Application of Sentinel-1 Data to Estimate Height and Biomass of Rice Crop in Astaneh-ye Ashrafiyeh, Iran
Crops monitoring is a challengeable subject that radar images can help it. The applicability of Sentinel-1 SAR data with dual polarization provided a splendid opportunity to develop a method for estimating rice parameters. Heights of cereal and biomass are two significant characteristics of rice tha...
Saved in:
Published in | Journal of the Indian Society of Remote Sensing Vol. 48; no. 1; pp. 11 - 19 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.01.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crops monitoring is a challengeable subject that radar images can help it. The applicability of Sentinel-1 SAR data with dual polarization provided a splendid opportunity to develop a method for estimating rice parameters. Heights of cereal and biomass are two significant characteristics of rice that can be estimated with assessing satellite data and field measurements by classical regression methods [multiple linear regression (MLR), relevance vector regression (RVR), and support vector regression (SVR)]. In this study, Sentinel-1 SAR data from April 2018 to September 2018 in Astaneh-ye Ashrafiyeh region in the north of Iran were used. To evaluate and analyze validation of regression methods, field measurements (gathered from 15 plots) were utilized. The efficiency of nonparametric methods (SVR and RVR) is much better than that of the parametric regression (MLR) for rice parameter estimations. Among nonparametric approaches, RVR method has better results than SVR, because of the highest correlation coefficient (
R
2
) and lowest root mean square error (RMSE).
R
2
= 0.92, RMSE = 162.1, and MAE = 971.9 and
R
2
= 0.92, RMSE = 10.9, and MAE = 70.71 are the results of height and biomass, respectively. |
---|---|
AbstractList | Crops monitoring is a challengeable subject that radar images can help it. The applicability of Sentinel-1 SAR data with dual polarization provided a splendid opportunity to develop a method for estimating rice parameters. Heights of cereal and biomass are two significant characteristics of rice that can be estimated with assessing satellite data and field measurements by classical regression methods [multiple linear regression (MLR), relevance vector regression (RVR), and support vector regression (SVR)]. In this study, Sentinel-1 SAR data from April 2018 to September 2018 in Astaneh-ye Ashrafiyeh region in the north of Iran were used. To evaluate and analyze validation of regression methods, field measurements (gathered from 15 plots) were utilized. The efficiency of nonparametric methods (SVR and RVR) is much better than that of the parametric regression (MLR) for rice parameter estimations. Among nonparametric approaches, RVR method has better results than SVR, because of the highest correlation coefficient (R2) and lowest root mean square error (RMSE). R2 = 0.92, RMSE = 162.1, and MAE = 971.9 and R2 = 0.92, RMSE = 10.9, and MAE = 70.71 are the results of height and biomass, respectively. Crops monitoring is a challengeable subject that radar images can help it. The applicability of Sentinel-1 SAR data with dual polarization provided a splendid opportunity to develop a method for estimating rice parameters. Heights of cereal and biomass are two significant characteristics of rice that can be estimated with assessing satellite data and field measurements by classical regression methods [multiple linear regression (MLR), relevance vector regression (RVR), and support vector regression (SVR)]. In this study, Sentinel-1 SAR data from April 2018 to September 2018 in Astaneh-ye Ashrafiyeh region in the north of Iran were used. To evaluate and analyze validation of regression methods, field measurements (gathered from 15 plots) were utilized. The efficiency of nonparametric methods (SVR and RVR) is much better than that of the parametric regression (MLR) for rice parameter estimations. Among nonparametric approaches, RVR method has better results than SVR, because of the highest correlation coefficient ( R 2 ) and lowest root mean square error (RMSE). R 2 = 0.92, RMSE = 162.1, and MAE = 971.9 and R 2 = 0.92, RMSE = 10.9, and MAE = 70.71 are the results of height and biomass, respectively. Crops monitoring is a challengeable subject that radar images can help it. The applicability of Sentinel-1 SAR data with dual polarization provided a splendid opportunity to develop a method for estimating rice parameters. Heights of cereal and biomass are two significant characteristics of rice that can be estimated with assessing satellite data and field measurements by classical regression methods [multiple linear regression (MLR), relevance vector regression (RVR), and support vector regression (SVR)]. In this study, Sentinel-1 SAR data from April 2018 to September 2018 in Astaneh-ye Ashrafiyeh region in the north of Iran were used. To evaluate and analyze validation of regression methods, field measurements (gathered from 15 plots) were utilized. The efficiency of nonparametric methods (SVR and RVR) is much better than that of the parametric regression (MLR) for rice parameter estimations. Among nonparametric approaches, RVR method has better results than SVR, because of the highest correlation coefficient (R²) and lowest root mean square error (RMSE). R² = 0.92, RMSE = 162.1, and MAE = 971.9 and R² = 0.92, RMSE = 10.9, and MAE = 70.71 are the results of height and biomass, respectively. |
Author | Hosseingholizadeh, Mohammad Sharifi, Alireza |
Author_xml | – sequence: 1 givenname: Alireza surname: Sharifi fullname: Sharifi, Alireza email: a_sharifi@sru.ac.ir organization: Department of Surveying Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University – sequence: 2 givenname: Mohammad surname: Hosseingholizadeh fullname: Hosseingholizadeh, Mohammad organization: Department of Surveying Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University |
BookMark | eNp9kUtLAzEUhYMo-PwDrgJuXBjNazIzy1rrAwTBB7gLaeaOjUyTMUkX_fdGKwguXIRckvOFk3P20bYPHhA6ZvScUVpfJMYrLgllbVm0qkmzhfZoW0siKFXbZeZVRZSir7toP6X3cigrxveQm4zj4KzJLngcevwEPjsPA2H4ymSDc8CzlN3SZMC34N4WGRvf4UsXlialL-LRWcDTGEbsPJ6kbDwsyBrKuIimd2tYnOG7aPwh2unNkODoZz9AL9ez5-ktuX-4uZtO7okVFc9E1I2w5QfccClsV8tGqfm8nXdcicayTom2Y23bUNUrDhTknIueM2jLjez7Whyg0827YwwfK0hZL12yMAzFWFglzSWlUtISWJGe_JG-h1X0xZ3mQgpeV7XgRdVsVDaGlCL02rr8HViOxg2aUf3Vgd50oEsH-rsD3RSU_0HHWLKM6_8hsYFSEfs3iL-u_qE-AWLXmM0 |
CitedBy_id | crossref_primary_10_1016_j_jfca_2024_107107 crossref_primary_10_1016_j_heliyon_2024_e39297 crossref_primary_10_1108_AEAT_06_2020_0121 crossref_primary_10_1007_s12145_025_01701_7 crossref_primary_10_1371_journal_pone_0313946 crossref_primary_10_1016_j_jag_2025_104373 crossref_primary_10_1080_19479832_2022_2055157 crossref_primary_10_1007_s11869_025_01718_3 crossref_primary_10_1016_j_compag_2024_109370 crossref_primary_10_3390_rs14225633 crossref_primary_10_3390_agronomy11071363 crossref_primary_10_1186_s13007_024_01224_0 crossref_primary_10_1016_j_rsase_2024_101353 crossref_primary_10_1016_j_bdr_2024_100480 crossref_primary_10_1080_01431161_2022_2027547 crossref_primary_10_1007_s12524_024_02028_4 crossref_primary_10_1016_j_compag_2022_107260 crossref_primary_10_1016_j_zool_2025_126240 crossref_primary_10_1111_wej_12681 crossref_primary_10_1088_1742_6596_2273_1_012028 crossref_primary_10_1016_j_ecoinf_2022_101743 crossref_primary_10_3389_fpls_2022_903643 crossref_primary_10_1007_s10668_023_04138_4 crossref_primary_10_1080_07038992_2021_2011180 crossref_primary_10_1007_s12524_021_01362_1 crossref_primary_10_1002_jsfa_10568 crossref_primary_10_1016_j_eja_2024_127367 crossref_primary_10_1007_s12524_020_01155_y crossref_primary_10_1007_s12524_021_01382_x crossref_primary_10_1007_s10661_024_13493_2 crossref_primary_10_1007_s10708_024_11254_9 crossref_primary_10_1016_j_eja_2024_127372 crossref_primary_10_1016_j_eja_2024_127496 crossref_primary_10_1016_j_tfp_2024_100657 crossref_primary_10_1016_j_sciaf_2024_e02314 crossref_primary_10_1002_jsfa_10696 crossref_primary_10_1016_j_measurement_2024_116535 crossref_primary_10_1016_j_prime_2024_100611 crossref_primary_10_1108_AEAT_11_2020_0262 crossref_primary_10_1109_JSTARS_2021_3099118 crossref_primary_10_3390_agriengineering6020063 crossref_primary_10_3390_agriculture12122083 crossref_primary_10_1007_s12524_024_02027_5 crossref_primary_10_1007_s12524_022_01499_7 crossref_primary_10_1109_JSTARS_2020_2998638 crossref_primary_10_1007_s12524_021_01399_2 crossref_primary_10_1016_j_asr_2022_02_021 crossref_primary_10_1016_j_ejrs_2024_11_003 crossref_primary_10_3390_rs14040934 crossref_primary_10_1016_j_rsase_2025_101503 crossref_primary_10_3390_rs14030546 crossref_primary_10_1016_j_rsase_2023_101029 |
Cites_doi | 10.3390/s17091966 10.1016/j.cj.2016.01.008 10.1007/s12524-014-0423-3 10.1109/TGRS.2015.2482001 10.14358/PERS.83.1.41 10.1080/014311698215748 10.1117/1.JRS.9.097695 10.1080/10095020.2018.1489576 10.3390/rs11040400 10.1016/j.rse.2016.10.007 10.1109/36.964973 10.3390/rs10020206 10.1109/JSTARS.2017.2737543 10.1016/j.isprsjprs.2016.01.004 10.1109/JSTARS.2018.2834383 10.1016/S0169-5347(03)00070-3 10.1109/JSTARS.2016.2575362 10.1080/10095020.2017.1419607 10.1016/b978-0-12-813148-0.00001-3 10.1016/j.jag.2016.12.014 10.1016/j.jag.2012.07.016 10.1007/s12524-019-00966-y 10.1201/9781315272573 10.1038/nclimate1945 10.1080/01431161.2012.738946 10.3390/rs71215808 10.1109/LGRS.2014.2334371 10.1111/2041-210X.13025 10.1080/2150704X.2018.1452058 10.1016/j.agsy.2018.05.007 |
ContentType | Journal Article |
Copyright | Indian Society of Remote Sensing 2019 2019© Indian Society of Remote Sensing 2019 |
Copyright_xml | – notice: Indian Society of Remote Sensing 2019 – notice: 2019© Indian Society of Remote Sensing 2019 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1007/s12524-019-01057-8 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 0974-3006 |
EndPage | 19 |
ExternalDocumentID | 10_1007_s12524_019_01057_8 |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GrantInformation_xml | – fundername: Shahid Rajaee Teacher Training University (IR) |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 203 29O 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 406 408 40D 40E 5GY 5VS 67M 67Z 6NX 95- 95. 95~ 96X AAAVM AABHQ AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AAYIU AAYQN AAYZH ABDZT ABECU ABFTV ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACSNA ACZOJ ADHHG ADHIR ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 H13 HF~ HG6 HMJXF HRMNR HZ~ IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV LLZTM MA- N2Q NDZJH NF0 NPVJJ NQJWS O9- O93 O9G O9I O9J P19 P2P PF0 PT4 PT5 QOK QOS R9I RHV ROL RSV S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7Z ZMTXR ~02 ~A9 AAYXX ABDBE ABFSG ACAOD ACSTC ADHKG AEZWR AFDZB AFHIU AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ 7S9 L.6 |
ID | FETCH-LOGICAL-c352t-3783c0572a243cd74866bb9bd2638c1d639d199806f62e0e4b23f21e9d634ff73 |
IEDL.DBID | U2A |
ISSN | 0255-660X |
IngestDate | Fri Jul 11 06:29:47 EDT 2025 Fri Jul 25 11:03:35 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 Tue Jul 01 02:39:22 EDT 2025 Fri Feb 21 02:37:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Height estimation Sentinel-1 Remote sensing Biomass estimation Rice |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-3783c0572a243cd74866bb9bd2638c1d639d199806f62e0e4b23f21e9d634ff73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2343275732 |
PQPubID | 2043996 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2400440125 proquest_journals_2343275732 crossref_citationtrail_10_1007_s12524_019_01057_8 crossref_primary_10_1007_s12524_019_01057_8 springer_journals_10_1007_s12524_019_01057_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200100 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 1 year: 2020 text: 20200100 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: Dordrecht |
PublicationTitle | Journal of the Indian Society of Remote Sensing |
PublicationTitleAbbrev | J Indian Soc Remote Sens |
PublicationYear | 2020 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | Ancin-Murguzur, Taff, Davids, Tømmervik, Mølmann, Jørgensen (CR1) 2019; 11 Iizumi, Sakuma, Yokozawa, Luo, Challinor, Brown, Sakurai, Yamagata (CR7) 2013; 3 Gao, Shi, Li, Cheng (CR4) 2017; 10 Mostafazadeh-Fard, Jafari, Mousavi, Yazdani (CR14) 2010; 4 Quegan, Yu (CR19) 2001; 39 Lopez-Sanchez, Vicente-Guijalba, Ballester-Berman, Cloude (CR13) 2014; 12 Pulvirenti, Chini, Pierdicca, Boni (CR18) 2015; 54 Sharifi, Amini, Sumantyo, Tateishi (CR22) 2015; 43 Koppe, Gnyp, Hütt, Yao, Miao, Chen, Bareth (CR8) 2013; 21 Pagani, Guarneri, Busetto, Ranghetti, Boschetti, Movedi (CR16) 2019; 168 Sharifi, Hosseingholizadeh (CR24) 2019 Zhang, Yang, Liu, Wang (CR33) 2017; 57 Guan, Li, Rao, Gao, Xie, Hien, Zeng (CR6) 2018; 11 Deng, Chen, Li (CR50) 2018; 21 Pohl, Van Genderen (CR17) 1998; 19 Zhang, Chen, Li, Zhao, Ji, Zhang, Liu (CR32) 2018; 10 Lausch, Bastian, Klotz, Leitão, Jung, Rocchini (CR11) 2018; 9 Nguyen, Clauss, Cao, Naeimi, Kuenzer, Wagner (CR15) 2015; 7 Gao, Zribi, Escorihuela (CR5) 2017; 17 Tripathi, Mishra, Maurya, Singh, Wilson, Singh, Watson, Takahashi (CR26) 2018 Sharifi, Amini, Tateishi (CR23) 2016; 82 Wang, Zhou, Zhu, Dong, Guo (CR28) 2016; 4 CR2 Sharifi, Amini (CR21) 2015; 9 Kuenzer, Knauer (CR9) 2013; 34 Yu, Li, Fu (CR52) 2018; 29 CR25 Woodhouse (CR29) 2017 Song, Chen (CR51) 2018; 21 Turner, Spector, Gardiner, Fladeland, Sterling, Steininger (CR27) 2003; 18 Zhao, Du (CR34) 2016; 113 Kutner, Nachtsheim, Neter, Li (CR10) 1996 Sharifi (CR20) 2018; 9 Yuzugullu, Erten, Hajnsek (CR31) 2016; 10 Erten, Lopez-sanchez, Yuzugullu, Hajnsek (CR3) 2016; 187 1057_CR25 Q Gao (1057_CR5) 2017; 17 E Erten (1057_CR3) 2016; 187 Y Zhang (1057_CR33) 2017; 57 A Sharifi (1057_CR23) 2016; 82 X Deng (1057_CR50) 2018; 21 AD Tripathi (1057_CR26) 2018 1057_CR2 W Zhang (1057_CR32) 2018; 10 L Pulvirenti (1057_CR18) 2015; 54 IH Woodhouse (1057_CR29) 2017 G Gao (1057_CR4) 2017; 10 S Quegan (1057_CR19) 2001; 39 W Koppe (1057_CR8) 2013; 21 MH Kutner (1057_CR10) 1996 B Mostafazadeh-Fard (1057_CR14) 2010; 4 JM Lopez-Sanchez (1057_CR13) 2014; 12 V Pagani (1057_CR16) 2019; 168 T Iizumi (1057_CR7) 2013; 3 Y Yu (1057_CR52) 2018; 29 A Sharifi (1057_CR24) 2019 W Zhao (1057_CR34) 2016; 113 LA Wang (1057_CR28) 2016; 4 K Guan (1057_CR6) 2018; 11 O Yuzugullu (1057_CR31) 2016; 10 FJ Ancin-Murguzur (1057_CR1) 2019; 11 A Sharifi (1057_CR21) 2015; 9 C Kuenzer (1057_CR9) 2013; 34 W Turner (1057_CR27) 2003; 18 A Sharifi (1057_CR22) 2015; 43 D Nguyen (1057_CR15) 2015; 7 C Pohl (1057_CR17) 1998; 19 A Lausch (1057_CR11) 2018; 9 A Sharifi (1057_CR20) 2018; 9 M Song (1057_CR51) 2018; 21 |
References_xml | – year: 1996 ident: CR10 publication-title: Applied linear statistical models – volume: 17 start-page: 1966 issue: 9 year: 2017 ident: CR5 article-title: Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution publication-title: Sensors doi: 10.3390/s17091966 – volume: 4 start-page: 212 issue: 3 year: 2016 end-page: 219 ident: CR28 article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data publication-title: The Crop Journal doi: 10.1016/j.cj.2016.01.008 – ident: CR2 – volume: 43 start-page: 339 issue: 2 year: 2015 end-page: 346 ident: CR22 article-title: Speckle reduction of PolSAR images in forest regions using fast ICA algorithm publication-title: Journal of the Indian Society of Remote Sensing doi: 10.1007/s12524-014-0423-3 – volume: 54 start-page: 1532 issue: 3 year: 2015 end-page: 1544 ident: CR18 article-title: Use of SAR data for detecting floodwater in urban and agricultural areas: The role of the interferometric coherence publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2015.2482001 – volume: 82 start-page: 41 issue: 1 year: 2016 end-page: 49 ident: CR23 article-title: Estimation of forest biomass using multivariate relevance vector regression publication-title: Photogrammetric Engineering & Remote Sensing doi: 10.14358/PERS.83.1.41 – volume: 19 start-page: 823 issue: 5 year: 1998 end-page: 854 ident: CR17 article-title: Review article multisensor image fusion in remote sensing: Concepts, methods and applications publication-title: International Journal of Remote Sensing doi: 10.1080/014311698215748 – volume: 9 start-page: 097695 issue: 1 year: 2015 ident: CR21 article-title: Forest biomass estimation using synthetic aperture radar polarimetric features publication-title: Journal of Applied Remote Sensing doi: 10.1117/1.JRS.9.097695 – volume: 21 start-page: 273 issue: 4 year: 2018 end-page: 287 ident: CR51 article-title: An improved knowledge-informed NSGA-II for multi-objective land allocation (MOLA) publication-title: Geo-spatial Information Science doi: 10.1080/10095020.2018.1489576 – volume: 11 start-page: 400 issue: 4 year: 2019 ident: CR1 article-title: Yield estimates by a two-step approach using hyperspectral methods in grasslands at high latitudes publication-title: Remote Sensing doi: 10.3390/rs11040400 – volume: 187 start-page: 130 year: 2016 end-page: 144 ident: CR3 article-title: Remote sensing of environment retrieval of agricultural crop height from space: A comparison of SAR techniques publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2016.10.007 – volume: 4 start-page: 136 issue: 3 year: 2010 ident: CR14 article-title: Effects of irrigation water management on yield and water use efficiency of rice in cracked paddy soils publication-title: Australian Journal of Crop Science – volume: 39 start-page: 2373 issue: 11 year: 2001 end-page: 2379 ident: CR19 article-title: Filtering of multichannel SAR images publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.964973 – volume: 10 start-page: 206 issue: 2 year: 2018 ident: CR32 article-title: Rape ( L.) growth monitoring and mapping based on Radarsat-2 time-series data publication-title: Remote Sensing doi: 10.3390/rs10020206 – volume: 10 start-page: 5026 issue: 11 year: 2017 end-page: 5038 ident: CR4 article-title: Performance comparison between reflection symmetry metric and product of multilook amplitudes for ship detection in dual-polarization SAR images publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2017.2737543 – ident: CR25 – volume: 113 start-page: 155 year: 2016 end-page: 165 ident: CR34 article-title: Learning multiscale and deep representations for classifying remotely sensed imagery publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2016.01.004 – volume: 11 start-page: 2238 issue: 7 year: 2018 end-page: 2252 ident: CR6 article-title: Mapping paddy rice area and yields over Thai Binh Province in Viet Nam from MODIS, Landsat, and ALOS-2/PALSAR-2 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2018.2834383 – volume: 18 start-page: 306 issue: 6 year: 2003 end-page: 314 ident: CR27 article-title: Remote sensing for biodiversity science and conservation publication-title: Trends in Ecology & Evolution doi: 10.1016/S0169-5347(03)00070-3 – volume: 10 start-page: 194 issue: 1 year: 2016 end-page: 204 ident: CR31 article-title: Estimation of rice crop height from X-and C-band PolSAR by metamodel-based optimization publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2016.2575362 – volume: 21 start-page: 45 issue: 1 year: 2018 end-page: 55 ident: CR50 article-title: Log-cumulants of the finite mixture model and their application to statistical analysis of fully polarimetric UAVSAR data publication-title: Geo-spatial Information doi: 10.1080/10095020.2017.1419607 – year: 2018 ident: CR26 article-title: Estimates for world population and global food availability for global health publication-title: The role of functional food security in global health doi: 10.1016/b978-0-12-813148-0.00001-3 – volume: 57 start-page: 75 year: 2017 end-page: 85 ident: CR33 article-title: Estimation of rice grain yield from dual-polarization Radarsat-2 SAR data by integrating a rice canopy scattering model and a genetic algorithm publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2016.12.014 – volume: 21 start-page: 568 year: 2013 end-page: 576 ident: CR8 article-title: Rice monitoring with multi-temporal and dual-polarimetric TerraSAR-X data publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2012.07.016 – year: 2019 ident: CR24 article-title: The effect of rapid population growth on urban expansion and destruction of green space in Tehran from 1972 to 2017 publication-title: Journal of the Indian Society of Remote Sensing doi: 10.1007/s12524-019-00966-y – year: 2017 ident: CR29 publication-title: Introduction to microwave remote sensing doi: 10.1201/9781315272573 – volume: 3 start-page: 1 issue: 7 year: 2013 end-page: 5 ident: CR7 article-title: Prediction of seasonal climate-induced variations in global food production publication-title: Nature Climate Change doi: 10.1038/nclimate1945 – volume: 34 start-page: 2101 issue: 6 year: 2013 end-page: 2139 ident: CR9 article-title: Remote sensing of rice crop areas publication-title: International Journal of Remote Sensing doi: 10.1080/01431161.2012.738946 – volume: 7 start-page: 15868 issue: 12 year: 2015 end-page: 15893 ident: CR15 article-title: Mapping rice seasonality in the Mekong Delta with multi-year Envisat ASAR WSM data publication-title: Remote Sensing doi: 10.3390/rs71215808 – volume: 12 start-page: 249 issue: 2 year: 2014 end-page: 253 ident: CR13 article-title: Influence of incidence angle on the coherent copolar polarimetric response of rice at X-band publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2014.2334371 – volume: 9 start-page: 1799 issue: 8 year: 2018 end-page: 1809 ident: CR11 article-title: Understanding and assessing vegetation health by in situ species and remote-sensing approaches publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.13025 – volume: 29 start-page: 1407 issue: 5 year: 2018 end-page: 1414 ident: CR52 article-title: Forest type identification by random forest classification combined with SPOT and multitemporal SAR data publication-title: Journal of ForestryResearch – volume: 9 start-page: 559 issue: 6 year: 2018 end-page: 568 ident: CR20 article-title: Estimation of biophysical parameters in wheat crops in Golestan province using ultra-high resolution images publication-title: Remote Sensing Letters doi: 10.1080/2150704X.2018.1452058 – volume: 168 start-page: 181 year: 2019 end-page: 190 ident: CR16 article-title: A high-resolution, integrated system for rice yield forecasting at district level publication-title: Agricultural Systems doi: 10.1016/j.agsy.2018.05.007 – volume: 9 start-page: 1799 issue: 8 year: 2018 ident: 1057_CR11 publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.13025 – volume: 7 start-page: 15868 issue: 12 year: 2015 ident: 1057_CR15 publication-title: Remote Sensing doi: 10.3390/rs71215808 – volume: 21 start-page: 45 issue: 1 year: 2018 ident: 1057_CR50 publication-title: Geo-spatial Information doi: 10.1080/10095020.2017.1419607 – volume: 4 start-page: 212 issue: 3 year: 2016 ident: 1057_CR28 publication-title: The Crop Journal doi: 10.1016/j.cj.2016.01.008 – volume: 4 start-page: 136 issue: 3 year: 2010 ident: 1057_CR14 publication-title: Australian Journal of Crop Science – volume: 17 start-page: 1966 issue: 9 year: 2017 ident: 1057_CR5 publication-title: Sensors doi: 10.3390/s17091966 – volume: 113 start-page: 155 year: 2016 ident: 1057_CR34 publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2016.01.004 – volume: 10 start-page: 206 issue: 2 year: 2018 ident: 1057_CR32 publication-title: Remote Sensing doi: 10.3390/rs10020206 – volume: 11 start-page: 400 issue: 4 year: 2019 ident: 1057_CR1 publication-title: Remote Sensing doi: 10.3390/rs11040400 – volume: 43 start-page: 339 issue: 2 year: 2015 ident: 1057_CR22 publication-title: Journal of the Indian Society of Remote Sensing doi: 10.1007/s12524-014-0423-3 – volume: 187 start-page: 130 year: 2016 ident: 1057_CR3 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2016.10.007 – volume: 3 start-page: 1 issue: 7 year: 2013 ident: 1057_CR7 publication-title: Nature Climate Change doi: 10.1038/nclimate1945 – volume: 29 start-page: 1407 issue: 5 year: 2018 ident: 1057_CR52 publication-title: Journal of ForestryResearch – volume: 10 start-page: 194 issue: 1 year: 2016 ident: 1057_CR31 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2016.2575362 – volume: 9 start-page: 559 issue: 6 year: 2018 ident: 1057_CR20 publication-title: Remote Sensing Letters doi: 10.1080/2150704X.2018.1452058 – volume: 21 start-page: 273 issue: 4 year: 2018 ident: 1057_CR51 publication-title: Geo-spatial Information Science doi: 10.1080/10095020.2018.1489576 – volume: 39 start-page: 2373 issue: 11 year: 2001 ident: 1057_CR19 publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.964973 – volume: 21 start-page: 568 year: 2013 ident: 1057_CR8 publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2012.07.016 – volume: 19 start-page: 823 issue: 5 year: 1998 ident: 1057_CR17 publication-title: International Journal of Remote Sensing doi: 10.1080/014311698215748 – ident: 1057_CR25 – ident: 1057_CR2 – volume: 82 start-page: 41 issue: 1 year: 2016 ident: 1057_CR23 publication-title: Photogrammetric Engineering & Remote Sensing doi: 10.14358/PERS.83.1.41 – volume: 11 start-page: 2238 issue: 7 year: 2018 ident: 1057_CR6 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2018.2834383 – volume: 34 start-page: 2101 issue: 6 year: 2013 ident: 1057_CR9 publication-title: International Journal of Remote Sensing doi: 10.1080/01431161.2012.738946 – volume: 10 start-page: 5026 issue: 11 year: 2017 ident: 1057_CR4 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2017.2737543 – volume: 18 start-page: 306 issue: 6 year: 2003 ident: 1057_CR27 publication-title: Trends in Ecology & Evolution doi: 10.1016/S0169-5347(03)00070-3 – volume-title: Introduction to microwave remote sensing year: 2017 ident: 1057_CR29 doi: 10.1201/9781315272573 – volume: 12 start-page: 249 issue: 2 year: 2014 ident: 1057_CR13 publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2014.2334371 – volume-title: Applied linear statistical models year: 1996 ident: 1057_CR10 – volume: 57 start-page: 75 year: 2017 ident: 1057_CR33 publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2016.12.014 – volume: 168 start-page: 181 year: 2019 ident: 1057_CR16 publication-title: Agricultural Systems doi: 10.1016/j.agsy.2018.05.007 – volume: 9 start-page: 097695 issue: 1 year: 2015 ident: 1057_CR21 publication-title: Journal of Applied Remote Sensing doi: 10.1117/1.JRS.9.097695 – volume: 54 start-page: 1532 issue: 3 year: 2015 ident: 1057_CR18 publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2015.2482001 – volume-title: The role of functional food security in global health year: 2018 ident: 1057_CR26 doi: 10.1016/b978-0-12-813148-0.00001-3 – year: 2019 ident: 1057_CR24 publication-title: Journal of the Indian Society of Remote Sensing doi: 10.1007/s12524-019-00966-y |
SSID | ssj0064512 ssj0001852324 |
Score | 2.4162505 |
Snippet | Crops monitoring is a challengeable subject that radar images can help it. The applicability of Sentinel-1 SAR data with dual polarization provided a splendid... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11 |
SubjectTerms | Biomass Cereal crops Correlation coefficient Correlation coefficients crops Dual polarization radar Earth and Environmental Science Earth Sciences Iran Measurement methods monitoring Parameter estimation radar Radar imaging Regression analysis remote sensing Remote Sensing/Photogrammetry Research Article Rice Root-mean-square errors Support vector machines Synthetic aperture radar |
Title | Application of Sentinel-1 Data to Estimate Height and Biomass of Rice Crop in Astaneh-ye Ashrafiyeh, Iran |
URI | https://link.springer.com/article/10.1007/s12524-019-01057-8 https://www.proquest.com/docview/2343275732 https://www.proquest.com/docview/2400440125 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5Be4ED4ikWSmUkbjRS4jhOcgxlywKCA7BoOUV2PNFGqpJqkz303zPjTRqBAIlbFD-ijD3jb54GeFVhiipmq411pKDIEAPaNybIjXZc4BJdztnInz7r1Vp92CSbMSmsn6LdJ5ekl9RzsptMJEdMcHwPoYwguw3HCevutIvXspgtK1kifQ3ygzzWKvE-TwbPgdbhZkyd-fOcvx5PM-b8zU3qT5-L-3BvhI2iOKzzA7iF7UO4-73p94e3_SNoitkXLbpafOU4oBYvg0i8NYMRQyeWxM-EUFGsvEFUmNaJNw1HCPU84gsJDXG-665E04qCYSNug2ukx-3O1M01bs_EezrbHsP6YvntfBWMFykEFeGrgYRIFlf0e9JIFVcuVZnW1ubWSeK-KnKEUhzn2oW61hJDVFbGtYwwpxZV12n8BI7arsWnIGwcV5Ighg6lUVY5Q3iGhK3GKMfM6nQB0US_shqrjPNlF5flXB-ZaV4SzUtP8zJbwOubMVeHGhv_7H0yLUs58ltfSs6PTZM0lgt4edNMnMLuD6JWt6c-yt-vTRMu4GxaznmKv3_x2f91fw53JCvl3k5zAkfDbo8vCLkM9hSOi3c_Pi5P_Yb9CRWR368 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOQCHiqdYWsBI3GikxHGc5LiUVltoe4Au2ltkxxNtpCqpNtlD_z0z3qQRCJC4RfHYUcae8ed5GeBDiSmqmK021tEBRYYY0LoxQW604wKX6HLORr641Iul-rJKVkNSWDdGu48uSa-pp2Q3mUiOmOD4HkIZQXYfHhAYyDiQaynnk2UlS6SvQb7Tx1ol3ufJ4DnQOlwNqTN_HvPX7WnCnL-5Sf3uc_oE9gfYKOa7eX4K97B5Bo9_1N1297Z7DvV88kWLthLfOQ6owesgEp9Nb0TfihOSZ0KoKBbeICpM48SnmiOEOu7xjZSGON60N6JuxJxhI66DW6TH9cZU9S2uj8QZ7W0vYHl6cnW8CIaLFIKS8FVPSiSLS_o9aaSKS5eqTGtrc-skSV8ZOUIpjnPtQl1piSEqK-NKRphTi6qqNH4Je03b4CsQNo5LSRBDh9Ioq5whPEPKVmOUY2Z1OoNo5F9RDlXG-bKL62Kqj8w8L4jnhed5kc3g412fm12NjX9SH47TUgzy1hWS82PTJI3lDN7fNZOksPuDuNVuiUb5-7VpwBkcjdM5DfH3L77-P_J38HBxdXFenJ9dfj2AR5IP6N5mcwh7_WaLbwjF9PatX7Q_AcGD4Q4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BkBA8ID5FYYCReGPREsdxkseyrer4mBBQ1LfIji9qpCmp2vRh_z13TroAAiTeovjsKGff-ef7MsCbElNUMVttrKMDigwxoHVjgtxoxwUu0eWcjfzpQs8X6v0yWf6Uxe-j3fcuyT6ngas0Nd3x2lXHY-KbTCRHT3CsDyGOILsJt0gdR7yuF3I6WlmyRPp65L1u1irx_k8G0oHW4XJIo_nzmL9uVSP-_M1l6nei2X24N0BIMe3n_AHcwOYh3P1eb3f92-0jqKejX1q0lfjKMUENXgaRODWdEV0rzki2Ca2imHvjqDCNE-9qjhbaco8vpEDEyaZdi7oRU4aQuAqukB5XG1PVV7g6Eue0zz2Gxezs28k8GC5VCErCWh0plCwu6fekkSouXaoyra3NrZMkiWXkCLE4zrsLdaUlhqisjCsZYU4tqqrS-AkcNG2DT0HYOC4lwQ0dSqOscoawDSlejVGOmdXpBKI9_4pyqDjOF19cFmOtZOZ5QTwvPM-LbAJvr_us-3ob_6Q-3E9LMcjetpCcK5smaSwn8Pq6maSGXSHErXZHNMrftU0DTuBoP53jEH__4rP_I38Ftz-fzoqP5xcfnsMdyWd1b745hINus8MXBGg6-9Kv2R8sbOVK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Sentinel-1+Data+to+Estimate+Height+and+Biomass+of+Rice+Crop+in+Astaneh-ye+Ashrafiyeh%2C+Iran&rft.jtitle=Photonirvachak+%28Dehra+Dun%29&rft.au=Shar%C4%ABf%C4%AB%2C+%CA%BBAl%C4%AB+Riz%CC%A4%C4%81&rft.au=Hosseingholizadeh%2C+Mohammad&rft.date=2020-01-01&rft.issn=0255-660X&rft.volume=48&rft.issue=1+p.11-19&rft.spage=11&rft.epage=19&rft_id=info:doi/10.1007%2Fs12524-019-01057-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0255-660X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0255-660X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0255-660X&client=summon |