The role of water at electrified metal-water interfaces unravelled from first principles
Saved in:
Published in | Current opinion in electrochemistry Vol. 36; p. 101118 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.12.2022
|
Online Access | Get full text |
Cover
Loading…
ArticleNumber | 101118 |
---|---|
Author | Darby, Matthew T. Cucinotta, Clotilde S. |
Author_xml | – sequence: 1 givenname: Matthew T. surname: Darby fullname: Darby, Matthew T. – sequence: 2 givenname: Clotilde S. orcidid: 0000-0001-5156-3514 surname: Cucinotta fullname: Cucinotta, Clotilde S. |
BookMark | eNp9kM1KAzEUhbOoYK19Axd5gan5mUwz7qT4Uyi4qeAupHduMCWdlCQqvr0zjCsXbu6Fe885HL4rMutjj4TccLbijDe3xxVEDAgrwYQYT5zrGZmLWvGq5UxekmXOR8YY10JwJefkbf-ONMWANDr6ZQsmagsdM0ryzmNHT1hsqKaX74fpLGCmH32ynxjCoHApnqjzKRd6Tr4Hfw6Yr8mFsyHj8ncvyOvjw37zXO1enrab-10FUolSyUNb2w7qlsn2IMFxlFrVTccBkDnUdt3phlmwCsW6A-FUrRul2aAH5vRBLkg95UKKOSd0ZuhwsunbcGZGKOZoJihmhGImKIPt7o8NfLHFx74k68P_5h878XAT |
CitedBy_id | crossref_primary_10_1063_5_0246995 crossref_primary_10_1021_acs_jpclett_3c03615 crossref_primary_10_1021_jacsau_3c00552 crossref_primary_10_1021_acs_chemrev_3c00806 crossref_primary_10_1360_SSC_2023_0205 |
Cites_doi | 10.1016/j.electacta.2021.138875 10.1088/1361-648X/ac1aa2 10.1039/C9CP06584A 10.1039/D1CP04618G 10.1088/1367-2630/11/12/125003 10.1002/cphc.201100309 10.1021/acs.jpcc.7b07472 10.1021/acs.jpclett.1c01800 10.1351/pac198658070955 10.1039/D0CP04211K 10.1021/jacsau.1c00108 10.1038/s41467-017-02673-z 10.1021/acs.jpcc.1c04895 10.1021/jp801931d 10.1038/s41563-019-0356-x 10.1021/jp067857o 10.1021/jp0631735 10.1103/PhysRevLett.126.166802 10.1038/368444a0 10.1021/acs.chemrev.1c00679 10.1021/acs.jpcc.0c02323 10.1021/acs.jpclett.1c02001 10.1021/acs.jpcc.0c11089 10.1103/PhysRevB.73.165402 10.1021/acs.jpcc.6b09019 10.1039/c2cp41652b 10.1016/j.xcrp.2022.100759 10.1103/PhysRevLett.119.016801 10.1016/S0022-0728(83)80255-1 10.1038/s41467-021-27909-x 10.1016/S0013-4686(98)00289-8 10.1021/acs.jpclett.0c01025 10.1126/sciadv.abb1219 10.1038/nmat3354 10.1016/j.cattod.2012.06.001 10.1016/0013-4686(89)85070-4 10.1016/0013-4686(75)90017-1 10.1080/00268970010018981 10.1007/978-3-642-04937-8 10.1021/acscatal.1c00538 10.1103/PhysRevLett.74.3193 10.1039/C8SC02495B 10.1021/ct900563s 10.1103/PhysRevB.39.13193 10.1103/PhysRevLett.98.066401 10.1016/S0013-4686(01)00597-7 10.1126/science.1259437 10.1039/D1SC00354B 10.1039/C4TA02760D 10.1016/S0022-0728(83)80186-7 10.1021/acs.jpcc.1c10362 10.1016/S1388-2481(03)00046-8 10.1021/jp710386g 10.1002/anie.201911929 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1016/j.coelec.2022.101118 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
ExternalDocumentID | 10_1016_j_coelec_2022_101118 |
GroupedDBID | --M 0R~ AAEDT AAEDW AAHCO AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO AAYXX ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI AEBSH AEIPS AEUPX AFJKZ AFPUW AFTJW AFXIZ AFZHZ AGCQF AGRNS AGUBO AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BNPGV CITATION EBS EFJIC EJD FDB FIRID FYGXN KOM M41 ROL SPC SPCBC SSH SSK SSR SSZ T5K ~G- |
ID | FETCH-LOGICAL-c352t-3b94adc49039b3cf1e38546d1cce0fe8a7d860aca5e27dc2f5486580903c0f8b3 |
ISSN | 2451-9103 |
IngestDate | Tue Jul 01 04:28:42 EDT 2025 Thu Apr 24 23:05:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c352t-3b94adc49039b3cf1e38546d1cce0fe8a7d860aca5e27dc2f5486580903c0f8b3 |
ORCID | 0000-0001-5156-3514 |
OpenAccessLink | https://doi.org/10.1016/j.coelec.2022.101118 |
ParticipantIDs | crossref_primary_10_1016_j_coelec_2022_101118 crossref_citationtrail_10_1016_j_coelec_2022_101118 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-00 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Current opinion in electrochemistry |
PublicationYear | 2022 |
References | Kornyshev (10.1016/j.coelec.2022.101118_bib24) 2007; 111 Groß (10.1016/j.coelec.2022.101118_sref5) 2022; 122 Carrasco (10.1016/j.coelec.2022.101118_bib16) 2012; 11 Hanke (10.1016/j.coelec.2022.101118_bib23) 2001; 99 Shin (10.1016/j.coelec.2022.101118_bib44) 2022; 13 Kelly (10.1016/j.coelec.2022.101118_bib46) 2022; 126 Kühne (10.1016/j.coelec.2022.101118_bib30) 2007; 98 Lan (10.1016/j.coelec.2022.101118_bib32) 2020; 11 Gkionis (10.1016/j.coelec.2022.101118_bib18) 2014; 2 Lin (10.1016/j.coelec.2022.101118_bib33) 2022; 24 Frumkin (10.1016/j.coelec.2022.101118_bib38) 1975; 20 Taylor (10.1016/j.coelec.2022.101118_bib40) 2006; 73 Gaiduk (10.1016/j.coelec.2022.101118_bib61) 2018; 9 Ceriotti (10.1016/j.coelec.2022.101118_bib62) 2010; 6 Kronberg (10.1016/j.coelec.2022.101118_bib13) 2021; 11 Khatib (10.1016/j.coelec.2022.101118_sref4) 2021; 391 Spohr (10.1016/j.coelec.2022.101118_bib21) 1997; 107 Surendralal (10.1016/j.coelec.2022.101118_sref6) 2021; 126 Li (10.1016/j.coelec.2022.101118_bib53) 2021; 12 Le (10.1016/j.coelec.2022.101118_sref10) 2020; 6 Goldsmith (10.1016/j.coelec.2022.101118_bib34) 2021; 12 Badiali (10.1016/j.coelec.2022.101118_bib29) 1983; 143 Li (10.1016/j.coelec.2022.101118_bib47) 2022; 156 Sakong (10.1016/j.coelec.2022.101118_bib37) 2016; 144 Santos (10.1016/j.coelec.2022.101118_bib49) 2011; 12 Cheng (10.1016/j.coelec.2022.101118_bib60) 2012; 14 Rossmeisl (10.1016/j.coelec.2022.101118_bib50) 2006; 110 Kronberg (10.1016/j.coelec.2022.101118_bib12) 2020; 124 Li (10.1016/j.coelec.2022.101118_bib14) 2022; 3 Xia (10.1016/j.coelec.2022.101118_bib20) 1995; 74 Le (10.1016/j.coelec.2022.101118_sref15) 2021; 1 Trasatti (10.1016/j.coelec.2022.101118_bib39) 1986; 58 Pajkossy (10.1016/j.coelec.2022.101118_bib56) 2003; 5 Li (10.1016/j.coelec.2022.101118_bib36) 2021; 12 Pajkossy (10.1016/j.coelec.2022.101118_bib55) 2001; 46 Raghavan (10.1016/j.coelec.2022.101118_bib17) 1991; 94 Heinz (10.1016/j.coelec.2022.101118_bib19) 2008; 112 Spohr (10.1016/j.coelec.2022.101118_bib25) 1999; 44 Hansen (10.1016/j.coelec.2022.101118_bib41) 2016; 120 Le (10.1016/j.coelec.2022.101118_bib11) 2017; 119 Toney (10.1016/j.coelec.2022.101118_bib2) 1994; 368 Russier (10.1016/j.coelec.2022.101118_bib27) 1989; 39 Sakong (10.1016/j.coelec.2022.101118_bib7) 2020; 22 Li (10.1016/j.coelec.2022.101118_bib43) 2019; 18 Ojha (10.1016/j.coelec.2022.101118_bib45) 2020; 59 10.1016/j.coelec.2022.101118_bib26 Li (10.1016/j.coelec.2022.101118_sref9) 2021; 125 Kornyshev (10.1016/j.coelec.2022.101118_bib58) 1989; 34 Schnur (10.1016/j.coelec.2022.101118_bib22) 2009; 11 Zhu (10.1016/j.coelec.2022.101118_bib35) 2021; 125 Huang (10.1016/j.coelec.2022.101118_bib57) 2018; 148 Trasatti (10.1016/j.coelec.2022.101118_bib42) 1977 Kristoffersen (10.1016/j.coelec.2022.101118_bib52) 2018; 9 Guo (10.1016/j.coelec.2022.101118_bib59) 1997 Tesch (10.1016/j.coelec.2022.101118_bib31) 2021; 33 Badiali (10.1016/j.coelec.2022.101118_bib28) 1983; 150 Roman (10.1016/j.coelec.2022.101118_bib48) 2013; 202 Sakong (10.1016/j.coelec.2022.101118_bib8) 2018; 149 Osawa (10.1016/j.coelec.2022.101118_bib3) 2008; 112 Velasco-Velez (10.1016/j.coelec.2022.101118_bib1) 2014; 346 Li (10.1016/j.coelec.2022.101118_bib54) 2020; 22 Tripkovic (10.1016/j.coelec.2022.101118_bib51) 2017; 121 |
References_xml | – volume: 391 start-page: 138875 year: 2021 ident: 10.1016/j.coelec.2022.101118_sref4 article-title: The nanoscale structure of the Pt-water double layer under bias revealed publication-title: Electrochim Acta doi: 10.1016/j.electacta.2021.138875 – volume: 107 start-page: 6342 year: 1997 ident: 10.1016/j.coelec.2022.101118_bib21 article-title: Effect of electrostatic boundary conditions and system size on the interfacial properties of water and aqueous solutions publication-title: J Chem Phys – volume: 33 start-page: 444004 year: 2021 ident: 10.1016/j.coelec.2022.101118_bib31 article-title: Properties of the Pt(111)/electrolyte electrochemical interface studied with a hybrid DFT–solvation approach publication-title: J Phys Condens Matter doi: 10.1088/1361-648X/ac1aa2 – volume: 22 start-page: 10431 year: 2020 ident: 10.1016/j.coelec.2022.101118_bib7 article-title: Water structures on a Pt(111) electrode from ab initio molecular dynamic simulations for a variety of electrochemical conditions publication-title: Phys Chem Chem Phys doi: 10.1039/C9CP06584A – volume: 24 start-page: 6803 year: 2022 ident: 10.1016/j.coelec.2022.101118_bib33 article-title: A first-principles study of water adsorbed on flat and stepped silver surfaces publication-title: Phys Chem Chem Phys doi: 10.1039/D1CP04618G – volume: 11 start-page: 125003 year: 2009 ident: 10.1016/j.coelec.2022.101118_bib22 article-title: Properties of metal–water interfaces studied from first principles publication-title: New J Phys doi: 10.1088/1367-2630/11/12/125003 – volume: 12 start-page: 2274 year: 2011 ident: 10.1016/j.coelec.2022.101118_bib49 article-title: Hydrogen electrocatalysis on single crystals and on nanostructured electrodes publication-title: ChemPhysChem doi: 10.1002/cphc.201100309 – volume: 121 start-page: 26785 year: 2017 ident: 10.1016/j.coelec.2022.101118_bib51 article-title: Potential- and rate-determining step for oxygen reduction on Pt(111) publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.7b07472 – volume: 12 start-page: 6448 year: 2021 ident: 10.1016/j.coelec.2022.101118_bib53 article-title: Cross-sphere electrode reaction: the case of hydroxyl desorption during the oxygen reduction reaction on Pt(111) in alkaline media publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.1c01800 – volume: 58 start-page: 955 year: 1986 ident: 10.1016/j.coelec.2022.101118_bib39 article-title: The absolute electrode potential: an explanatory note (Recommendations 1986) publication-title: Pure Appl Chem doi: 10.1351/pac198658070955 – volume: 22 start-page: 22226 year: 2020 ident: 10.1016/j.coelec.2022.101118_bib54 article-title: Solvated proton and the origin of the high onset overpotential in the oxygen reduction reaction on Pt(111) publication-title: Phys Chem Chem Phys doi: 10.1039/D0CP04211K – volume: 1 start-page: 569 year: 2021 ident: 10.1016/j.coelec.2022.101118_sref15 article-title: Modeling electrified Pt(111)-had/water interfaces from ab initio molecular dynamics publication-title: JACS Au doi: 10.1021/jacsau.1c00108 – volume: 9 start-page: 247 year: 2018 ident: 10.1016/j.coelec.2022.101118_bib61 article-title: Electron affinity of liquid water publication-title: Nat Commun doi: 10.1038/s41467-017-02673-z – volume: 149 year: 2018 ident: 10.1016/j.coelec.2022.101118_bib8 article-title: The electric double layer at metal-water interfaces revisited based on a charge polarization scheme publication-title: J Chem Phys – volume: 125 start-page: 21571 year: 2021 ident: 10.1016/j.coelec.2022.101118_bib35 article-title: Effects of adsorbed OH on Pt(100)/water interfacial structures and potential publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.1c04895 – volume: 112 start-page: 17281 year: 2008 ident: 10.1016/j.coelec.2022.101118_bib19 article-title: Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12−6 and 9−6 Lennard-Jones potentials publication-title: J Phys Chem C doi: 10.1021/jp801931d – volume: 18 start-page: 697 year: 2019 ident: 10.1016/j.coelec.2022.101118_bib43 article-title: In situ probing electrified interfacial water structures at atomically flat surfaces publication-title: Nat Mater doi: 10.1038/s41563-019-0356-x – volume: 111 start-page: 5545 year: 2007 ident: 10.1016/j.coelec.2022.101118_bib24 article-title: Double-layer in ionic liquids: paradigm change? publication-title: J Phys Chem B doi: 10.1021/jp067857o – volume: 148 year: 2018 ident: 10.1016/j.coelec.2022.101118_bib57 article-title: Double layer of platinum electrodes: non-monotonic surface charging phenomena and negative double layer capacitance publication-title: J Chem Phys – volume: 110 start-page: 21833 year: 2006 ident: 10.1016/j.coelec.2022.101118_bib50 article-title: Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111) publication-title: J Phys Chem B doi: 10.1021/jp0631735 – volume: 126 start-page: 166802 year: 2021 ident: 10.1016/j.coelec.2022.101118_sref6 article-title: Impact of water coadsorption on the electrode potential of H-Pt(1 1 1)-liquid water interfaces publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.126.166802 – volume: 368 start-page: 444 year: 1994 ident: 10.1016/j.coelec.2022.101118_bib2 article-title: Voltage-dependent ordering of water molecules at an electrode–electrolyte interface publication-title: Nature doi: 10.1038/368444a0 – volume: 122 start-page: 10746 year: 2022 ident: 10.1016/j.coelec.2022.101118_sref5 article-title: Ab initio simulations of water/metal interfaces publication-title: Chem Rev doi: 10.1021/acs.chemrev.1c00679 – volume: 94 start-page: 2110 year: 1991 ident: 10.1016/j.coelec.2022.101118_bib17 article-title: Structure and dynamics of water at the Pt(111) interface: molecular dynamics study publication-title: J Chem Phys – volume: 124 start-page: 13706 year: 2020 ident: 10.1016/j.coelec.2022.101118_bib12 article-title: Coupling surface coverage and electrostatic effects on the interfacial adlayer–water structure of hydrogenated single-crystal platinum electrodes publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.0c02323 – volume: 12 start-page: 7299 year: 2021 ident: 10.1016/j.coelec.2022.101118_bib36 article-title: Linear correlation between water adsorption energies and volta potential differences for metal/water interfaces publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.1c02001 – volume: 144 start-page: 194701 year: 2016 ident: 10.1016/j.coelec.2022.101118_bib37 article-title: The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles publication-title: J Chem Phys – volume: 125 start-page: 3972 year: 2021 ident: 10.1016/j.coelec.2022.101118_sref9 article-title: Establishment of the potential of zero charge of metals in aqueous solutions: different faces of water revealed by ab initio molecular dynamics simulations publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.0c11089 – volume: 73 start-page: 165402 year: 2006 ident: 10.1016/j.coelec.2022.101118_bib40 article-title: First principles reaction modeling of the electrochemical interface: consideration and calculation of a tunable surface potential from atomic and electronic structure publication-title: Phys Rev B doi: 10.1103/PhysRevB.73.165402 – year: 1997 ident: 10.1016/j.coelec.2022.101118_bib59 article-title: Density functional theory and its applications to hydrogen bonded systems – volume: 120 start-page: 29135 year: 2016 ident: 10.1016/j.coelec.2022.101118_bib41 article-title: pH in grand canonical statistics of an electrochemical interface publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.6b09019 – volume: 14 start-page: 11245 year: 2012 ident: 10.1016/j.coelec.2022.101118_bib60 article-title: Alignment of electronic energy levels at electrochemical interfaces publication-title: Phys Chem Chem Phys doi: 10.1039/c2cp41652b – volume: 3 start-page: 100759 year: 2022 ident: 10.1016/j.coelec.2022.101118_bib14 article-title: Unraveling molecular structures and ion effects of electric double layers at metal water interfaces publication-title: Cell Reports Physical Science doi: 10.1016/j.xcrp.2022.100759 – volume: 119 year: 2017 ident: 10.1016/j.coelec.2022.101118_bib11 article-title: Determining potentials of zero charge of metal electrodes versus the standard hydrogen electrode from density-functional-theory-based molecular dynamics publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.119.016801 – volume: 143 start-page: 73 year: 1983 ident: 10.1016/j.coelec.2022.101118_bib29 article-title: Contribution of the metal to the differential capacity of an ideally polarisable electrode publication-title: J Electroanal Chem Interfacial Electrochem doi: 10.1016/S0022-0728(83)80255-1 – volume: 13 start-page: 174 year: 2022 ident: 10.1016/j.coelec.2022.101118_bib44 article-title: On the importance of the electric double layer structure in aqueous electrocatalysis publication-title: Nat Commun doi: 10.1038/s41467-021-27909-x – volume: 44 start-page: 1697 year: 1999 ident: 10.1016/j.coelec.2022.101118_bib25 article-title: Molecular simulation of the electrochemical double layer publication-title: Electrochim Acta doi: 10.1016/S0013-4686(98)00289-8 – volume: 11 start-page: 3724 year: 2020 ident: 10.1016/j.coelec.2022.101118_bib32 article-title: Ionization of water as an effect of quantum delocalization at aqueous electrode interfaces publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.0c01025 – volume: 6 year: 2020 ident: 10.1016/j.coelec.2022.101118_sref10 article-title: Molecular origin of negative component of Helmholtz capacitance at electrified Pt(111)/water interface publication-title: Sci Adv doi: 10.1126/sciadv.abb1219 – volume: 11 start-page: 667 year: 2012 ident: 10.1016/j.coelec.2022.101118_bib16 article-title: A molecular perspective of water at metal interfaces publication-title: Nat Mater doi: 10.1038/nmat3354 – volume: 202 start-page: 183 year: 2013 ident: 10.1016/j.coelec.2022.101118_bib48 article-title: Structure of water layers on hydrogen-covered Pt electrodes publication-title: Catal Today doi: 10.1016/j.cattod.2012.06.001 – volume: 34 start-page: 1829 year: 1989 ident: 10.1016/j.coelec.2022.101118_bib58 article-title: Metal electrons in the double layer theory publication-title: Electrochim Acta doi: 10.1016/0013-4686(89)85070-4 – volume: 20 start-page: 347 year: 1975 ident: 10.1016/j.coelec.2022.101118_bib38 article-title: Potentials of zero total and zero free charge of platinum group metals publication-title: Electrochim Acta doi: 10.1016/0013-4686(75)90017-1 – volume: 99 start-page: 801 year: 2001 ident: 10.1016/j.coelec.2022.101118_bib23 article-title: Intermolecular potentials for simulations of liquid imidazolium salts publication-title: Mol Phys doi: 10.1080/00268970010018981 – ident: 10.1016/j.coelec.2022.101118_bib26 doi: 10.1007/978-3-642-04937-8 – volume: 11 start-page: 8062 year: 2021 ident: 10.1016/j.coelec.2022.101118_bib13 article-title: Reconciling the experimental and computational hydrogen evolution activities of Pt(111) through DFT-based constrained MD simulations publication-title: ACS Catal doi: 10.1021/acscatal.1c00538 – volume: 74 start-page: 3193 year: 1995 ident: 10.1016/j.coelec.2022.101118_bib20 article-title: Electric-field induced restructuring of water at a platinum-water interface: a molecular dynamics computer simulation publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.74.3193 – volume: 9 start-page: 6912 year: 2018 ident: 10.1016/j.coelec.2022.101118_bib52 article-title: OH formation and H2 adsorption at the liquid water–Pt(111) interface publication-title: Chem Sci doi: 10.1039/C8SC02495B – volume: 6 start-page: 1170 year: 2010 ident: 10.1016/j.coelec.2022.101118_bib62 article-title: Colored-Noise Thermostats à la Carte publication-title: J Chem Theor Comput doi: 10.1021/ct900563s – volume: 39 start-page: 13193 year: 1989 ident: 10.1016/j.coelec.2022.101118_bib27 article-title: Calculation of the electronic work function of Cu and Ag from an extended jellium model publication-title: Phys Rev B doi: 10.1103/PhysRevB.39.13193 – volume: 98 year: 2007 ident: 10.1016/j.coelec.2022.101118_bib30 article-title: Efficient and accurate car-parrinello-like approach to born-oppenheimer molecular dynamics publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.98.066401 – volume: 46 start-page: 3063 year: 2001 ident: 10.1016/j.coelec.2022.101118_bib55 article-title: Double layer capacitance of Pt(111) single crystal electrodes publication-title: Electrochim Acta doi: 10.1016/S0013-4686(01)00597-7 – volume: 346 start-page: 831 year: 2014 ident: 10.1016/j.coelec.2022.101118_bib1 article-title: The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy publication-title: Science doi: 10.1126/science.1259437 – volume: 12 start-page: 5865 year: 2021 ident: 10.1016/j.coelec.2022.101118_bib34 article-title: Effects of applied voltage on water at a gold electrode interface from ab initio molecular dynamics publication-title: Chem Sci doi: 10.1039/D1SC00354B – year: 1977 ident: 10.1016/j.coelec.2022.101118_bib42 – volume: 2 start-page: 16498 year: 2014 ident: 10.1016/j.coelec.2022.101118_bib18 article-title: Molecular dynamics investigation of carbon nanotube junctions in non-aqueous solutions publication-title: J Mater Chem doi: 10.1039/C4TA02760D – volume: 150 start-page: 25 year: 1983 ident: 10.1016/j.coelec.2022.101118_bib28 article-title: The metal in the polarisable interface coupling with the solvent phase publication-title: J Electroanal Chem Interfacial Electrochem doi: 10.1016/S0022-0728(83)80186-7 – volume: 126 start-page: 5521 year: 2022 ident: 10.1016/j.coelec.2022.101118_bib46 article-title: OH binding energy as a universal descriptor of the potential of zero charge on transition metal surfaces publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.1c10362 – volume: 5 start-page: 283 year: 2003 ident: 10.1016/j.coelec.2022.101118_bib56 article-title: On the origin of the double layer capacitance maximum of Pt(111) single crystal electrodes publication-title: Electrochem Commun doi: 10.1016/S1388-2481(03)00046-8 – volume: 156 year: 2022 ident: 10.1016/j.coelec.2022.101118_bib47 article-title: Microscopic EDL structures and charge–potential relation on stepped platinum surface: insights from the ab initio molecular dynamics simulations publication-title: J Chem Phys – volume: 112 start-page: 4248 year: 2008 ident: 10.1016/j.coelec.2022.101118_bib3 article-title: Structure of water at the electrified Platinum−Water interface: a study by surface-enhanced infrared absorption spectroscopy publication-title: J Phys Chem C doi: 10.1021/jp710386g – volume: 59 start-page: 711 year: 2020 ident: 10.1016/j.coelec.2022.101118_bib45 article-title: Double layer at the Pt(111)–aqueous electrolyte interface: potential of zero charge and anomalous gouy–chapman screening publication-title: Angew Chem Int Ed doi: 10.1002/anie.201911929 |
SSID | ssj0001822153 |
Score | 2.2808068 |
SecondaryResourceType | review_article |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 101118 |
Title | The role of water at electrified metal-water interfaces unravelled from first principles |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ-rC9lO7G2nVDD3sLNrYlJ_JjCRvZrS9LIW9GOpYgxXNK5zDor--R5Iu6lbLuxQRHFkLfx_Gn43Mh5ANL5xqh1hGAMBFXFdpBw1XEocpZrlAxuAy57-fz1QX_ssk3k8m3IGpp36oYbu7NK_kfVPEe4mqzZB-B7DAp3sDfiC9eEWG8_jPGfXjgb2nLHeJx3ze22RqrLX9q1NaR_8sWhrg2LgJr39imQ3WNI1x6idmiBpxd9X73X6Fi7Qs42cSqLi6ya50Dfa-4O95unwDkmojP1vHwiWMP22bXeqm6rHfttq707EccOh2yLAjgcLYp43mKdjJhoSFloSVMbRN7ca-R9v6CS9x4u97Yzh-Pw-_WxP7jXTVEEPbBaZeln6W0s5R-lifkIMNDQzYlB2efv67OR58bqqHUFSYd1t9nU7qQv78XFKiVQHasj8hhd16gZx7852Simxfk6bLf-pdkgySglgR0Z6hDmsqWBiSgAQnoSAI6koBaElBHAjqS4BW5-PRxvVxFXbuMCFBFtxFTBZcV8CJhhWJgUs1EzudVCqATo4VcVGKeSJC5zhYVZAYPq6g_raMOEiMUe02mza7RbwjlCymULIqFqAo06kqqRBc8T5RMjQAGx4T121JCV0vetjSpy4dwOSbR8NSVr6Xy4PiTR45_S56NXD0l0_Z6r9-hZGzV-44JtylIb00 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+water+at+electrified+metal-water+interfaces+unravelled+from+first+principles&rft.jtitle=Current+opinion+in+electrochemistry&rft.au=Darby%2C+Matthew+T.&rft.au=Cucinotta%2C+Clotilde+S.&rft.date=2022-12-01&rft.issn=2451-9103&rft.volume=36&rft.spage=101118&rft_id=info:doi/10.1016%2Fj.coelec.2022.101118&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_coelec_2022_101118 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9103&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9103&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9103&client=summon |