l-Glutamic acid induced the colonization of high-efficiency nitrogen-fixing strain Ac63 (Azotobacter chroococcum) in roots of Amaranthus tricolor

Aims The aim of this study was to evaluate its feasibility of a non-symbiotic nitrogen-fixing strain, Ac63 ( Azotobacter chroococcum ), to promote biomass of common vegetable crops and its colonization mechanisms in their roots. Methods Root exudates of common vegetables, including Amaranthus tricol...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 451; no. 1-2; pp. 357 - 370
Main Authors Wang, Yi-Fan, Wang, Jun-Feng, Xu, Zhi-Min, She, Shao-Hua, Yang, Jun-Qing, Li, Qu-Sheng
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims The aim of this study was to evaluate its feasibility of a non-symbiotic nitrogen-fixing strain, Ac63 ( Azotobacter chroococcum ), to promote biomass of common vegetable crops and its colonization mechanisms in their roots. Methods Root exudates of common vegetables, including Amaranthus tricolor (AT), Willow amaranth (WA), Chrysanthemum coronarium (CC), cabbage, and lettuce, were collected, and a chemotaxis assay with Ac63 was performed. Components in exudates for the most differential chemotaxis effect crops (AT and lettuce) were determined with GC-MS. Then, the traditional screening strategies of chemotaxis, swarming, and in vitro were utilized to find the signal molecule for this strain. Finally, the colonization effects of Ac63 in roots of these two crops were verified with a soil pot experiment. Results Chemotaxis effects of root exudates on Ac63 follow the lists of AT > WA > CC > cabbage ≈ control (water) ≈ lettuce. With a 30-μM concentration of l -glutamic acid, bacterial amount of Ac63 in chemotaxis and in vitro was observed with 2.9- and 7.4-times enhancement compared with that in the control. Laser confocal microscopy indicated that l -glutamic acid induced Ac63 to form a robust biofilm in roots, suggesting that l -glutamic acid is a signal molecule for the colonization of this strain. Soil pot assay showed that the biomass, chlorophyll, and available nitrogen of AT significantly increased than those of lettuce after Ac63 inoculation, resulting from this strain was substantially increased in roots of AT with l -glutamic acid secretion. Conclusion l -Glutamic acid induced the colonization of high-efficiency nitrogen-fixing strain Ac63 in AT roots, which provides a practical information for its agricultural applications.
AbstractList AimsThe aim of this study was to evaluate its feasibility of a non-symbiotic nitrogen-fixing strain, Ac63 (Azotobacter chroococcum), to promote biomass of common vegetable crops and its colonization mechanisms in their roots.MethodsRoot exudates of common vegetables, including Amaranthus tricolor (AT), Willow amaranth (WA), Chrysanthemum coronarium (CC), cabbage, and lettuce, were collected, and a chemotaxis assay with Ac63 was performed. Components in exudates for the most differential chemotaxis effect crops (AT and lettuce) were determined with GC-MS. Then, the traditional screening strategies of chemotaxis, swarming, and in vitro were utilized to find the signal molecule for this strain. Finally, the colonization effects of Ac63 in roots of these two crops were verified with a soil pot experiment.ResultsChemotaxis effects of root exudates on Ac63 follow the lists of AT > WA > CC > cabbage ≈ control (water) ≈ lettuce. With a 30-μM concentration of l-glutamic acid, bacterial amount of Ac63 in chemotaxis and in vitro was observed with 2.9- and 7.4-times enhancement compared with that in the control. Laser confocal microscopy indicated that l-glutamic acid induced Ac63 to form a robust biofilm in roots, suggesting that l-glutamic acid is a signal molecule for the colonization of this strain. Soil pot assay showed that the biomass, chlorophyll, and available nitrogen of AT significantly increased than those of lettuce after Ac63 inoculation, resulting from this strain was substantially increased in roots of AT with l-glutamic acid secretion.Conclusionl-Glutamic acid induced the colonization of high-efficiency nitrogen-fixing strain Ac63 in AT roots, which provides a practical information for its agricultural applications.
AIMS: The aim of this study was to evaluate its feasibility of a non-symbiotic nitrogen-fixing strain, Ac63 (Azotobacter chroococcum), to promote biomass of common vegetable crops and its colonization mechanisms in their roots. METHODS: Root exudates of common vegetables, including Amaranthus tricolor (AT), Willow amaranth (WA), Chrysanthemum coronarium (CC), cabbage, and lettuce, were collected, and a chemotaxis assay with Ac63 was performed. Components in exudates for the most differential chemotaxis effect crops (AT and lettuce) were determined with GC-MS. Then, the traditional screening strategies of chemotaxis, swarming, and in vitro were utilized to find the signal molecule for this strain. Finally, the colonization effects of Ac63 in roots of these two crops were verified with a soil pot experiment. RESULTS: Chemotaxis effects of root exudates on Ac63 follow the lists of AT > WA > CC > cabbage ≈ control (water) ≈ lettuce. With a 30-μM concentration of L-glutamic acid, bacterial amount of Ac63 in chemotaxis and in vitro was observed with 2.9- and 7.4-times enhancement compared with that in the control. Laser confocal microscopy indicated that L-glutamic acid induced Ac63 to form a robust biofilm in roots, suggesting that L-glutamic acid is a signal molecule for the colonization of this strain. Soil pot assay showed that the biomass, chlorophyll, and available nitrogen of AT significantly increased than those of lettuce after Ac63 inoculation, resulting from this strain was substantially increased in roots of AT with L-glutamic acid secretion. CONCLUSION: L-Glutamic acid induced the colonization of high-efficiency nitrogen-fixing strain Ac63 in AT roots, which provides a practical information for its agricultural applications.
Aims The aim of this study was to evaluate its feasibility of a non-symbiotic nitrogen-fixing strain, Ac63 ( Azotobacter chroococcum ), to promote biomass of common vegetable crops and its colonization mechanisms in their roots. Methods Root exudates of common vegetables, including Amaranthus tricolor (AT), Willow amaranth (WA), Chrysanthemum coronarium (CC), cabbage, and lettuce, were collected, and a chemotaxis assay with Ac63 was performed. Components in exudates for the most differential chemotaxis effect crops (AT and lettuce) were determined with GC-MS. Then, the traditional screening strategies of chemotaxis, swarming, and in vitro were utilized to find the signal molecule for this strain. Finally, the colonization effects of Ac63 in roots of these two crops were verified with a soil pot experiment. Results Chemotaxis effects of root exudates on Ac63 follow the lists of AT > WA > CC > cabbage ≈ control (water) ≈ lettuce. With a 30-μM concentration of l -glutamic acid, bacterial amount of Ac63 in chemotaxis and in vitro was observed with 2.9- and 7.4-times enhancement compared with that in the control. Laser confocal microscopy indicated that l -glutamic acid induced Ac63 to form a robust biofilm in roots, suggesting that l -glutamic acid is a signal molecule for the colonization of this strain. Soil pot assay showed that the biomass, chlorophyll, and available nitrogen of AT significantly increased than those of lettuce after Ac63 inoculation, resulting from this strain was substantially increased in roots of AT with l -glutamic acid secretion. Conclusion l -Glutamic acid induced the colonization of high-efficiency nitrogen-fixing strain Ac63 in AT roots, which provides a practical information for its agricultural applications.
Author Wang, Yi-Fan
She, Shao-Hua
Wang, Jun-Feng
Xu, Zhi-Min
Yang, Jun-Qing
Li, Qu-Sheng
Author_xml – sequence: 1
  givenname: Yi-Fan
  surname: Wang
  fullname: Wang, Yi-Fan
  organization: School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University
– sequence: 2
  givenname: Jun-Feng
  surname: Wang
  fullname: Wang, Jun-Feng
  organization: School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University
– sequence: 3
  givenname: Zhi-Min
  surname: Xu
  fullname: Xu, Zhi-Min
  organization: School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University
– sequence: 4
  givenname: Shao-Hua
  surname: She
  fullname: She, Shao-Hua
  organization: School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University
– sequence: 5
  givenname: Jun-Qing
  surname: Yang
  fullname: Yang, Jun-Qing
  organization: School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University
– sequence: 6
  givenname: Qu-Sheng
  orcidid: 0000-0002-9713-3808
  surname: Li
  fullname: Li, Qu-Sheng
  email: liqusheng@21cn.com
  organization: School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University
BookMark eNp9kU9rFTEUxYNU8LX6BVwF3NRFNH8mmZnlo2gVCm4U3IXMnTtvUuYlNcmA7bfwG5vpE4QuurpcOL9zL-eck7MQAxLyVvAPgvP2YxZC8IZxyRlvtBJMviA7oVvFNFfmjOw4V5Lxtv_5ipznfMu3XZgd-bOw62Ut7uiBOvAj9WFcAUdaZqQQlxj8gys-BhonOvvDzHCaPHgMcE-DLykeMLDJ__bhQHNJzge6B6Po5f4hljg4KJgozClGiADr8X29QOtW8ua4P7rkQpnXTEvy2730mryc3JLxzb95QX58_vT96gu7-Xb99Wp_w0BpWZhC6F3XGqMG1ODAjR3nGl2H7aBk33PTaiO0afrG6dbBaPoKaI6DHIxTTl2Qy5PvXYq_VszFHn0GXBYXMK7ZSq1F30mtmip990R6G9cU6ndWNlL2otMtr6rupIIUc044WfDlMbstlsUKbreu7KkrW7uyj11ZWVH5BL1LvkZz_zykTlCu4nDA9P-rZ6i_Q_2qWA
CitedBy_id crossref_primary_10_1016_j_jhazmat_2025_137913
crossref_primary_10_1016_j_jhazmat_2024_136588
crossref_primary_10_1016_j_scitotenv_2023_167774
crossref_primary_10_1016_j_ibiod_2023_105705
crossref_primary_10_48130_tp_0024_0037
crossref_primary_10_1016_j_micres_2024_127917
crossref_primary_10_1016_j_scitotenv_2021_152878
crossref_primary_10_3389_fmicb_2023_1302775
Cites_doi 10.1007/s11103-016-0435-1
10.1016/j.syapm.2018.10.010
10.1016/j.envpol.2018.05.018
10.1007/978-3-642-20332-9
10.1186/s12864-015-1825-5
10.1007/s00374-015-1051-y
10.1104/pp.24.1.1
10.1080/23311932.2015.1127500
10.1016/0038-0717
10.1016/j.biocontrol.2016.03.011
10.3389/fmicb.2019.00098
10.1016/j.bpj.2010.01.053
10.2436/20.1501.01.289
10.1186/1471-2164-13-162
10.3389/fmicb.2016.02150
10.1099/mic.0.000574
10.1128/mBio.00392-15
10.1111/j.1462-2920.2010.02325.x
10.1016/S0167-7012(98)00087-6
10.1074/jbc.M112.413518
10.18686/den.v1i1.1188
10.1111/1462-2920.14472
10.1016/j.mib.2004.10.014
10.1038/ismej.2017.30
10.1264/jsme2.ME12005
10.1073/pnas.1218984110
10.1094/MPMI-01-18-0003-R
10.1016/j.ejsobi.2011.08.009
10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
10.1038/nrmicro2405
10.1111/j.1574-6968.2011.02407.x
10.1007/s00284-019-01699-4
10.1128/JB.02130-14
10.1094/MPMI.2000.13.11.1163
10.1094/MPMI-12-18-0344-R
10.1111/j.1755-0998.2011.03086.x
10.1007/s10533-004-0370-0
10.3389/fmicb.2019.00078
10.1007/s10327-016-0651-1
10.3389/fmicb.2016.01811
10.4236/aim.2018.83016
10.1146/annurev-micro-092611-150120
10.1016/j.soilbio.2014.06.017
10.1128/AEM.02847-17
10.1111/j.1462-2920.2012.02860.x
10.1128/mBio.01664-16
10.1111/j.1365-2958.1996.tb02531.x
10.1111/1462-2920.13030
10.1016/S0168-6496
10.1128/JB.182.21.5990-5996.2000
10.1186/s12866-018-1254-0
10.1139/cjb-2013-0225
10.1104/pp.108.127613
10.3389/fmicb.2017.00267
10.3791/2437
10.1007/s13213-017-1312-0
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
Springer Nature Switzerland AG 2020.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: Springer Nature Switzerland AG 2020.
DBID AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-020-04531-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agriculture Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database
AGRICOLA

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Ecology
Botany
EISSN 1573-5036
EndPage 370
ExternalDocumentID 10_1007_s11104_020_04531_2
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41673094
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Key Project of National Natural Science Foundation
  grantid: U1901212
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~F
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X2
88A
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEJZ
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDBO
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EN4
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0K
M0L
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SA0
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XOL
Y6R
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQUKI
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-3ec9a87663be5cacad8005ea8e7b329906756156494a57acd69c9a50eb2b6a3a3
IEDL.DBID U2A
ISSN 0032-079X
IngestDate Thu Jul 10 23:27:33 EDT 2025
Tue Jul 29 03:41:03 EDT 2025
Thu Apr 24 23:09:31 EDT 2025
Tue Jul 01 01:47:09 EDT 2025
Fri Feb 21 02:33:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Swarming and in vitro
Root exudates
Biofilm formation
Chemotaxis
Nitrogen fixation strain
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-3ec9a87663be5cacad8005ea8e7b329906756156494a57acd69c9a50eb2b6a3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9713-3808
PQID 2422918570
PQPubID 54098
PageCount 14
ParticipantIDs proquest_miscellaneous_2551982534
proquest_journals_2422918570
crossref_citationtrail_10_1007_s11104_020_04531_2
crossref_primary_10_1007_s11104_020_04531_2
springer_journals_10_1007_s11104_020_04531_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200600
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References KeXFengSWangJLuWZhangWChenMLinMEffect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphereSyst Appl Microbiol20194222482601:CAS:528:DC%2BC1cXitlaltLjJ10.1016/j.syapm.2018.10.01030477902
O’TooleGAMicrotiter dish biofilm formation assayJove-J Vis Exp201147e243710.3791/2437
HuangX-FChaparroJMReardonKFZhangRShenQVivancoJMRhizosphere interactions: root exudates, microbes, and microbial communitiesBotany201492426727510.1139/cjb-2013-0225
PuriAPaddaKPChanwayCPEvidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2RBiol Fertil Soils20165211191251:CAS:528:DC%2BC2MXhsVWgsbbL10.1007/s00374-015-1051-y
FengHZhangNFuRLiuYKrellTDuWShaoJShenQZhangRRecognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteriaEnviron Microbiol20192114024151:CAS:528:DC%2BC1MXhtVahsbo%3D10.1111/1462-2920.1447230421582
Fibach-PaldiSBurdmanSOkonYKey physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilenseFEMS Microbiol Lett20123262991081:CAS:528:DC%2BC38XhtFWhu7Y%3D10.1111/j.1574-6968.2011.02407.x22092983
KöhlerTCurtyLKBarjaFVan DeldenCPechèreJ-CSwarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and piliJ Bacteriol2000182215990599610.1128/JB.182.21.5990-5996.20001102941794731
Bergersen FJ (1980) Methods for evaluating biological nitrogen fixation. Willey and Sons, Chichester pp 702
WangDXuAElmerichCMaLZBiofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditionsISME J201711716021:CAS:528:DC%2BC2sXhtVCiu7nI10.1038/ismej.2017.30283386745520150
HorneckDAMillerRODetermination of total nitrogen in plant tissueHandbook of reference methods for plant analysis199827583
CarvalhoTBallesterosHThiebautFFerreiraPHemerlyANice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plantsPlant Mol Biol20169065615741:CAS:528:DC%2BC28Xhs12hsrk%3D10.1007/s11103-016-0435-126821805
ThonarCErbAJansaJReal-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validationMol Ecol Resour20121222192321:CAS:528:DC%2BC38XkvVCmt78%3D10.1111/j.1755-0998.2011.03086.x22059700
ChenYGozziKYanFChaiYAcetic acid acts as a volatile signal to stimulate bacterial biofilm formationMBio201563e00392e003151:CAS:528:DC%2BC2MXhvFSqtrvM10.1128/mBio.00392-15260602724462622
EisenbachMControl of bacterial chemotaxisMol Microbiol19962059039101:CAS:528:DyaK28XjvFalurw%3D10.1111/j.1365-2958.1996.tb02531.x8809743
SuoBChenQWuWWuDTianMJieYZhangBWenJChemotactic responses of Phytophthora sojae zoospores to amino acids and sugars in root exudatesJ Gen Plant Pathol20168231421481:CAS:528:DC%2BC28Xks1OrsLs%3D10.1007/s10327-016-0651-1
KuchmaSDelalezNFilkinsLSnavelyEArmitageJO’TooleGCyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB statorJ Bacteriol201519734204301:CAS:528:DC%2BC2MXhtl2qt7Y%3D10.1128/JB.02130-14253491574285984
PolonioÁVidaCde VicenteACazorlaFMImpact of motility and chemotaxis features of the rhizobacterium Pseudomonas chlororaphis PCL1606 on its biocontrol of avocado white root rotInt Microbiol2017202951041:CAS:528:DC%2BC1MXjtVyksb4%3D10.2436/20.1501.01.28928617527
GuoS-HHuNLiQ-SYangPWangL-LXuZ-MChenH-JHeB-YZengEYResponse of edible amaranth cultivar to salt stress led to Cd mobilization in rhizosphere soil: a metabolomic analysisEnviron Pollut20182414224311:CAS:528:DC%2BC1cXhtVKrsbrL10.1016/j.envpol.2018.05.01829860158
WangNWangLZhuKHouSChenLMiDGuiYQiYJiangCGuoJ-HPlant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearumFront Microbiol2019109810.3389/fmicb.2019.00098307665256365458
AnsariFAAhmadIBiofilm development, plant growth promoting traits and rhizosphere colonization by Pseudomonas entomophila FAP1: a promising PGPRAdv Microbiol2018832351:CAS:528:DC%2BC1MXhsVKmsbvN10.4236/aim.2018.83016
RudrappaTCzymmekKJParéPWBaisHPRoot-secreted malic acid recruits beneficial soil bacteriaPlant Physiol20081483154715561:CAS:528:DC%2BD1cXhsVSnurnK10.1104/pp.108.127613188200822577262
ArnonDICopper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgarisPlant Physiol19492411151:CAS:528:DyaH1MXhtFaqtg%3D%3D10.1104/pp.24.1.1437905437905
ChenYYanFChaiYLiuHKolterRLosickRGuoJBiocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formationEnviron Microbiol201315384886410.1111/j.1462-2920.2012.02860.x22934631
FengHZhangNDuWZhangHLiuYFuRShaoJZhangGShenQZhangRIdentification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9Mol Plant Microbe In2018311099510051:CAS:528:DC%2BC1cXitlSmsr3M10.1094/MPMI-01-18-0003-R
Yu X (2019) A preliminary study of the effects of gltA gene on biofilm formation of Enterococcus. Probe-Dentistry 1(1). doi: https://doi.org/10.18686/den.v1i1.1188
Gupta Sood S (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45(3): 219-227. doi: https://doi.org/10.1016/S0168-6496(03)00155-7
el ZaharHFSantaellaCHeulinTAchouakWRoot exudates mediated interactions belowgroundSoil Biol Biochem20147769801:CAS:528:DC%2BC2cXht12ntLzM10.1016/j.soilbio.2014.06.017
LingNRazaWMaJHuangQShenQIdentification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphereEur J Soil Biol20114763743791:CAS:528:DC%2BC3MXhtlKrsb7L10.1016/j.ejsobi.2011.08.009
CarpenterSRCaracoNFCorrellDLHowarthRWSharpleyANSmithVHNonpoint pollution of surface waters with phosphorus and nitrogenEcol Appl19988355956810.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
Dos SantosPCFangZMasonSWSetubalJCDixonRDistribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomesBMC Genomics20121311621:CAS:528:DC%2BC38XhslamurfJ10.1186/1471-2164-13-162225542353464626
LacalJGarcía-FontanaCMuñoz-MartínezFRamosJLKrellTSensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regionsEnviron Microbiol20101211287328841:CAS:528:DC%2BC3cXhsFyrsrjP10.1111/j.1462-2920.2010.02325.x20738376
GlekasGDMulhernBJKrocADuelferKALeiVRaoCVOrdalGWThe Bacillus subtilis chemoreceptor McpC senses multiple ligands using two discrete mechanismsJ Biol Chem20122874739412394181:CAS:528:DC%2BC38Xhs12ks7fL10.1074/jbc.M112.413518230382523501012
MattinglyAEKamatkarNGMorales-SotoNBorleeBRShroutJDMultiple environmental factors influence the importance of the phosphodiesterase DipA upon Pseudomonas aeruginosa swarmingAppl Environ Microbiol2018847e02847e0281710.1128/AEM.02847-17294274305861829
HazelbauerGLBacterial chemotaxis: the early years of molecular studiesAnnu Rev Microbiol2012662853031:CAS:528:DC%2BC38XhsF2iur3I10.1146/annurev-micro-092611-150120229944953989901
XueG-PJohnsonJSDalrympleBPHigh osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformisJ Microbiol Methods19993431831911:CAS:528:DyaK1cXnvVWmtL8%3D10.1016/S0167-7012(98)00087-6
BeauregardPBChaiYVlamakisHLosickRKolterRBacillus subtilis biofilm induction by plant polysaccharidesProc Natl Acad Sci U S A201311017E1621E163010.1073/pnas.1218984110235692263637697
GoswamiDThakkerJNDhandhukiaPCPortraying mechanics of plant growth promoting rhizobacteria (PGPR): a reviewCogent Food Agric20162111275001:CAS:528:DC%2BC1cXmtFGhsL4%3D10.1080/23311932.2015.1127500
DarntonNCTurnerLRojevskySBergHCDynamics of bacterial swarmingBiophys J20109810208220901:CAS:528:DC%2BC3cXosFCis7k%3D10.1016/j.bpj.2010.01.053204833152872219
StuurmanNBrasCPSchlamanHRWijfjesAHBloembergGSpainkHPUse of green fluorescent protein color variants expressed on stable broad-host-range vectors to visualize rhizobia interacting with plantsMol Plant Microbe In20001311116311691:CAS:528:DC%2BD3cXnslaisLw%3D10.1094/MPMI.2000.13.11.1163
ChenS-LTsaiM-KHuangY-MHuangC-HDiversity and characterization of Azotobacter isolates obtained from rice rhizosphere soils in TaiwanAnn Microbiol201868117261:CAS:528:DC%2BC2sXhvF2gt73N10.1007/s13213-017-1312-0
YuYYanFChenYJinCGuoJ-HChaiYPoly-γ-glutamic acids contribute to biofilm formation and plant root colonization in selected environmental isolates of Bacillus subtilisFront Microbiol20167181110.3389/fmicb.2016.01811278911255102903
GallowayJNDentenerFJCaponeDGBoyerEWHowarthRWSeitzingerSPAsnerGPClevelandCCGreenPHollandEANitrogen cycles: past, present, and futureBiogeochemistry20047021532261:CAS:528:DC%2BD2MXpsFShtw%3D%3D10.1007/s10533-004-0370-0
Martín-MoraDReyes-DariasJAOrtegaÁCorral-LugoAMatillaMAKrellTMcpQ is a specific citrate chemoreceptor that responds preferentially to citrate/metal ion complexesEnviron Microbiol20161810328432951:CAS:528:DC%2BC28Xhs1Ohu7vO10.1111/1462-2920.1303026463109
LübkeA-LMinatelliSRiedelTLugertRSchoberISpröerCOvermannJGroßUZautnerAEBohneWThe transducer-like protein Tlp12 of Campylobacter jejuni is involved in glutamate and pyruvate chemotaxisBMC Microbiol20181811111:CAS:528:DC%2BC1MXjs1OgtLw%3D10.1186/s12866-018-1254-0302008866131913
OkuSHidaAMattanaTTajimaTNakashimadaYKatoJInvolvement of many chemotaxis sensors in negative chemotaxis to ethanol in Ralstonia pseudosolanacearum Ps29Microbiology+201716312188018891:CAS:528:DC%2BC1cXhsV2qurzK10.1099/mic.0.00057429134930
JinYZhuHLuoSYangWZhangLLiSJinQCaoQSunSXiaoMRole of maize root exudates in promotion of colonization of Bacillus velezensis strain S3-1 in rhizosphere soil and root tissueCurr Microbiol20197678558621:CAS:528:DC%2BC1MXhtVSntrnP10.1007/s00284-019-01699-431073734
López
Á Polonio (4531_CR45) 2017; 20
N Stuurman (4531_CR50) 2000; 13
S Fibach-Paldi (4531_CR17) 2012; 326
N Wang (4531_CR54) 2019; 10
FA Ansari (4531_CR2) 2018; 8
DL McRose (4531_CR40) 2017; 8
A Puri (4531_CR46) 2016; 52
T Rudrappa (4531_CR48) 2008; 148
S-L Chen (4531_CR8) 2018; 68
D Martín-Mora (4531_CR38) 2016; 18
C Thonar (4531_CR52) 2012; 12
Y Chen (4531_CR9) 2015; 6
4531_CR44
4531_CR41
PC Dos Santos (4531_CR12) 2012; 13
H Feng (4531_CR16) 2019; 21
PB Beauregard (4531_CR4) 2013; 110
GD Glekas (4531_CR20) 2012; 287
Y Chen (4531_CR10) 2013; 15
AE Mattingly (4531_CR39) 2018; 84
D Goswami (4531_CR21) 2016; 2
H Feng (4531_CR15) 2018; 31
4531_CR56
DI Arnon (4531_CR3) 1949; 24
DB Kearns (4531_CR30) 2010; 8
A-L Lübke (4531_CR36) 2018; 18
S-H Guo (4531_CR22) 2018; 241
Y Yu (4531_CR57) 2016; 7
N Zhang (4531_CR58) 2015; 16
HF el Zahar (4531_CR14) 2014; 77
GA O’Toole (4531_CR42) 2011; 47
M Eisenbach (4531_CR13) 1996; 20
SR Carpenter (4531_CR6) 1998; 8
VS Singh (4531_CR49) 2019; 32
G-P Xue (4531_CR55) 1999; 34
JN Galloway (4531_CR18) 2004; 70
X-F Huang (4531_CR27) 2014; 92
S Kuchma (4531_CR32) 2015; 197
Y Jin (4531_CR28) 2019; 76
4531_CR23
4531_CR5
4531_CR24
4531_CR1
GL Hazelbauer (4531_CR25) 2012; 66
S Gao (4531_CR19) 2016; 98
NC Darnton (4531_CR11) 2010; 98
T Carvalho (4531_CR7) 2016; 90
T Köhler (4531_CR31) 2000; 182
N Ling (4531_CR34) 2011; 47
S Oku (4531_CR43) 2017; 163
4531_CR37
BE Ramey (4531_CR47) 2004; 7
DA Horneck (4531_CR26) 1998; 2
4531_CR35
D Wang (4531_CR53) 2017; 11
B Suo (4531_CR51) 2016; 82
J Lacal (4531_CR33) 2010; 12
X Ke (4531_CR29) 2019; 42
References_xml – reference: Martín-MoraDReyes-DariasJAOrtegaÁCorral-LugoAMatillaMAKrellTMcpQ is a specific citrate chemoreceptor that responds preferentially to citrate/metal ion complexesEnviron Microbiol20161810328432951:CAS:528:DC%2BC28Xhs1Ohu7vO10.1111/1462-2920.1303026463109
– reference: LingNRazaWMaJHuangQShenQIdentification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphereEur J Soil Biol20114763743791:CAS:528:DC%2BC3MXhtlKrsb7L10.1016/j.ejsobi.2011.08.009
– reference: Hardy R, Burns RC, Holsten RD (1973) Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5(1): 47-81. doi: https://doi.org/10.1016/0038-0717(73)90093-X
– reference: PolonioÁVidaCde VicenteACazorlaFMImpact of motility and chemotaxis features of the rhizobacterium Pseudomonas chlororaphis PCL1606 on its biocontrol of avocado white root rotInt Microbiol2017202951041:CAS:528:DC%2BC1MXjtVyksb4%3D10.2436/20.1501.01.28928617527
– reference: ChenYYanFChaiYLiuHKolterRLosickRGuoJBiocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formationEnviron Microbiol201315384886410.1111/j.1462-2920.2012.02860.x22934631
– reference: López-Farfán D, Reyes-Darias JA, Matilla MA, Krell T (2019) Concentration dependent effect of plant root exudates on the chemosensory systems of Pseudomonas putida KT2440. Front Mcrobiol 10(78). https://doi.org/10.3389/fmicb.2019.00078
– reference: MattinglyAEKamatkarNGMorales-SotoNBorleeBRShroutJDMultiple environmental factors influence the importance of the phosphodiesterase DipA upon Pseudomonas aeruginosa swarmingAppl Environ Microbiol2018847e02847e0281710.1128/AEM.02847-17294274305861829
– reference: DarntonNCTurnerLRojevskySBergHCDynamics of bacterial swarmingBiophys J20109810208220901:CAS:528:DC%2BC3cXosFCis7k%3D10.1016/j.bpj.2010.01.053204833152872219
– reference: FengHZhangNFuRLiuYKrellTDuWShaoJShenQZhangRRecognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteriaEnviron Microbiol20192114024151:CAS:528:DC%2BC1MXhtVahsbo%3D10.1111/1462-2920.1447230421582
– reference: KeXFengSWangJLuWZhangWChenMLinMEffect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphereSyst Appl Microbiol20194222482601:CAS:528:DC%2BC1cXitlaltLjJ10.1016/j.syapm.2018.10.01030477902
– reference: XueG-PJohnsonJSDalrympleBPHigh osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformisJ Microbiol Methods19993431831911:CAS:528:DyaK1cXnvVWmtL8%3D10.1016/S0167-7012(98)00087-6
– reference: ThonarCErbAJansaJReal-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validationMol Ecol Resour20121222192321:CAS:528:DC%2BC38XkvVCmt78%3D10.1111/j.1755-0998.2011.03086.x22059700
– reference: WangDXuAElmerichCMaLZBiofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditionsISME J201711716021:CAS:528:DC%2BC2sXhtVCiu7nI10.1038/ismej.2017.30283386745520150
– reference: O’TooleGAMicrotiter dish biofilm formation assayJove-J Vis Exp201147e243710.3791/2437
– reference: OkuSHidaAMattanaTTajimaTNakashimadaYKatoJInvolvement of many chemotaxis sensors in negative chemotaxis to ethanol in Ralstonia pseudosolanacearum Ps29Microbiology+201716312188018891:CAS:528:DC%2BC1cXhsV2qurzK10.1099/mic.0.00057429134930
– reference: Dos SantosPCFangZMasonSWSetubalJCDixonRDistribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomesBMC Genomics20121311621:CAS:528:DC%2BC38XhslamurfJ10.1186/1471-2164-13-162225542353464626
– reference: BeauregardPBChaiYVlamakisHLosickRKolterRBacillus subtilis biofilm induction by plant polysaccharidesProc Natl Acad Sci U S A201311017E1621E163010.1073/pnas.1218984110235692263637697
– reference: PuriAPaddaKPChanwayCPEvidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2RBiol Fertil Soils20165211191251:CAS:528:DC%2BC2MXhsVWgsbbL10.1007/s00374-015-1051-y
– reference: YuYYanFChenYJinCGuoJ-HChaiYPoly-γ-glutamic acids contribute to biofilm formation and plant root colonization in selected environmental isolates of Bacillus subtilisFront Microbiol20167181110.3389/fmicb.2016.01811278911255102903
– reference: HorneckDAMillerRODetermination of total nitrogen in plant tissueHandbook of reference methods for plant analysis199827583
– reference: AnsariFAAhmadIBiofilm development, plant growth promoting traits and rhizosphere colonization by Pseudomonas entomophila FAP1: a promising PGPRAdv Microbiol2018832351:CAS:528:DC%2BC1MXhsVKmsbvN10.4236/aim.2018.83016
– reference: ArnonDICopper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgarisPlant Physiol19492411151:CAS:528:DyaH1MXhtFaqtg%3D%3D10.1104/pp.24.1.1437905437905
– reference: WangNWangLZhuKHouSChenLMiDGuiYQiYJiangCGuoJ-HPlant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearumFront Microbiol2019109810.3389/fmicb.2019.00098307665256365458
– reference: ZhangNYangDWangDMiaoYShaoJZhouXXuZLiQFengHLiSWhole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudatesBMC Genomics20151616851:CAS:528:DC%2BC28XmtVCrsr8%3D10.1186/s12864-015-1825-5263461214562157
– reference: FengHZhangNDuWZhangHLiuYFuRShaoJZhangGShenQZhangRIdentification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9Mol Plant Microbe In2018311099510051:CAS:528:DC%2BC1cXitlSmsr3M10.1094/MPMI-01-18-0003-R
– reference: SinghVSTripathiPPandeyPSinghDNDubeyBKSinghCSinghSPPandeyRTripathiAKDicarboxylate transporters of Azospirillum brasilense Sp7 play an important role in the colonization of finger millet (Eleusine coracana) rootsMol Plant Microbe In20193278288401:CAS:528:DC%2BC1MXhsVCrt77O10.1094/MPMI-12-18-0344-R
– reference: Gupta Sood S (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45(3): 219-227. doi: https://doi.org/10.1016/S0168-6496(03)00155-7
– reference: Maheshwari DK (2011) Bacteria in agrobiology: plant growth responses. Springer Science & Business Media
– reference: CarvalhoTBallesterosHThiebautFFerreiraPHemerlyANice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plantsPlant Mol Biol20169065615741:CAS:528:DC%2BC28Xhs12hsrk%3D10.1007/s11103-016-0435-126821805
– reference: HuangX-FChaparroJMReardonKFZhangRShenQVivancoJMRhizosphere interactions: root exudates, microbes, and microbial communitiesBotany201492426727510.1139/cjb-2013-0225
– reference: JinYZhuHLuoSYangWZhangLLiSJinQCaoQSunSXiaoMRole of maize root exudates in promotion of colonization of Bacillus velezensis strain S3-1 in rhizosphere soil and root tissueCurr Microbiol20197678558621:CAS:528:DC%2BC1MXhtVSntrnP10.1007/s00284-019-01699-431073734
– reference: GlekasGDMulhernBJKrocADuelferKALeiVRaoCVOrdalGWThe Bacillus subtilis chemoreceptor McpC senses multiple ligands using two discrete mechanismsJ Biol Chem20122874739412394181:CAS:528:DC%2BC38Xhs12ks7fL10.1074/jbc.M112.413518230382523501012
– reference: KearnsDBA field guide to bacterial swarming motilityNat Rev Microbiol2010896346441:CAS:528:DC%2BC3cXpvFelsrk%3D10.1038/nrmicro2405206940263135019
– reference: Mosimann C, Oberhänsli T, Ziegler D, Nassal D, Kandeler E, Boller T, Mäder P, Thonar C (2017) Tracing of two Pseudomonas strains in the root and rhizoplane of maize, as related to their plant growth-promoting effect in contrasting soils. Front Microbiol 7: 2150. doi: https://doi.org/10.3389/fmicb.2016.02150
– reference: RudrappaTCzymmekKJParéPWBaisHPRoot-secreted malic acid recruits beneficial soil bacteriaPlant Physiol20081483154715561:CAS:528:DC%2BD1cXhsVSnurnK10.1104/pp.108.127613188200822577262
– reference: CarpenterSRCaracoNFCorrellDLHowarthRWSharpleyANSmithVHNonpoint pollution of surface waters with phosphorus and nitrogenEcol Appl19988355956810.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
– reference: StuurmanNBrasCPSchlamanHRWijfjesAHBloembergGSpainkHPUse of green fluorescent protein color variants expressed on stable broad-host-range vectors to visualize rhizobia interacting with plantsMol Plant Microbe In20001311116311691:CAS:528:DC%2BD3cXnslaisLw%3D10.1094/MPMI.2000.13.11.1163
– reference: Allard-Massicotte R, Tessier L, Lécuyer F, Lakshmanan V, Lucier J-F, Garneau D, Caudwell L, Vlamakis H, Bais HP, Beauregard PB (2016) Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio 7(6): e01664-01616. doi. https://doi.org/10.1128/mBio.01664-16
– reference: Fibach-PaldiSBurdmanSOkonYKey physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilenseFEMS Microbiol Lett20123262991081:CAS:528:DC%2BC38XhtFWhu7Y%3D10.1111/j.1574-6968.2011.02407.x22092983
– reference: SuoBChenQWuWWuDTianMJieYZhangBWenJChemotactic responses of Phytophthora sojae zoospores to amino acids and sugars in root exudatesJ Gen Plant Pathol20168231421481:CAS:528:DC%2BC28Xks1OrsLs%3D10.1007/s10327-016-0651-1
– reference: LacalJGarcía-FontanaCMuñoz-MartínezFRamosJLKrellTSensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regionsEnviron Microbiol20101211287328841:CAS:528:DC%2BC3cXhsFyrsrjP10.1111/j.1462-2920.2010.02325.x20738376
– reference: RameyBEKoutsoudisMvon BodmanSBFuquaCBiofilm formation in plant–microbe associationsCurr Opin Microbiol2004766026091:CAS:528:DC%2BD2cXhtVWjtrvL10.1016/j.mib.2004.10.01415556032
– reference: el ZaharHFSantaellaCHeulinTAchouakWRoot exudates mediated interactions belowgroundSoil Biol Biochem20147769801:CAS:528:DC%2BC2cXht12ntLzM10.1016/j.soilbio.2014.06.017
– reference: ChenS-LTsaiM-KHuangY-MHuangC-HDiversity and characterization of Azotobacter isolates obtained from rice rhizosphere soils in TaiwanAnn Microbiol201868117261:CAS:528:DC%2BC2sXhvF2gt73N10.1007/s13213-017-1312-0
– reference: LübkeA-LMinatelliSRiedelTLugertRSchoberISpröerCOvermannJGroßUZautnerAEBohneWThe transducer-like protein Tlp12 of Campylobacter jejuni is involved in glutamate and pyruvate chemotaxisBMC Microbiol20181811111:CAS:528:DC%2BC1MXjs1OgtLw%3D10.1186/s12866-018-1254-0302008866131913
– reference: Bergersen FJ (1980) Methods for evaluating biological nitrogen fixation. Willey and Sons, Chichester pp 702
– reference: McRoseDLZhangXKraepielAMMorelFMDiversity and activity of alternative nitrogenases in sequenced genomes and coastal environmentsFront Microbiol201786710.3389/fmicb.2017.00267
– reference: EisenbachMControl of bacterial chemotaxisMol Microbiol19962059039101:CAS:528:DyaK28XjvFalurw%3D10.1111/j.1365-2958.1996.tb02531.x8809743
– reference: GallowayJNDentenerFJCaponeDGBoyerEWHowarthRWSeitzingerSPAsnerGPClevelandCCGreenPHollandEANitrogen cycles: past, present, and futureBiogeochemistry20047021532261:CAS:528:DC%2BD2MXpsFShtw%3D%3D10.1007/s10533-004-0370-0
– reference: GuoS-HHuNLiQ-SYangPWangL-LXuZ-MChenH-JHeB-YZengEYResponse of edible amaranth cultivar to salt stress led to Cd mobilization in rhizosphere soil: a metabolomic analysisEnviron Pollut20182414224311:CAS:528:DC%2BC1cXhtVKrsbrL10.1016/j.envpol.2018.05.01829860158
– reference: GoswamiDThakkerJNDhandhukiaPCPortraying mechanics of plant growth promoting rhizobacteria (PGPR): a reviewCogent Food Agric20162111275001:CAS:528:DC%2BC1cXmtFGhsL4%3D10.1080/23311932.2015.1127500
– reference: KöhlerTCurtyLKBarjaFVan DeldenCPechèreJ-CSwarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and piliJ Bacteriol2000182215990599610.1128/JB.182.21.5990-5996.20001102941794731
– reference: Oku S, Komatsu A, Tajima T, Nakashimada Y, Kato J (2012) Identification of chemotaxis sensory proteins for amino acids in Pseudomonas fluorescens Pf0-1 and their involvement in chemotaxis to tomato root exudate and root colonization. Microbes Environ ME12005. https://doi.org/10.1264/jsme2.ME12005
– reference: Yu X (2019) A preliminary study of the effects of gltA gene on biofilm formation of Enterococcus. Probe-Dentistry 1(1). doi: https://doi.org/10.18686/den.v1i1.1188
– reference: ChenYGozziKYanFChaiYAcetic acid acts as a volatile signal to stimulate bacterial biofilm formationMBio201563e00392e003151:CAS:528:DC%2BC2MXhvFSqtrvM10.1128/mBio.00392-15260602724462622
– reference: HazelbauerGLBacterial chemotaxis: the early years of molecular studiesAnnu Rev Microbiol2012662853031:CAS:528:DC%2BC38XhsF2iur3I10.1146/annurev-micro-092611-150120229944953989901
– reference: KuchmaSDelalezNFilkinsLSnavelyEArmitageJO’TooleGCyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB statorJ Bacteriol201519734204301:CAS:528:DC%2BC2MXhtl2qt7Y%3D10.1128/JB.02130-14253491574285984
– reference: GaoSWuHYuXQianLGaoXSwarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01Biol Control20169811171:CAS:528:DC%2BC28XltValt74%3D10.1016/j.biocontrol.2016.03.011
– volume: 90
  start-page: 561
  issue: 6
  year: 2016
  ident: 4531_CR7
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-016-0435-1
– volume: 42
  start-page: 248
  issue: 2
  year: 2019
  ident: 4531_CR29
  publication-title: Syst Appl Microbiol
  doi: 10.1016/j.syapm.2018.10.010
– volume: 241
  start-page: 422
  year: 2018
  ident: 4531_CR22
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2018.05.018
– ident: 4531_CR37
  doi: 10.1007/978-3-642-20332-9
– volume: 16
  start-page: 685
  issue: 1
  year: 2015
  ident: 4531_CR58
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1825-5
– volume: 52
  start-page: 119
  issue: 1
  year: 2016
  ident: 4531_CR46
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-015-1051-y
– volume: 24
  start-page: 1
  issue: 1
  year: 1949
  ident: 4531_CR3
  publication-title: Plant Physiol
  doi: 10.1104/pp.24.1.1
– volume: 2
  start-page: 1127500
  issue: 1
  year: 2016
  ident: 4531_CR21
  publication-title: Cogent Food Agric
  doi: 10.1080/23311932.2015.1127500
– ident: 4531_CR24
  doi: 10.1016/0038-0717
– volume: 98
  start-page: 11
  year: 2016
  ident: 4531_CR19
  publication-title: Biol Control
  doi: 10.1016/j.biocontrol.2016.03.011
– volume: 10
  start-page: 98
  year: 2019
  ident: 4531_CR54
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.00098
– volume: 98
  start-page: 2082
  issue: 10
  year: 2010
  ident: 4531_CR11
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2010.01.053
– volume: 20
  start-page: 95
  issue: 2
  year: 2017
  ident: 4531_CR45
  publication-title: Int Microbiol
  doi: 10.2436/20.1501.01.289
– volume: 13
  start-page: 162
  issue: 1
  year: 2012
  ident: 4531_CR12
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-162
– ident: 4531_CR41
  doi: 10.3389/fmicb.2016.02150
– volume: 163
  start-page: 1880
  issue: 12
  year: 2017
  ident: 4531_CR43
  publication-title: Microbiology+
  doi: 10.1099/mic.0.000574
– volume: 6
  start-page: e00392
  issue: 3
  year: 2015
  ident: 4531_CR9
  publication-title: MBio
  doi: 10.1128/mBio.00392-15
– volume: 12
  start-page: 2873
  issue: 11
  year: 2010
  ident: 4531_CR33
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2010.02325.x
– volume: 34
  start-page: 183
  issue: 3
  year: 1999
  ident: 4531_CR55
  publication-title: J Microbiol Methods
  doi: 10.1016/S0167-7012(98)00087-6
– volume: 287
  start-page: 39412
  issue: 47
  year: 2012
  ident: 4531_CR20
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.413518
– ident: 4531_CR56
  doi: 10.18686/den.v1i1.1188
– volume: 21
  start-page: 402
  issue: 1
  year: 2019
  ident: 4531_CR16
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.14472
– volume: 7
  start-page: 602
  issue: 6
  year: 2004
  ident: 4531_CR47
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2004.10.014
– volume: 11
  start-page: 1602
  issue: 7
  year: 2017
  ident: 4531_CR53
  publication-title: ISME J
  doi: 10.1038/ismej.2017.30
– ident: 4531_CR44
  doi: 10.1264/jsme2.ME12005
– volume: 110
  start-page: E1621
  issue: 17
  year: 2013
  ident: 4531_CR4
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1218984110
– volume: 31
  start-page: 995
  issue: 10
  year: 2018
  ident: 4531_CR15
  publication-title: Mol Plant Microbe In
  doi: 10.1094/MPMI-01-18-0003-R
– volume: 47
  start-page: 374
  issue: 6
  year: 2011
  ident: 4531_CR34
  publication-title: Eur J Soil Biol
  doi: 10.1016/j.ejsobi.2011.08.009
– volume: 8
  start-page: 559
  issue: 3
  year: 1998
  ident: 4531_CR6
  publication-title: Ecol Appl
  doi: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
– volume: 8
  start-page: 634
  issue: 9
  year: 2010
  ident: 4531_CR30
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2405
– volume: 326
  start-page: 99
  issue: 2
  year: 2012
  ident: 4531_CR17
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2011.02407.x
– volume: 76
  start-page: 855
  issue: 7
  year: 2019
  ident: 4531_CR28
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-019-01699-4
– volume: 197
  start-page: 420
  issue: 3
  year: 2015
  ident: 4531_CR32
  publication-title: J Bacteriol
  doi: 10.1128/JB.02130-14
– volume: 13
  start-page: 1163
  issue: 11
  year: 2000
  ident: 4531_CR50
  publication-title: Mol Plant Microbe In
  doi: 10.1094/MPMI.2000.13.11.1163
– volume: 32
  start-page: 828
  issue: 7
  year: 2019
  ident: 4531_CR49
  publication-title: Mol Plant Microbe In
  doi: 10.1094/MPMI-12-18-0344-R
– volume: 12
  start-page: 219
  issue: 2
  year: 2012
  ident: 4531_CR52
  publication-title: Mol Ecol Resour
  doi: 10.1111/j.1755-0998.2011.03086.x
– volume: 70
  start-page: 153
  issue: 2
  year: 2004
  ident: 4531_CR18
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-004-0370-0
– ident: 4531_CR35
  doi: 10.3389/fmicb.2019.00078
– volume: 82
  start-page: 142
  issue: 3
  year: 2016
  ident: 4531_CR51
  publication-title: J Gen Plant Pathol
  doi: 10.1007/s10327-016-0651-1
– volume: 7
  start-page: 1811
  year: 2016
  ident: 4531_CR57
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2016.01811
– volume: 8
  start-page: 235
  issue: 3
  year: 2018
  ident: 4531_CR2
  publication-title: Adv Microbiol
  doi: 10.4236/aim.2018.83016
– volume: 66
  start-page: 285
  year: 2012
  ident: 4531_CR25
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev-micro-092611-150120
– volume: 77
  start-page: 69
  year: 2014
  ident: 4531_CR14
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2014.06.017
– volume: 84
  start-page: e02847
  issue: 7
  year: 2018
  ident: 4531_CR39
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02847-17
– volume: 15
  start-page: 848
  issue: 3
  year: 2013
  ident: 4531_CR10
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2012.02860.x
– ident: 4531_CR1
  doi: 10.1128/mBio.01664-16
– volume: 20
  start-page: 903
  issue: 5
  year: 1996
  ident: 4531_CR13
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.1996.tb02531.x
– volume: 18
  start-page: 3284
  issue: 10
  year: 2016
  ident: 4531_CR38
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.13030
– ident: 4531_CR5
– ident: 4531_CR23
  doi: 10.1016/S0168-6496
– volume: 182
  start-page: 5990
  issue: 21
  year: 2000
  ident: 4531_CR31
  publication-title: J Bacteriol
  doi: 10.1128/JB.182.21.5990-5996.2000
– volume: 18
  start-page: 111
  issue: 1
  year: 2018
  ident: 4531_CR36
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-018-1254-0
– volume: 92
  start-page: 267
  issue: 4
  year: 2014
  ident: 4531_CR27
  publication-title: Botany
  doi: 10.1139/cjb-2013-0225
– volume: 2
  start-page: 75
  year: 1998
  ident: 4531_CR26
  publication-title: Handbook of reference methods for plant analysis
– volume: 148
  start-page: 1547
  issue: 3
  year: 2008
  ident: 4531_CR48
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.127613
– volume: 8
  start-page: 67
  year: 2017
  ident: 4531_CR40
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.00267
– volume: 47
  start-page: e2437
  year: 2011
  ident: 4531_CR42
  publication-title: Jove-J Vis Exp
  doi: 10.3791/2437
– volume: 68
  start-page: 17
  issue: 1
  year: 2018
  ident: 4531_CR8
  publication-title: Ann Microbiol
  doi: 10.1007/s13213-017-1312-0
SSID ssj0003216
Score 2.3600678
Snippet Aims The aim of this study was to evaluate its feasibility of a non-symbiotic nitrogen-fixing strain, Ac63 ( Azotobacter chroococcum ), to promote biomass of...
AimsThe aim of this study was to evaluate its feasibility of a non-symbiotic nitrogen-fixing strain, Ac63 (Azotobacter chroococcum), to promote biomass of...
AIMS: The aim of this study was to evaluate its feasibility of a non-symbiotic nitrogen-fixing strain, Ac63 (Azotobacter chroococcum), to promote biomass of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 357
SubjectTerms Acids
Amaranth
Amaranthus tricolor
Azotobacter
Azotobacter chroococcum
biofilm
Biofilms
Biomass
Biomedical and Life Sciences
Brassica oleracea
cabbage
Chemotaxis
Chlorophyll
Colonization
Confocal microscopy
Crops
Ecology
Exudates
Glebionis coronaria
Glutamic acid
Inoculation
Lettuce
Life Sciences
Nitrogen
Nitrogen fixation
Nitrogenation
Plant Physiology
Plant Sciences
Regular Article
Roots
secretion
soil
Soil Science & Conservation
Soils
Swarming
Vegetables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS9xAEB7q2Qf7INa29PzFFnywtEtz2c0meSpRtFKoiFS4tzDZ7KmgF73kQP0v_I87k9vcUUHfErKbTTKzM9_MZr8B2LU6QY0DJXWqI6kdKskJBhkbBhsleaiS8x1_Tszxuf49jIY-4Vb73yo7m9ga6rKynCP_Qa4kTJm4KPh5eye5ahSvrvoSGkuwTCY4SXqwvH94cno2t8UqbIuf8oEM4nTot83MNs-R59OSwyeCNWogw_9d0wJvPlsibT3P0RqsesgospmM38MbN16Hd9nFxNNmuHV4u18RyHv4AE_X8hfpEheZF2ivSkEhNwmvFITzBBNUd_suRTUSTFUsXcshwRswBc3uSUUKJUdX9_Qkom7rR4jMGiX2sseK5z5zOwt7SXibLKmd3nylEQSdNTXfMbtB8n3N5bQWzPxP400-wvnR4d-DY-mrLkhLYKyRytkUyUYaVbjIosWSMGXkMHFxodh5UYhhmGIm1RjFaEuTUocooBC9MKhQfYLeuBq7zyDSIiqViTFGNdBxYgtjwiBGtCaiLirow6D74Ln1lOT8Ztf5gkyZhZSTkPJWSHnYh2_zPrczQo5XW291csz95KzzhSr14cv8Mk0rXivBsaum1IaQZErRs9J9-N7Jf3GLl0fceH3ETVgJW5XjPM4W9JrJ1G0TrGmKHa-7_wDgyfMy
  priority: 102
  providerName: ProQuest
Title l-Glutamic acid induced the colonization of high-efficiency nitrogen-fixing strain Ac63 (Azotobacter chroococcum) in roots of Amaranthus tricolor
URI https://link.springer.com/article/10.1007/s11104-020-04531-2
https://www.proquest.com/docview/2422918570
https://www.proquest.com/docview/2551982534
Volume 451
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEF6kVbAPRU_Fs7Ws4IOiC3fZH7k85vSuRbGIeHA-hclmawvtpVxyYP0v_I_9JpfcoajgUxKyP5LM7sw3u5lvhHjuzYgMDbUyibHKBNKKFxhU7BhsFLBQBa93fDh1JzPzbm7nbVBY1f3t3m1JNpp6G-wGS2UUuzuAIXqooHh3LXx3_pFrFqUb_aujJuEpn6hBnMzbUJk_t_GrOdpizN-2RRtrM70n9luYKNO1XO-LW2HRE3vp12VLlRF64va4BLC76Yk7k4Z5-uaB-HGpjjGSOMW8JH9RSDjcEF0hgfIkF-qiLmV5JpmoWIWGQYLDLyXm9rLEcFJnF9_wTLJqskfI1DstX6TfS575zOws_TnQNvSoX129RA8SV3XFLaZXBMtXn68qybz_6G_5UMymk89vTlSbc0F5QLFa6eATgoZ0Og_Wk6cCiNIGGoU412y64GA4JphJDNmYfOESVLADOOi5I036kdhZlIvwWMgkt4V2McWkhyYe-dy5aBATeWdRRQ_6Yth9-sy3hOT8ZpfZlkqZxZVBXFkjrizqi1ebOtdrOo5_lj7sJJq1U7PKgEmihBmw8ADPNrcxqXinhBahXKEMcGQC31mbvnjdjYRtE3_v8cn_FT8Qdzl9_XpJ51Ds1MtVeAqQU-dHYjcdvx1P-Xj85f0Ex_Hk9OOno2as_wS5FPYb
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NDonxgGCAKAwwEkggZpHajtM8IJTBRse2CqFN6lu4ON4PaWtGkwrGf8E_wt_IXZq0Aom97a1VYzvtXb77zu59B_DcmT4a7GlpYhNK41FL3mCQkWWykVOEynm_Y29oBwfm0ygcLcHvthaG_1bZYmIN1HnheI_8DYUSFbNwUfDu_JvkrlF8utq20Ji5xY6_-E4pW_l2-wPZ94VSW5v77wey6SogHZGNSmrvYiQMsDrzoUOHOXGm0GPfR5lmcCYKbVlCJTYYRuhyG9OAMKAUNLOoUdO812DZaBuoDixvbA4_f5ljv1Z1s1V-IYMoHjVlOrNiPYq0RnK6RjRK96T6OxQu-O0_R7J1pNu6DbcaiiqSmU_dgSU_XoWbydGkkenwq3B9oyBSeXEXfp3Kj-S73NReoDvJBaX45Cy5IF4pWBC7rfMUxaFgaWTpa80KLvgUhCaTghxYHp78oDsRZd2vQiTOavEy-Vkw1rCWtHDHxO8Jud307BWtIOhdVfKMyRlSrK2Op6XgTgO03uQeHFyJPe5DZ1yM_QMQcRbm2kYYoe6ZqO8ya1UQITob0hAddKHX_uCpayTQ-ZudpgvxZjZSSkZKayOlqguv52POZwIgl1691toxbcCgTBeu24Vn84_pMeazGRz7YkrXEHONKVvXpgvrrf0XU_x_xYeXr_gUbgz293bT3e3hziNYUbX78R7SGnSqydQ_JkpVZU8aPxbw9aofnT_qSTBO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NDiF4QDBAFAYYCSQQs5bGjt08IJSxlY1BNSEm9S1cHJdN2prRpILxL_g7_Dru0qQVSOxtb4kS20nufPednfsO4JnTfdTYU1LHOpLao5K8wCCtYbCRk4fKeb3j49DsHur3o2i0Ar_bXBj-rbK1ibWhzgvHa-Sb5ErCmImLgs1x81vEwfbgzdk3yRWkeKe1LacxV5F9f_6dwrfy9d42yfp5GA52Pr_dlU2FAekIeFRSeRcj2QOjMh85dJgTfoo89r3NFBtqgtOG6VRijZFFl5uYGkQBhaOZQYWK-r0Cq5ajog6sbu0MDz4t_IAK68KrfCADG4-alJ154h55XS05dCNIpXoy_NstLrHuP9uztdcb3IKbDVwVyVy_bsOKn6zBjeTrtKHs8GtwdasggHl-B36dyHekx1zgXqA7zgWF-6Q4uSCMKZgcu835FMVYME2y9DV_BSd_CrIs04KUWY6Pf9CTiLKuXSESZ5R4kfws2O4wr7RwR4T1yYq72elLGkHQWVVyj8kpkt-tjmal4KoDNN70LhxeijzuQWdSTPx9EHEW5cpYtKh62vZdZkwYWERnImqigi702g-euoYOnd_sJF0SObOQUhJSWgspDbvwatHmbE4GcuHd660c08YwlOlSjbvwdHGZpjTv0-DEFzO6h1BsTJG70l3YaOW_7OL_Iz64eMQncI2mTPphb7j_EK6HtfbxctI6dKrpzD8idFVljxs1FvDlsmfOHx-YNIM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=l-Glutamic+acid+induced+the+colonization+of+high-efficiency+nitrogen-fixing+strain+Ac63+%28Azotobacter+chroococcum%29+in+roots+of+Amaranthus+tricolor&rft.jtitle=Plant+and+soil&rft.au=Wang%2C+Yi-Fan&rft.au=Wang%2C+Jun-Feng&rft.au=Xu%2C+Zhi-Min&rft.au=She%2C+Shao-Hua&rft.date=2020-06-01&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=451&rft.issue=1-2&rft.spage=357&rft.epage=370&rft_id=info:doi/10.1007%2Fs11104-020-04531-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11104_020_04531_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon