l-Glutamic acid induced the colonization of high-efficiency nitrogen-fixing strain Ac63 (Azotobacter chroococcum) in roots of Amaranthus tricolor
Aims The aim of this study was to evaluate its feasibility of a non-symbiotic nitrogen-fixing strain, Ac63 ( Azotobacter chroococcum ), to promote biomass of common vegetable crops and its colonization mechanisms in their roots. Methods Root exudates of common vegetables, including Amaranthus tricol...
Saved in:
Published in | Plant and soil Vol. 451; no. 1-2; pp. 357 - 370 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims
The aim of this study was to evaluate its feasibility of a non-symbiotic nitrogen-fixing strain, Ac63 (
Azotobacter chroococcum
), to promote biomass of common vegetable crops and its colonization mechanisms in their roots.
Methods
Root exudates of common vegetables, including
Amaranthus tricolor
(AT),
Willow amaranth
(WA),
Chrysanthemum coronarium
(CC), cabbage, and lettuce, were collected, and a chemotaxis assay with Ac63 was performed. Components in exudates for the most differential chemotaxis effect crops (AT and lettuce) were determined with GC-MS. Then, the traditional screening strategies of chemotaxis, swarming, and in vitro were utilized to find the signal molecule for this strain. Finally, the colonization effects of Ac63 in roots of these two crops were verified with a soil pot experiment.
Results
Chemotaxis effects of root exudates on Ac63 follow the lists of AT > WA > CC > cabbage ≈ control (water) ≈ lettuce. With a 30-μM concentration of
l
-glutamic acid, bacterial amount of Ac63 in chemotaxis and in vitro was observed with 2.9- and 7.4-times enhancement compared with that in the control. Laser confocal microscopy indicated that
l
-glutamic acid induced Ac63 to form a robust biofilm in roots, suggesting that
l
-glutamic acid is a signal molecule for the colonization of this strain. Soil pot assay showed that the biomass, chlorophyll, and available nitrogen of AT significantly increased than those of lettuce after Ac63 inoculation, resulting from this strain was substantially increased in roots of AT with
l
-glutamic acid secretion.
Conclusion
l
-Glutamic acid induced the colonization of high-efficiency nitrogen-fixing strain Ac63 in AT roots, which provides a practical information for its agricultural applications. |
---|---|
AbstractList | AimsThe aim of this study was to evaluate its feasibility of a non-symbiotic nitrogen-fixing strain, Ac63 (Azotobacter chroococcum), to promote biomass of common vegetable crops and its colonization mechanisms in their roots.MethodsRoot exudates of common vegetables, including Amaranthus tricolor (AT), Willow amaranth (WA), Chrysanthemum coronarium (CC), cabbage, and lettuce, were collected, and a chemotaxis assay with Ac63 was performed. Components in exudates for the most differential chemotaxis effect crops (AT and lettuce) were determined with GC-MS. Then, the traditional screening strategies of chemotaxis, swarming, and in vitro were utilized to find the signal molecule for this strain. Finally, the colonization effects of Ac63 in roots of these two crops were verified with a soil pot experiment.ResultsChemotaxis effects of root exudates on Ac63 follow the lists of AT > WA > CC > cabbage ≈ control (water) ≈ lettuce. With a 30-μM concentration of l-glutamic acid, bacterial amount of Ac63 in chemotaxis and in vitro was observed with 2.9- and 7.4-times enhancement compared with that in the control. Laser confocal microscopy indicated that l-glutamic acid induced Ac63 to form a robust biofilm in roots, suggesting that l-glutamic acid is a signal molecule for the colonization of this strain. Soil pot assay showed that the biomass, chlorophyll, and available nitrogen of AT significantly increased than those of lettuce after Ac63 inoculation, resulting from this strain was substantially increased in roots of AT with l-glutamic acid secretion.Conclusionl-Glutamic acid induced the colonization of high-efficiency nitrogen-fixing strain Ac63 in AT roots, which provides a practical information for its agricultural applications. AIMS: The aim of this study was to evaluate its feasibility of a non-symbiotic nitrogen-fixing strain, Ac63 (Azotobacter chroococcum), to promote biomass of common vegetable crops and its colonization mechanisms in their roots. METHODS: Root exudates of common vegetables, including Amaranthus tricolor (AT), Willow amaranth (WA), Chrysanthemum coronarium (CC), cabbage, and lettuce, were collected, and a chemotaxis assay with Ac63 was performed. Components in exudates for the most differential chemotaxis effect crops (AT and lettuce) were determined with GC-MS. Then, the traditional screening strategies of chemotaxis, swarming, and in vitro were utilized to find the signal molecule for this strain. Finally, the colonization effects of Ac63 in roots of these two crops were verified with a soil pot experiment. RESULTS: Chemotaxis effects of root exudates on Ac63 follow the lists of AT > WA > CC > cabbage ≈ control (water) ≈ lettuce. With a 30-μM concentration of L-glutamic acid, bacterial amount of Ac63 in chemotaxis and in vitro was observed with 2.9- and 7.4-times enhancement compared with that in the control. Laser confocal microscopy indicated that L-glutamic acid induced Ac63 to form a robust biofilm in roots, suggesting that L-glutamic acid is a signal molecule for the colonization of this strain. Soil pot assay showed that the biomass, chlorophyll, and available nitrogen of AT significantly increased than those of lettuce after Ac63 inoculation, resulting from this strain was substantially increased in roots of AT with L-glutamic acid secretion. CONCLUSION: L-Glutamic acid induced the colonization of high-efficiency nitrogen-fixing strain Ac63 in AT roots, which provides a practical information for its agricultural applications. Aims The aim of this study was to evaluate its feasibility of a non-symbiotic nitrogen-fixing strain, Ac63 ( Azotobacter chroococcum ), to promote biomass of common vegetable crops and its colonization mechanisms in their roots. Methods Root exudates of common vegetables, including Amaranthus tricolor (AT), Willow amaranth (WA), Chrysanthemum coronarium (CC), cabbage, and lettuce, were collected, and a chemotaxis assay with Ac63 was performed. Components in exudates for the most differential chemotaxis effect crops (AT and lettuce) were determined with GC-MS. Then, the traditional screening strategies of chemotaxis, swarming, and in vitro were utilized to find the signal molecule for this strain. Finally, the colonization effects of Ac63 in roots of these two crops were verified with a soil pot experiment. Results Chemotaxis effects of root exudates on Ac63 follow the lists of AT > WA > CC > cabbage ≈ control (water) ≈ lettuce. With a 30-μM concentration of l -glutamic acid, bacterial amount of Ac63 in chemotaxis and in vitro was observed with 2.9- and 7.4-times enhancement compared with that in the control. Laser confocal microscopy indicated that l -glutamic acid induced Ac63 to form a robust biofilm in roots, suggesting that l -glutamic acid is a signal molecule for the colonization of this strain. Soil pot assay showed that the biomass, chlorophyll, and available nitrogen of AT significantly increased than those of lettuce after Ac63 inoculation, resulting from this strain was substantially increased in roots of AT with l -glutamic acid secretion. Conclusion l -Glutamic acid induced the colonization of high-efficiency nitrogen-fixing strain Ac63 in AT roots, which provides a practical information for its agricultural applications. |
Author | Wang, Yi-Fan She, Shao-Hua Wang, Jun-Feng Xu, Zhi-Min Yang, Jun-Qing Li, Qu-Sheng |
Author_xml | – sequence: 1 givenname: Yi-Fan surname: Wang fullname: Wang, Yi-Fan organization: School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University – sequence: 2 givenname: Jun-Feng surname: Wang fullname: Wang, Jun-Feng organization: School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University – sequence: 3 givenname: Zhi-Min surname: Xu fullname: Xu, Zhi-Min organization: School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University – sequence: 4 givenname: Shao-Hua surname: She fullname: She, Shao-Hua organization: School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University – sequence: 5 givenname: Jun-Qing surname: Yang fullname: Yang, Jun-Qing organization: School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University – sequence: 6 givenname: Qu-Sheng orcidid: 0000-0002-9713-3808 surname: Li fullname: Li, Qu-Sheng email: liqusheng@21cn.com organization: School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University |
BookMark | eNp9kU9rFTEUxYNU8LX6BVwF3NRFNH8mmZnlo2gVCm4U3IXMnTtvUuYlNcmA7bfwG5vpE4QuurpcOL9zL-eck7MQAxLyVvAPgvP2YxZC8IZxyRlvtBJMviA7oVvFNFfmjOw4V5Lxtv_5ipznfMu3XZgd-bOw62Ut7uiBOvAj9WFcAUdaZqQQlxj8gys-BhonOvvDzHCaPHgMcE-DLykeMLDJ__bhQHNJzge6B6Po5f4hljg4KJgozClGiADr8X29QOtW8ua4P7rkQpnXTEvy2730mryc3JLxzb95QX58_vT96gu7-Xb99Wp_w0BpWZhC6F3XGqMG1ODAjR3nGl2H7aBk33PTaiO0afrG6dbBaPoKaI6DHIxTTl2Qy5PvXYq_VszFHn0GXBYXMK7ZSq1F30mtmip990R6G9cU6ndWNlL2otMtr6rupIIUc044WfDlMbstlsUKbreu7KkrW7uyj11ZWVH5BL1LvkZz_zykTlCu4nDA9P-rZ6i_Q_2qWA |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2025_137913 crossref_primary_10_1016_j_jhazmat_2024_136588 crossref_primary_10_1016_j_scitotenv_2023_167774 crossref_primary_10_1016_j_ibiod_2023_105705 crossref_primary_10_48130_tp_0024_0037 crossref_primary_10_1016_j_micres_2024_127917 crossref_primary_10_1016_j_scitotenv_2021_152878 crossref_primary_10_3389_fmicb_2023_1302775 |
Cites_doi | 10.1007/s11103-016-0435-1 10.1016/j.syapm.2018.10.010 10.1016/j.envpol.2018.05.018 10.1007/978-3-642-20332-9 10.1186/s12864-015-1825-5 10.1007/s00374-015-1051-y 10.1104/pp.24.1.1 10.1080/23311932.2015.1127500 10.1016/0038-0717 10.1016/j.biocontrol.2016.03.011 10.3389/fmicb.2019.00098 10.1016/j.bpj.2010.01.053 10.2436/20.1501.01.289 10.1186/1471-2164-13-162 10.3389/fmicb.2016.02150 10.1099/mic.0.000574 10.1128/mBio.00392-15 10.1111/j.1462-2920.2010.02325.x 10.1016/S0167-7012(98)00087-6 10.1074/jbc.M112.413518 10.18686/den.v1i1.1188 10.1111/1462-2920.14472 10.1016/j.mib.2004.10.014 10.1038/ismej.2017.30 10.1264/jsme2.ME12005 10.1073/pnas.1218984110 10.1094/MPMI-01-18-0003-R 10.1016/j.ejsobi.2011.08.009 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2 10.1038/nrmicro2405 10.1111/j.1574-6968.2011.02407.x 10.1007/s00284-019-01699-4 10.1128/JB.02130-14 10.1094/MPMI.2000.13.11.1163 10.1094/MPMI-12-18-0344-R 10.1111/j.1755-0998.2011.03086.x 10.1007/s10533-004-0370-0 10.3389/fmicb.2019.00078 10.1007/s10327-016-0651-1 10.3389/fmicb.2016.01811 10.4236/aim.2018.83016 10.1146/annurev-micro-092611-150120 10.1016/j.soilbio.2014.06.017 10.1128/AEM.02847-17 10.1111/j.1462-2920.2012.02860.x 10.1128/mBio.01664-16 10.1111/j.1365-2958.1996.tb02531.x 10.1111/1462-2920.13030 10.1016/S0168-6496 10.1128/JB.182.21.5990-5996.2000 10.1186/s12866-018-1254-0 10.1139/cjb-2013-0225 10.1104/pp.108.127613 10.3389/fmicb.2017.00267 10.3791/2437 10.1007/s13213-017-1312-0 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2020 Springer Nature Switzerland AG 2020. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2020 – notice: Springer Nature Switzerland AG 2020. |
DBID | AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-020-04531-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agriculture Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Ecology Botany |
EISSN | 1573-5036 |
EndPage | 370 |
ExternalDocumentID | 10_1007_s11104_020_04531_2 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41673094 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Key Project of National Natural Science Foundation grantid: U1901212 |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~F 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 88A 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEEJZ AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDBO AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EN4 EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M0L M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 PF0 PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XOL Y6R YLTOR Z45 Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG ZMTXR ZOVNA ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c352t-3ec9a87663be5cacad8005ea8e7b329906756156494a57acd69c9a50eb2b6a3a3 |
IEDL.DBID | U2A |
ISSN | 0032-079X |
IngestDate | Thu Jul 10 23:27:33 EDT 2025 Tue Jul 29 03:41:03 EDT 2025 Thu Apr 24 23:09:31 EDT 2025 Tue Jul 01 01:47:09 EDT 2025 Fri Feb 21 02:33:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Swarming and in vitro Root exudates Biofilm formation Chemotaxis Nitrogen fixation strain |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-3ec9a87663be5cacad8005ea8e7b329906756156494a57acd69c9a50eb2b6a3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9713-3808 |
PQID | 2422918570 |
PQPubID | 54098 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2551982534 proquest_journals_2422918570 crossref_citationtrail_10_1007_s11104_020_04531_2 crossref_primary_10_1007_s11104_020_04531_2 springer_journals_10_1007_s11104_020_04531_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200600 2020-06-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200600 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | KeXFengSWangJLuWZhangWChenMLinMEffect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphereSyst Appl Microbiol20194222482601:CAS:528:DC%2BC1cXitlaltLjJ10.1016/j.syapm.2018.10.01030477902 O’TooleGAMicrotiter dish biofilm formation assayJove-J Vis Exp201147e243710.3791/2437 HuangX-FChaparroJMReardonKFZhangRShenQVivancoJMRhizosphere interactions: root exudates, microbes, and microbial communitiesBotany201492426727510.1139/cjb-2013-0225 PuriAPaddaKPChanwayCPEvidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2RBiol Fertil Soils20165211191251:CAS:528:DC%2BC2MXhsVWgsbbL10.1007/s00374-015-1051-y FengHZhangNFuRLiuYKrellTDuWShaoJShenQZhangRRecognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteriaEnviron Microbiol20192114024151:CAS:528:DC%2BC1MXhtVahsbo%3D10.1111/1462-2920.1447230421582 Fibach-PaldiSBurdmanSOkonYKey physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilenseFEMS Microbiol Lett20123262991081:CAS:528:DC%2BC38XhtFWhu7Y%3D10.1111/j.1574-6968.2011.02407.x22092983 KöhlerTCurtyLKBarjaFVan DeldenCPechèreJ-CSwarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and piliJ Bacteriol2000182215990599610.1128/JB.182.21.5990-5996.20001102941794731 Bergersen FJ (1980) Methods for evaluating biological nitrogen fixation. Willey and Sons, Chichester pp 702 WangDXuAElmerichCMaLZBiofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditionsISME J201711716021:CAS:528:DC%2BC2sXhtVCiu7nI10.1038/ismej.2017.30283386745520150 HorneckDAMillerRODetermination of total nitrogen in plant tissueHandbook of reference methods for plant analysis199827583 CarvalhoTBallesterosHThiebautFFerreiraPHemerlyANice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plantsPlant Mol Biol20169065615741:CAS:528:DC%2BC28Xhs12hsrk%3D10.1007/s11103-016-0435-126821805 ThonarCErbAJansaJReal-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validationMol Ecol Resour20121222192321:CAS:528:DC%2BC38XkvVCmt78%3D10.1111/j.1755-0998.2011.03086.x22059700 ChenYGozziKYanFChaiYAcetic acid acts as a volatile signal to stimulate bacterial biofilm formationMBio201563e00392e003151:CAS:528:DC%2BC2MXhvFSqtrvM10.1128/mBio.00392-15260602724462622 EisenbachMControl of bacterial chemotaxisMol Microbiol19962059039101:CAS:528:DyaK28XjvFalurw%3D10.1111/j.1365-2958.1996.tb02531.x8809743 SuoBChenQWuWWuDTianMJieYZhangBWenJChemotactic responses of Phytophthora sojae zoospores to amino acids and sugars in root exudatesJ Gen Plant Pathol20168231421481:CAS:528:DC%2BC28Xks1OrsLs%3D10.1007/s10327-016-0651-1 KuchmaSDelalezNFilkinsLSnavelyEArmitageJO’TooleGCyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB statorJ Bacteriol201519734204301:CAS:528:DC%2BC2MXhtl2qt7Y%3D10.1128/JB.02130-14253491574285984 PolonioÁVidaCde VicenteACazorlaFMImpact of motility and chemotaxis features of the rhizobacterium Pseudomonas chlororaphis PCL1606 on its biocontrol of avocado white root rotInt Microbiol2017202951041:CAS:528:DC%2BC1MXjtVyksb4%3D10.2436/20.1501.01.28928617527 GuoS-HHuNLiQ-SYangPWangL-LXuZ-MChenH-JHeB-YZengEYResponse of edible amaranth cultivar to salt stress led to Cd mobilization in rhizosphere soil: a metabolomic analysisEnviron Pollut20182414224311:CAS:528:DC%2BC1cXhtVKrsbrL10.1016/j.envpol.2018.05.01829860158 WangNWangLZhuKHouSChenLMiDGuiYQiYJiangCGuoJ-HPlant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearumFront Microbiol2019109810.3389/fmicb.2019.00098307665256365458 AnsariFAAhmadIBiofilm development, plant growth promoting traits and rhizosphere colonization by Pseudomonas entomophila FAP1: a promising PGPRAdv Microbiol2018832351:CAS:528:DC%2BC1MXhsVKmsbvN10.4236/aim.2018.83016 RudrappaTCzymmekKJParéPWBaisHPRoot-secreted malic acid recruits beneficial soil bacteriaPlant Physiol20081483154715561:CAS:528:DC%2BD1cXhsVSnurnK10.1104/pp.108.127613188200822577262 ArnonDICopper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgarisPlant Physiol19492411151:CAS:528:DyaH1MXhtFaqtg%3D%3D10.1104/pp.24.1.1437905437905 ChenYYanFChaiYLiuHKolterRLosickRGuoJBiocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formationEnviron Microbiol201315384886410.1111/j.1462-2920.2012.02860.x22934631 FengHZhangNDuWZhangHLiuYFuRShaoJZhangGShenQZhangRIdentification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9Mol Plant Microbe In2018311099510051:CAS:528:DC%2BC1cXitlSmsr3M10.1094/MPMI-01-18-0003-R Yu X (2019) A preliminary study of the effects of gltA gene on biofilm formation of Enterococcus. Probe-Dentistry 1(1). doi: https://doi.org/10.18686/den.v1i1.1188 Gupta Sood S (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45(3): 219-227. doi: https://doi.org/10.1016/S0168-6496(03)00155-7 el ZaharHFSantaellaCHeulinTAchouakWRoot exudates mediated interactions belowgroundSoil Biol Biochem20147769801:CAS:528:DC%2BC2cXht12ntLzM10.1016/j.soilbio.2014.06.017 LingNRazaWMaJHuangQShenQIdentification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphereEur J Soil Biol20114763743791:CAS:528:DC%2BC3MXhtlKrsb7L10.1016/j.ejsobi.2011.08.009 CarpenterSRCaracoNFCorrellDLHowarthRWSharpleyANSmithVHNonpoint pollution of surface waters with phosphorus and nitrogenEcol Appl19988355956810.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2 Dos SantosPCFangZMasonSWSetubalJCDixonRDistribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomesBMC Genomics20121311621:CAS:528:DC%2BC38XhslamurfJ10.1186/1471-2164-13-162225542353464626 LacalJGarcía-FontanaCMuñoz-MartínezFRamosJLKrellTSensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regionsEnviron Microbiol20101211287328841:CAS:528:DC%2BC3cXhsFyrsrjP10.1111/j.1462-2920.2010.02325.x20738376 GlekasGDMulhernBJKrocADuelferKALeiVRaoCVOrdalGWThe Bacillus subtilis chemoreceptor McpC senses multiple ligands using two discrete mechanismsJ Biol Chem20122874739412394181:CAS:528:DC%2BC38Xhs12ks7fL10.1074/jbc.M112.413518230382523501012 MattinglyAEKamatkarNGMorales-SotoNBorleeBRShroutJDMultiple environmental factors influence the importance of the phosphodiesterase DipA upon Pseudomonas aeruginosa swarmingAppl Environ Microbiol2018847e02847e0281710.1128/AEM.02847-17294274305861829 HazelbauerGLBacterial chemotaxis: the early years of molecular studiesAnnu Rev Microbiol2012662853031:CAS:528:DC%2BC38XhsF2iur3I10.1146/annurev-micro-092611-150120229944953989901 XueG-PJohnsonJSDalrympleBPHigh osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformisJ Microbiol Methods19993431831911:CAS:528:DyaK1cXnvVWmtL8%3D10.1016/S0167-7012(98)00087-6 BeauregardPBChaiYVlamakisHLosickRKolterRBacillus subtilis biofilm induction by plant polysaccharidesProc Natl Acad Sci U S A201311017E1621E163010.1073/pnas.1218984110235692263637697 GoswamiDThakkerJNDhandhukiaPCPortraying mechanics of plant growth promoting rhizobacteria (PGPR): a reviewCogent Food Agric20162111275001:CAS:528:DC%2BC1cXmtFGhsL4%3D10.1080/23311932.2015.1127500 DarntonNCTurnerLRojevskySBergHCDynamics of bacterial swarmingBiophys J20109810208220901:CAS:528:DC%2BC3cXosFCis7k%3D10.1016/j.bpj.2010.01.053204833152872219 StuurmanNBrasCPSchlamanHRWijfjesAHBloembergGSpainkHPUse of green fluorescent protein color variants expressed on stable broad-host-range vectors to visualize rhizobia interacting with plantsMol Plant Microbe In20001311116311691:CAS:528:DC%2BD3cXnslaisLw%3D10.1094/MPMI.2000.13.11.1163 ChenS-LTsaiM-KHuangY-MHuangC-HDiversity and characterization of Azotobacter isolates obtained from rice rhizosphere soils in TaiwanAnn Microbiol201868117261:CAS:528:DC%2BC2sXhvF2gt73N10.1007/s13213-017-1312-0 YuYYanFChenYJinCGuoJ-HChaiYPoly-γ-glutamic acids contribute to biofilm formation and plant root colonization in selected environmental isolates of Bacillus subtilisFront Microbiol20167181110.3389/fmicb.2016.01811278911255102903 GallowayJNDentenerFJCaponeDGBoyerEWHowarthRWSeitzingerSPAsnerGPClevelandCCGreenPHollandEANitrogen cycles: past, present, and futureBiogeochemistry20047021532261:CAS:528:DC%2BD2MXpsFShtw%3D%3D10.1007/s10533-004-0370-0 Martín-MoraDReyes-DariasJAOrtegaÁCorral-LugoAMatillaMAKrellTMcpQ is a specific citrate chemoreceptor that responds preferentially to citrate/metal ion complexesEnviron Microbiol20161810328432951:CAS:528:DC%2BC28Xhs1Ohu7vO10.1111/1462-2920.1303026463109 LübkeA-LMinatelliSRiedelTLugertRSchoberISpröerCOvermannJGroßUZautnerAEBohneWThe transducer-like protein Tlp12 of Campylobacter jejuni is involved in glutamate and pyruvate chemotaxisBMC Microbiol20181811111:CAS:528:DC%2BC1MXjs1OgtLw%3D10.1186/s12866-018-1254-0302008866131913 OkuSHidaAMattanaTTajimaTNakashimadaYKatoJInvolvement of many chemotaxis sensors in negative chemotaxis to ethanol in Ralstonia pseudosolanacearum Ps29Microbiology+201716312188018891:CAS:528:DC%2BC1cXhsV2qurzK10.1099/mic.0.00057429134930 JinYZhuHLuoSYangWZhangLLiSJinQCaoQSunSXiaoMRole of maize root exudates in promotion of colonization of Bacillus velezensis strain S3-1 in rhizosphere soil and root tissueCurr Microbiol20197678558621:CAS:528:DC%2BC1MXhtVSntrnP10.1007/s00284-019-01699-431073734 López Á Polonio (4531_CR45) 2017; 20 N Stuurman (4531_CR50) 2000; 13 S Fibach-Paldi (4531_CR17) 2012; 326 N Wang (4531_CR54) 2019; 10 FA Ansari (4531_CR2) 2018; 8 DL McRose (4531_CR40) 2017; 8 A Puri (4531_CR46) 2016; 52 T Rudrappa (4531_CR48) 2008; 148 S-L Chen (4531_CR8) 2018; 68 D Martín-Mora (4531_CR38) 2016; 18 C Thonar (4531_CR52) 2012; 12 Y Chen (4531_CR9) 2015; 6 4531_CR44 4531_CR41 PC Dos Santos (4531_CR12) 2012; 13 H Feng (4531_CR16) 2019; 21 PB Beauregard (4531_CR4) 2013; 110 GD Glekas (4531_CR20) 2012; 287 Y Chen (4531_CR10) 2013; 15 AE Mattingly (4531_CR39) 2018; 84 D Goswami (4531_CR21) 2016; 2 H Feng (4531_CR15) 2018; 31 4531_CR56 DI Arnon (4531_CR3) 1949; 24 DB Kearns (4531_CR30) 2010; 8 A-L Lübke (4531_CR36) 2018; 18 S-H Guo (4531_CR22) 2018; 241 Y Yu (4531_CR57) 2016; 7 N Zhang (4531_CR58) 2015; 16 HF el Zahar (4531_CR14) 2014; 77 GA O’Toole (4531_CR42) 2011; 47 M Eisenbach (4531_CR13) 1996; 20 SR Carpenter (4531_CR6) 1998; 8 VS Singh (4531_CR49) 2019; 32 G-P Xue (4531_CR55) 1999; 34 JN Galloway (4531_CR18) 2004; 70 X-F Huang (4531_CR27) 2014; 92 S Kuchma (4531_CR32) 2015; 197 Y Jin (4531_CR28) 2019; 76 4531_CR23 4531_CR5 4531_CR24 4531_CR1 GL Hazelbauer (4531_CR25) 2012; 66 S Gao (4531_CR19) 2016; 98 NC Darnton (4531_CR11) 2010; 98 T Carvalho (4531_CR7) 2016; 90 T Köhler (4531_CR31) 2000; 182 N Ling (4531_CR34) 2011; 47 S Oku (4531_CR43) 2017; 163 4531_CR37 BE Ramey (4531_CR47) 2004; 7 DA Horneck (4531_CR26) 1998; 2 4531_CR35 D Wang (4531_CR53) 2017; 11 B Suo (4531_CR51) 2016; 82 J Lacal (4531_CR33) 2010; 12 X Ke (4531_CR29) 2019; 42 |
References_xml | – reference: Martín-MoraDReyes-DariasJAOrtegaÁCorral-LugoAMatillaMAKrellTMcpQ is a specific citrate chemoreceptor that responds preferentially to citrate/metal ion complexesEnviron Microbiol20161810328432951:CAS:528:DC%2BC28Xhs1Ohu7vO10.1111/1462-2920.1303026463109 – reference: LingNRazaWMaJHuangQShenQIdentification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphereEur J Soil Biol20114763743791:CAS:528:DC%2BC3MXhtlKrsb7L10.1016/j.ejsobi.2011.08.009 – reference: Hardy R, Burns RC, Holsten RD (1973) Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5(1): 47-81. doi: https://doi.org/10.1016/0038-0717(73)90093-X – reference: PolonioÁVidaCde VicenteACazorlaFMImpact of motility and chemotaxis features of the rhizobacterium Pseudomonas chlororaphis PCL1606 on its biocontrol of avocado white root rotInt Microbiol2017202951041:CAS:528:DC%2BC1MXjtVyksb4%3D10.2436/20.1501.01.28928617527 – reference: ChenYYanFChaiYLiuHKolterRLosickRGuoJBiocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formationEnviron Microbiol201315384886410.1111/j.1462-2920.2012.02860.x22934631 – reference: López-Farfán D, Reyes-Darias JA, Matilla MA, Krell T (2019) Concentration dependent effect of plant root exudates on the chemosensory systems of Pseudomonas putida KT2440. Front Mcrobiol 10(78). https://doi.org/10.3389/fmicb.2019.00078 – reference: MattinglyAEKamatkarNGMorales-SotoNBorleeBRShroutJDMultiple environmental factors influence the importance of the phosphodiesterase DipA upon Pseudomonas aeruginosa swarmingAppl Environ Microbiol2018847e02847e0281710.1128/AEM.02847-17294274305861829 – reference: DarntonNCTurnerLRojevskySBergHCDynamics of bacterial swarmingBiophys J20109810208220901:CAS:528:DC%2BC3cXosFCis7k%3D10.1016/j.bpj.2010.01.053204833152872219 – reference: FengHZhangNFuRLiuYKrellTDuWShaoJShenQZhangRRecognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteriaEnviron Microbiol20192114024151:CAS:528:DC%2BC1MXhtVahsbo%3D10.1111/1462-2920.1447230421582 – reference: KeXFengSWangJLuWZhangWChenMLinMEffect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphereSyst Appl Microbiol20194222482601:CAS:528:DC%2BC1cXitlaltLjJ10.1016/j.syapm.2018.10.01030477902 – reference: XueG-PJohnsonJSDalrympleBPHigh osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformisJ Microbiol Methods19993431831911:CAS:528:DyaK1cXnvVWmtL8%3D10.1016/S0167-7012(98)00087-6 – reference: ThonarCErbAJansaJReal-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validationMol Ecol Resour20121222192321:CAS:528:DC%2BC38XkvVCmt78%3D10.1111/j.1755-0998.2011.03086.x22059700 – reference: WangDXuAElmerichCMaLZBiofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditionsISME J201711716021:CAS:528:DC%2BC2sXhtVCiu7nI10.1038/ismej.2017.30283386745520150 – reference: O’TooleGAMicrotiter dish biofilm formation assayJove-J Vis Exp201147e243710.3791/2437 – reference: OkuSHidaAMattanaTTajimaTNakashimadaYKatoJInvolvement of many chemotaxis sensors in negative chemotaxis to ethanol in Ralstonia pseudosolanacearum Ps29Microbiology+201716312188018891:CAS:528:DC%2BC1cXhsV2qurzK10.1099/mic.0.00057429134930 – reference: Dos SantosPCFangZMasonSWSetubalJCDixonRDistribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomesBMC Genomics20121311621:CAS:528:DC%2BC38XhslamurfJ10.1186/1471-2164-13-162225542353464626 – reference: BeauregardPBChaiYVlamakisHLosickRKolterRBacillus subtilis biofilm induction by plant polysaccharidesProc Natl Acad Sci U S A201311017E1621E163010.1073/pnas.1218984110235692263637697 – reference: PuriAPaddaKPChanwayCPEvidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2RBiol Fertil Soils20165211191251:CAS:528:DC%2BC2MXhsVWgsbbL10.1007/s00374-015-1051-y – reference: YuYYanFChenYJinCGuoJ-HChaiYPoly-γ-glutamic acids contribute to biofilm formation and plant root colonization in selected environmental isolates of Bacillus subtilisFront Microbiol20167181110.3389/fmicb.2016.01811278911255102903 – reference: HorneckDAMillerRODetermination of total nitrogen in plant tissueHandbook of reference methods for plant analysis199827583 – reference: AnsariFAAhmadIBiofilm development, plant growth promoting traits and rhizosphere colonization by Pseudomonas entomophila FAP1: a promising PGPRAdv Microbiol2018832351:CAS:528:DC%2BC1MXhsVKmsbvN10.4236/aim.2018.83016 – reference: ArnonDICopper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgarisPlant Physiol19492411151:CAS:528:DyaH1MXhtFaqtg%3D%3D10.1104/pp.24.1.1437905437905 – reference: WangNWangLZhuKHouSChenLMiDGuiYQiYJiangCGuoJ-HPlant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearumFront Microbiol2019109810.3389/fmicb.2019.00098307665256365458 – reference: ZhangNYangDWangDMiaoYShaoJZhouXXuZLiQFengHLiSWhole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudatesBMC Genomics20151616851:CAS:528:DC%2BC28XmtVCrsr8%3D10.1186/s12864-015-1825-5263461214562157 – reference: FengHZhangNDuWZhangHLiuYFuRShaoJZhangGShenQZhangRIdentification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9Mol Plant Microbe In2018311099510051:CAS:528:DC%2BC1cXitlSmsr3M10.1094/MPMI-01-18-0003-R – reference: SinghVSTripathiPPandeyPSinghDNDubeyBKSinghCSinghSPPandeyRTripathiAKDicarboxylate transporters of Azospirillum brasilense Sp7 play an important role in the colonization of finger millet (Eleusine coracana) rootsMol Plant Microbe In20193278288401:CAS:528:DC%2BC1MXhsVCrt77O10.1094/MPMI-12-18-0344-R – reference: Gupta Sood S (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45(3): 219-227. doi: https://doi.org/10.1016/S0168-6496(03)00155-7 – reference: Maheshwari DK (2011) Bacteria in agrobiology: plant growth responses. Springer Science & Business Media – reference: CarvalhoTBallesterosHThiebautFFerreiraPHemerlyANice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plantsPlant Mol Biol20169065615741:CAS:528:DC%2BC28Xhs12hsrk%3D10.1007/s11103-016-0435-126821805 – reference: HuangX-FChaparroJMReardonKFZhangRShenQVivancoJMRhizosphere interactions: root exudates, microbes, and microbial communitiesBotany201492426727510.1139/cjb-2013-0225 – reference: JinYZhuHLuoSYangWZhangLLiSJinQCaoQSunSXiaoMRole of maize root exudates in promotion of colonization of Bacillus velezensis strain S3-1 in rhizosphere soil and root tissueCurr Microbiol20197678558621:CAS:528:DC%2BC1MXhtVSntrnP10.1007/s00284-019-01699-431073734 – reference: GlekasGDMulhernBJKrocADuelferKALeiVRaoCVOrdalGWThe Bacillus subtilis chemoreceptor McpC senses multiple ligands using two discrete mechanismsJ Biol Chem20122874739412394181:CAS:528:DC%2BC38Xhs12ks7fL10.1074/jbc.M112.413518230382523501012 – reference: KearnsDBA field guide to bacterial swarming motilityNat Rev Microbiol2010896346441:CAS:528:DC%2BC3cXpvFelsrk%3D10.1038/nrmicro2405206940263135019 – reference: Mosimann C, Oberhänsli T, Ziegler D, Nassal D, Kandeler E, Boller T, Mäder P, Thonar C (2017) Tracing of two Pseudomonas strains in the root and rhizoplane of maize, as related to their plant growth-promoting effect in contrasting soils. Front Microbiol 7: 2150. doi: https://doi.org/10.3389/fmicb.2016.02150 – reference: RudrappaTCzymmekKJParéPWBaisHPRoot-secreted malic acid recruits beneficial soil bacteriaPlant Physiol20081483154715561:CAS:528:DC%2BD1cXhsVSnurnK10.1104/pp.108.127613188200822577262 – reference: CarpenterSRCaracoNFCorrellDLHowarthRWSharpleyANSmithVHNonpoint pollution of surface waters with phosphorus and nitrogenEcol Appl19988355956810.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2 – reference: StuurmanNBrasCPSchlamanHRWijfjesAHBloembergGSpainkHPUse of green fluorescent protein color variants expressed on stable broad-host-range vectors to visualize rhizobia interacting with plantsMol Plant Microbe In20001311116311691:CAS:528:DC%2BD3cXnslaisLw%3D10.1094/MPMI.2000.13.11.1163 – reference: Allard-Massicotte R, Tessier L, Lécuyer F, Lakshmanan V, Lucier J-F, Garneau D, Caudwell L, Vlamakis H, Bais HP, Beauregard PB (2016) Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio 7(6): e01664-01616. doi. https://doi.org/10.1128/mBio.01664-16 – reference: Fibach-PaldiSBurdmanSOkonYKey physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilenseFEMS Microbiol Lett20123262991081:CAS:528:DC%2BC38XhtFWhu7Y%3D10.1111/j.1574-6968.2011.02407.x22092983 – reference: SuoBChenQWuWWuDTianMJieYZhangBWenJChemotactic responses of Phytophthora sojae zoospores to amino acids and sugars in root exudatesJ Gen Plant Pathol20168231421481:CAS:528:DC%2BC28Xks1OrsLs%3D10.1007/s10327-016-0651-1 – reference: LacalJGarcía-FontanaCMuñoz-MartínezFRamosJLKrellTSensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regionsEnviron Microbiol20101211287328841:CAS:528:DC%2BC3cXhsFyrsrjP10.1111/j.1462-2920.2010.02325.x20738376 – reference: RameyBEKoutsoudisMvon BodmanSBFuquaCBiofilm formation in plant–microbe associationsCurr Opin Microbiol2004766026091:CAS:528:DC%2BD2cXhtVWjtrvL10.1016/j.mib.2004.10.01415556032 – reference: el ZaharHFSantaellaCHeulinTAchouakWRoot exudates mediated interactions belowgroundSoil Biol Biochem20147769801:CAS:528:DC%2BC2cXht12ntLzM10.1016/j.soilbio.2014.06.017 – reference: ChenS-LTsaiM-KHuangY-MHuangC-HDiversity and characterization of Azotobacter isolates obtained from rice rhizosphere soils in TaiwanAnn Microbiol201868117261:CAS:528:DC%2BC2sXhvF2gt73N10.1007/s13213-017-1312-0 – reference: LübkeA-LMinatelliSRiedelTLugertRSchoberISpröerCOvermannJGroßUZautnerAEBohneWThe transducer-like protein Tlp12 of Campylobacter jejuni is involved in glutamate and pyruvate chemotaxisBMC Microbiol20181811111:CAS:528:DC%2BC1MXjs1OgtLw%3D10.1186/s12866-018-1254-0302008866131913 – reference: Bergersen FJ (1980) Methods for evaluating biological nitrogen fixation. Willey and Sons, Chichester pp 702 – reference: McRoseDLZhangXKraepielAMMorelFMDiversity and activity of alternative nitrogenases in sequenced genomes and coastal environmentsFront Microbiol201786710.3389/fmicb.2017.00267 – reference: EisenbachMControl of bacterial chemotaxisMol Microbiol19962059039101:CAS:528:DyaK28XjvFalurw%3D10.1111/j.1365-2958.1996.tb02531.x8809743 – reference: GallowayJNDentenerFJCaponeDGBoyerEWHowarthRWSeitzingerSPAsnerGPClevelandCCGreenPHollandEANitrogen cycles: past, present, and futureBiogeochemistry20047021532261:CAS:528:DC%2BD2MXpsFShtw%3D%3D10.1007/s10533-004-0370-0 – reference: GuoS-HHuNLiQ-SYangPWangL-LXuZ-MChenH-JHeB-YZengEYResponse of edible amaranth cultivar to salt stress led to Cd mobilization in rhizosphere soil: a metabolomic analysisEnviron Pollut20182414224311:CAS:528:DC%2BC1cXhtVKrsbrL10.1016/j.envpol.2018.05.01829860158 – reference: GoswamiDThakkerJNDhandhukiaPCPortraying mechanics of plant growth promoting rhizobacteria (PGPR): a reviewCogent Food Agric20162111275001:CAS:528:DC%2BC1cXmtFGhsL4%3D10.1080/23311932.2015.1127500 – reference: KöhlerTCurtyLKBarjaFVan DeldenCPechèreJ-CSwarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and piliJ Bacteriol2000182215990599610.1128/JB.182.21.5990-5996.20001102941794731 – reference: Oku S, Komatsu A, Tajima T, Nakashimada Y, Kato J (2012) Identification of chemotaxis sensory proteins for amino acids in Pseudomonas fluorescens Pf0-1 and their involvement in chemotaxis to tomato root exudate and root colonization. Microbes Environ ME12005. https://doi.org/10.1264/jsme2.ME12005 – reference: Yu X (2019) A preliminary study of the effects of gltA gene on biofilm formation of Enterococcus. Probe-Dentistry 1(1). doi: https://doi.org/10.18686/den.v1i1.1188 – reference: ChenYGozziKYanFChaiYAcetic acid acts as a volatile signal to stimulate bacterial biofilm formationMBio201563e00392e003151:CAS:528:DC%2BC2MXhvFSqtrvM10.1128/mBio.00392-15260602724462622 – reference: HazelbauerGLBacterial chemotaxis: the early years of molecular studiesAnnu Rev Microbiol2012662853031:CAS:528:DC%2BC38XhsF2iur3I10.1146/annurev-micro-092611-150120229944953989901 – reference: KuchmaSDelalezNFilkinsLSnavelyEArmitageJO’TooleGCyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB statorJ Bacteriol201519734204301:CAS:528:DC%2BC2MXhtl2qt7Y%3D10.1128/JB.02130-14253491574285984 – reference: GaoSWuHYuXQianLGaoXSwarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01Biol Control20169811171:CAS:528:DC%2BC28XltValt74%3D10.1016/j.biocontrol.2016.03.011 – volume: 90 start-page: 561 issue: 6 year: 2016 ident: 4531_CR7 publication-title: Plant Mol Biol doi: 10.1007/s11103-016-0435-1 – volume: 42 start-page: 248 issue: 2 year: 2019 ident: 4531_CR29 publication-title: Syst Appl Microbiol doi: 10.1016/j.syapm.2018.10.010 – volume: 241 start-page: 422 year: 2018 ident: 4531_CR22 publication-title: Environ Pollut doi: 10.1016/j.envpol.2018.05.018 – ident: 4531_CR37 doi: 10.1007/978-3-642-20332-9 – volume: 16 start-page: 685 issue: 1 year: 2015 ident: 4531_CR58 publication-title: BMC Genomics doi: 10.1186/s12864-015-1825-5 – volume: 52 start-page: 119 issue: 1 year: 2016 ident: 4531_CR46 publication-title: Biol Fertil Soils doi: 10.1007/s00374-015-1051-y – volume: 24 start-page: 1 issue: 1 year: 1949 ident: 4531_CR3 publication-title: Plant Physiol doi: 10.1104/pp.24.1.1 – volume: 2 start-page: 1127500 issue: 1 year: 2016 ident: 4531_CR21 publication-title: Cogent Food Agric doi: 10.1080/23311932.2015.1127500 – ident: 4531_CR24 doi: 10.1016/0038-0717 – volume: 98 start-page: 11 year: 2016 ident: 4531_CR19 publication-title: Biol Control doi: 10.1016/j.biocontrol.2016.03.011 – volume: 10 start-page: 98 year: 2019 ident: 4531_CR54 publication-title: Front Microbiol doi: 10.3389/fmicb.2019.00098 – volume: 98 start-page: 2082 issue: 10 year: 2010 ident: 4531_CR11 publication-title: Biophys J doi: 10.1016/j.bpj.2010.01.053 – volume: 20 start-page: 95 issue: 2 year: 2017 ident: 4531_CR45 publication-title: Int Microbiol doi: 10.2436/20.1501.01.289 – volume: 13 start-page: 162 issue: 1 year: 2012 ident: 4531_CR12 publication-title: BMC Genomics doi: 10.1186/1471-2164-13-162 – ident: 4531_CR41 doi: 10.3389/fmicb.2016.02150 – volume: 163 start-page: 1880 issue: 12 year: 2017 ident: 4531_CR43 publication-title: Microbiology+ doi: 10.1099/mic.0.000574 – volume: 6 start-page: e00392 issue: 3 year: 2015 ident: 4531_CR9 publication-title: MBio doi: 10.1128/mBio.00392-15 – volume: 12 start-page: 2873 issue: 11 year: 2010 ident: 4531_CR33 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2010.02325.x – volume: 34 start-page: 183 issue: 3 year: 1999 ident: 4531_CR55 publication-title: J Microbiol Methods doi: 10.1016/S0167-7012(98)00087-6 – volume: 287 start-page: 39412 issue: 47 year: 2012 ident: 4531_CR20 publication-title: J Biol Chem doi: 10.1074/jbc.M112.413518 – ident: 4531_CR56 doi: 10.18686/den.v1i1.1188 – volume: 21 start-page: 402 issue: 1 year: 2019 ident: 4531_CR16 publication-title: Environ Microbiol doi: 10.1111/1462-2920.14472 – volume: 7 start-page: 602 issue: 6 year: 2004 ident: 4531_CR47 publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2004.10.014 – volume: 11 start-page: 1602 issue: 7 year: 2017 ident: 4531_CR53 publication-title: ISME J doi: 10.1038/ismej.2017.30 – ident: 4531_CR44 doi: 10.1264/jsme2.ME12005 – volume: 110 start-page: E1621 issue: 17 year: 2013 ident: 4531_CR4 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1218984110 – volume: 31 start-page: 995 issue: 10 year: 2018 ident: 4531_CR15 publication-title: Mol Plant Microbe In doi: 10.1094/MPMI-01-18-0003-R – volume: 47 start-page: 374 issue: 6 year: 2011 ident: 4531_CR34 publication-title: Eur J Soil Biol doi: 10.1016/j.ejsobi.2011.08.009 – volume: 8 start-page: 559 issue: 3 year: 1998 ident: 4531_CR6 publication-title: Ecol Appl doi: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2 – volume: 8 start-page: 634 issue: 9 year: 2010 ident: 4531_CR30 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2405 – volume: 326 start-page: 99 issue: 2 year: 2012 ident: 4531_CR17 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2011.02407.x – volume: 76 start-page: 855 issue: 7 year: 2019 ident: 4531_CR28 publication-title: Curr Microbiol doi: 10.1007/s00284-019-01699-4 – volume: 197 start-page: 420 issue: 3 year: 2015 ident: 4531_CR32 publication-title: J Bacteriol doi: 10.1128/JB.02130-14 – volume: 13 start-page: 1163 issue: 11 year: 2000 ident: 4531_CR50 publication-title: Mol Plant Microbe In doi: 10.1094/MPMI.2000.13.11.1163 – volume: 32 start-page: 828 issue: 7 year: 2019 ident: 4531_CR49 publication-title: Mol Plant Microbe In doi: 10.1094/MPMI-12-18-0344-R – volume: 12 start-page: 219 issue: 2 year: 2012 ident: 4531_CR52 publication-title: Mol Ecol Resour doi: 10.1111/j.1755-0998.2011.03086.x – volume: 70 start-page: 153 issue: 2 year: 2004 ident: 4531_CR18 publication-title: Biogeochemistry doi: 10.1007/s10533-004-0370-0 – ident: 4531_CR35 doi: 10.3389/fmicb.2019.00078 – volume: 82 start-page: 142 issue: 3 year: 2016 ident: 4531_CR51 publication-title: J Gen Plant Pathol doi: 10.1007/s10327-016-0651-1 – volume: 7 start-page: 1811 year: 2016 ident: 4531_CR57 publication-title: Front Microbiol doi: 10.3389/fmicb.2016.01811 – volume: 8 start-page: 235 issue: 3 year: 2018 ident: 4531_CR2 publication-title: Adv Microbiol doi: 10.4236/aim.2018.83016 – volume: 66 start-page: 285 year: 2012 ident: 4531_CR25 publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-092611-150120 – volume: 77 start-page: 69 year: 2014 ident: 4531_CR14 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.06.017 – volume: 84 start-page: e02847 issue: 7 year: 2018 ident: 4531_CR39 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02847-17 – volume: 15 start-page: 848 issue: 3 year: 2013 ident: 4531_CR10 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2012.02860.x – ident: 4531_CR1 doi: 10.1128/mBio.01664-16 – volume: 20 start-page: 903 issue: 5 year: 1996 ident: 4531_CR13 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.1996.tb02531.x – volume: 18 start-page: 3284 issue: 10 year: 2016 ident: 4531_CR38 publication-title: Environ Microbiol doi: 10.1111/1462-2920.13030 – ident: 4531_CR5 – ident: 4531_CR23 doi: 10.1016/S0168-6496 – volume: 182 start-page: 5990 issue: 21 year: 2000 ident: 4531_CR31 publication-title: J Bacteriol doi: 10.1128/JB.182.21.5990-5996.2000 – volume: 18 start-page: 111 issue: 1 year: 2018 ident: 4531_CR36 publication-title: BMC Microbiol doi: 10.1186/s12866-018-1254-0 – volume: 92 start-page: 267 issue: 4 year: 2014 ident: 4531_CR27 publication-title: Botany doi: 10.1139/cjb-2013-0225 – volume: 2 start-page: 75 year: 1998 ident: 4531_CR26 publication-title: Handbook of reference methods for plant analysis – volume: 148 start-page: 1547 issue: 3 year: 2008 ident: 4531_CR48 publication-title: Plant Physiol doi: 10.1104/pp.108.127613 – volume: 8 start-page: 67 year: 2017 ident: 4531_CR40 publication-title: Front Microbiol doi: 10.3389/fmicb.2017.00267 – volume: 47 start-page: e2437 year: 2011 ident: 4531_CR42 publication-title: Jove-J Vis Exp doi: 10.3791/2437 – volume: 68 start-page: 17 issue: 1 year: 2018 ident: 4531_CR8 publication-title: Ann Microbiol doi: 10.1007/s13213-017-1312-0 |
SSID | ssj0003216 |
Score | 2.3600678 |
Snippet | Aims
The aim of this study was to evaluate its feasibility of a non-symbiotic nitrogen-fixing strain, Ac63 (
Azotobacter chroococcum
), to promote biomass of... AimsThe aim of this study was to evaluate its feasibility of a non-symbiotic nitrogen-fixing strain, Ac63 (Azotobacter chroococcum), to promote biomass of... AIMS: The aim of this study was to evaluate its feasibility of a non-symbiotic nitrogen-fixing strain, Ac63 (Azotobacter chroococcum), to promote biomass of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 357 |
SubjectTerms | Acids Amaranth Amaranthus tricolor Azotobacter Azotobacter chroococcum biofilm Biofilms Biomass Biomedical and Life Sciences Brassica oleracea cabbage Chemotaxis Chlorophyll Colonization Confocal microscopy Crops Ecology Exudates Glebionis coronaria Glutamic acid Inoculation Lettuce Life Sciences Nitrogen Nitrogen fixation Nitrogenation Plant Physiology Plant Sciences Regular Article Roots secretion soil Soil Science & Conservation Soils Swarming Vegetables |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS9xAEB7q2Qf7INa29PzFFnywtEtz2c0meSpRtFKoiFS4tzDZ7KmgF73kQP0v_I87k9vcUUHfErKbTTKzM9_MZr8B2LU6QY0DJXWqI6kdKskJBhkbBhsleaiS8x1_Tszxuf49jIY-4Vb73yo7m9ga6rKynCP_Qa4kTJm4KPh5eye5ahSvrvoSGkuwTCY4SXqwvH94cno2t8UqbIuf8oEM4nTot83MNs-R59OSwyeCNWogw_9d0wJvPlsibT3P0RqsesgospmM38MbN16Hd9nFxNNmuHV4u18RyHv4AE_X8hfpEheZF2ivSkEhNwmvFITzBBNUd_suRTUSTFUsXcshwRswBc3uSUUKJUdX9_Qkom7rR4jMGiX2sseK5z5zOwt7SXibLKmd3nylEQSdNTXfMbtB8n3N5bQWzPxP400-wvnR4d-DY-mrLkhLYKyRytkUyUYaVbjIosWSMGXkMHFxodh5UYhhmGIm1RjFaEuTUocooBC9MKhQfYLeuBq7zyDSIiqViTFGNdBxYgtjwiBGtCaiLirow6D74Ln1lOT8Ztf5gkyZhZSTkPJWSHnYh2_zPrczQo5XW291csz95KzzhSr14cv8Mk0rXivBsaum1IaQZErRs9J9-N7Jf3GLl0fceH3ETVgJW5XjPM4W9JrJ1G0TrGmKHa-7_wDgyfMy priority: 102 providerName: ProQuest |
Title | l-Glutamic acid induced the colonization of high-efficiency nitrogen-fixing strain Ac63 (Azotobacter chroococcum) in roots of Amaranthus tricolor |
URI | https://link.springer.com/article/10.1007/s11104-020-04531-2 https://www.proquest.com/docview/2422918570 https://www.proquest.com/docview/2551982534 |
Volume | 451 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEF6kVbAPRU_Fs7Ws4IOiC3fZH7k85vSuRbGIeHA-hclmawvtpVxyYP0v_I_9JpfcoajgUxKyP5LM7sw3u5lvhHjuzYgMDbUyibHKBNKKFxhU7BhsFLBQBa93fDh1JzPzbm7nbVBY1f3t3m1JNpp6G-wGS2UUuzuAIXqooHh3LXx3_pFrFqUb_aujJuEpn6hBnMzbUJk_t_GrOdpizN-2RRtrM70n9luYKNO1XO-LW2HRE3vp12VLlRF64va4BLC76Yk7k4Z5-uaB-HGpjjGSOMW8JH9RSDjcEF0hgfIkF-qiLmV5JpmoWIWGQYLDLyXm9rLEcFJnF9_wTLJqskfI1DstX6TfS575zOws_TnQNvSoX129RA8SV3XFLaZXBMtXn68qybz_6G_5UMymk89vTlSbc0F5QLFa6eATgoZ0Og_Wk6cCiNIGGoU412y64GA4JphJDNmYfOESVLADOOi5I036kdhZlIvwWMgkt4V2McWkhyYe-dy5aBATeWdRRQ_6Yth9-sy3hOT8ZpfZlkqZxZVBXFkjrizqi1ebOtdrOo5_lj7sJJq1U7PKgEmihBmw8ADPNrcxqXinhBahXKEMcGQC31mbvnjdjYRtE3_v8cn_FT8Qdzl9_XpJ51Ds1MtVeAqQU-dHYjcdvx1P-Xj85f0Ex_Hk9OOno2as_wS5FPYb |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NDonxgGCAKAwwEkggZpHajtM8IJTBRse2CqFN6lu4ON4PaWtGkwrGf8E_wt_IXZq0Aom97a1VYzvtXb77zu59B_DcmT4a7GlpYhNK41FL3mCQkWWykVOEynm_Y29oBwfm0ygcLcHvthaG_1bZYmIN1HnheI_8DYUSFbNwUfDu_JvkrlF8utq20Ji5xY6_-E4pW_l2-wPZ94VSW5v77wey6SogHZGNSmrvYiQMsDrzoUOHOXGm0GPfR5lmcCYKbVlCJTYYRuhyG9OAMKAUNLOoUdO812DZaBuoDixvbA4_f5ljv1Z1s1V-IYMoHjVlOrNiPYq0RnK6RjRK96T6OxQu-O0_R7J1pNu6DbcaiiqSmU_dgSU_XoWbydGkkenwq3B9oyBSeXEXfp3Kj-S73NReoDvJBaX45Cy5IF4pWBC7rfMUxaFgaWTpa80KLvgUhCaTghxYHp78oDsRZd2vQiTOavEy-Vkw1rCWtHDHxO8Jud307BWtIOhdVfKMyRlSrK2Op6XgTgO03uQeHFyJPe5DZ1yM_QMQcRbm2kYYoe6ZqO8ya1UQITob0hAddKHX_uCpayTQ-ZudpgvxZjZSSkZKayOlqguv52POZwIgl1691toxbcCgTBeu24Vn84_pMeazGRz7YkrXEHONKVvXpgvrrf0XU_x_xYeXr_gUbgz293bT3e3hziNYUbX78R7SGnSqydQ_JkpVZU8aPxbw9aofnT_qSTBO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NDiF4QDBAFAYYCSQQs5bGjt08IJSxlY1BNSEm9S1cHJdN2prRpILxL_g7_Dru0qQVSOxtb4kS20nufPednfsO4JnTfdTYU1LHOpLao5K8wCCtYbCRk4fKeb3j49DsHur3o2i0Ar_bXBj-rbK1ibWhzgvHa-Sb5ErCmImLgs1x81vEwfbgzdk3yRWkeKe1LacxV5F9f_6dwrfy9d42yfp5GA52Pr_dlU2FAekIeFRSeRcj2QOjMh85dJgTfoo89r3NFBtqgtOG6VRijZFFl5uYGkQBhaOZQYWK-r0Cq5ajog6sbu0MDz4t_IAK68KrfCADG4-alJ154h55XS05dCNIpXoy_NstLrHuP9uztdcb3IKbDVwVyVy_bsOKn6zBjeTrtKHs8GtwdasggHl-B36dyHekx1zgXqA7zgWF-6Q4uSCMKZgcu835FMVYME2y9DV_BSd_CrIs04KUWY6Pf9CTiLKuXSESZ5R4kfws2O4wr7RwR4T1yYq72elLGkHQWVVyj8kpkt-tjmal4KoDNN70LhxeijzuQWdSTPx9EHEW5cpYtKh62vZdZkwYWERnImqigi702g-euoYOnd_sJF0SObOQUhJSWgspDbvwatHmbE4GcuHd660c08YwlOlSjbvwdHGZpjTv0-DEFzO6h1BsTJG70l3YaOW_7OL_Iz64eMQncI2mTPphb7j_EK6HtfbxctI6dKrpzD8idFVljxs1FvDlsmfOHx-YNIM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=l-Glutamic+acid+induced+the+colonization+of+high-efficiency+nitrogen-fixing+strain+Ac63+%28Azotobacter+chroococcum%29+in+roots+of+Amaranthus+tricolor&rft.jtitle=Plant+and+soil&rft.au=Wang%2C+Yi-Fan&rft.au=Wang%2C+Jun-Feng&rft.au=Xu%2C+Zhi-Min&rft.au=She%2C+Shao-Hua&rft.date=2020-06-01&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=451&rft.issue=1-2&rft.spage=357&rft.epage=370&rft_id=info:doi/10.1007%2Fs11104-020-04531-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11104_020_04531_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |