.2019.0005d
10.1016/j.gloplacha.2012.04.002
10.1038/ncomms16101
10.1002/(SICI)1097-0088(20000315)20:3<299::AID-JOC474>3.0.CO;2-B
10.5670/oceanog.2017.213
10.1175/JCLI-D-18-0872.1
10.1002/qj.828
10.1038/s41467-018-03732-9
10.1002/qj.776
10.1175/BAMS-D-18-0116.1
10.1088/1748-9326/10/2/024012
10.1029/2010GL045384
10.3189/S0260305500016098
10.1002/qj.49709139009
10.1007/s00382-015-2525-1
10.1038/NGEO1296
10.1175/2009JCLI2786.1
10.1175/JCLI-D-12-00823.1
10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
10.1016/j.envsoft.2014.07.009
10.1016/j.pocean.2015.1012.1014
10.1071/FP09209
10.1080/00288330.2018.1562945
10.3390/d11040056
10.1016/j.scitotenv.2017.10.247
ContentType Journal Article
Copyright Springer Nature B.V. 2020
Springer Nature B.V. 2020.
Copyright_xml – notice: Springer Nature B.V. 2020
– notice: Springer Nature B.V. 2020.
DBID AAYXX
CITATION
3V.
7ST
7TG
7TN
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
F28
FR3
FRNLG
F~G
GNUQQ
GUQSH
H97
HCIFZ
K60
K6~
KL.
KR7
L.-
L.G
L6V
M0C
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
R05
SOI
7S9
L.6
DOI 10.1007/s10584-020-02730-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ABI/INFORM Global
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
University of Michigan
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Oceanic Abstracts
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1573-1480
EndPage 506
ExternalDocumentID 10_1007_s10584_020_02730_5
GeographicLocations New Zealand
Alps region
Tasman Sea
GeographicLocations_xml – name: New Zealand
– name: Tasman Sea
– name: Alps region
GrantInformation_xml – fundername: Ministry of Business, Innovation and Employment
  grantid: CARIM; CAWX1801; Deep South; Deep South
  funderid: http://dx.doi.org/10.13039/501100003524
– fundername: Brian Mason Trust
  grantid: Impact of Marine Heatwaves
GroupedDBID -5A
-5G
-5~
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29B
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5GY
5QI
5VS
67M
67Z
6J9
6NX
6TJ
78A
7WY
7XC
88I
8FE
8FG
8FH
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKOMP
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LLZTM
M0C
M2O
M2P
M4Y
M7R
M7S
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
OVD
P0-
P19
P62
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R05
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RXW
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
X6Y
XJT
Y6R
YLTOR
Z45
Z5M
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZCA
ZMTXR
ZY4
~02
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7ST
7TG
7TN
7UA
7XB
8FD
8FK
ABRTQ
C1K
F1W
F28
FR3
H97
KL.
KR7
L.-
L.G
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-4087c1bf60724df73aca153915647af1c32fab0af713102624f66630d18bf12a3
IEDL.DBID U2A
ISSN 0165-0009
IngestDate Fri Jul 11 14:24:36 EDT 2025
Sat Aug 16 15:21:24 EDT 2025
Tue Jul 01 03:17:13 EDT 2025
Thu Apr 24 23:05:11 EDT 2025
Fri Feb 21 02:38:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Anthropogenic global warming
Marine ecosystems
Atmospheric heatwave
Terrestrial ecosystems
Marine heatwave
Crops
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-4087c1bf60724df73aca153915647af1c32fab0af713102624f66630d18bf12a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5782-1411
PQID 2647048683
PQPubID 36297
PageCount 22
ParticipantIDs proquest_miscellaneous_2477631548
proquest_journals_2647048683
crossref_citationtrail_10_1007_s10584_020_02730_5
crossref_primary_10_1007_s10584_020_02730_5
springer_journals_10_1007_s10584_020_02730_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200900
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 9
  year: 2020
  text: 20200900
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An Interdisciplinary, International Journal Devoted to the Description, Causes and Implications of Climatic Change
PublicationTitle Climatic change
PublicationTitleAbbrev Climatic Change
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References FogtRLPerlwitzJMonaghanAJBromwichDHJonesJMMarshallGJHistorical SAM variability. Part II: twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 modelsJ Clim2009225346536510.1175/2009JCLI2786.1
Mullan AB, Stuart SJ, Hadfield MG, Smith MJ (2010) Report on the review of NIWA’s ‘Seven-Station’ temperature series NIWA information series no. 78. 175 pp. https://www.niwa.co.nz/sites/niwa.co.nz/files/import/attachments/Report-on-the-Review-of-NIWAas-Seven-Station-Temperature-Series_v3.pdf
Rezaei EE, Siebert S, Ewert F (2015) Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming. Environ Res Lett 10(24012). https://doi.org/10.1088/1748-9326/10/2/024012
HillerLThorntonREManaging physiological disorders. Chapter 23: 235–246.In D. A. Johnson (Ed.), potato health management20082MinnesotaAPS PressISBN 978-0-89054-353-5
Mullan AB, Sood A, Stuart S (2016) Climate change projections for New Zealand: atmosphere projections based on simulations from the IPCC fifth assessment Wellington: Ministry for the Environment https://www.mfe.govt.nz/sites/default/files/media/Climate%20Change/Climate-change-projections-2nd-edition-final.pdf
LevyDVeilleuxREAdaptation of potato to high temperatures and salinity—a reviewAmer J Potato Res20078448750610.1007/BF02987885
KidsonJWAn analysis of New Zealand synoptic types and their use in defining weather regimesInt J Climatol200020329931510.1002/(SICI)1097-0088(20000315)20:3<299::AID-JOC474>3.0.CO;2-B
SalingerMJNew Zealand climate: the temperature record, historical data and some agricultural implicationsClim Chang1979210912610.1007/BF00133218
MolitorDJunkJClimate change is implicating a two-fold impact on air temperature increase in the ripening period under the conditions of the Luxembourgish grapegrowing regionOeno-one2019340942210.20870/oeno-one.2019.53.3.2329
ThompsonDWJSolomonSKushnerPJEnglandMHGriseKMKarolyDJSignatures of the Antarctic ozone hole in southern hemisphere surface climate changeNat Geosci201141174174910.1038/NGEO1296
SuttonPJBowenMOcean temperature change around New Zealand over the last 36 yearsN Z J Mar Freshw Res201953330532610.1080/00288330.2018.1562945
ThomsenMSSouthPCommunities and attachment networks associated with primary, secondary and alternative foundation species; a case of stressed and disturbed stands of southern bull kelpDiversity20191145610.3390/d11040056
KistlerRCollinsWSahaSWhiteGWoollenJKalnayEThe NCEP–NCAR 50–year reanalysis: monthly means CD–ROM and documentationBull Am Meteorol Soc200182224726810.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
MarshallGJTrends in the southern annular mode from observations and reanalysesJ Clim2003164134414310.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
Thomsen MS, Mondardini L, Alestra T, Gerrity S, Tait L, South PM, Lilley SA, Schiel DR (2019) Local extinction of bull kelp (Durvillaea spp.) due to a marine Heatwave. Front Mar Sci. https://doi.org/10.3389/fmars.2019.00084
OjedaHDeloireACarbonneauAInfluence of water deficits on grape berry growthVitis200140141145https://www.researchgate.net/publication/285702011_Influence_of_water_deficits_on_grape_berry_growth
HartmannDLAMGKTRusticucciMAlexanderLVBrönnimannSCharabiYDentenerFJDlugokenckyEGEasterlingDRKaplanASodenBJThornePWWildMZhaiPMStockerTFQinDPlattnerK-GTignorMAllenSKBoschungJNauelsAXiaYBexVMidgleyPMObservations: atmosphere and surfaceClimate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change2013CambridgeCambridge University Press
TrenberthKEZhangYFasulloJTChengLObservation-based estimates of global and Basin Ocean Meridional heat transport time seriesJ Clim2019324567458310.1175/JCLI-D-18-0872.1
Heidemann H, Ribbe J (2019) Marine heat waves and the influence of El Niño off Southeast Queensland, Australia, Frontiers of marine science, 20 February 2019. https://doi.org/10.3389/fmars.2019.0005d
SianoABRoskrugeNKerchkhoffsLHJSofkova-BobchevaSYield and tuber quality variability in commercial potato cultivars under abiotic stress in New ZealandAgron N Z201848149163https://www.agronomysociety.nz/files/ASNZ_2018_14._Potato_yield_and_tuber_quality.pdf
HuangBThornePWBanzonVFBoyerTChepurinGLawrimoreJHExtended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisonsJ Clim201730208179820510.1175/jcli-d-16-0836.1
Perkins-Kirkpatrick SE, King SE, Cougnon AD, Grosese EA, Oliver MR, Holbrook NJ, Lewis SC, Pourasghar F (2018) The role of natural variability and anthropogenic climate change in the 2017/18 Tasman Sea marine heatwave. Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-18-0116.1
SahaSThe NCEP climate forecast systemJ Clim2006193483351710.1175/JCLI-D-12-00823.1
DeeDPUppalaSMSimmonsAJBerrisfordPPoliPKobayashiSThe ERA-interim reanalysis: configuration and performance of the data assimilation systemQ J R Meteorol Soc201113765655359710.1002/qj.828
Garr CE, Fitzharris BB (1996) Using seasonal snow to forecast inflows into South island hydro lakes. In: Prospects and Needs for Climate Forecasting, The Royal Society of New Zealand Miscellaneous Series 34: 63–67 [ISBN 0-908654-61-8]
HenleyBJGergisJKarolyDJPowerSBKennedyJFollandCKA tripole index for the Interdecadal Pacific OscillationClim Dyn20154511–123077309010.1007/s00382-015-2525-1Accessed on 05 27 2019 at https://www.esrl.noaa.gov/psd/data/timeseries/IPOTPI
TroughtMCTKdGDundonCJohnstoneRPartridgeSFruitset - possible implications on wine qualityTransforming flowers to fruit2005MilduraAustralian Society of Viticulture and Oenology3236
JayneSRRoemmichDZilbermanNRiserSCJohnsonKSJohnsonKCPiotrowiczSRThe Argo program: present and futureOceanography201730182810.5670/oceanog.2017.213
Salinger MJ, Chinn TJ, Fitzharris BB (2019b) Annual ice volume changes 1949–2019 for the New Zealand Southern Alps. Int J Climatol (submitted)
FitzharrisBGarrGESimulation of past variability in seasonal snow in the southern Alps, New ZealandAnn Glaciol19952137738210.3189/S0260305500016098
Hobday A, Oliver E, Gupta AS, Benthuysen J, Burrows M, Donat M, Holbrook N, Moore P, Thomsen M, Wernberg T, Smale D (2018) categorizing and naming marine heatwaves. Oceanogr 31(2)
Oliver ECJ, Benthuysen JA, Bindoff NL, Hobday AJ, Holbrook NJ, Mundy CN, Perkins-Kirkpatrick SE (2017) The unprecedented 2015/16 Tasman Sea marine heatwave. Nat Commun:8. https://doi.org/10.1038/ncomms16101
BehrensEFernandezDSuttonPMeridional oceanic heat transport influences marine heatwaves in the Tasman Sea on interannual to decadal timescalesFront Mar Sciee2019622810.3389/fmars.2019.00228
Arblaster JM, Meehl GA, Karoly DJ (2011) Future climate change in the southern hemisphere: competing effects of ozone and greenhouse gases. Geophys Res Lett 38(2). https://doi.org/10.1029/2010GL045384
BlundenJArndtDSA look at 2018 takeaway points from the state of the climate 2018 supplementBull Amer Met Soc201920191527153810.1175/BAMS-D-19-0193.1
Salinger MJ, Diamond HJ (2020). Surface temperature trends in the New Zealand region 1871–2018. Submited to Weather and Climate
BenthuysenJFengMZhongLSpatial patterns of warming off Western Australia during the 2011 Ningaloo Nino: quantifying impacts of remote and local forcing ContShelf Res20149123224610.1016/j.csr.2014.09.014
Holzworth DP, Huth NI, deVoil PG, ZurcherEJ HNI, McLean G, Chenu K, van Oosterom EJ, Snow V, Murphy C, Moore AD, Brown H, Whish JM, Verrall S, Fainges J, Bell LW, Peake AS, Poulton PL, Hochman Z, Thorburn PJ, Gaydon DS, Dalgliesh NP, Rodriguez D, Cox H, Chapman S, Doherty A, Teixeira E, Sharp J, Cichota R, Vogeler I, Li FY, Wang E, Hammer GL, Robertson MJ, Dimes JP, Whitbread AM, Hunt J, van Rees H, McClelland T, Carberry PS, Hargreaves JNG, MacLeod N, McDonald C, Harsdorf J, Wedgwood S, Keating BA (2014) APSIM—evolution towards a new generation of agricultural systems simulation. Environ Model Softw 62. https://doi.org/10.1016/j.envsoft.2014.07.009
CompoGPWhitakerJSSardeshmukhPDMatsuiNAllanRJYinXThe twentieth century reanalysis projectQ J R Meteorol Soc201113765412810.1002/qj.776
de Lautour S (1999) The climatology of seasonal snow. MSc Thesis, Department of Geography, University of Otago
HobdayAAlexanderLVPerkinsSESmaleDAStraubSCOliverECJBenthuysenJABurrowsMTDonatMGFengMHolbrookNJMoorePJScannellHASen GuptaAWernbergTA hierarchical approach to defining marine heatwavesProg Oceanogr201614122723810.1016/j.pocean.2015.1012.1014Outcome of Workshop #1
GreerDHWestonCHeat stress affects flowering, berry growth, sugar accumulation and photosynthesis of *Vitis vinifera* cv. Semillon grapevines grown in a controlled environmentFunct Plant Biol20103720621410.1071/FP09209
Gregan P (2019) Vintage 2019 small but stunning. https://www.nzwine.com/media/13040/vintage-2019-small-but-stunning.pdf
TeixeiraEIde RuiterJAusseilA-GA-GDaigneaultAJohnstonePHolmesATaitAEwertFAdapting crop rotations to climate change in regional impact modelling assessmentsSci Total Environ2018616–61778579510.1016/j.scitotenv.2017.10.247
GordonNDThe southern oscillation and New Zealand weatherMon Weather Rev198611437138710.1175/1520-0493(1986)114<0371:TSOANZ>2.0.CO;2
OliverECJDonatMGMoorePJSmaleDAAlexanderLVBenthuysenJAFengMGuptaASHobdayAJHolbrookNJPerkins-KirkpatrickSEStraubSCWernbergTLonger and more frequent marine heatwaves over the past centuryNat Commun20189132410.1038/s41467-018-03732-9
ChinnTJFitzharrisBBSalingerMJWillsmanAAnnual ice volume changes 1976–2008 for the New Zealand Southern AlpsGlob Planet Change201292–9310511810.1016/j.gloplacha.2012.04.002
ParkerAGarcia de Cortazar-AtauriIChuineIBarbeauGBoisBBoursiquotJ-MCahurelJ-YClaverieMDufourcqTGenyLGuimberteauGHofmannRWJacquetOLacombeTMonamyCOjedaHPanigaiLPayanJ-CLovelleBRRouchaudESchneiderCSpringJ-LStorchiPTomasiDTrambouzeWTroughtMvan LeeuwenCClassification of varieties for their timing of flowering and véraison using a modelling approach: a case study for the grapevine species Vitis vinifera LAgric For Meteorol201318024926410.1016/j.agrf
BJ Henley (2730_CR18) 2015; 45
EI Teixeira (2730_CR48) 2018; 616–617
DP Dee (2730_CR9) 2011; 137
2730_CR8
2730_CR1
2730_CR39
R Kistler (2730_CR27) 2001; 82
2730_CR38
TJ Chinn (2730_CR5) 2001; 40
2730_CR36
2730_CR34
D Levy (2730_CR28) 2007; 84
2730_CR32
JW Kidson (2730_CR26) 2000; 20
2730_CR31
J Benthuysen (2730_CR3) 2014; 91
D Molitor (2730_CR30) 2019; 3
MS Thomsen (2730_CR50) 2019; 11
GP Compo (2730_CR7) 2011; 137
DH Greer (2730_CR14) 2010; 37
AB Siano (2730_CR46) 2018; 48
AJ Troup (2730_CR55) 1965; 91
TJ Chinn (2730_CR6) 2012; 92–93
2730_CR45
MCT Trought (2730_CR54) 2005
2730_CR44
2730_CR43
ECJ Oliver (2730_CR35) 2018; 9
2730_CR42
E Behrens (2730_CR2) 2019; 6
SR Jayne (2730_CR24) 2017; 30
MJ Salinger (2730_CR41) 1979; 2
RL Fogt (2730_CR11) 2009; 22
S Saha (2730_CR40) 2006; 19
DWJ Thompson (2730_CR49) 2011; 4
A Hobday (2730_CR20) 2016; 141
2730_CR17
2730_CR15
GJ Marshall (2730_CR29) 2003; 16
2730_CR12
2730_CR51
B Fitzharris (2730_CR10) 1995; 21
H Ojeda (2730_CR33) 2001; 40
KE Trenberth (2730_CR53) 2019; 32
A Parker (2730_CR37) 2013; 180
PJ Sutton (2730_CR47) 2019; 53
2730_CR25
2730_CR22
L Hiller (2730_CR19) 2008
2730_CR21
DL Hartmann (2730_CR16) 2013
ND Gordon (2730_CR13) 1986; 114
J Blunden (2730_CR4) 2019; 2019
B Huang (2730_CR23) 2017; 30
KE Trenberth (2730_CR52) 1976; 102
References_xml – reference: BlundenJArndtDSA look at 2018 takeaway points from the state of the climate 2018 supplementBull Amer Met Soc201920191527153810.1175/BAMS-D-19-0193.1
– reference: Heidemann H, Ribbe J (2019) Marine heat waves and the influence of El Niño off Southeast Queensland, Australia, Frontiers of marine science, 20 February 2019. https://doi.org/10.3389/fmars.2019.0005d
– reference: ChinnTJFitzharrisBBSalingerMJWillsmanAAnnual ice volume changes 1976–2008 for the New Zealand Southern AlpsGlob Planet Change201292–9310511810.1016/j.gloplacha.2012.04.002
– reference: Garr CE, Fitzharris BB (1996) Using seasonal snow to forecast inflows into South island hydro lakes. In: Prospects and Needs for Climate Forecasting, The Royal Society of New Zealand Miscellaneous Series 34: 63–67 [ISBN 0-908654-61-8]
– reference: HartmannDLAMGKTRusticucciMAlexanderLVBrönnimannSCharabiYDentenerFJDlugokenckyEGEasterlingDRKaplanASodenBJThornePWWildMZhaiPMStockerTFQinDPlattnerK-GTignorMAllenSKBoschungJNauelsAXiaYBexVMidgleyPMObservations: atmosphere and surfaceClimate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change2013CambridgeCambridge University Press
– reference: SahaSThe NCEP climate forecast systemJ Clim2006193483351710.1175/JCLI-D-12-00823.1
– reference: HillerLThorntonREManaging physiological disorders. Chapter 23: 235–246.In D. A. Johnson (Ed.), potato health management20082MinnesotaAPS PressISBN 978-0-89054-353-5
– reference: FitzharrisBGarrGESimulation of past variability in seasonal snow in the southern Alps, New ZealandAnn Glaciol19952137738210.3189/S0260305500016098
– reference: Holzworth DP, Huth NI, deVoil PG, ZurcherEJ HNI, McLean G, Chenu K, van Oosterom EJ, Snow V, Murphy C, Moore AD, Brown H, Whish JM, Verrall S, Fainges J, Bell LW, Peake AS, Poulton PL, Hochman Z, Thorburn PJ, Gaydon DS, Dalgliesh NP, Rodriguez D, Cox H, Chapman S, Doherty A, Teixeira E, Sharp J, Cichota R, Vogeler I, Li FY, Wang E, Hammer GL, Robertson MJ, Dimes JP, Whitbread AM, Hunt J, van Rees H, McClelland T, Carberry PS, Hargreaves JNG, MacLeod N, McDonald C, Harsdorf J, Wedgwood S, Keating BA (2014) APSIM—evolution towards a new generation of agricultural systems simulation. Environ Model Softw 62. https://doi.org/10.1016/j.envsoft.2014.07.009
– reference: SianoABRoskrugeNKerchkhoffsLHJSofkova-BobchevaSYield and tuber quality variability in commercial potato cultivars under abiotic stress in New ZealandAgron N Z201848149163https://www.agronomysociety.nz/files/ASNZ_2018_14._Potato_yield_and_tuber_quality.pdf
– reference: MolitorDJunkJClimate change is implicating a two-fold impact on air temperature increase in the ripening period under the conditions of the Luxembourgish grapegrowing regionOeno-one2019340942210.20870/oeno-one.2019.53.3.2329
– reference: Salinger MJ, McGann RP, Coutts L, Collen B, Fouhy E (1992) South Pacific historical climate network. Temperature trends in New Zealand and outlying islands, 1920-1990. New Zealand meteorological service, 46pp, Wellington. ISBN 0-477-01598-0
– reference: SuttonPJBowenMOcean temperature change around New Zealand over the last 36 yearsN Z J Mar Freshw Res201953330532610.1080/00288330.2018.1562945
– reference: HobdayAAlexanderLVPerkinsSESmaleDAStraubSCOliverECJBenthuysenJABurrowsMTDonatMGFengMHolbrookNJMoorePJScannellHASen GuptaAWernbergTA hierarchical approach to defining marine heatwavesProg Oceanogr201614122723810.1016/j.pocean.2015.1012.1014Outcome of Workshop #1
– reference: TroughtMCTKdGDundonCJohnstoneRPartridgeSFruitset - possible implications on wine qualityTransforming flowers to fruit2005MilduraAustralian Society of Viticulture and Oenology3236
– reference: TroupAJThe ‘southern oscillation’Quart J Roy Met Soc19659139049050610.1002/qj.49709139009
– reference: CompoGPWhitakerJSSardeshmukhPDMatsuiNAllanRJYinXThe twentieth century reanalysis projectQ J R Meteorol Soc201113765412810.1002/qj.776
– reference: HenleyBJGergisJKarolyDJPowerSBKennedyJFollandCKA tripole index for the Interdecadal Pacific OscillationClim Dyn20154511–123077309010.1007/s00382-015-2525-1Accessed on 05 27 2019 at https://www.esrl.noaa.gov/psd/data/timeseries/IPOTPI
– reference: Mullan AB, Sood A, Stuart S (2016) Climate change projections for New Zealand: atmosphere projections based on simulations from the IPCC fifth assessment Wellington: Ministry for the Environment https://www.mfe.govt.nz/sites/default/files/media/Climate%20Change/Climate-change-projections-2nd-edition-final.pdf
– reference: Thomsen MS, Mondardini L, Alestra T, Gerrity S, Tait L, South PM, Lilley SA, Schiel DR (2019) Local extinction of bull kelp (Durvillaea spp.) due to a marine Heatwave. Front Mar Sci. https://doi.org/10.3389/fmars.2019.00084
– reference: Hobday A, Oliver E, Gupta AS, Benthuysen J, Burrows M, Donat M, Holbrook N, Moore P, Thomsen M, Wernberg T, Smale D (2018) categorizing and naming marine heatwaves. Oceanogr 31(2)
– reference: Gregan P (2019) Vintage 2019 small but stunning. https://www.nzwine.com/media/13040/vintage-2019-small-but-stunning.pdf
– reference: ThompsonDWJSolomonSKushnerPJEnglandMHGriseKMKarolyDJSignatures of the Antarctic ozone hole in southern hemisphere surface climate changeNat Geosci201141174174910.1038/NGEO1296
– reference: BenthuysenJFengMZhongLSpatial patterns of warming off Western Australia during the 2011 Ningaloo Nino: quantifying impacts of remote and local forcing ContShelf Res20149123224610.1016/j.csr.2014.09.014
– reference: Parker AK (2012) Modelling phenology and maturation of the grapevine Vitis vinifera L.: Varietal differences and the role of leaf area to fruit weight ratio manipulations Lincoln University PhD thesis Lincoln University
– reference: KistlerRCollinsWSahaSWhiteGWoollenJKalnayEThe NCEP–NCAR 50–year reanalysis: monthly means CD–ROM and documentationBull Am Meteorol Soc200182224726810.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
– reference: Rezaei EE, Siebert S, Ewert F (2015) Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming. Environ Res Lett 10(24012). https://doi.org/10.1088/1748-9326/10/2/024012
– reference: OjedaHDeloireACarbonneauAInfluence of water deficits on grape berry growthVitis200140141145https://www.researchgate.net/publication/285702011_Influence_of_water_deficits_on_grape_berry_growth
– reference: BehrensEFernandezDSuttonPMeridional oceanic heat transport influences marine heatwaves in the Tasman Sea on interannual to decadal timescalesFront Mar Sciee2019622810.3389/fmars.2019.00228
– reference: Mullan AB, Stuart SJ, Hadfield MG, Smith MJ (2010) Report on the review of NIWA’s ‘Seven-Station’ temperature series NIWA information series no. 78. 175 pp. https://www.niwa.co.nz/sites/niwa.co.nz/files/import/attachments/Report-on-the-Review-of-NIWAas-Seven-Station-Temperature-Series_v3.pdf
– reference: Salinger MJ, Diamond HJ (2020). Surface temperature trends in the New Zealand region 1871–2018. Submited to Weather and Climate
– reference: TrenberthKEZhangYFasulloJTChengLObservation-based estimates of global and Basin Ocean Meridional heat transport time seriesJ Clim2019324567458310.1175/JCLI-D-18-0872.1
– reference: GreerDHWestonCHeat stress affects flowering, berry growth, sugar accumulation and photosynthesis of *Vitis vinifera* cv. Semillon grapevines grown in a controlled environmentFunct Plant Biol20103720621410.1071/FP09209
– reference: OliverECJDonatMGMoorePJSmaleDAAlexanderLVBenthuysenJAFengMGuptaASHobdayAJHolbrookNJPerkins-KirkpatrickSEStraubSCWernbergTLonger and more frequent marine heatwaves over the past centuryNat Commun20189132410.1038/s41467-018-03732-9
– reference: Salinger MJ, Renwick JA, Behrens E, Mullan AB, Diamond HJ, Sirguey P, Smith RO, Trought MCT, Alexander LV, Cullen NC, Fitzharris BB, Hepburn CD, Parker AK, Sutton PJ (2019a) The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: drivers, mechanisms and impacts. Environ Res Lett 14(4). https://doi.org/10.1088/1748-9326/ab012a
– reference: de Lautour S (1999) The climatology of seasonal snow. MSc Thesis, Department of Geography, University of Otago
– reference: GordonNDThe southern oscillation and New Zealand weatherMon Weather Rev198611437138710.1175/1520-0493(1986)114<0371:TSOANZ>2.0.CO;2
– reference: HuangBThornePWBanzonVFBoyerTChepurinGLawrimoreJHExtended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisonsJ Clim201730208179820510.1175/jcli-d-16-0836.1
– reference: FogtRLPerlwitzJMonaghanAJBromwichDHJonesJMMarshallGJHistorical SAM variability. Part II: twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 modelsJ Clim2009225346536510.1175/2009JCLI2786.1
– reference: TeixeiraEIde RuiterJAusseilA-GA-GDaigneaultAJohnstonePHolmesATaitAEwertFAdapting crop rotations to climate change in regional impact modelling assessmentsSci Total Environ2018616–61778579510.1016/j.scitotenv.2017.10.247
– reference: ThomsenMSSouthPCommunities and attachment networks associated with primary, secondary and alternative foundation species; a case of stressed and disturbed stands of southern bull kelpDiversity20191145610.3390/d11040056
– reference: ParkerAGarcia de Cortazar-AtauriIChuineIBarbeauGBoisBBoursiquotJ-MCahurelJ-YClaverieMDufourcqTGenyLGuimberteauGHofmannRWJacquetOLacombeTMonamyCOjedaHPanigaiLPayanJ-CLovelleBRRouchaudESchneiderCSpringJ-LStorchiPTomasiDTrambouzeWTroughtMvan LeeuwenCClassification of varieties for their timing of flowering and véraison using a modelling approach: a case study for the grapevine species Vitis vinifera LAgric For Meteorol201318024926410.1016/j.agrformet.2013.06.005
– reference: Kidson E (1935) The summer of 1934/35 in new Zealand NZ met.Office Note 16 12pp
– reference: KidsonJWAn analysis of New Zealand synoptic types and their use in defining weather regimesInt J Climatol200020329931510.1002/(SICI)1097-0088(20000315)20:3<299::AID-JOC474>3.0.CO;2-B
– reference: Salinger MJ, Chinn TJ, Fitzharris BB (2019b) Annual ice volume changes 1949–2019 for the New Zealand Southern Alps. Int J Climatol (submitted)
– reference: JayneSRRoemmichDZilbermanNRiserSCJohnsonKSJohnsonKCPiotrowiczSRThe Argo program: present and futureOceanography201730182810.5670/oceanog.2017.213
– reference: Oliver ECJ, Benthuysen JA, Bindoff NL, Hobday AJ, Holbrook NJ, Mundy CN, Perkins-Kirkpatrick SE (2017) The unprecedented 2015/16 Tasman Sea marine heatwave. Nat Commun:8. https://doi.org/10.1038/ncomms16101
– reference: LevyDVeilleuxREAdaptation of potato to high temperatures and salinity—a reviewAmer J Potato Res20078448750610.1007/BF02987885
– reference: Arblaster JM, Meehl GA, Karoly DJ (2011) Future climate change in the southern hemisphere: competing effects of ozone and greenhouse gases. Geophys Res Lett 38(2). https://doi.org/10.1029/2010GL045384
– reference: ChinnTJDistribution of the glacial water resources of New ZealandJ Hydrol N Z2001402139187https://www.jstor.org/stable/43922047
– reference: Perkins-Kirkpatrick SE, King SE, Cougnon AD, Grosese EA, Oliver MR, Holbrook NJ, Lewis SC, Pourasghar F (2018) The role of natural variability and anthropogenic climate change in the 2017/18 Tasman Sea marine heatwave. Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-18-0116.1
– reference: MarshallGJTrends in the southern annular mode from observations and reanalysesJ Clim2003164134414310.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
– reference: SalingerMJNew Zealand climate: the temperature record, historical data and some agricultural implicationsClim Chang1979210912610.1007/BF00133218
– reference: DeeDPUppalaSMSimmonsAJBerrisfordPPoliPKobayashiSThe ERA-interim reanalysis: configuration and performance of the data assimilation systemQ J R Meteorol Soc201113765655359710.1002/qj.828
– reference: TrenberthKEFluctuations and trends in indices of the southern hemispheric circulationQuart J Roy Met Soc1976102431657510.1002/qj.4971024310
– volume: 91
  start-page: 232
  year: 2014
  ident: 2730_CR3
  publication-title: Shelf Res
  doi: 10.1016/j.csr.2014.09.014
– ident: 2730_CR25
– volume: 30
  start-page: 8179
  issue: 20
  year: 2017
  ident: 2730_CR23
  publication-title: J Clim
  doi: 10.1175/jcli-d-16-0836.1
– ident: 2730_CR21
  doi: 10.5670/oceanog.2018.205
– volume: 82
  start-page: 247
  issue: 2
  year: 2001
  ident: 2730_CR27
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
– volume: 114
  start-page: 371
  year: 1986
  ident: 2730_CR13
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(1986)114<0371:TSOANZ>2.0.CO;2
– volume: 180
  start-page: 249
  year: 2013
  ident: 2730_CR37
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2013.06.005
– volume: 2
  start-page: 109
  year: 1979
  ident: 2730_CR41
  publication-title: Clim Chang
  doi: 10.1007/BF00133218
– ident: 2730_CR51
  doi: 10.3389/fmars.2019.00084
– ident: 2730_CR12
– volume: 3
  start-page: 409
  year: 2019
  ident: 2730_CR30
  publication-title: Oeno-one
  doi: 10.20870/oeno-one.2019.53.3.2329
– volume: 2019
  start-page: 1527
  year: 2019
  ident: 2730_CR4
  publication-title: Bull Amer Met Soc
  doi: 10.1175/BAMS-D-19-0193.1
– volume: 48
  start-page: 149
  year: 2018
  ident: 2730_CR46
  publication-title: Agron N Z
– ident: 2730_CR8
– volume: 84
  start-page: 487
  year: 2007
  ident: 2730_CR28
  publication-title: Amer J Potato Res
  doi: 10.1007/BF02987885
– volume: 102
  start-page: 65
  issue: 431
  year: 1976
  ident: 2730_CR52
  publication-title: Quart J Roy Met Soc
  doi: 10.1002/qj.4971024310
– ident: 2730_CR31
– ident: 2730_CR44
  doi: 10.1088/1748-9326/ab012a
– volume: 40
  start-page: 139
  issue: 2
  year: 2001
  ident: 2730_CR5
  publication-title: J Hydrol N Z
– volume: 6
  start-page: 228
  year: 2019
  ident: 2730_CR2
  publication-title: Front Mar Sciee
  doi: 10.3389/fmars.2019.00228
– ident: 2730_CR17
  doi: 10.3389/fmars.2019.0005d
– volume: 92–93
  start-page: 105
  year: 2012
  ident: 2730_CR6
  publication-title: Glob Planet Change
  doi: 10.1016/j.gloplacha.2012.04.002
– ident: 2730_CR43
– ident: 2730_CR36
– ident: 2730_CR34
  doi: 10.1038/ncomms16101
– volume: 20
  start-page: 299
  issue: 3
  year: 2000
  ident: 2730_CR26
  publication-title: Int J Climatol
  doi: 10.1002/(SICI)1097-0088(20000315)20:3<299::AID-JOC474>3.0.CO;2-B
– volume: 30
  start-page: 18
  year: 2017
  ident: 2730_CR24
  publication-title: Oceanography
  doi: 10.5670/oceanog.2017.213
– volume: 32
  start-page: 4567
  year: 2019
  ident: 2730_CR53
  publication-title: J Clim
  doi: 10.1175/JCLI-D-18-0872.1
– volume: 137
  start-page: 553
  issue: 656
  year: 2011
  ident: 2730_CR9
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.828
– start-page: 32
  volume-title: Transforming flowers to fruit
  year: 2005
  ident: 2730_CR54
– volume-title: Managing physiological disorders. Chapter 23: 235–246.In D. A. Johnson (Ed.), potato health management
  year: 2008
  ident: 2730_CR19
– volume: 9
  start-page: 1324
  year: 2018
  ident: 2730_CR35
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03732-9
– ident: 2730_CR15
– ident: 2730_CR32
– volume: 137
  start-page: 1
  issue: 654
  year: 2011
  ident: 2730_CR7
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/qj.776
– ident: 2730_CR38
  doi: 10.1175/BAMS-D-18-0116.1
– ident: 2730_CR39
  doi: 10.1088/1748-9326/10/2/024012
– ident: 2730_CR1
  doi: 10.1029/2010GL045384
– ident: 2730_CR42
– volume: 21
  start-page: 377
  year: 1995
  ident: 2730_CR10
  publication-title: Ann Glaciol
  doi: 10.3189/S0260305500016098
– volume: 91
  start-page: 490
  issue: 390
  year: 1965
  ident: 2730_CR55
  publication-title: Quart J Roy Met Soc
  doi: 10.1002/qj.49709139009
– volume: 45
  start-page: 3077
  issue: 11–12
  year: 2015
  ident: 2730_CR18
  publication-title: Clim Dyn
  doi: 10.1007/s00382-015-2525-1
– volume: 4
  start-page: 741
  issue: 11
  year: 2011
  ident: 2730_CR49
  publication-title: Nat Geosci
  doi: 10.1038/NGEO1296
– volume: 22
  start-page: 5346
  year: 2009
  ident: 2730_CR11
  publication-title: J Clim
  doi: 10.1175/2009JCLI2786.1
– volume: 19
  start-page: 3483
  year: 2006
  ident: 2730_CR40
  publication-title: J Clim
  doi: 10.1175/JCLI-D-12-00823.1
– volume: 16
  start-page: 4134
  year: 2003
  ident: 2730_CR29
  publication-title: J Clim
  doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
– ident: 2730_CR22
  doi: 10.1016/j.envsoft.2014.07.009
– volume: 141
  start-page: 227
  year: 2016
  ident: 2730_CR20
  publication-title: Prog Oceanogr
  doi: 10.1016/j.pocean.2015.1012.1014
– ident: 2730_CR45
– volume: 37
  start-page: 206
  year: 2010
  ident: 2730_CR14
  publication-title: Funct Plant Biol
  doi: 10.1071/FP09209
– volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: 2730_CR16
– volume: 40
  start-page: 141
  year: 2001
  ident: 2730_CR33
  publication-title: Vitis
– volume: 53
  start-page: 305
  issue: 3
  year: 2019
  ident: 2730_CR47
  publication-title: N Z J Mar Freshw Res
  doi: 10.1080/00288330.2018.1562945
– volume: 11
  start-page: 56
  issue: 4
  year: 2019
  ident: 2730_CR50
  publication-title: Diversity
  doi: 10.3390/d11040056
– volume: 616–617
  start-page: 785
  year: 2018
  ident: 2730_CR48
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.10.247
SSID ssj0009726
Score 2.5235505
Snippet During austral summers (DJF) 1934/35, 2017/18 and 2018/19, the New Zealand (NZ) region (approximately 4 million km 2 ) experienced the most intense coupled...
During austral summers (DJF) 1934/35, 2017/18 and 2018/19, the New Zealand (NZ) region (approximately 4 million km2) experienced the most intense coupled...
During austral summers (DJF) 1934/35, 2017/18 and 2018/19, the New Zealand (NZ) region (approximately 4 million km²) experienced the most intense coupled...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 485
SubjectTerms 20th century
Ablation
Advection
Air temperature
Alps region
Anomalies
Antarctic Oscillation
Apricots
Atmosphere
Atmospheric circulation
Atmospheric circulation anomalies
Atmospheric circulation patterns
Atmospheric Sciences
Cherries
Climate change
Climate Change/Climate Change Impacts
Earth and Environmental Science
Earth Sciences
Flowering
General circulation models
Heat
Heat transport
Heat waves
Heatwaves
Ice
Marine ecosystems
New Zealand
Ocean warming
Ocean-atmosphere system
Oceans
Sea level
Sea surface
Sea surface temperature
Sea surface temperature anomalies
snow
Spring wheat
Summer
Surface temperature
Tasman Sea
Temperature
Temperature anomalies
Terrestrial ecosystems
Wines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6vfgifmJ1SgTxxRX7kX7MF9GxMQSHiAPfSpqmMNjare303_cuS1cU3FMpSRvaS-5-l9z9jpAbS0rXFT54qlwIkwk_hSXl2eCl-AxJcRMpVJTv2B9N2Mun96k33EodVlnrRKWok1zgHvk9GO4A6eFC93GxNLFqFJ6u6hIau6QNKjgE56v9PBi_vTe0u4EquIY5O5g_3dNpMzp5Doyvie4TcrpYpvfbNDV4888RqbI8wwOyryEjfVrL-JDsyOyIGK-AdvNCbYrTW9qfTQF6qrtjspxkyOg9m4FJSajIVwu8gqHimcmreV4ilYCk-FGyoKiNv_mXLOk0owAHKeg9qkMeKdZtyLMHmhQqfqNL5xJThaflvKTYvk6yLE_IZDj46I9MXVrBFIC4KvAaw0DYcepbgcOSNHC54KD7ekgdE_DUFq6T8tjiKfiwAEF8h6Xg57hWYodxajvcPSWtLM_kGaEAATCb1Qt9ZrEktDgXSSy5z3oCkxG5Qez6r0ZC845j-YtZ1DAmoyQikESkJBF5BrnbPLNYs25s7d2phRXpFVhGzXwxyPWmGdYOHojwTOYr6MMCUK_otBmkWwu5ecX_I55vH_GC7DlqXmEoWoe0qmIlLwG7VPGVnqA_zUHp8Q
  priority: 102
  providerName: ProQuest
Title Unparalleled coupled ocean-atmosphere summer heatwaves in the New Zealand region: drivers, mechanisms and impacts
URI https://link.springer.com/article/10.1007/s10584-020-02730-5
https://www.proquest.com/docview/2647048683
https://www.proquest.com/docview/2477631548
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6svXgRnxgfZQXxooE8No96a6UPFIuIBT2FzWYDhTapTat_35ltYlVU8LSEbDaQ2Z35JjvftwBnllKuK33MVIWUJpd-ikvKszFL8TmJ4iZK6irfgd8f8psn76kkhRVVtXu1Jak99SeyGwZLk9Id0mCxTK8GdY9yd5zFQ6e1ktoN9CFrxNMhznSzpMr8PMbXcLTCmN-2RXW06W7BZgkTWWtp121YU9kOGHeIcPOZ_hHOztn1eIRwU1_twsswIxXv8RjDSMJkvphSi8FJZKaYT_KC5AMUo3mnZow88Jt4VQUbZQwhIENfx8oyR0ZnNeTZFUtmumbjkk0U0YNHxaRgdH9JrCz2YNjtPF73zfI4BVMiyppjphgG0o5T3wocnqSBK6RAf9ckuZhApLZ0nVTElkgxb0XY4Ts8xdzGtRI7jFPbEe4-rGd5pg6AYdgnBqsX-tziSWgJIZNYCZ83JREQhQF29VUjWWqN05EX42ilkkyWiNASkbZE5Blw8fHMdKm08Wfv48pYUbnqigjBXUASgqFrwOnHbVwvtAkiMpUvsA8P0KVSombAZWXk1RC_v_Hwf92PYMPR84zK0Y5hfT5bqBPEL_O4AbWw22tAvdVttwfU9p5vO9i2O4P7h4aezO9Pn-rq
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4FeoBLBZSqpkAXqeUCVm3v-hEkVFXQEBqSE5G4uev1WoqU2CFOQPwpfiMzGxurSHDjZFl-STuvb7wz3wB8d7TmXAWYqUqlbKGCDE3KdzFLCQSR4qZamSrfQdAdir83_k0LHuteGCqrrH2icdRpoegf-U8M3CHRw0X81_TWpqlRtLtaj9BYqkVPP9xjylaeXp6jfH94XufP9VnXrqYK2ArBxhwTpihUbpIFTuiJNAu5VBLNvk2sKaHMXMW9TCaOzDB9w-gbeCJDiM-d1I2SzPUkx_euwAfBeZssKupcNCS_oRnvRh1C1K3drpp0qlY9DPU2JWvEIOPY_v-BsEG3LzZkTZzrbMDHCqCy30uN2oSWzrfA6iO2LmbmFzw7ZGfjEQJdc_YJboc58YePxxjAUqaKxZSOGBZlbsv5pCiJuEAzWkI9Y-T77-WdLtkoZwg-GXpZVhVYMpoSUeQnLJ2ZapFjNtHUmDwqJyWj68uWznIbhu-y5J9hNS9y_QUYAg7qnfWjQDgijRwpVZpoGYi2otZHaYFbr2qsKpZzGrYxjht-ZpJEjJKIjSRi34Kj52emS46PN-_erYUVV_Zexo12WnDwfBktlbZfZK6LBd4jQnTmlCJacFwLuXnF61_cefuL32Cte92_iq8uB72vsO4ZHaMiuF1Ync8Weg9R0zzZN6rK4N9728YTsQAj3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS9xAFD7oCsWXom2lqdqOYPtSg7lMLisUadVFa7uIdMG3OJnMwMJusrvZVfrX-us8Z3ZiaKG--RRCbjDnnjnfdwD2PaXCUMZYqQopXS5jjSYV-VilxJxIcQslTZdvPz4f8O830c0K_GmwMNRW2fhE46iLStI_8kMM3AnRw6XhobZtEVenvePJ1KUJUrTT2ozTWKrIpfp9j-Vb_eXiFGX9MQh6Z79Ozl07YcCVmHjMsXhKE-nnOvaSgBc6CYUU6AK6xKCSCO3LMNAi94TGUg4jcRxwjel-6BV-mms_ECG-dxXWEqyKvA6sfTvrX123lL-JGfZGeCHCbnctZMcC9zDwu1S6EZ-M50Z_h8U21_1ne9ZEvd4GvLTpKvu61K9NWFHlK3B-YqZdzcwPefaJnYyGmPaas9cwHZTEJj4aYTgrmKwWEzpikBSlK-bjqiYaA8VoEdWMUSS4F3eqZsOSYSrK0Ocy227JaGZEVR6xYmZ6Rw7YWBFMeViPa0bXlwDP-g0MnmXRt6BTVqV6CwzTD0LSRmnMPV6knhCyyJWIeVcSEFI44DermknLeU6jN0ZZy9ZMkshQEpmRRBY58PnxmcmS8ePJu3caYWXW-uus1VUH9h4vo93SZowoVbXAe3iCrp0KRgcOGiG3r_j_F989_cUP8ALtIvtx0b_chvXAqBh1xO1AZz5bqF1Moeb5e6urDG6f2zweAGgAKW4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unparalleled+coupled+ocean-atmosphere+summer+heatwaves+in+the+New+Zealand+region%3A+drivers%2C+mechanisms+and+impacts&rft.jtitle=Climatic+change&rft.au=Salinger%2C+M.+James&rft.au=Diamond%2C+Howard+J.&rft.au=Behrens%2C+Erik&rft.au=Fernandez%2C+Denise&rft.date=2020-09-01&rft.issn=0165-0009&rft.eissn=1573-1480&rft.volume=162&rft.issue=2&rft.spage=485&rft.epage=506&rft_id=info:doi/10.1007%2Fs10584-020-02730-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10584_020_02730_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0009&client=summon