Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor
The fabrication of porous structure in the ultrathin materials still faces high difficulties. In particular, the precise modulations in the porosity and size are highly challenging. In this work, we have introduced small molecules to overcome such a challenge. And this substantially contributes to t...
Saved in:
Published in | Nano energy Vol. 81; p. 105606 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fabrication of porous structure in the ultrathin materials still faces high difficulties. In particular, the precise modulations in the porosity and size are highly challenging. In this work, we have introduced small molecules to overcome such a challenge. And this substantially contributes to the energy related applications, especially to the water-energy (WE) treatment. Electrocatalytic water-splitting is hindered by the sluggish kinetics of water oxidation, requiring efficient earth-abundant electrocatalysts for the oxygen evolution reaction (OER). Herein we demonstrate the robust OER activity by introducing metal and oxygen multivacancies in noble-metal-free layered double hydroxides (LDHs) through the specific electron-withdrawing organic molecule methyl-isorhodanate (CH3NCS). Our work reveals that the metal and oxygen vacancies endow NiFe LDH with enhanced electron transfer and modulate the H2O adsorption, thereby boosting the OER electrocatalytic properties. Remarkably, the best-performing laminar NiFe LDH nanosheets with metal and oxygen multivacancies (v-L-LDHs) show an ultra-low overpotential of 230 mV at 100 mA cm−2 and Tafel slope of 37.1 mV dec−1. Density functional theory (DFT) has revealed the improved OER performance is realized by the co-existence of metal and O vacancies in NiFe LDH, where the defective region activates the electroactivity of Ni sites and O sites to promote the electron transfer and intermediate transformation. The Fe sites play a key role to preserve the high electroactivity of the Ni sites in long-term applications. The superior OER performance underpins the high potential of the reported facile organic anchor strategy for designing and synthesizing advanced electrocatalysts in both LDH and other potential 2D layered materials.
[Display omitted]
•The simple approach based on the small molecule to create vacancies in LDH is reported for the first time.•The co-existence of metal and oxygen vacancies significantly boosts the electroactivity of LDH.•DFT calculations confirm activations of electroactivity by the formation of both oxygen and metal vacancies. |
---|---|
AbstractList | The fabrication of porous structure in the ultrathin materials still faces high difficulties. In particular, the precise modulations in the porosity and size are highly challenging. In this work, we have introduced small molecules to overcome such a challenge. And this substantially contributes to the energy related applications, especially to the water-energy (WE) treatment. Electrocatalytic water-splitting is hindered by the sluggish kinetics of water oxidation, requiring efficient earth-abundant electrocatalysts for the oxygen evolution reaction (OER). Herein we demonstrate the robust OER activity by introducing metal and oxygen multivacancies in noble-metal-free layered double hydroxides (LDHs) through the specific electron-withdrawing organic molecule methyl-isorhodanate (CH3NCS). Our work reveals that the metal and oxygen vacancies endow NiFe LDH with enhanced electron transfer and modulate the H2O adsorption, thereby boosting the OER electrocatalytic properties. Remarkably, the best-performing laminar NiFe LDH nanosheets with metal and oxygen multivacancies (v-L-LDHs) show an ultra-low overpotential of 230 mV at 100 mA cm−2 and Tafel slope of 37.1 mV dec−1. Density functional theory (DFT) has revealed the improved OER performance is realized by the co-existence of metal and O vacancies in NiFe LDH, where the defective region activates the electroactivity of Ni sites and O sites to promote the electron transfer and intermediate transformation. The Fe sites play a key role to preserve the high electroactivity of the Ni sites in long-term applications. The superior OER performance underpins the high potential of the reported facile organic anchor strategy for designing and synthesizing advanced electrocatalysts in both LDH and other potential 2D layered materials.
[Display omitted]
•The simple approach based on the small molecule to create vacancies in LDH is reported for the first time.•The co-existence of metal and oxygen vacancies significantly boosts the electroactivity of LDH.•DFT calculations confirm activations of electroactivity by the formation of both oxygen and metal vacancies. |
ArticleNumber | 105606 |
Author | Zhao, Kangning Tao, Kewen Cai, Rongmin Huang, Bolong Wang, Yaqiong Tao, Shi Hu, Jue Yang, Shihe Lin, He Sun, Mingzi Wang, Gaopeng Zhang, Chengxu |
Author_xml | – sequence: 1 givenname: Yaqiong surname: Wang fullname: Wang, Yaqiong organization: Guangdong Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology Shenzhen Graduate School, Peking University, 518055 Shenzhen, China – sequence: 2 givenname: Shi surname: Tao fullname: Tao, Shi organization: School of Electronic and Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, China – sequence: 3 givenname: He surname: Lin fullname: Lin, He organization: Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China – sequence: 4 givenname: Gaopeng surname: Wang fullname: Wang, Gaopeng organization: Guangdong Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology Shenzhen Graduate School, Peking University, 518055 Shenzhen, China – sequence: 5 givenname: Kangning surname: Zhao fullname: Zhao, Kangning organization: College of Sciences and Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China – sequence: 6 givenname: Rongmin surname: Cai fullname: Cai, Rongmin organization: Guangdong Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology Shenzhen Graduate School, Peking University, 518055 Shenzhen, China – sequence: 7 givenname: Kewen surname: Tao fullname: Tao, Kewen organization: Guangdong Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology Shenzhen Graduate School, Peking University, 518055 Shenzhen, China – sequence: 8 givenname: Chengxu surname: Zhang fullname: Zhang, Chengxu organization: Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China – sequence: 9 givenname: Mingzi surname: Sun fullname: Sun, Mingzi organization: Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China – sequence: 10 givenname: Jue surname: Hu fullname: Hu, Jue email: hujue@kust.edu.cn organization: Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China – sequence: 11 givenname: Bolong surname: Huang fullname: Huang, Bolong email: bhuang@polyu.edu.hk organization: Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China – sequence: 12 givenname: Shihe surname: Yang fullname: Yang, Shihe email: chsyang@pku.edu.cn organization: Guangdong Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology Shenzhen Graduate School, Peking University, 518055 Shenzhen, China |
BookMark | eNqFkMFKAzEQhnOoYK19Aw95ga2bbJPd9SCUWq1QLIiewzQ7aVN2E0lipW_vlnryoHMZGP7vh_muyMB5h4TcsHzCciZv9xMHzqOb8JyfTkLmckCGnDOW8UqISzKOcZ_3IwUrGR-SZpZ8ZzW07ZEmCFtM1m3pi31EunpY0uSpDggJaffZJnsADU5bjNT4QNeLV6ohQXuMNtIvm3YUaOz6LurDFpzVtE_vfLgmFwbaiOOfPSLvj4u3-TJbrZ-e57NVpgvBU1ZMy1pixfMGKsFqA9pws6lkWRSmqrQRjShQcl1uaiMqyUxdS202iBoqXoumGJG7c68OPsaARmmbIFnvUgDbKparkya1V2dN6qRJnTX18PQX_BFsB-H4H3Z_xrB_7GAxqNgLchobG1An1Xj7d8E30HiI3A |
CitedBy_id | crossref_primary_10_1016_j_jcis_2024_05_169 crossref_primary_10_1021_acsomega_2c07580 crossref_primary_10_1021_acssuschemeng_2c03887 crossref_primary_10_1016_j_apcatb_2021_120637 crossref_primary_10_1021_acs_inorgchem_2c01035 crossref_primary_10_1016_j_ijhydene_2025_02_102 crossref_primary_10_1016_j_ccr_2022_214973 crossref_primary_10_1016_j_mtphys_2022_100684 crossref_primary_10_1039_D3CC04474B crossref_primary_10_1016_j_mtener_2024_101784 crossref_primary_10_1021_acs_jpcc_3c05164 crossref_primary_10_1016_j_seppur_2024_130220 crossref_primary_10_1021_acssuschemeng_1c07482 crossref_primary_10_3390_ma15124170 crossref_primary_10_1016_j_jcis_2022_02_078 crossref_primary_10_1002_smtd_202200084 crossref_primary_10_1016_j_ijhydene_2022_08_250 crossref_primary_10_1007_s12274_021_3800_6 crossref_primary_10_1016_j_jelechem_2023_117718 crossref_primary_10_1002_advs_202304071 crossref_primary_10_1039_D3QI00026E crossref_primary_10_1016_j_apcatb_2022_122091 crossref_primary_10_1016_j_apsusc_2023_158066 crossref_primary_10_1016_j_ijhydene_2022_03_095 crossref_primary_10_1039_D3MH01237A crossref_primary_10_1002_advs_202409024 crossref_primary_10_1016_j_cej_2024_157526 crossref_primary_10_1016_j_ijbiomac_2024_136835 crossref_primary_10_1016_j_jelechem_2022_116573 crossref_primary_10_1021_acsestengg_2c00318 crossref_primary_10_1039_D3GC02105J crossref_primary_10_3390_ma17184670 crossref_primary_10_1021_acs_est_1c07811 crossref_primary_10_1002_aenm_202203609 crossref_primary_10_1016_j_cherd_2022_09_041 crossref_primary_10_1002_adfm_202202072 crossref_primary_10_1016_j_isci_2023_108718 crossref_primary_10_1016_j_cej_2022_135884 crossref_primary_10_1021_acsanm_1c01233 crossref_primary_10_1002_ange_202112447 crossref_primary_10_1016_j_cej_2024_152860 crossref_primary_10_1002_advs_202207519 crossref_primary_10_1016_j_apcatb_2024_124506 crossref_primary_10_1039_D2QI01911F crossref_primary_10_1016_j_ijhydene_2022_08_031 crossref_primary_10_1021_acscatal_4c01133 crossref_primary_10_3866_PKU_WHXB202303059 crossref_primary_10_1039_D1RA09193J crossref_primary_10_1016_j_jallcom_2022_163741 crossref_primary_10_1039_D4TA06455K crossref_primary_10_1021_jacs_2c10823 crossref_primary_10_1016_j_ijhydene_2021_06_146 crossref_primary_10_1039_D4NJ00908H crossref_primary_10_1016_j_cej_2022_137151 crossref_primary_10_1016_j_ijhydene_2023_07_276 crossref_primary_10_1021_acsanm_3c00356 crossref_primary_10_1016_j_jcis_2024_02_184 crossref_primary_10_1002_advs_202203712 crossref_primary_10_15541_jim20220688 crossref_primary_10_1002_smll_202408642 crossref_primary_10_1021_acs_chemrev_4c00171 crossref_primary_10_1016_j_cej_2024_154235 crossref_primary_10_1016_j_clay_2021_106360 crossref_primary_10_1007_s10008_023_05389_x crossref_primary_10_1021_acsnano_4c03153 crossref_primary_10_1021_acsami_2c15524 crossref_primary_10_1016_j_fuel_2024_131993 crossref_primary_10_1021_acsaem_2c02876 crossref_primary_10_1021_acsami_3c10585 crossref_primary_10_1016_j_addr_2022_114590 crossref_primary_10_1021_acsanm_4c04815 crossref_primary_10_1002_ange_202316449 crossref_primary_10_1021_acssuschemeng_1c03353 crossref_primary_10_1002_adfm_202316544 crossref_primary_10_1016_j_jallcom_2023_169936 crossref_primary_10_1016_j_ijhydene_2023_03_463 crossref_primary_10_1039_D2CE01081J crossref_primary_10_1002_anie_202112447 crossref_primary_10_1002_aenm_202403722 crossref_primary_10_1002_cssc_202401091 crossref_primary_10_1002_smll_202407221 crossref_primary_10_1021_acs_chemrev_3c00229 crossref_primary_10_1039_D2EE03936B crossref_primary_10_1016_j_jallcom_2021_163152 crossref_primary_10_1007_s12598_024_03082_0 crossref_primary_10_1016_j_ijhydene_2023_01_184 crossref_primary_10_1002_adma_202208209 crossref_primary_10_1016_j_electacta_2023_142119 crossref_primary_10_1039_D1TA07972G crossref_primary_10_1039_D3CC00096F crossref_primary_10_1021_acs_jpcc_1c03824 crossref_primary_10_1021_acsami_2c14720 crossref_primary_10_1016_j_jcis_2024_04_206 crossref_primary_10_3390_nano15030177 crossref_primary_10_3390_molecules28031475 crossref_primary_10_1039_D1TA04755H crossref_primary_10_1016_j_cej_2023_142865 crossref_primary_10_1016_j_apcata_2024_119858 crossref_primary_10_1016_j_jallcom_2023_168954 crossref_primary_10_1016_j_cej_2023_143715 crossref_primary_10_1016_j_catcom_2024_106880 crossref_primary_10_1016_j_jallcom_2023_169124 crossref_primary_10_1002_adma_202416483 crossref_primary_10_1007_s11581_024_05532_2 crossref_primary_10_1016_j_jelechem_2022_116650 crossref_primary_10_1039_D4QI00512K crossref_primary_10_3866_PKU_WHXB202307040 crossref_primary_10_1002_aenm_202303730 crossref_primary_10_1007_s42114_024_00958_8 crossref_primary_10_1002_adfm_202413826 crossref_primary_10_1016_j_apcatb_2021_120453 crossref_primary_10_1016_j_jcis_2023_11_012 crossref_primary_10_3390_nano13192621 crossref_primary_10_1002_adma_202107488 crossref_primary_10_1016_j_mtchem_2024_102440 crossref_primary_10_1016_j_jallcom_2021_163259 crossref_primary_10_1002_smll_202301294 crossref_primary_10_1039_D3MA00324H crossref_primary_10_1002_smll_202301609 crossref_primary_10_3390_ma18010062 crossref_primary_10_1002_aenm_202202317 crossref_primary_10_1021_acsami_4c13756 crossref_primary_10_1002_adfm_202315949 crossref_primary_10_1016_j_cej_2024_152023 crossref_primary_10_1039_D4TA04498C crossref_primary_10_1039_D2NR04335A crossref_primary_10_1016_j_apsusc_2021_151911 crossref_primary_10_1002_smll_202301610 crossref_primary_10_15541_jim20240074 crossref_primary_10_1002_smll_202201076 crossref_primary_10_1007_s40843_022_2190_7 crossref_primary_10_1021_acsami_4c16111 crossref_primary_10_1016_j_bioelechem_2022_108217 crossref_primary_10_1039_D1NR05747B crossref_primary_10_1002_anie_202316449 crossref_primary_10_1016_j_cej_2022_139251 crossref_primary_10_1016_j_microc_2024_112428 crossref_primary_10_1016_j_clay_2023_106924 crossref_primary_10_3390_catal13101371 crossref_primary_10_1021_acs_inorgchem_4c04889 crossref_primary_10_26599_NRE_2023_9120086 crossref_primary_10_1007_s12274_022_4575_0 crossref_primary_10_1016_j_compositesb_2022_109915 crossref_primary_10_1016_j_jcat_2023_07_011 crossref_primary_10_1088_1361_6528_ac9abd crossref_primary_10_1016_j_jallcom_2021_163510 crossref_primary_10_1002_cctc_202101280 crossref_primary_10_1039_D4CC06251E crossref_primary_10_1016_j_jallcom_2024_173837 crossref_primary_10_1016_j_electacta_2022_140773 crossref_primary_10_1002_adsu_202400465 crossref_primary_10_1039_D3TA04947G crossref_primary_10_1016_j_jcat_2024_115352 crossref_primary_10_1002_adma_202209338 crossref_primary_10_1016_j_ijhydene_2024_03_150 crossref_primary_10_1039_D2TA09369C crossref_primary_10_1021_acsaem_3c00139 crossref_primary_10_1016_j_jcis_2024_03_032 crossref_primary_10_1016_j_mtener_2023_101307 crossref_primary_10_1016_j_jiec_2022_05_002 crossref_primary_10_3390_nano12132200 crossref_primary_10_1002_cssc_202202078 crossref_primary_10_1007_s40242_024_4121_6 crossref_primary_10_1016_j_cplett_2024_141389 crossref_primary_10_1016_j_ces_2022_117490 crossref_primary_10_1016_j_jallcom_2022_168135 crossref_primary_10_1039_D2NR00143H crossref_primary_10_1007_s40843_021_1978_3 crossref_primary_10_1002_smll_202402492 crossref_primary_10_1007_s10800_025_02263_8 crossref_primary_10_1016_j_seppur_2023_124350 crossref_primary_10_1016_j_pmatsci_2024_101410 crossref_primary_10_3390_chemistry6020017 crossref_primary_10_1016_j_jcis_2022_07_062 crossref_primary_10_1016_j_jcis_2024_11_029 crossref_primary_10_1016_j_apsusc_2021_152235 crossref_primary_10_1016_j_cej_2023_147155 crossref_primary_10_1016_j_fuproc_2022_107537 crossref_primary_10_1016_j_apsusc_2022_153142 crossref_primary_10_1021_acssuschemeng_4c02912 crossref_primary_10_1016_j_jcis_2023_12_138 crossref_primary_10_1016_j_jece_2024_112996 crossref_primary_10_1016_j_cej_2021_130062 crossref_primary_10_1021_acs_jpcc_3c07521 crossref_primary_10_1021_acsami_3c15403 crossref_primary_10_1039_D1NJ04668C crossref_primary_10_1080_10584587_2022_2072134 crossref_primary_10_1016_j_apcatb_2022_121150 crossref_primary_10_1016_j_powtec_2023_119051 crossref_primary_10_1002_adfm_202201011 crossref_primary_10_1039_D3DT00516J crossref_primary_10_3390_catal13091241 crossref_primary_10_1021_acssuschemeng_4c06394 crossref_primary_10_1002_er_7335 crossref_primary_10_1016_j_fuel_2024_131462 crossref_primary_10_1039_D2CE01491B crossref_primary_10_1039_D4NR01869A crossref_primary_10_1016_j_ijhydene_2024_05_224 crossref_primary_10_1016_j_ijhydene_2024_05_462 crossref_primary_10_1021_acssuschemeng_2c05636 crossref_primary_10_1021_acsestwater_2c00509 crossref_primary_10_1016_j_cej_2021_130873 crossref_primary_10_1007_s12274_023_5608_z crossref_primary_10_1007_s11426_023_1649_y crossref_primary_10_1016_j_ijhydene_2024_09_320 crossref_primary_10_1021_acsaenm_3c00271 crossref_primary_10_1016_j_ijhydene_2023_09_023 crossref_primary_10_1038_s41467_023_37441_9 crossref_primary_10_1016_j_ceramint_2024_04_223 crossref_primary_10_1039_D1TA02318G crossref_primary_10_1039_D3QI02220J crossref_primary_10_1002_admi_202101165 crossref_primary_10_1016_j_cej_2021_133578 crossref_primary_10_1016_j_jelechem_2023_117788 crossref_primary_10_1016_j_cej_2023_145076 crossref_primary_10_1002_admt_202401757 crossref_primary_10_1016_j_ccr_2023_215460 crossref_primary_10_1016_j_jcis_2025_01_109 crossref_primary_10_1039_D1CY01019K crossref_primary_10_1039_D1TA02658E crossref_primary_10_1039_D2TA04879E crossref_primary_10_1039_D4TA03393K crossref_primary_10_1016_j_jallcom_2023_172710 crossref_primary_10_1016_j_apcatb_2021_120160 crossref_primary_10_1016_j_ijhydene_2022_09_126 crossref_primary_10_1016_j_jallcom_2024_173888 crossref_primary_10_1021_acs_inorgchem_1c01783 crossref_primary_10_1039_D3TA05422E crossref_primary_10_1016_j_ijhydene_2024_04_032 crossref_primary_10_1039_D2QI01470J crossref_primary_10_1002_adma_202110103 crossref_primary_10_1007_s12613_023_2721_7 crossref_primary_10_1021_acs_jpclett_4c00604 crossref_primary_10_1002_slct_202404897 crossref_primary_10_1021_acsomega_2c06461 crossref_primary_10_1007_s12598_022_02104_z crossref_primary_10_1002_chem_202303779 crossref_primary_10_1002_smll_202408266 crossref_primary_10_1016_j_nanoen_2024_110020 crossref_primary_10_1039_D1TA11055A crossref_primary_10_1039_D4CC01830C crossref_primary_10_1002_smll_202106127 crossref_primary_10_1016_j_jcis_2021_07_008 crossref_primary_10_1039_D2CC00867J crossref_primary_10_1039_D3CC00815K crossref_primary_10_1002_ece2_19 crossref_primary_10_1021_acsaem_4c02111 crossref_primary_10_1002_smll_202310040 crossref_primary_10_1016_j_ijhydene_2023_03_088 crossref_primary_10_2139_ssrn_4127698 crossref_primary_10_1002_chem_202301129 crossref_primary_10_1016_j_ensm_2025_104040 crossref_primary_10_1016_j_ccr_2024_216296 crossref_primary_10_1016_j_cej_2022_139400 crossref_primary_10_1002_smll_202202336 crossref_primary_10_1039_D1QM00658D crossref_primary_10_1016_j_jcis_2022_05_027 crossref_primary_10_1016_j_scriptamat_2024_116242 crossref_primary_10_1016_j_seppur_2022_121961 crossref_primary_10_1007_s12274_022_4874_7 crossref_primary_10_1039_D5TA00039D crossref_primary_10_1016_j_apcatb_2021_120987 crossref_primary_10_1016_j_cej_2023_148429 crossref_primary_10_1016_j_colsurfa_2021_126896 crossref_primary_10_1016_j_jallcom_2022_166779 crossref_primary_10_1016_j_electacta_2024_143813 crossref_primary_10_3389_fchem_2022_951639 crossref_primary_10_1021_acsami_5c01010 crossref_primary_10_1016_j_jelechem_2025_118996 crossref_primary_10_1039_D2NJ04801A crossref_primary_10_1021_acs_iecr_1c01806 crossref_primary_10_1016_j_cej_2024_156219 crossref_primary_10_1016_j_cej_2022_140401 crossref_primary_10_1007_s12274_024_6485_9 crossref_primary_10_1016_j_jcis_2025_137329 crossref_primary_10_1021_acsami_3c12041 |
Cites_doi | 10.1002/anie.201701477 10.1021/jacs.6b01606 10.1039/C6EE00377J 10.1039/C8CC08951E 10.1016/j.jtice.2018.11.024 10.1039/C4CS00236A 10.1021/acscatal.8b01046 10.1524/zkri.220.5.567.65075 10.1016/j.mattod.2015.10.006 10.1021/acsomega.8b00847 10.1002/smll.201804212 10.1038/ncomms11981 10.1002/bscb.19810901210 10.1021/nl4026902 10.1016/S0169-4332(97)00167-0 10.1021/ja4027715 10.1021/acsenergylett.8b00342 10.1039/C7CC07186H 10.1002/smtd.201800083 10.1016/S0144-8617(97)00250-6 10.1021/ja307507a 10.1039/C9CE01883B 10.1016/j.elecom.2013.03.040 10.13171/mjc.2.6.2014.08.03.23 10.1021/acscatal.9b00191 10.1016/0009-2614(85)80574-1 10.1002/advs.201800064 10.1103/PhysRevB.46.6671 10.1039/c3sc50205h 10.1002/smll.201800136 10.1016/0021-9797(92)90401-7 10.1103/PhysRevLett.77.3865 10.1021/cr1002326 10.1021/acsenergylett.8b00696 10.1103/PhysRevB.41.7892 10.1038/ncomms12876 10.1016/0021-9797(85)90280-2 10.1016/j.electacta.2017.04.121 10.1002/aenm.201703585 10.1016/j.cpc.2005.07.011 10.1039/C5NR01077B 10.1039/C7TA08166A 10.1039/C8CS00094H 10.1126/science.1212858 10.1002/adma.201706076 10.1103/PhysRevB.67.075204 10.1039/c3cp51213d 10.1002/adma.201601019 10.1002/adma.201904496 10.1021/acs.chemrev.6b00398 10.1039/C7CC08843D 10.1016/j.apcata.2005.08.043 10.1021/acsami.7b07984 10.1002/aenm.201900881 10.1021/jo971176v 10.1016/j.ijhydene.2019.12.031 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2020.105606 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2020_105606 S2211285520311794 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c352t-34796e820da8519facf2fb86733f88cf5d53e62c7b9f5861f996cfbeeca8295d3 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Tue Jul 01 00:56:42 EDT 2025 Thu Apr 24 23:01:53 EDT 2025 Fri Feb 23 02:39:47 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multivacancies Oxygen evolution reaction Layered double hydroxide Methyl-isorhodanate Targeted atoms |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-34796e820da8519facf2fb86733f88cf5d53e62c7b9f5861f996cfbeeca8295d3 |
OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S2211285520311794-ga1_lrg.jpg |
ParticipantIDs | crossref_citationtrail_10_1016_j_nanoen_2020_105606 crossref_primary_10_1016_j_nanoen_2020_105606 elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_105606 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 2021-03-00 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhao, Jia, Chen, Shang, Waterhouse, Wu, Tung, OHare, Zhang (bib14) 2016; 138 Zhang, Lai, Ma, Zhang (bib17) 2018; 47 Siriwardane, Cook (bib37) 1985; 108 Probert, Payne (bib60) 2003; 67 Kasyan, Kasyan, Tarabara, Okovytyy, Golodayeva, Tokar, Podolyan (bib41) 2008; 6 Trotochaud, Ranney, Williams, Boettcher (bib11) 2012; 134 Qu, Wang, Li, Li, Zhang, Lin, Zhou, Wang, Yang, Hu, Zhu, Zhao, Han, Wang, Xu, Gu, Luo, Zheng, Wu (bib19) 2019; 31 Long, Wang, Xiao, An, Yang (bib8) 2016; 19 Zhang, Zhao, Zhao, Shi, Waterhouse, Zhang (bib52) 2019; 9 Zhou, Silva, Woods, Pondick, Feng, Liang, Liu, Lin, Deng, Brena, Xia, Peng, Liu, Wang, Araujo, Cha (bib3) 2018; 30 Gong, Li, Wang, Liang, Wu, Zhou, Wang, Regier, Wei, Dai (bib53) 2013; 135 Uvdal, Bodö, Liedberg (bib39) 1992; 149 Vanderbilt (bib58) 1990; 41 Cho, Logar, Lee, Cai, Prinz, Zheng (bib30) 2014; 14 Fringant, Rinaudo, Foray, Bardet (bib43) 1998; 35 Koper (bib4) 2013; 4 Asnavandi, Yin, Li, Sun, Zhao (bib26) 2018; 3 Ling, Yan, Jiao, Wang, Zheng, Zheng, Mao, Du, Hu, Jaroniec, Qiao (bib21) 2016; 7 Rajakumar, Manickam, Gandhi, Muthukumar (bib33) 2020; 45 Hunter, Gray, Müller (bib2) 2016; 116 Li, Huang, Sun, Luo, Yang, Qin, Wang, Li, Lv, Zhang, Guo (bib5) 2019; 15 Sun, Gao, Lei, Xie (bib16) 2015; 44 Suntivich, May, Gasteiger, Goodenough, Shao-Horn (bib27) 2011; 334 Hunter, Hieringer, Winkler, Gray, Müller (bib32) 2016; 9 Godwin, Lyons (bib12) 2013; 32 Wang, Zhang, Liu, Xie, Feng, Liu, Shao, Wang (bib28) 2017; 56 Zhao, Zhang, Jia, Waterhouse, Shi, Zhang, Zhan, Tao, Wu, Tung, O'Hare, Zhang (bib48) 2018; 8 Xu, Zeng, Luo, Ling, Xiao, Zhou, Sun, Liao (bib38) 2017; 241 Long, Wang, Xiao, An, Yang (bib15) 2016; 19 Nikolova, Edreva-Kardjieva, Gouliev, Grozeva, Tzvetkov (bib34) 2006; 297 Nishiwaki, Kawamura, Abe, Iori (bib44) 1980 He, Xie, Rehman, Wang, Wan, Jiang, Chu, Song (bib22) 2018; 3 Head, Zerner (bib59) 1985; 122 Perdew, Burke, Ernzerhof (bib55) 1996; 77 Hasnip, Pickard (bib56) 2006; 174 Wang, Qiao, Li, Wang (bib45) 2018; 14 Doyle, Godwin, Brandon, Lyons (bib13) 2013; 15 Zhang, Zhang, Pan, Shen, Mahmood, Ma, Shi, Jia, Wang, Zhang, Xu, Zou (bib24) 2018; 8 Dutta, Indra, Feng, Song, Paik (bib47) 2017; 9 Choi, Park, Yang, Jin, Tomboc, Lee (bib23) 2020; 22 Meng, Lin, Sun, Chen, Chen, Du, Zhou (bib29) 2019; 55 Perdew, Chevary, Vosko, Jackson, Pederson, Singh, Fiolhais (bib57) 1992; 46 Sun, Gao, Lei, Xie (bib20) 2015; 44 Walter, Warren, McKone, Boettcher, Mi, Santori, Lewis (bib1) 2010; 110 Yu, Cao, Li, Long, Yang, Clark, Nakabayashi, Shibata, Delaunay (bib9) 2019; 9 Grimblot, Dufresne, And, Bonnelle, Soc (bib35) 1981; 90 Nayak, Parida (bib46) 2018; 3 Stewart, Matthew, Chris, Phil, Matt, Keith, Mike (bib54) 2005; 220 Zhou, Wang, Xie, Chen, Liu, Chen, Huo, Wang (bib31) 2017; 53 Fan, Chen, Ji, Huang, Claesson, Daniel, Philippe, Rensmo, Li, Luo, Sun (bib6) 2016; 7 Yu, Martin, Clearfield, Luo, Sun (bib51) 2015; 7 Wang, Yan, El Hankari, Zou, Wang (bib10) 2018; 5 Tian, Wang, Wo, Li, Song, Li, Li, Du (bib49) 2019; 96 Liu, Zheng, Wang, Lu, Vasileff, Qiao (bib18) 2018; 54 Zhou, Xiong, Cai, Han, Jia, Xie, Duan, Xie, Zheng, Sun, Duan (bib25) 2018; 2 Gottlieb, Kotlyar, Nudelman (bib40) 1997; 62 Ping, Wang, Lu, Chen, Chen, Huang, Ma, Tan, Yang, Cao, Wang, Wu, Ying, Zhang (bib7) 2016; 28 Jarraya, Abdelhedi, Abid, Abid, Gharbi (bib42) 2014; 2 Ji, Peng, Fan, Li, Qin, Ramakrishna (bib50) 2017; 5 Lin, Seshadri, Kelber (bib36) 1997; 119 Grimblot (10.1016/j.nanoen.2020.105606_bib35) 1981; 90 Gottlieb (10.1016/j.nanoen.2020.105606_bib40) 1997; 62 Hunter (10.1016/j.nanoen.2020.105606_bib2) 2016; 116 Sun (10.1016/j.nanoen.2020.105606_bib16) 2015; 44 Li (10.1016/j.nanoen.2020.105606_bib5) 2019; 15 Liu (10.1016/j.nanoen.2020.105606_bib18) 2018; 54 Lin (10.1016/j.nanoen.2020.105606_bib36) 1997; 119 Ji (10.1016/j.nanoen.2020.105606_bib50) 2017; 5 Zhou (10.1016/j.nanoen.2020.105606_bib31) 2017; 53 Long (10.1016/j.nanoen.2020.105606_bib8) 2016; 19 Walter (10.1016/j.nanoen.2020.105606_bib1) 2010; 110 Wang (10.1016/j.nanoen.2020.105606_bib10) 2018; 5 Nishiwaki (10.1016/j.nanoen.2020.105606_bib44) 1980 Perdew (10.1016/j.nanoen.2020.105606_bib57) 1992; 46 Zhang (10.1016/j.nanoen.2020.105606_bib17) 2018; 47 Sun (10.1016/j.nanoen.2020.105606_bib20) 2015; 44 Nikolova (10.1016/j.nanoen.2020.105606_bib34) 2006; 297 Fan (10.1016/j.nanoen.2020.105606_bib6) 2016; 7 Siriwardane (10.1016/j.nanoen.2020.105606_bib37) 1985; 108 Yu (10.1016/j.nanoen.2020.105606_bib51) 2015; 7 Kasyan (10.1016/j.nanoen.2020.105606_bib41) 2008; 6 Trotochaud (10.1016/j.nanoen.2020.105606_bib11) 2012; 134 Godwin (10.1016/j.nanoen.2020.105606_bib12) 2013; 32 Hunter (10.1016/j.nanoen.2020.105606_bib32) 2016; 9 Probert (10.1016/j.nanoen.2020.105606_bib60) 2003; 67 Wang (10.1016/j.nanoen.2020.105606_bib28) 2017; 56 Dutta (10.1016/j.nanoen.2020.105606_bib47) 2017; 9 Zhou (10.1016/j.nanoen.2020.105606_bib25) 2018; 2 Long (10.1016/j.nanoen.2020.105606_bib15) 2016; 19 Ping (10.1016/j.nanoen.2020.105606_bib7) 2016; 28 Suntivich (10.1016/j.nanoen.2020.105606_bib27) 2011; 334 Stewart (10.1016/j.nanoen.2020.105606_bib54) 2005; 220 Asnavandi (10.1016/j.nanoen.2020.105606_bib26) 2018; 3 Xu (10.1016/j.nanoen.2020.105606_bib38) 2017; 241 Yu (10.1016/j.nanoen.2020.105606_bib9) 2019; 9 Zhao (10.1016/j.nanoen.2020.105606_bib48) 2018; 8 Tian (10.1016/j.nanoen.2020.105606_bib49) 2019; 96 Zhang (10.1016/j.nanoen.2020.105606_bib24) 2018; 8 Zhou (10.1016/j.nanoen.2020.105606_bib3) 2018; 30 Choi (10.1016/j.nanoen.2020.105606_bib23) 2020; 22 Vanderbilt (10.1016/j.nanoen.2020.105606_bib58) 1990; 41 Perdew (10.1016/j.nanoen.2020.105606_bib55) 1996; 77 Meng (10.1016/j.nanoen.2020.105606_bib29) 2019; 55 Doyle (10.1016/j.nanoen.2020.105606_bib13) 2013; 15 Fringant (10.1016/j.nanoen.2020.105606_bib43) 1998; 35 Zhao (10.1016/j.nanoen.2020.105606_bib14) 2016; 138 Hasnip (10.1016/j.nanoen.2020.105606_bib56) 2006; 174 Nayak (10.1016/j.nanoen.2020.105606_bib46) 2018; 3 Zhang (10.1016/j.nanoen.2020.105606_bib52) 2019; 9 Ling (10.1016/j.nanoen.2020.105606_bib21) 2016; 7 Koper (10.1016/j.nanoen.2020.105606_bib4) 2013; 4 Wang (10.1016/j.nanoen.2020.105606_bib45) 2018; 14 Qu (10.1016/j.nanoen.2020.105606_bib19) 2019; 31 Gong (10.1016/j.nanoen.2020.105606_bib53) 2013; 135 Uvdal (10.1016/j.nanoen.2020.105606_bib39) 1992; 149 Head (10.1016/j.nanoen.2020.105606_bib59) 1985; 122 Jarraya (10.1016/j.nanoen.2020.105606_bib42) 2014; 2 Rajakumar (10.1016/j.nanoen.2020.105606_bib33) 2020; 45 Cho (10.1016/j.nanoen.2020.105606_bib30) 2014; 14 He (10.1016/j.nanoen.2020.105606_bib22) 2018; 3 |
References_xml | – volume: 9 start-page: 1900881 year: 2019 ident: bib52 publication-title: Adv. Energy Mater. – volume: 110 start-page: 6446 year: 2010 end-page: 6473 ident: bib1 publication-title: Chem. Rev. – volume: 9 start-page: 1605 year: 2019 end-page: 1611 ident: bib9 publication-title: ACS Catal. – volume: 138 start-page: 6517 year: 2016 end-page: 6524 ident: bib14 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 12876 year: 2016 ident: bib21 publication-title: Nat. Commun. – volume: 55 start-page: 2904 year: 2019 end-page: 2907 ident: bib29 publication-title: Chem. Commun. – volume: 6 start-page: 161 year: 2008 end-page: 174 ident: bib41 publication-title: Cent. Eur. J. Chem. – volume: 56 start-page: 5867 year: 2017 end-page: 5871 ident: bib28 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1515 year: 2018 end-page: 1520 ident: bib26 publication-title: ACS Energy Lett. – volume: 15 start-page: 13737 year: 2013 end-page: 13783 ident: bib13 publication-title: Phys. Chem. Chem. Phys. – volume: 19 start-page: 213 year: 2016 end-page: 226 ident: bib8 publication-title: Mater. Today – volume: 297 start-page: 135 year: 2006 end-page: 144 ident: bib34 publication-title: Appl. Catal. A – volume: 45 start-page: 3905 year: 2020 end-page: 3915 ident: bib33 publication-title: Int. J. Hydrog. Energy – volume: 122 start-page: 264 year: 1985 end-page: 270 ident: bib59 publication-title: Chem. Phys. Lett. – volume: 149 start-page: 162 year: 1992 end-page: 173 ident: bib39 publication-title: J. Colloid Interf. Sci. – start-page: 2693 year: 1980 end-page: 2699 ident: bib44 publication-title: J. Chem. Soc. Pak. – volume: 35 start-page: 97 year: 1998 end-page: 106 ident: bib43 publication-title: Carbohydr. Polym. – volume: 14 start-page: 1800136 year: 2018 ident: bib45 publication-title: Small – volume: 4 start-page: 2710 year: 2013 end-page: 2723 ident: bib4 publication-title: Chem. Sci. – volume: 108 start-page: 414 year: 1985 end-page: 422 ident: bib37 publication-title: J. Colloid Interf. Sci. – volume: 41 start-page: 7892 year: 1990 end-page: 7895 ident: bib58 publication-title: Phys. Rev. B – volume: 28 start-page: 7640 year: 2016 end-page: 7645 ident: bib7 publication-title: Adv. Mater. – volume: 334 start-page: 1383 year: 2011 ident: bib27 publication-title: Science – volume: 135 start-page: 8452 year: 2013 end-page: 8455 ident: bib53 publication-title: J. Am. Chem. Soc. – volume: 90 start-page: 1261 year: 1981 end-page: 1269 ident: bib35 publication-title: Chem. Belg. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib55 publication-title: Phys. Rev. Lett. – volume: 116 start-page: 14120 year: 2016 end-page: 14136 ident: bib2 publication-title: Chem. Rev. – volume: 62 start-page: 7512 year: 1997 end-page: 7515 ident: bib40 publication-title: J. Syn. Organ. Chem. – volume: 47 start-page: 3301 year: 2018 end-page: 3338 ident: bib17 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 33766 year: 2017 end-page: 33774 ident: bib47 publication-title: ACS Appl. Mater. Inter. – volume: 2 start-page: 708 year: 2014 end-page: 719 ident: bib42 publication-title: Mediterr. J. Chem. – volume: 5 start-page: 1800064 year: 2018 ident: bib10 publication-title: Adv. Sci. – volume: 7 start-page: 9448 year: 2015 end-page: 9451 ident: bib51 publication-title: Nanoscale – volume: 31 start-page: 1904496 year: 2019 ident: bib19 publication-title: Adv. Mater. – volume: 15 start-page: 1804212 year: 2019 ident: bib5 publication-title: Small – volume: 22 start-page: 1500 year: 2020 end-page: 1513 ident: bib23 publication-title: CrystEngComm – volume: 96 start-page: 273 year: 2019 end-page: 280 ident: bib49 publication-title: J. Taiwan Inst. Chem. Eng. – volume: 14 start-page: 24 year: 2014 end-page: 31 ident: bib30 publication-title: Nano Lett. – volume: 32 start-page: 39 year: 2013 end-page: 42 ident: bib12 publication-title: Electrochem. Commun. – volume: 67 year: 2003 ident: bib60 publication-title: Phys. Rev. B – volume: 5 start-page: 23898 year: 2017 end-page: 23908 ident: bib50 publication-title: J. Mater. Chem. A – volume: 53 start-page: 11778 year: 2017 end-page: 11781 ident: bib31 publication-title: Chem. Commun. – volume: 174 start-page: 24 year: 2006 end-page: 29 ident: bib56 publication-title: Comput. Phys. Commun. – volume: 44 start-page: 623 year: 2015 end-page: 636 ident: bib16 publication-title: Chem. Soc. Rev. – volume: 54 start-page: 463 year: 2018 end-page: 466 ident: bib18 publication-title: Chem. Commun. – volume: 3 start-page: 861 year: 2018 end-page: 868 ident: bib22 publication-title: ACS Energy Lett. – volume: 2 start-page: 1800083 year: 2018 ident: bib25 publication-title: Small Methods – volume: 119 start-page: 83 year: 1997 end-page: 92 ident: bib36 publication-title: Appl. Surf. Sci. – volume: 7 start-page: 11981 year: 2016 ident: bib6 publication-title: Nat. Commun. – volume: 8 start-page: 3803 year: 2018 end-page: 3811 ident: bib24 publication-title: ACS Catal. – volume: 44 start-page: 623 year: 2015 end-page: 636 ident: bib20 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 1734 year: 2016 end-page: 1743 ident: bib32 publication-title: Energy Environ. Sci. – volume: 30 start-page: 1706076 year: 2018 ident: bib3 publication-title: Adv. Mater. – volume: 241 start-page: 41 year: 2017 end-page: 49 ident: bib38 publication-title: Electrochim. Acta – volume: 46 start-page: 6671 year: 1992 end-page: 6687 ident: bib57 publication-title: Phys. Rev. B – volume: 19 start-page: 213 year: 2016 end-page: 226 ident: bib15 publication-title: Mater. Today – volume: 8 start-page: 1703585 year: 2018 ident: bib48 publication-title: Adv. Energy Mater. – volume: 3 start-page: 7324 year: 2018 end-page: 7343 ident: bib46 publication-title: ACS Omega – volume: 134 start-page: 17253 year: 2012 end-page: 17261 ident: bib11 publication-title: J. Am. Chem. Soc. – volume: 220 start-page: 567 year: 2005 end-page: 570 ident: bib54 publication-title: Z. Krist. Cryst. Mater. – volume: 56 start-page: 5867 year: 2017 ident: 10.1016/j.nanoen.2020.105606_bib28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701477 – volume: 138 start-page: 6517 year: 2016 ident: 10.1016/j.nanoen.2020.105606_bib14 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01606 – volume: 9 start-page: 1734 year: 2016 ident: 10.1016/j.nanoen.2020.105606_bib32 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00377J – volume: 55 start-page: 2904 year: 2019 ident: 10.1016/j.nanoen.2020.105606_bib29 publication-title: Chem. Commun. doi: 10.1039/C8CC08951E – volume: 96 start-page: 273 year: 2019 ident: 10.1016/j.nanoen.2020.105606_bib49 publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2018.11.024 – volume: 44 start-page: 623 year: 2015 ident: 10.1016/j.nanoen.2020.105606_bib16 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00236A – volume: 8 start-page: 3803 year: 2018 ident: 10.1016/j.nanoen.2020.105606_bib24 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01046 – volume: 220 start-page: 567 year: 2005 ident: 10.1016/j.nanoen.2020.105606_bib54 publication-title: Z. Krist. Cryst. Mater. doi: 10.1524/zkri.220.5.567.65075 – volume: 19 start-page: 213 year: 2016 ident: 10.1016/j.nanoen.2020.105606_bib8 publication-title: Mater. Today doi: 10.1016/j.mattod.2015.10.006 – volume: 3 start-page: 7324 year: 2018 ident: 10.1016/j.nanoen.2020.105606_bib46 publication-title: ACS Omega doi: 10.1021/acsomega.8b00847 – volume: 15 start-page: 1804212 year: 2019 ident: 10.1016/j.nanoen.2020.105606_bib5 publication-title: Small doi: 10.1002/smll.201804212 – volume: 7 start-page: 11981 year: 2016 ident: 10.1016/j.nanoen.2020.105606_bib6 publication-title: Nat. Commun. doi: 10.1038/ncomms11981 – volume: 90 start-page: 1261 year: 1981 ident: 10.1016/j.nanoen.2020.105606_bib35 publication-title: Chem. Belg. doi: 10.1002/bscb.19810901210 – volume: 14 start-page: 24 year: 2014 ident: 10.1016/j.nanoen.2020.105606_bib30 publication-title: Nano Lett. doi: 10.1021/nl4026902 – volume: 119 start-page: 83 year: 1997 ident: 10.1016/j.nanoen.2020.105606_bib36 publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(97)00167-0 – volume: 135 start-page: 8452 year: 2013 ident: 10.1016/j.nanoen.2020.105606_bib53 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4027715 – volume: 3 start-page: 861 year: 2018 ident: 10.1016/j.nanoen.2020.105606_bib22 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00342 – volume: 53 start-page: 11778 year: 2017 ident: 10.1016/j.nanoen.2020.105606_bib31 publication-title: Chem. Commun. doi: 10.1039/C7CC07186H – volume: 2 start-page: 1800083 year: 2018 ident: 10.1016/j.nanoen.2020.105606_bib25 publication-title: Small Methods doi: 10.1002/smtd.201800083 – volume: 35 start-page: 97 year: 1998 ident: 10.1016/j.nanoen.2020.105606_bib43 publication-title: Carbohydr. Polym. doi: 10.1016/S0144-8617(97)00250-6 – volume: 134 start-page: 17253 year: 2012 ident: 10.1016/j.nanoen.2020.105606_bib11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307507a – volume: 22 start-page: 1500 year: 2020 ident: 10.1016/j.nanoen.2020.105606_bib23 publication-title: CrystEngComm doi: 10.1039/C9CE01883B – volume: 32 start-page: 39 year: 2013 ident: 10.1016/j.nanoen.2020.105606_bib12 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2013.03.040 – volume: 2 start-page: 708 year: 2014 ident: 10.1016/j.nanoen.2020.105606_bib42 publication-title: Mediterr. J. Chem. doi: 10.13171/mjc.2.6.2014.08.03.23 – volume: 9 start-page: 1605 year: 2019 ident: 10.1016/j.nanoen.2020.105606_bib9 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00191 – volume: 122 start-page: 264 year: 1985 ident: 10.1016/j.nanoen.2020.105606_bib59 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(85)80574-1 – volume: 5 start-page: 1800064 year: 2018 ident: 10.1016/j.nanoen.2020.105606_bib10 publication-title: Adv. Sci. doi: 10.1002/advs.201800064 – volume: 46 start-page: 6671 year: 1992 ident: 10.1016/j.nanoen.2020.105606_bib57 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.6671 – volume: 4 start-page: 2710 year: 2013 ident: 10.1016/j.nanoen.2020.105606_bib4 publication-title: Chem. Sci. doi: 10.1039/c3sc50205h – volume: 14 start-page: 1800136 year: 2018 ident: 10.1016/j.nanoen.2020.105606_bib45 publication-title: Small doi: 10.1002/smll.201800136 – volume: 149 start-page: 162 year: 1992 ident: 10.1016/j.nanoen.2020.105606_bib39 publication-title: J. Colloid Interf. Sci. doi: 10.1016/0021-9797(92)90401-7 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.nanoen.2020.105606_bib55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 110 start-page: 6446 year: 2010 ident: 10.1016/j.nanoen.2020.105606_bib1 publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 3 start-page: 1515 year: 2018 ident: 10.1016/j.nanoen.2020.105606_bib26 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00696 – volume: 41 start-page: 7892 year: 1990 ident: 10.1016/j.nanoen.2020.105606_bib58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.7892 – volume: 7 start-page: 12876 year: 2016 ident: 10.1016/j.nanoen.2020.105606_bib21 publication-title: Nat. Commun. doi: 10.1038/ncomms12876 – volume: 108 start-page: 414 year: 1985 ident: 10.1016/j.nanoen.2020.105606_bib37 publication-title: J. Colloid Interf. Sci. doi: 10.1016/0021-9797(85)90280-2 – volume: 241 start-page: 41 year: 2017 ident: 10.1016/j.nanoen.2020.105606_bib38 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.04.121 – volume: 8 start-page: 1703585 year: 2018 ident: 10.1016/j.nanoen.2020.105606_bib48 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703585 – volume: 174 start-page: 24 year: 2006 ident: 10.1016/j.nanoen.2020.105606_bib56 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2005.07.011 – volume: 7 start-page: 9448 year: 2015 ident: 10.1016/j.nanoen.2020.105606_bib51 publication-title: Nanoscale doi: 10.1039/C5NR01077B – start-page: 2693 year: 1980 ident: 10.1016/j.nanoen.2020.105606_bib44 publication-title: J. Chem. Soc. Pak. – volume: 5 start-page: 23898 year: 2017 ident: 10.1016/j.nanoen.2020.105606_bib50 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08166A – volume: 47 start-page: 3301 year: 2018 ident: 10.1016/j.nanoen.2020.105606_bib17 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00094H – volume: 19 start-page: 213 year: 2016 ident: 10.1016/j.nanoen.2020.105606_bib15 publication-title: Mater. Today doi: 10.1016/j.mattod.2015.10.006 – volume: 334 start-page: 1383 year: 2011 ident: 10.1016/j.nanoen.2020.105606_bib27 publication-title: Science doi: 10.1126/science.1212858 – volume: 44 start-page: 623 year: 2015 ident: 10.1016/j.nanoen.2020.105606_bib20 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00236A – volume: 30 start-page: 1706076 year: 2018 ident: 10.1016/j.nanoen.2020.105606_bib3 publication-title: Adv. Mater. doi: 10.1002/adma.201706076 – volume: 67 year: 2003 ident: 10.1016/j.nanoen.2020.105606_bib60 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.075204 – volume: 15 start-page: 13737 year: 2013 ident: 10.1016/j.nanoen.2020.105606_bib13 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51213d – volume: 28 start-page: 7640 year: 2016 ident: 10.1016/j.nanoen.2020.105606_bib7 publication-title: Adv. Mater. doi: 10.1002/adma.201601019 – volume: 31 start-page: 1904496 year: 2019 ident: 10.1016/j.nanoen.2020.105606_bib19 publication-title: Adv. Mater. doi: 10.1002/adma.201904496 – volume: 6 start-page: 161 year: 2008 ident: 10.1016/j.nanoen.2020.105606_bib41 publication-title: Cent. Eur. J. Chem. – volume: 116 start-page: 14120 year: 2016 ident: 10.1016/j.nanoen.2020.105606_bib2 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00398 – volume: 54 start-page: 463 year: 2018 ident: 10.1016/j.nanoen.2020.105606_bib18 publication-title: Chem. Commun. doi: 10.1039/C7CC08843D – volume: 297 start-page: 135 year: 2006 ident: 10.1016/j.nanoen.2020.105606_bib34 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2005.08.043 – volume: 9 start-page: 33766 year: 2017 ident: 10.1016/j.nanoen.2020.105606_bib47 publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b07984 – volume: 9 start-page: 1900881 year: 2019 ident: 10.1016/j.nanoen.2020.105606_bib52 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900881 – volume: 62 start-page: 7512 year: 1997 ident: 10.1016/j.nanoen.2020.105606_bib40 publication-title: J. Syn. Organ. Chem. doi: 10.1021/jo971176v – volume: 45 start-page: 3905 year: 2020 ident: 10.1016/j.nanoen.2020.105606_bib33 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.12.031 |
SSID | ssj0000651712 |
Score | 2.6696372 |
Snippet | The fabrication of porous structure in the ultrathin materials still faces high difficulties. In particular, the precise modulations in the porosity and size... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105606 |
SubjectTerms | Layered double hydroxide Methyl-isorhodanate Multivacancies Oxygen evolution reaction Targeted atoms |
Title | Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor |
URI | https://dx.doi.org/10.1016/j.nanoen.2020.105606 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4jVuTpU2PQx3za4I62K0kaYKT2Y5ZBS_-7b6krUwQBa8lL5TXx3u_pL_3fggd9wKlOLeKSGYp6QWmSwTrKhIoSJgijGzo1RtuRuFw3Luc8EkDnda9MI5WWeX-Mqf7bF096VTe7Myn0849hbMLFZxTiEsXVq6DvRe5KD_5CL7uWaDEBpH_6enWE2dQd9B5mlcms9y4Qai0VKF30kc_VailqjPYQOsVXMT98o02UcNkW2htaYjgNkr7Re57_mfvuOR1w2M8mg4Mvj4b4iLHHhga7LmDb1J7Pd4XDGgV357fYX-B4-aSYHcniyV-eYa9cCn3pDGsfswXO2g8OH84HZJKO4FogFQFcQ2ioYHynkrAVLGV2lKrwPmMWSG05SlnJqQ6UrHlIgwsnHu0VcZoKWjMU7aLmlmemT2EGZNWRoBEhNWu_KsYNhCppiaN0siqFmK1vxJdDRZ3-hazpGaQPSWllxPn5aT0cguRL6t5OVjjj_VR_SmSbwGSQO7_1XL_35YHaJU6CounnB2iZrF4NUeAQQrV9kHWRiv9i6vh6BPz4Nt7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHIAD4inGMweuYTRp2uw4jU0DxpB4SNyqJE3E0GgRK0hc-O04aYuGhEDiGsVR5bq24372h9BRGCjFuVVEMktJGJgTItiJIoEChymi2EaeveFyFA3uwvN7fj-HunUvjINVVr6_9OneW1crrUqbrefxuHVD4e5CBecU7NKZ1TxaCOHzdTQGxx_BV6EFYmwQ-7-eToA4ibqFzuO8Mpnlxk1CpSUNveM--ilEzYSd_ipaqfJF3CkfaQ3NmWwdLc9MEdxAaafIfdP_5B2XwG5YxqNx3-Dh6QAXOfaZocEePPgmtSfknWJIV_FV7xr7Co4bTIJdURZLPH2Cs3DJ96Qx7H7IXzbRXb932x2QijyBaMipCuI6RCMD8T2VkFS1rdSWWgXaZ8wKoS1POTMR1bFqWy6iwMLFR1tljJaCtnnKtlAjyzOzjTBj0soYUhFhtYv_qg0HiFRTk8ZpbFUTsVpfia4mizuCi0lSQ8gek1LLidNyUmq5iciX1HM5WeOP_XH9KpJvFpKA8_9VcuffkodocXB7OUyGZ6OLXbREHZ7F48_2UKN4eTX7kJAU6sAb3CcWut0J |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically+targeting+NiFe+LDH+to+create+multivacancies+for+OER+catalysis+with+a+small+organic+anchor&rft.jtitle=Nano+energy&rft.au=Wang%2C+Yaqiong&rft.au=Tao%2C+Shi&rft.au=Lin%2C+He&rft.au=Wang%2C+Gaopeng&rft.date=2021-03-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=81&rft_id=info:doi/10.1016%2Fj.nanoen.2020.105606&rft.externalDocID=S2211285520311794 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |