Tuning the catalytic activity of a single Mo atom supported on graphene for nitrogen reduction via Se atom doping
Electrochemical nitrogen (N 2 ) fixation as an effective method has realized the sustainable production of ammonia where efficient electrocatalysts for converting N 2 into NH 3 at room temperature have become a key scientific issue. Herein, we proposed that the catalytic activity of a single Mo atom...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 21; no. 27; pp. 14583 - 14588 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
10.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemical nitrogen (N
2
) fixation as an effective method has realized the sustainable production of ammonia where efficient electrocatalysts for converting N
2
into NH
3
at room temperature have become a key scientific issue. Herein, we proposed that the catalytic activity of a single Mo atom supported on graphene (Mo/G) for the nitrogen reduction reaction (NRR) can be tuned by non-metal heteroatom (B, N, P, S, Se
etc.
) doping. Our density functional theory (DFT) calculations revealed that the Se atom is the best doping element to tune the optimal electronic structure of the Mo atom for catalyzing the NRR among these heteroatoms, leading to the lowest potential of 0.41 V
vs.
RHE for Mo/SeG, which is much better than the current metal-based catalysts. Our work provided a new strategy to design electrocatalysts for the NRR. |
---|---|
AbstractList | Electrochemical nitrogen (N2) fixation as an effective method has realized the sustainable production of ammonia where efficient electrocatalysts for converting N2 into NH3 at room temperature have become a key scientific issue. Herein, we proposed that the catalytic activity of a single Mo atom supported on graphene (Mo/G) for the nitrogen reduction reaction (NRR) can be tuned by non-metal heteroatom (B, N, P, S, Se etc.) doping. Our density functional theory (DFT) calculations revealed that the Se atom is the best doping element to tune the optimal electronic structure of the Mo atom for catalyzing the NRR among these heteroatoms, leading to the lowest potential of 0.41 V vs. RHE for Mo/SeG, which is much better than the current metal-based catalysts. Our work provided a new strategy to design electrocatalysts for the NRR. Electrochemical nitrogen (N2) fixation as an effective method has realized the sustainable production of ammonia where efficient electrocatalysts for converting N2 into NH3 at room temperature have become a key scientific issue. Herein, we proposed that the catalytic activity of a single Mo atom supported on graphene (Mo/G) for the nitrogen reduction reaction (NRR) can be tuned by non-metal heteroatom (B, N, P, S, Se etc.) doping. Our density functional theory (DFT) calculations revealed that the Se atom is the best doping element to tune the optimal electronic structure of the Mo atom for catalyzing the NRR among these heteroatoms, leading to the lowest potential of 0.41 V vs. RHE for Mo/SeG, which is much better than the current metal-based catalysts. Our work provided a new strategy to design electrocatalysts for the NRR.Electrochemical nitrogen (N2) fixation as an effective method has realized the sustainable production of ammonia where efficient electrocatalysts for converting N2 into NH3 at room temperature have become a key scientific issue. Herein, we proposed that the catalytic activity of a single Mo atom supported on graphene (Mo/G) for the nitrogen reduction reaction (NRR) can be tuned by non-metal heteroatom (B, N, P, S, Se etc.) doping. Our density functional theory (DFT) calculations revealed that the Se atom is the best doping element to tune the optimal electronic structure of the Mo atom for catalyzing the NRR among these heteroatoms, leading to the lowest potential of 0.41 V vs. RHE for Mo/SeG, which is much better than the current metal-based catalysts. Our work provided a new strategy to design electrocatalysts for the NRR. Electrochemical nitrogen (N 2 ) fixation as an effective method has realized the sustainable production of ammonia where efficient electrocatalysts for converting N 2 into NH 3 at room temperature have become a key scientific issue. Herein, we proposed that the catalytic activity of a single Mo atom supported on graphene (Mo/G) for the nitrogen reduction reaction (NRR) can be tuned by non-metal heteroatom (B, N, P, S, Se etc. ) doping. Our density functional theory (DFT) calculations revealed that the Se atom is the best doping element to tune the optimal electronic structure of the Mo atom for catalyzing the NRR among these heteroatoms, leading to the lowest potential of 0.41 V vs. RHE for Mo/SeG, which is much better than the current metal-based catalysts. Our work provided a new strategy to design electrocatalysts for the NRR. |
Author | Wen, Zi Zhou, Hong Yu Jiang, Qing Li, Jian Chen |
Author_xml | – sequence: 1 givenname: Hong Yu surname: Zhou fullname: Zhou, Hong Yu organization: Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China – sequence: 2 givenname: Jian Chen surname: Li fullname: Li, Jian Chen organization: Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China – sequence: 3 givenname: Zi surname: Wen fullname: Wen, Zi organization: Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China – sequence: 4 givenname: Qing orcidid: 0000-0003-0660-596X surname: Jiang fullname: Jiang, Qing organization: Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31241647$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1qGzEURkVJqR2nmz5AEXRTAm4l3dGMvSwmTQIJLdRZD7J05ciMpbGkCfjtI2OngZCVBDrf0f05J2c-eCTkC2c_OIP5z8V88ZeJBuDqAxnzqobpnM2qs__3ph6R85Q2jDEuOXwiI-Ci4nXVjMluOXjn1zQ_ItUqq26fnaZKZ_fk8p4GSxVNBeiQ3geqctjSNPR9iBkNDZ6uo-of0SO1IVLvcgxr9DSiGYqivD85Rf_hMWhCX0wX5KNVXcLPp3NCHn5fLRc307s_17eLX3dTDVLkKWCjtLErgdIao1m9qo2opDDWlj4s1wigwZqZgmaGIAwYqaTmrJ5D3XAJE_L96O1j2A2Ycrt1SWPXKY9hSK0QUlYNh8JPyLc36CYM0ZfqDlT5FEAchF9P1LDaomn76LYq7tuXYRaAHQEdQ0oRbatdVocx5Khc13LWHvbVvu6rRC7fRF6s78DP9YiVGA |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2023_05_353 crossref_primary_10_1039_D1CC06665J crossref_primary_10_1021_acsami_4c02716 crossref_primary_10_1021_acsnano_1c08455 crossref_primary_10_1039_D2CP01446G crossref_primary_10_1039_D3CP01363D crossref_primary_10_1039_D4TA03350G crossref_primary_10_1016_j_apsusc_2020_145855 crossref_primary_10_1039_D2TA02887E crossref_primary_10_1039_D1QM01620B crossref_primary_10_1016_j_apsusc_2020_148012 crossref_primary_10_1016_j_nanoen_2020_105126 crossref_primary_10_1016_j_jmgm_2021_107890 crossref_primary_10_1016_j_jechem_2020_06_048 crossref_primary_10_1002_adma_202007891 crossref_primary_10_1039_D0CP01963A crossref_primary_10_1039_D0CP05072E crossref_primary_10_15541_jim20230433 crossref_primary_10_20964_2020_10_46 crossref_primary_10_1007_s12274_021_4009_4 crossref_primary_10_1016_j_mtphys_2020_100310 crossref_primary_10_1016_j_jelechem_2021_115874 crossref_primary_10_1016_j_ijhydene_2022_06_305 crossref_primary_10_1039_D0CP00722F crossref_primary_10_1007_s40843_023_2597_8 crossref_primary_10_1016_j_apsusc_2020_147595 crossref_primary_10_1002_adfm_202008983 crossref_primary_10_1016_j_electacta_2020_135667 crossref_primary_10_1039_D0TA04709K crossref_primary_10_1039_D1NA00426C crossref_primary_10_1002_eem2_12204 crossref_primary_10_1063_1674_0068_cjcp2310099 crossref_primary_10_1016_j_nanoen_2023_108404 crossref_primary_10_1039_D1CP02391H crossref_primary_10_1039_D2TA06187B crossref_primary_10_1002_smll_202401019 crossref_primary_10_1016_j_jhazmat_2022_129327 crossref_primary_10_1016_j_mtcomm_2024_111015 crossref_primary_10_1039_C9NR08969A crossref_primary_10_1002_cphc_202000147 crossref_primary_10_1002_smll_202002885 crossref_primary_10_1039_C9TA10050D crossref_primary_10_1016_j_pecs_2020_100860 crossref_primary_10_1016_j_apsusc_2021_150867 crossref_primary_10_1021_acscatal_2c02629 crossref_primary_10_1039_D2QM01061E crossref_primary_10_1016_j_mcat_2020_111293 crossref_primary_10_1002_cphc_202300012 crossref_primary_10_1016_j_mcat_2024_114564 crossref_primary_10_1002_eem2_12277 crossref_primary_10_1016_j_mcat_2021_112048 crossref_primary_10_1515_pac_2021_0204 crossref_primary_10_1039_D0CP04315J crossref_primary_10_1016_j_ijhydene_2021_01_091 crossref_primary_10_1002_asia_202300797 crossref_primary_10_1080_23746149_2021_1905545 crossref_primary_10_1016_j_apsusc_2020_146202 crossref_primary_10_1021_acs_inorgchem_0c00131 crossref_primary_10_1002_sstr_202000075 crossref_primary_10_1002_cssc_202101462 |
Cites_doi | 10.1038/nchem.121 10.1002/adma.201800191 10.1038/s41467-018-03795-8 10.1063/1.1316015 10.1002/jcc.20495 10.1021/cr8003696 10.1021/jacs.6b04778 10.1039/C8NR04277B 10.1039/C1CP22271F 10.1002/anie.201802310 10.1002/anie.201507381 10.1002/adma.201870301 10.1002/cssc.201500322 10.1038/22672 10.1002/adma.201803694 10.1038/s41929-018-0063-z 10.1021/jp047349j 10.1039/C4TC01385A 10.1002/smtd.201800291 10.1103/PhysRevB.66.155125 10.1002/adma.201700001 10.1002/aenm.201800369 10.1038/nchem.1095 10.1016/j.carbon.2015.09.008 10.1039/C6SC03911A 10.1002/adma.201606550 10.1103/PhysRevLett.77.3865 10.1039/C7EE02220D 10.1021/jacs.8b07472 10.1126/science.aar6611 10.1021/acscatal.7b03942 10.1039/C8TA03974G 10.1021/acscatal.7b01624 10.1039/C7TA09350K 10.1073/pnas.1706371114 10.1039/C0JM02922J 10.1021/acscatal.6b01534 10.1021/ar300361m 10.1021/acscatal.8b00905 10.1039/C8TA11416A 10.1021/jacs.7b05213 10.1039/C8TA03481H 10.1063/1.1740589 10.1016/j.bioelechem.2018.10.002 10.1002/anie.200301553 10.1063/1.458452 10.1021/acscatal.8b05061 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/C9CP02733E |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 14588 |
ExternalDocumentID | 31241647 10_1039_C9CP02733E |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 123 29O 2WC 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION CS3 D0L DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- P2P R56 R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 YNT NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c352t-3e7acdfb2e5fddc06b6d2452dff000f1ce33c3fd8a378e32d3d5a5c1069367153 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 00:43:01 EDT 2025 Mon Jun 30 04:59:58 EDT 2025 Thu Apr 03 07:02:58 EDT 2025 Tue Jul 01 01:55:37 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c352t-3e7acdfb2e5fddc06b6d2452dff000f1ce33c3fd8a378e32d3d5a5c1069367153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0660-596X |
PMID | 31241647 |
PQID | 2254523325 |
PQPubID | 2047499 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2255471369 proquest_journals_2254523325 pubmed_primary_31241647 crossref_citationtrail_10_1039_C9CP02733E crossref_primary_10_1039_C9CP02733E |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Jul-10 |
PublicationDateYYYYMMDD | 2019-07-10 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-Jul-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Schlogl (C9CP02733E-(cit3)/*[position()=1]) 2003; 42 Li (C9CP02733E-(cit17)/*[position()=1]) 2016; 138 Geng (C9CP02733E-(cit21)/*[position()=1]) 2018; 30 Skulason (C9CP02733E-(cit26)/*[position()=1]) 2012; 14 Ma (C9CP02733E-(cit44)/*[position()=1]) 2015; 95 Yang (C9CP02733E-(cit31)/*[position()=1]) 2013; 46 Liu (C9CP02733E-(cit12)/*[position()=1]) 2017; 114 Zhao (C9CP02733E-(cit18)/*[position()=1]) 2017; 139 Delley (C9CP02733E-(cit37)/*[position()=1]) 2002; 66 Rago (C9CP02733E-(cit11)/*[position()=1]) 2019; 125 Liu (C9CP02733E-(cit24)/*[position()=1]) 2018; 9 Li (C9CP02733E-(cit7)/*[position()=1]) 2018; 10 Liu (C9CP02733E-(cit28)/*[position()=1]) 2016; 7 Perdew (C9CP02733E-(cit35)/*[position()=1]) 1996; 77 Choi (C9CP02733E-(cit13)/*[position()=1]) 2018; 8 Qiu (C9CP02733E-(cit32)/*[position()=1]) 2015; 54 Grimme (C9CP02733E-(cit36)/*[position()=1]) 2006; 27 Rosca (C9CP02733E-(cit4)/*[position()=1]) 2009; 109 Li (C9CP02733E-(cit22)/*[position()=1]) 2017; 29 Ling (C9CP02733E-(cit48)/*[position()=1]) 2018; 140 Delley (C9CP02733E-(cit34)/*[position()=1]) 2000; 113 Chen (C9CP02733E-(cit6)/*[position()=1]) 2018 Chen (C9CP02733E-(cit25)/*[position()=1]) 2019; 3 Chen (C9CP02733E-(cit43)/*[position()=1]) 2019; 7 Chen (C9CP02733E-(cit19)/*[position()=1]) 2018; 6 Qiao (C9CP02733E-(cit30)/*[position()=1]) 2011; 3 Cui (C9CP02733E-(cit9)/*[position()=1]) 2018; 8 Ghosh (C9CP02733E-(cit45)/*[position()=1]) 2014; 2 Montoya (C9CP02733E-(cit41)/*[position()=1]) 2015; 8 Smil (C9CP02733E-(cit2)/*[position()=1]) 1999; 400 Nørskov (C9CP02733E-(cit40)/*[position()=1]) 2004; 108 Xu (C9CP02733E-(cit47)/*[position()=1]) 2018; 1 Liu (C9CP02733E-(cit33)/*[position()=1]) 2011; 21 Liu (C9CP02733E-(cit8)/*[position()=1]) 2018; 6 Zhao (C9CP02733E-(cit42)/*[position()=1]) 2019; 9 Cheng (C9CP02733E-(cit27)/*[position()=1]) 2018; 30 Chen (C9CP02733E-(cit5)/*[position()=1]) 2018; 360 Nørskov (C9CP02733E-(cit46)/*[position()=1]) 2009; 1 Back (C9CP02733E-(cit29)/*[position()=1]) 2017; 8 Delley (C9CP02733E-(cit38)/*[position()=1]) 1990; 92 Zhang (C9CP02733E-(cit10)/*[position()=1]) 2018; 30 Han (C9CP02733E-(cit23)/*[position()=1]) 2018; 6 Shi (C9CP02733E-(cit14)/*[position()=1]) 2017; 29 Perazzolo (C9CP02733E-(cit15)/*[position()=1]) 2018; 8 Sekiguchi (C9CP02733E-(cit16)/*[position()=1]) 2018; 57 Iwamoto (C9CP02733E-(cit20)/*[position()=1]) 2017; 7 Mulliken (C9CP02733E-(cit39)/*[position()=1]) 1955; 23 Guo (C9CP02733E-(cit1)/*[position()=1]) 2018; 11 |
References_xml | – volume: 1 start-page: 37 year: 2009 ident: C9CP02733E-(cit46)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.121 – volume: 30 start-page: 1800191 year: 2018 ident: C9CP02733E-(cit10)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201800191 – volume: 9 start-page: 1610 year: 2018 ident: C9CP02733E-(cit24)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-03795-8 – volume: 113 start-page: 7756 year: 2000 ident: C9CP02733E-(cit34)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1316015 – volume: 27 start-page: 1787 year: 2006 ident: C9CP02733E-(cit36)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 109 start-page: 2209 year: 2009 ident: C9CP02733E-(cit4)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr8003696 – volume: 138 start-page: 8706 year: 2016 ident: C9CP02733E-(cit17)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04778 – volume: 10 start-page: 15429 year: 2018 ident: C9CP02733E-(cit7)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR04277B – volume: 14 start-page: 1235 year: 2012 ident: C9CP02733E-(cit26)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22271F – volume: 57 start-page: 9064 year: 2018 ident: C9CP02733E-(cit16)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201802310 – volume: 54 start-page: 14031 year: 2015 ident: C9CP02733E-(cit32)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201507381 – volume: 30 start-page: 1870301 year: 2018 ident: C9CP02733E-(cit21)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201870301 – volume: 8 start-page: 2180 year: 2015 ident: C9CP02733E-(cit41)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201500322 – volume: 400 start-page: 415 year: 1999 ident: C9CP02733E-(cit2)/*[position()=1] publication-title: Nature doi: 10.1038/22672 – volume: 30 start-page: 1803694 year: 2018 ident: C9CP02733E-(cit27)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201803694 – volume: 1 start-page: 339 year: 2018 ident: C9CP02733E-(cit47)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-018-0063-z – volume: 108 start-page: 17886 year: 2004 ident: C9CP02733E-(cit40)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 2 start-page: 7943 year: 2014 ident: C9CP02733E-(cit45)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C4TC01385A – start-page: 1800337 year: 2018 ident: C9CP02733E-(cit6)/*[position()=1] publication-title: Small Methods – volume: 3 start-page: 1800291 year: 2019 ident: C9CP02733E-(cit25)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201800291 – volume: 66 start-page: 155125 year: 2002 ident: C9CP02733E-(cit37)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.66.155125 – volume: 29 start-page: 1700001 year: 2017 ident: C9CP02733E-(cit22)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201700001 – volume: 8 start-page: 1800369 year: 2018 ident: C9CP02733E-(cit9)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800369 – volume: 3 start-page: 634 year: 2011 ident: C9CP02733E-(cit30)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 95 start-page: 756 year: 2015 ident: C9CP02733E-(cit44)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2015.09.008 – volume: 8 start-page: 1090 year: 2017 ident: C9CP02733E-(cit29)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC03911A – volume: 29 start-page: 1606550 year: 2017 ident: C9CP02733E-(cit14)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606550 – volume: 77 start-page: 3865 year: 1996 ident: C9CP02733E-(cit35)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 11 start-page: 45 year: 2018 ident: C9CP02733E-(cit1)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02220D – volume: 140 start-page: 14161 year: 2018 ident: C9CP02733E-(cit48)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07472 – volume: 360 start-page: eaar6611 year: 2018 ident: C9CP02733E-(cit5)/*[position()=1] publication-title: Science doi: 10.1126/science.aar6611 – volume: 8 start-page: 1122 year: 2018 ident: C9CP02733E-(cit15)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b03942 – volume: 6 start-page: 12974 year: 2018 ident: C9CP02733E-(cit23)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03974G – volume: 7 start-page: 6924 year: 2017 ident: C9CP02733E-(cit20)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b01624 – volume: 6 start-page: 4102 year: 2018 ident: C9CP02733E-(cit8)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09350K – volume: 114 start-page: 6450 year: 2017 ident: C9CP02733E-(cit12)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1706371114 – volume: 21 start-page: 3335 year: 2011 ident: C9CP02733E-(cit33)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/C0JM02922J – volume: 7 start-page: 34 year: 2016 ident: C9CP02733E-(cit28)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b01534 – volume: 46 start-page: 1740 year: 2013 ident: C9CP02733E-(cit31)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar300361m – volume: 8 start-page: 7517 year: 2018 ident: C9CP02733E-(cit13)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b00905 – volume: 7 start-page: 3492 year: 2019 ident: C9CP02733E-(cit43)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11416A – volume: 139 start-page: 12480 year: 2017 ident: C9CP02733E-(cit18)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05213 – volume: 6 start-page: 9623 year: 2018 ident: C9CP02733E-(cit19)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03481H – volume: 23 start-page: 1841 year: 1955 ident: C9CP02733E-(cit39)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1740589 – volume: 125 start-page: 105 year: 2019 ident: C9CP02733E-(cit11)/*[position()=1] publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2018.10.002 – volume: 42 start-page: 2004 year: 2003 ident: C9CP02733E-(cit3)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200301553 – volume: 92 start-page: 508 year: 1990 ident: C9CP02733E-(cit38)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.458452 – volume: 9 start-page: 3419 year: 2019 ident: C9CP02733E-(cit42)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b05061 |
SSID | ssj0001513 |
Score | 2.5297832 |
Snippet | Electrochemical nitrogen (N
2
) fixation as an effective method has realized the sustainable production of ammonia where efficient electrocatalysts for... Electrochemical nitrogen (N2) fixation as an effective method has realized the sustainable production of ammonia where efficient electrocatalysts for... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 14583 |
SubjectTerms | Ammonia Catalysis Catalytic activity Chemical reduction Density functional theory Doping Electrocatalysts Electronic structure Graphene Nitrogen |
Title | Tuning the catalytic activity of a single Mo atom supported on graphene for nitrogen reduction via Se atom doping |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31241647 https://www.proquest.com/docview/2254523325 https://www.proquest.com/docview/2255471369 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ8FeEHcKAxnBC6rC0pwkrR-nqGhMDBXRibGXKvFFq7QlpW2Q4NdzfG2ROgl4iSJf6tTn8_Gxfc5nQt7ECav4MOdRUjIVpUqkUSUSoWlc4zLPGFSgA5xPP-XHZ-nJeXbe6Wx7LbXr6h3_tTOu5H-kimkoVx0l-w-SDT-KCfiO8sUnShiffyfjtvbRTmYb5qdhX-XuQggT-ai3Aq700O3j6vq6v2oXhslc6EMCQ1aNus64GuLQXjbYUn-pyVwNKn7MS9QltqIwgVXbpuzES5j7O-Psm06y-yUrs98wKYoQQ3Zx2bRmstM3HH1rgzeQcSk40bqmuNzEpn21KvFiHtx85m53-7P_FrdfYUKkIue5Kq2OTXOIWGxvhvNK2IZJO7BZtgCnUgf6ZHenso9Bc6VyxhealAfkdiH8f4trI3ZAC0aTpm0mvOCG6LNukb0EVxlJl-wdjacfPoapHM0h8Jy2wA43Te2T277ynwbNDasUY61M75G7bplBjyxm7pOOrB-QO4WX1EPy3WKHInZowA712KGNoiW12KGnDdUQoAE7tKmpxw5F7FCPHRqwQxE79Iu0FS12HpGz9-NpcRy56zcijlb5OgI5LLlQVSIzJQSP8yoX-pxeKIVdowZcAnBQYlTCcCQhESCyMuODOGeQD3EmfUy6dVPLp4SmCtfFTOaZ0gyVMhlloyodoHGYCQmoLHrkre_DGXfc9PqKlKuZ8ZEANitYMTFdP-6R16HswjKy7Cx14EUxcyN2NcO5C78fIMl65FXIxo7Xh2RlLZvWlMnQYIOc9cgTK8LQjBf5sxtznpP9DeYPSHe9bOULtFrX1UuHrd_f85oY |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+catalytic+activity+of+a+single+Mo+atom+supported+on+graphene+for+nitrogen+reduction+via+Se+atom+doping&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhou%2C+Hong+Yu&rft.au=Li%2C+Jian+Chen&rft.au=Wen%2C+Zi&rft.au=Jiang%2C+Qing&rft.date=2019-07-10&rft.eissn=1463-9084&rft.volume=21&rft.issue=27&rft.spage=14583&rft_id=info:doi/10.1039%2Fc9cp02733e&rft_id=info%3Apmid%2F31241647&rft.externalDocID=31241647 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |