Tuning the catalytic activity of a single Mo atom supported on graphene for nitrogen reduction via Se atom doping

Electrochemical nitrogen (N 2 ) fixation as an effective method has realized the sustainable production of ammonia where efficient electrocatalysts for converting N 2 into NH 3 at room temperature have become a key scientific issue. Herein, we proposed that the catalytic activity of a single Mo atom...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 21; no. 27; pp. 14583 - 14588
Main Authors Zhou, Hong Yu, Li, Jian Chen, Wen, Zi, Jiang, Qing
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 10.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical nitrogen (N 2 ) fixation as an effective method has realized the sustainable production of ammonia where efficient electrocatalysts for converting N 2 into NH 3 at room temperature have become a key scientific issue. Herein, we proposed that the catalytic activity of a single Mo atom supported on graphene (Mo/G) for the nitrogen reduction reaction (NRR) can be tuned by non-metal heteroatom (B, N, P, S, Se etc. ) doping. Our density functional theory (DFT) calculations revealed that the Se atom is the best doping element to tune the optimal electronic structure of the Mo atom for catalyzing the NRR among these heteroatoms, leading to the lowest potential of 0.41 V vs. RHE for Mo/SeG, which is much better than the current metal-based catalysts. Our work provided a new strategy to design electrocatalysts for the NRR.
AbstractList Electrochemical nitrogen (N2) fixation as an effective method has realized the sustainable production of ammonia where efficient electrocatalysts for converting N2 into NH3 at room temperature have become a key scientific issue. Herein, we proposed that the catalytic activity of a single Mo atom supported on graphene (Mo/G) for the nitrogen reduction reaction (NRR) can be tuned by non-metal heteroatom (B, N, P, S, Se etc.) doping. Our density functional theory (DFT) calculations revealed that the Se atom is the best doping element to tune the optimal electronic structure of the Mo atom for catalyzing the NRR among these heteroatoms, leading to the lowest potential of 0.41 V vs. RHE for Mo/SeG, which is much better than the current metal-based catalysts. Our work provided a new strategy to design electrocatalysts for the NRR.
Electrochemical nitrogen (N2) fixation as an effective method has realized the sustainable production of ammonia where efficient electrocatalysts for converting N2 into NH3 at room temperature have become a key scientific issue. Herein, we proposed that the catalytic activity of a single Mo atom supported on graphene (Mo/G) for the nitrogen reduction reaction (NRR) can be tuned by non-metal heteroatom (B, N, P, S, Se etc.) doping. Our density functional theory (DFT) calculations revealed that the Se atom is the best doping element to tune the optimal electronic structure of the Mo atom for catalyzing the NRR among these heteroatoms, leading to the lowest potential of 0.41 V vs. RHE for Mo/SeG, which is much better than the current metal-based catalysts. Our work provided a new strategy to design electrocatalysts for the NRR.Electrochemical nitrogen (N2) fixation as an effective method has realized the sustainable production of ammonia where efficient electrocatalysts for converting N2 into NH3 at room temperature have become a key scientific issue. Herein, we proposed that the catalytic activity of a single Mo atom supported on graphene (Mo/G) for the nitrogen reduction reaction (NRR) can be tuned by non-metal heteroatom (B, N, P, S, Se etc.) doping. Our density functional theory (DFT) calculations revealed that the Se atom is the best doping element to tune the optimal electronic structure of the Mo atom for catalyzing the NRR among these heteroatoms, leading to the lowest potential of 0.41 V vs. RHE for Mo/SeG, which is much better than the current metal-based catalysts. Our work provided a new strategy to design electrocatalysts for the NRR.
Electrochemical nitrogen (N 2 ) fixation as an effective method has realized the sustainable production of ammonia where efficient electrocatalysts for converting N 2 into NH 3 at room temperature have become a key scientific issue. Herein, we proposed that the catalytic activity of a single Mo atom supported on graphene (Mo/G) for the nitrogen reduction reaction (NRR) can be tuned by non-metal heteroatom (B, N, P, S, Se etc. ) doping. Our density functional theory (DFT) calculations revealed that the Se atom is the best doping element to tune the optimal electronic structure of the Mo atom for catalyzing the NRR among these heteroatoms, leading to the lowest potential of 0.41 V vs. RHE for Mo/SeG, which is much better than the current metal-based catalysts. Our work provided a new strategy to design electrocatalysts for the NRR.
Author Wen, Zi
Zhou, Hong Yu
Jiang, Qing
Li, Jian Chen
Author_xml – sequence: 1
  givenname: Hong Yu
  surname: Zhou
  fullname: Zhou, Hong Yu
  organization: Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
– sequence: 2
  givenname: Jian Chen
  surname: Li
  fullname: Li, Jian Chen
  organization: Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
– sequence: 3
  givenname: Zi
  surname: Wen
  fullname: Wen, Zi
  organization: Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
– sequence: 4
  givenname: Qing
  orcidid: 0000-0003-0660-596X
  surname: Jiang
  fullname: Jiang, Qing
  organization: Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31241647$$D View this record in MEDLINE/PubMed
BookMark eNptkc1qGzEURkVJqR2nmz5AEXRTAm4l3dGMvSwmTQIJLdRZD7J05ciMpbGkCfjtI2OngZCVBDrf0f05J2c-eCTkC2c_OIP5z8V88ZeJBuDqAxnzqobpnM2qs__3ph6R85Q2jDEuOXwiI-Ci4nXVjMluOXjn1zQ_ItUqq26fnaZKZ_fk8p4GSxVNBeiQ3geqctjSNPR9iBkNDZ6uo-of0SO1IVLvcgxr9DSiGYqivD85Rf_hMWhCX0wX5KNVXcLPp3NCHn5fLRc307s_17eLX3dTDVLkKWCjtLErgdIao1m9qo2opDDWlj4s1wigwZqZgmaGIAwYqaTmrJ5D3XAJE_L96O1j2A2Ycrt1SWPXKY9hSK0QUlYNh8JPyLc36CYM0ZfqDlT5FEAchF9P1LDaomn76LYq7tuXYRaAHQEdQ0oRbatdVocx5Khc13LWHvbVvu6rRC7fRF6s78DP9YiVGA
CitedBy_id crossref_primary_10_1016_j_ijhydene_2023_05_353
crossref_primary_10_1039_D1CC06665J
crossref_primary_10_1021_acsami_4c02716
crossref_primary_10_1021_acsnano_1c08455
crossref_primary_10_1039_D2CP01446G
crossref_primary_10_1039_D3CP01363D
crossref_primary_10_1039_D4TA03350G
crossref_primary_10_1016_j_apsusc_2020_145855
crossref_primary_10_1039_D2TA02887E
crossref_primary_10_1039_D1QM01620B
crossref_primary_10_1016_j_apsusc_2020_148012
crossref_primary_10_1016_j_nanoen_2020_105126
crossref_primary_10_1016_j_jmgm_2021_107890
crossref_primary_10_1016_j_jechem_2020_06_048
crossref_primary_10_1002_adma_202007891
crossref_primary_10_1039_D0CP01963A
crossref_primary_10_1039_D0CP05072E
crossref_primary_10_15541_jim20230433
crossref_primary_10_20964_2020_10_46
crossref_primary_10_1007_s12274_021_4009_4
crossref_primary_10_1016_j_mtphys_2020_100310
crossref_primary_10_1016_j_jelechem_2021_115874
crossref_primary_10_1016_j_ijhydene_2022_06_305
crossref_primary_10_1039_D0CP00722F
crossref_primary_10_1007_s40843_023_2597_8
crossref_primary_10_1016_j_apsusc_2020_147595
crossref_primary_10_1002_adfm_202008983
crossref_primary_10_1016_j_electacta_2020_135667
crossref_primary_10_1039_D0TA04709K
crossref_primary_10_1039_D1NA00426C
crossref_primary_10_1002_eem2_12204
crossref_primary_10_1063_1674_0068_cjcp2310099
crossref_primary_10_1016_j_nanoen_2023_108404
crossref_primary_10_1039_D1CP02391H
crossref_primary_10_1039_D2TA06187B
crossref_primary_10_1002_smll_202401019
crossref_primary_10_1016_j_jhazmat_2022_129327
crossref_primary_10_1016_j_mtcomm_2024_111015
crossref_primary_10_1039_C9NR08969A
crossref_primary_10_1002_cphc_202000147
crossref_primary_10_1002_smll_202002885
crossref_primary_10_1039_C9TA10050D
crossref_primary_10_1016_j_pecs_2020_100860
crossref_primary_10_1016_j_apsusc_2021_150867
crossref_primary_10_1021_acscatal_2c02629
crossref_primary_10_1039_D2QM01061E
crossref_primary_10_1016_j_mcat_2020_111293
crossref_primary_10_1002_cphc_202300012
crossref_primary_10_1016_j_mcat_2024_114564
crossref_primary_10_1002_eem2_12277
crossref_primary_10_1016_j_mcat_2021_112048
crossref_primary_10_1515_pac_2021_0204
crossref_primary_10_1039_D0CP04315J
crossref_primary_10_1016_j_ijhydene_2021_01_091
crossref_primary_10_1002_asia_202300797
crossref_primary_10_1080_23746149_2021_1905545
crossref_primary_10_1016_j_apsusc_2020_146202
crossref_primary_10_1021_acs_inorgchem_0c00131
crossref_primary_10_1002_sstr_202000075
crossref_primary_10_1002_cssc_202101462
Cites_doi 10.1038/nchem.121
10.1002/adma.201800191
10.1038/s41467-018-03795-8
10.1063/1.1316015
10.1002/jcc.20495
10.1021/cr8003696
10.1021/jacs.6b04778
10.1039/C8NR04277B
10.1039/C1CP22271F
10.1002/anie.201802310
10.1002/anie.201507381
10.1002/adma.201870301
10.1002/cssc.201500322
10.1038/22672
10.1002/adma.201803694
10.1038/s41929-018-0063-z
10.1021/jp047349j
10.1039/C4TC01385A
10.1002/smtd.201800291
10.1103/PhysRevB.66.155125
10.1002/adma.201700001
10.1002/aenm.201800369
10.1038/nchem.1095
10.1016/j.carbon.2015.09.008
10.1039/C6SC03911A
10.1002/adma.201606550
10.1103/PhysRevLett.77.3865
10.1039/C7EE02220D
10.1021/jacs.8b07472
10.1126/science.aar6611
10.1021/acscatal.7b03942
10.1039/C8TA03974G
10.1021/acscatal.7b01624
10.1039/C7TA09350K
10.1073/pnas.1706371114
10.1039/C0JM02922J
10.1021/acscatal.6b01534
10.1021/ar300361m
10.1021/acscatal.8b00905
10.1039/C8TA11416A
10.1021/jacs.7b05213
10.1039/C8TA03481H
10.1063/1.1740589
10.1016/j.bioelechem.2018.10.002
10.1002/anie.200301553
10.1063/1.458452
10.1021/acscatal.8b05061
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/C9CP02733E
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 14588
ExternalDocumentID 31241647
10_1039_C9CP02733E
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
123
29O
2WC
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
YNT
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c352t-3e7acdfb2e5fddc06b6d2452dff000f1ce33c3fd8a378e32d3d5a5c1069367153
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 00:43:01 EDT 2025
Mon Jun 30 04:59:58 EDT 2025
Thu Apr 03 07:02:58 EDT 2025
Tue Jul 01 01:55:37 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-3e7acdfb2e5fddc06b6d2452dff000f1ce33c3fd8a378e32d3d5a5c1069367153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0660-596X
PMID 31241647
PQID 2254523325
PQPubID 2047499
PageCount 6
ParticipantIDs proquest_miscellaneous_2255471369
proquest_journals_2254523325
pubmed_primary_31241647
crossref_citationtrail_10_1039_C9CP02733E
crossref_primary_10_1039_C9CP02733E
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Jul-10
PublicationDateYYYYMMDD 2019-07-10
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-Jul-10
  day: 10
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Schlogl (C9CP02733E-(cit3)/*[position()=1]) 2003; 42
Li (C9CP02733E-(cit17)/*[position()=1]) 2016; 138
Geng (C9CP02733E-(cit21)/*[position()=1]) 2018; 30
Skulason (C9CP02733E-(cit26)/*[position()=1]) 2012; 14
Ma (C9CP02733E-(cit44)/*[position()=1]) 2015; 95
Yang (C9CP02733E-(cit31)/*[position()=1]) 2013; 46
Liu (C9CP02733E-(cit12)/*[position()=1]) 2017; 114
Zhao (C9CP02733E-(cit18)/*[position()=1]) 2017; 139
Delley (C9CP02733E-(cit37)/*[position()=1]) 2002; 66
Rago (C9CP02733E-(cit11)/*[position()=1]) 2019; 125
Liu (C9CP02733E-(cit24)/*[position()=1]) 2018; 9
Li (C9CP02733E-(cit7)/*[position()=1]) 2018; 10
Liu (C9CP02733E-(cit28)/*[position()=1]) 2016; 7
Perdew (C9CP02733E-(cit35)/*[position()=1]) 1996; 77
Choi (C9CP02733E-(cit13)/*[position()=1]) 2018; 8
Qiu (C9CP02733E-(cit32)/*[position()=1]) 2015; 54
Grimme (C9CP02733E-(cit36)/*[position()=1]) 2006; 27
Rosca (C9CP02733E-(cit4)/*[position()=1]) 2009; 109
Li (C9CP02733E-(cit22)/*[position()=1]) 2017; 29
Ling (C9CP02733E-(cit48)/*[position()=1]) 2018; 140
Delley (C9CP02733E-(cit34)/*[position()=1]) 2000; 113
Chen (C9CP02733E-(cit6)/*[position()=1]) 2018
Chen (C9CP02733E-(cit25)/*[position()=1]) 2019; 3
Chen (C9CP02733E-(cit43)/*[position()=1]) 2019; 7
Chen (C9CP02733E-(cit19)/*[position()=1]) 2018; 6
Qiao (C9CP02733E-(cit30)/*[position()=1]) 2011; 3
Cui (C9CP02733E-(cit9)/*[position()=1]) 2018; 8
Ghosh (C9CP02733E-(cit45)/*[position()=1]) 2014; 2
Montoya (C9CP02733E-(cit41)/*[position()=1]) 2015; 8
Smil (C9CP02733E-(cit2)/*[position()=1]) 1999; 400
Nørskov (C9CP02733E-(cit40)/*[position()=1]) 2004; 108
Xu (C9CP02733E-(cit47)/*[position()=1]) 2018; 1
Liu (C9CP02733E-(cit33)/*[position()=1]) 2011; 21
Liu (C9CP02733E-(cit8)/*[position()=1]) 2018; 6
Zhao (C9CP02733E-(cit42)/*[position()=1]) 2019; 9
Cheng (C9CP02733E-(cit27)/*[position()=1]) 2018; 30
Chen (C9CP02733E-(cit5)/*[position()=1]) 2018; 360
Nørskov (C9CP02733E-(cit46)/*[position()=1]) 2009; 1
Back (C9CP02733E-(cit29)/*[position()=1]) 2017; 8
Delley (C9CP02733E-(cit38)/*[position()=1]) 1990; 92
Zhang (C9CP02733E-(cit10)/*[position()=1]) 2018; 30
Han (C9CP02733E-(cit23)/*[position()=1]) 2018; 6
Shi (C9CP02733E-(cit14)/*[position()=1]) 2017; 29
Perazzolo (C9CP02733E-(cit15)/*[position()=1]) 2018; 8
Sekiguchi (C9CP02733E-(cit16)/*[position()=1]) 2018; 57
Iwamoto (C9CP02733E-(cit20)/*[position()=1]) 2017; 7
Mulliken (C9CP02733E-(cit39)/*[position()=1]) 1955; 23
Guo (C9CP02733E-(cit1)/*[position()=1]) 2018; 11
References_xml – volume: 1
  start-page: 37
  year: 2009
  ident: C9CP02733E-(cit46)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.121
– volume: 30
  start-page: 1800191
  year: 2018
  ident: C9CP02733E-(cit10)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800191
– volume: 9
  start-page: 1610
  year: 2018
  ident: C9CP02733E-(cit24)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03795-8
– volume: 113
  start-page: 7756
  year: 2000
  ident: C9CP02733E-(cit34)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1316015
– volume: 27
  start-page: 1787
  year: 2006
  ident: C9CP02733E-(cit36)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 109
  start-page: 2209
  year: 2009
  ident: C9CP02733E-(cit4)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr8003696
– volume: 138
  start-page: 8706
  year: 2016
  ident: C9CP02733E-(cit17)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04778
– volume: 10
  start-page: 15429
  year: 2018
  ident: C9CP02733E-(cit7)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR04277B
– volume: 14
  start-page: 1235
  year: 2012
  ident: C9CP02733E-(cit26)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22271F
– volume: 57
  start-page: 9064
  year: 2018
  ident: C9CP02733E-(cit16)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201802310
– volume: 54
  start-page: 14031
  year: 2015
  ident: C9CP02733E-(cit32)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201507381
– volume: 30
  start-page: 1870301
  year: 2018
  ident: C9CP02733E-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201870301
– volume: 8
  start-page: 2180
  year: 2015
  ident: C9CP02733E-(cit41)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500322
– volume: 400
  start-page: 415
  year: 1999
  ident: C9CP02733E-(cit2)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/22672
– volume: 30
  start-page: 1803694
  year: 2018
  ident: C9CP02733E-(cit27)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803694
– volume: 1
  start-page: 339
  year: 2018
  ident: C9CP02733E-(cit47)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0063-z
– volume: 108
  start-page: 17886
  year: 2004
  ident: C9CP02733E-(cit40)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 2
  start-page: 7943
  year: 2014
  ident: C9CP02733E-(cit45)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC01385A
– start-page: 1800337
  year: 2018
  ident: C9CP02733E-(cit6)/*[position()=1]
  publication-title: Small Methods
– volume: 3
  start-page: 1800291
  year: 2019
  ident: C9CP02733E-(cit25)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201800291
– volume: 66
  start-page: 155125
  year: 2002
  ident: C9CP02733E-(cit37)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.66.155125
– volume: 29
  start-page: 1700001
  year: 2017
  ident: C9CP02733E-(cit22)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700001
– volume: 8
  start-page: 1800369
  year: 2018
  ident: C9CP02733E-(cit9)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800369
– volume: 3
  start-page: 634
  year: 2011
  ident: C9CP02733E-(cit30)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 95
  start-page: 756
  year: 2015
  ident: C9CP02733E-(cit44)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.09.008
– volume: 8
  start-page: 1090
  year: 2017
  ident: C9CP02733E-(cit29)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC03911A
– volume: 29
  start-page: 1606550
  year: 2017
  ident: C9CP02733E-(cit14)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606550
– volume: 77
  start-page: 3865
  year: 1996
  ident: C9CP02733E-(cit35)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 11
  start-page: 45
  year: 2018
  ident: C9CP02733E-(cit1)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02220D
– volume: 140
  start-page: 14161
  year: 2018
  ident: C9CP02733E-(cit48)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07472
– volume: 360
  start-page: eaar6611
  year: 2018
  ident: C9CP02733E-(cit5)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aar6611
– volume: 8
  start-page: 1122
  year: 2018
  ident: C9CP02733E-(cit15)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03942
– volume: 6
  start-page: 12974
  year: 2018
  ident: C9CP02733E-(cit23)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03974G
– volume: 7
  start-page: 6924
  year: 2017
  ident: C9CP02733E-(cit20)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01624
– volume: 6
  start-page: 4102
  year: 2018
  ident: C9CP02733E-(cit8)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09350K
– volume: 114
  start-page: 6450
  year: 2017
  ident: C9CP02733E-(cit12)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1706371114
– volume: 21
  start-page: 3335
  year: 2011
  ident: C9CP02733E-(cit33)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM02922J
– volume: 7
  start-page: 34
  year: 2016
  ident: C9CP02733E-(cit28)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01534
– volume: 46
  start-page: 1740
  year: 2013
  ident: C9CP02733E-(cit31)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300361m
– volume: 8
  start-page: 7517
  year: 2018
  ident: C9CP02733E-(cit13)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00905
– volume: 7
  start-page: 3492
  year: 2019
  ident: C9CP02733E-(cit43)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11416A
– volume: 139
  start-page: 12480
  year: 2017
  ident: C9CP02733E-(cit18)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05213
– volume: 6
  start-page: 9623
  year: 2018
  ident: C9CP02733E-(cit19)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03481H
– volume: 23
  start-page: 1841
  year: 1955
  ident: C9CP02733E-(cit39)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1740589
– volume: 125
  start-page: 105
  year: 2019
  ident: C9CP02733E-(cit11)/*[position()=1]
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2018.10.002
– volume: 42
  start-page: 2004
  year: 2003
  ident: C9CP02733E-(cit3)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200301553
– volume: 92
  start-page: 508
  year: 1990
  ident: C9CP02733E-(cit38)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458452
– volume: 9
  start-page: 3419
  year: 2019
  ident: C9CP02733E-(cit42)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b05061
SSID ssj0001513
Score 2.5297832
Snippet Electrochemical nitrogen (N 2 ) fixation as an effective method has realized the sustainable production of ammonia where efficient electrocatalysts for...
Electrochemical nitrogen (N2) fixation as an effective method has realized the sustainable production of ammonia where efficient electrocatalysts for...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 14583
SubjectTerms Ammonia
Catalysis
Catalytic activity
Chemical reduction
Density functional theory
Doping
Electrocatalysts
Electronic structure
Graphene
Nitrogen
Title Tuning the catalytic activity of a single Mo atom supported on graphene for nitrogen reduction via Se atom doping
URI https://www.ncbi.nlm.nih.gov/pubmed/31241647
https://www.proquest.com/docview/2254523325
https://www.proquest.com/docview/2255471369
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ8FeEHcKAxnBC6rC0pwkrR-nqGhMDBXRibGXKvFFq7QlpW2Q4NdzfG2ROgl4iSJf6tTn8_Gxfc5nQt7ECav4MOdRUjIVpUqkUSUSoWlc4zLPGFSgA5xPP-XHZ-nJeXbe6Wx7LbXr6h3_tTOu5H-kimkoVx0l-w-SDT-KCfiO8sUnShiffyfjtvbRTmYb5qdhX-XuQggT-ai3Aq700O3j6vq6v2oXhslc6EMCQ1aNus64GuLQXjbYUn-pyVwNKn7MS9QltqIwgVXbpuzES5j7O-Psm06y-yUrs98wKYoQQ3Zx2bRmstM3HH1rgzeQcSk40bqmuNzEpn21KvFiHtx85m53-7P_FrdfYUKkIue5Kq2OTXOIWGxvhvNK2IZJO7BZtgCnUgf6ZHenso9Bc6VyxhealAfkdiH8f4trI3ZAC0aTpm0mvOCG6LNukb0EVxlJl-wdjacfPoapHM0h8Jy2wA43Te2T277ynwbNDasUY61M75G7bplBjyxm7pOOrB-QO4WX1EPy3WKHInZowA712KGNoiW12KGnDdUQoAE7tKmpxw5F7FCPHRqwQxE79Iu0FS12HpGz9-NpcRy56zcijlb5OgI5LLlQVSIzJQSP8yoX-pxeKIVdowZcAnBQYlTCcCQhESCyMuODOGeQD3EmfUy6dVPLp4SmCtfFTOaZ0gyVMhlloyodoHGYCQmoLHrkre_DGXfc9PqKlKuZ8ZEANitYMTFdP-6R16HswjKy7Cx14EUxcyN2NcO5C78fIMl65FXIxo7Xh2RlLZvWlMnQYIOc9cgTK8LQjBf5sxtznpP9DeYPSHe9bOULtFrX1UuHrd_f85oY
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+catalytic+activity+of+a+single+Mo+atom+supported+on+graphene+for+nitrogen+reduction+via+Se+atom+doping&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhou%2C+Hong+Yu&rft.au=Li%2C+Jian+Chen&rft.au=Wen%2C+Zi&rft.au=Jiang%2C+Qing&rft.date=2019-07-10&rft.eissn=1463-9084&rft.volume=21&rft.issue=27&rft.spage=14583&rft_id=info:doi/10.1039%2Fc9cp02733e&rft_id=info%3Apmid%2F31241647&rft.externalDocID=31241647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon