Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor

The fabrication of porous structure in the ultrathin materials still faces high difficulties. In particular, the precise modulations in the porosity and size are highly challenging. In this work, we have introduced small molecules to overcome such a challenge. And this substantially contributes to t...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 81; p. 105606
Main Authors Wang, Yaqiong, Tao, Shi, Lin, He, Wang, Gaopeng, Zhao, Kangning, Cai, Rongmin, Tao, Kewen, Zhang, Chengxu, Sun, Mingzi, Hu, Jue, Huang, Bolong, Yang, Shihe
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fabrication of porous structure in the ultrathin materials still faces high difficulties. In particular, the precise modulations in the porosity and size are highly challenging. In this work, we have introduced small molecules to overcome such a challenge. And this substantially contributes to the energy related applications, especially to the water-energy (WE) treatment. Electrocatalytic water-splitting is hindered by the sluggish kinetics of water oxidation, requiring efficient earth-abundant electrocatalysts for the oxygen evolution reaction (OER). Herein we demonstrate the robust OER activity by introducing metal and oxygen multivacancies in noble-metal-free layered double hydroxides (LDHs) through the specific electron-withdrawing organic molecule methyl-isorhodanate (CH3NCS). Our work reveals that the metal and oxygen vacancies endow NiFe LDH with enhanced electron transfer and modulate the H2O adsorption, thereby boosting the OER electrocatalytic properties. Remarkably, the best-performing laminar NiFe LDH nanosheets with metal and oxygen multivacancies (v-L-LDHs) show an ultra-low overpotential of 230 mV at 100 mA cm−2 and Tafel slope of 37.1 mV dec−1. Density functional theory (DFT) has revealed the improved OER performance is realized by the co-existence of metal and O vacancies in NiFe LDH, where the defective region activates the electroactivity of Ni sites and O sites to promote the electron transfer and intermediate transformation. The Fe sites play a key role to preserve the high electroactivity of the Ni sites in long-term applications. The superior OER performance underpins the high potential of the reported facile organic anchor strategy for designing and synthesizing advanced electrocatalysts in both LDH and other potential 2D layered materials. [Display omitted] •The simple approach based on the small molecule to create vacancies in LDH is reported for the first time.•The co-existence of metal and oxygen vacancies significantly boosts the electroactivity of LDH.•DFT calculations confirm activations of electroactivity by the formation of both oxygen and metal vacancies.
AbstractList The fabrication of porous structure in the ultrathin materials still faces high difficulties. In particular, the precise modulations in the porosity and size are highly challenging. In this work, we have introduced small molecules to overcome such a challenge. And this substantially contributes to the energy related applications, especially to the water-energy (WE) treatment. Electrocatalytic water-splitting is hindered by the sluggish kinetics of water oxidation, requiring efficient earth-abundant electrocatalysts for the oxygen evolution reaction (OER). Herein we demonstrate the robust OER activity by introducing metal and oxygen multivacancies in noble-metal-free layered double hydroxides (LDHs) through the specific electron-withdrawing organic molecule methyl-isorhodanate (CH3NCS). Our work reveals that the metal and oxygen vacancies endow NiFe LDH with enhanced electron transfer and modulate the H2O adsorption, thereby boosting the OER electrocatalytic properties. Remarkably, the best-performing laminar NiFe LDH nanosheets with metal and oxygen multivacancies (v-L-LDHs) show an ultra-low overpotential of 230 mV at 100 mA cm−2 and Tafel slope of 37.1 mV dec−1. Density functional theory (DFT) has revealed the improved OER performance is realized by the co-existence of metal and O vacancies in NiFe LDH, where the defective region activates the electroactivity of Ni sites and O sites to promote the electron transfer and intermediate transformation. The Fe sites play a key role to preserve the high electroactivity of the Ni sites in long-term applications. The superior OER performance underpins the high potential of the reported facile organic anchor strategy for designing and synthesizing advanced electrocatalysts in both LDH and other potential 2D layered materials. [Display omitted] •The simple approach based on the small molecule to create vacancies in LDH is reported for the first time.•The co-existence of metal and oxygen vacancies significantly boosts the electroactivity of LDH.•DFT calculations confirm activations of electroactivity by the formation of both oxygen and metal vacancies.
ArticleNumber 105606
Author Zhao, Kangning
Tao, Kewen
Cai, Rongmin
Huang, Bolong
Wang, Yaqiong
Tao, Shi
Hu, Jue
Yang, Shihe
Lin, He
Sun, Mingzi
Wang, Gaopeng
Zhang, Chengxu
Author_xml – sequence: 1
  givenname: Yaqiong
  surname: Wang
  fullname: Wang, Yaqiong
  organization: Guangdong Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology Shenzhen Graduate School, Peking University, 518055 Shenzhen, China
– sequence: 2
  givenname: Shi
  surname: Tao
  fullname: Tao, Shi
  organization: School of Electronic and Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, China
– sequence: 3
  givenname: He
  surname: Lin
  fullname: Lin, He
  organization: Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
– sequence: 4
  givenname: Gaopeng
  surname: Wang
  fullname: Wang, Gaopeng
  organization: Guangdong Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology Shenzhen Graduate School, Peking University, 518055 Shenzhen, China
– sequence: 5
  givenname: Kangning
  surname: Zhao
  fullname: Zhao, Kangning
  organization: College of Sciences and Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
– sequence: 6
  givenname: Rongmin
  surname: Cai
  fullname: Cai, Rongmin
  organization: Guangdong Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology Shenzhen Graduate School, Peking University, 518055 Shenzhen, China
– sequence: 7
  givenname: Kewen
  surname: Tao
  fullname: Tao, Kewen
  organization: Guangdong Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology Shenzhen Graduate School, Peking University, 518055 Shenzhen, China
– sequence: 8
  givenname: Chengxu
  surname: Zhang
  fullname: Zhang, Chengxu
  organization: Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 9
  givenname: Mingzi
  surname: Sun
  fullname: Sun, Mingzi
  organization: Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
– sequence: 10
  givenname: Jue
  surname: Hu
  fullname: Hu, Jue
  email: hujue@kust.edu.cn
  organization: Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 11
  givenname: Bolong
  surname: Huang
  fullname: Huang, Bolong
  email: bhuang@polyu.edu.hk
  organization: Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
– sequence: 12
  givenname: Shihe
  surname: Yang
  fullname: Yang, Shihe
  email: chsyang@pku.edu.cn
  organization: Guangdong Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology Shenzhen Graduate School, Peking University, 518055 Shenzhen, China
BookMark eNqFkMFKAzEQhnOoYK19Aw95ga2bbJPd9SCUWq1QLIiewzQ7aVN2E0lipW_vlnryoHMZGP7vh_muyMB5h4TcsHzCciZv9xMHzqOb8JyfTkLmckCGnDOW8UqISzKOcZ_3IwUrGR-SZpZ8ZzW07ZEmCFtM1m3pi31EunpY0uSpDggJaffZJnsADU5bjNT4QNeLV6ohQXuMNtIvm3YUaOz6LurDFpzVtE_vfLgmFwbaiOOfPSLvj4u3-TJbrZ-e57NVpgvBU1ZMy1pixfMGKsFqA9pws6lkWRSmqrQRjShQcl1uaiMqyUxdS202iBoqXoumGJG7c68OPsaARmmbIFnvUgDbKparkya1V2dN6qRJnTX18PQX_BFsB-H4H3Z_xrB_7GAxqNgLchobG1An1Xj7d8E30HiI3A
CitedBy_id crossref_primary_10_1016_j_jcis_2024_05_169
crossref_primary_10_1021_acsomega_2c07580
crossref_primary_10_1021_acssuschemeng_2c03887
crossref_primary_10_1016_j_apcatb_2021_120637
crossref_primary_10_1021_acs_inorgchem_2c01035
crossref_primary_10_1016_j_ijhydene_2025_02_102
crossref_primary_10_1016_j_ccr_2022_214973
crossref_primary_10_1016_j_mtphys_2022_100684
crossref_primary_10_1039_D3CC04474B
crossref_primary_10_1016_j_mtener_2024_101784
crossref_primary_10_1021_acs_jpcc_3c05164
crossref_primary_10_1016_j_seppur_2024_130220
crossref_primary_10_1021_acssuschemeng_1c07482
crossref_primary_10_3390_ma15124170
crossref_primary_10_1016_j_jcis_2022_02_078
crossref_primary_10_1002_smtd_202200084
crossref_primary_10_1016_j_ijhydene_2022_08_250
crossref_primary_10_1007_s12274_021_3800_6
crossref_primary_10_1016_j_jelechem_2023_117718
crossref_primary_10_1002_advs_202304071
crossref_primary_10_1039_D3QI00026E
crossref_primary_10_1016_j_apcatb_2022_122091
crossref_primary_10_1016_j_apsusc_2023_158066
crossref_primary_10_1016_j_ijhydene_2022_03_095
crossref_primary_10_1039_D3MH01237A
crossref_primary_10_1002_advs_202409024
crossref_primary_10_1016_j_cej_2024_157526
crossref_primary_10_1016_j_ijbiomac_2024_136835
crossref_primary_10_1016_j_jelechem_2022_116573
crossref_primary_10_1021_acsestengg_2c00318
crossref_primary_10_1039_D3GC02105J
crossref_primary_10_3390_ma17184670
crossref_primary_10_1021_acs_est_1c07811
crossref_primary_10_1002_aenm_202203609
crossref_primary_10_1016_j_cherd_2022_09_041
crossref_primary_10_1002_adfm_202202072
crossref_primary_10_1016_j_isci_2023_108718
crossref_primary_10_1016_j_cej_2022_135884
crossref_primary_10_1021_acsanm_1c01233
crossref_primary_10_1002_ange_202112447
crossref_primary_10_1016_j_cej_2024_152860
crossref_primary_10_1002_advs_202207519
crossref_primary_10_1016_j_apcatb_2024_124506
crossref_primary_10_1039_D2QI01911F
crossref_primary_10_1016_j_ijhydene_2022_08_031
crossref_primary_10_1021_acscatal_4c01133
crossref_primary_10_3866_PKU_WHXB202303059
crossref_primary_10_1039_D1RA09193J
crossref_primary_10_1016_j_jallcom_2022_163741
crossref_primary_10_1039_D4TA06455K
crossref_primary_10_1021_jacs_2c10823
crossref_primary_10_1016_j_ijhydene_2021_06_146
crossref_primary_10_1039_D4NJ00908H
crossref_primary_10_1016_j_cej_2022_137151
crossref_primary_10_1016_j_ijhydene_2023_07_276
crossref_primary_10_1021_acsanm_3c00356
crossref_primary_10_1016_j_jcis_2024_02_184
crossref_primary_10_1002_advs_202203712
crossref_primary_10_15541_jim20220688
crossref_primary_10_1002_smll_202408642
crossref_primary_10_1021_acs_chemrev_4c00171
crossref_primary_10_1016_j_cej_2024_154235
crossref_primary_10_1016_j_clay_2021_106360
crossref_primary_10_1007_s10008_023_05389_x
crossref_primary_10_1021_acsnano_4c03153
crossref_primary_10_1021_acsami_2c15524
crossref_primary_10_1016_j_fuel_2024_131993
crossref_primary_10_1021_acsaem_2c02876
crossref_primary_10_1021_acsami_3c10585
crossref_primary_10_1016_j_addr_2022_114590
crossref_primary_10_1021_acsanm_4c04815
crossref_primary_10_1002_ange_202316449
crossref_primary_10_1021_acssuschemeng_1c03353
crossref_primary_10_1002_adfm_202316544
crossref_primary_10_1016_j_jallcom_2023_169936
crossref_primary_10_1016_j_ijhydene_2023_03_463
crossref_primary_10_1039_D2CE01081J
crossref_primary_10_1002_anie_202112447
crossref_primary_10_1002_aenm_202403722
crossref_primary_10_1002_cssc_202401091
crossref_primary_10_1002_smll_202407221
crossref_primary_10_1021_acs_chemrev_3c00229
crossref_primary_10_1039_D2EE03936B
crossref_primary_10_1016_j_jallcom_2021_163152
crossref_primary_10_1007_s12598_024_03082_0
crossref_primary_10_1016_j_ijhydene_2023_01_184
crossref_primary_10_1002_adma_202208209
crossref_primary_10_1016_j_electacta_2023_142119
crossref_primary_10_1039_D1TA07972G
crossref_primary_10_1039_D3CC00096F
crossref_primary_10_1021_acs_jpcc_1c03824
crossref_primary_10_1021_acsami_2c14720
crossref_primary_10_1016_j_jcis_2024_04_206
crossref_primary_10_3390_nano15030177
crossref_primary_10_3390_molecules28031475
crossref_primary_10_1039_D1TA04755H
crossref_primary_10_1016_j_cej_2023_142865
crossref_primary_10_1016_j_apcata_2024_119858
crossref_primary_10_1016_j_jallcom_2023_168954
crossref_primary_10_1016_j_cej_2023_143715
crossref_primary_10_1016_j_catcom_2024_106880
crossref_primary_10_1016_j_jallcom_2023_169124
crossref_primary_10_1002_adma_202416483
crossref_primary_10_1007_s11581_024_05532_2
crossref_primary_10_1016_j_jelechem_2022_116650
crossref_primary_10_1039_D4QI00512K
crossref_primary_10_3866_PKU_WHXB202307040
crossref_primary_10_1002_aenm_202303730
crossref_primary_10_1007_s42114_024_00958_8
crossref_primary_10_1002_adfm_202413826
crossref_primary_10_1016_j_apcatb_2021_120453
crossref_primary_10_1016_j_jcis_2023_11_012
crossref_primary_10_3390_nano13192621
crossref_primary_10_1002_adma_202107488
crossref_primary_10_1016_j_mtchem_2024_102440
crossref_primary_10_1016_j_jallcom_2021_163259
crossref_primary_10_1002_smll_202301294
crossref_primary_10_1039_D3MA00324H
crossref_primary_10_1002_smll_202301609
crossref_primary_10_3390_ma18010062
crossref_primary_10_1002_aenm_202202317
crossref_primary_10_1021_acsami_4c13756
crossref_primary_10_1002_adfm_202315949
crossref_primary_10_1016_j_cej_2024_152023
crossref_primary_10_1039_D4TA04498C
crossref_primary_10_1039_D2NR04335A
crossref_primary_10_1016_j_apsusc_2021_151911
crossref_primary_10_1002_smll_202301610
crossref_primary_10_15541_jim20240074
crossref_primary_10_1002_smll_202201076
crossref_primary_10_1007_s40843_022_2190_7
crossref_primary_10_1021_acsami_4c16111
crossref_primary_10_1016_j_bioelechem_2022_108217
crossref_primary_10_1039_D1NR05747B
crossref_primary_10_1002_anie_202316449
crossref_primary_10_1016_j_cej_2022_139251
crossref_primary_10_1016_j_microc_2024_112428
crossref_primary_10_1016_j_clay_2023_106924
crossref_primary_10_3390_catal13101371
crossref_primary_10_1021_acs_inorgchem_4c04889
crossref_primary_10_26599_NRE_2023_9120086
crossref_primary_10_1007_s12274_022_4575_0
crossref_primary_10_1016_j_compositesb_2022_109915
crossref_primary_10_1016_j_jcat_2023_07_011
crossref_primary_10_1088_1361_6528_ac9abd
crossref_primary_10_1016_j_jallcom_2021_163510
crossref_primary_10_1002_cctc_202101280
crossref_primary_10_1039_D4CC06251E
crossref_primary_10_1016_j_jallcom_2024_173837
crossref_primary_10_1016_j_electacta_2022_140773
crossref_primary_10_1002_adsu_202400465
crossref_primary_10_1039_D3TA04947G
crossref_primary_10_1016_j_jcat_2024_115352
crossref_primary_10_1002_adma_202209338
crossref_primary_10_1016_j_ijhydene_2024_03_150
crossref_primary_10_1039_D2TA09369C
crossref_primary_10_1021_acsaem_3c00139
crossref_primary_10_1016_j_jcis_2024_03_032
crossref_primary_10_1016_j_mtener_2023_101307
crossref_primary_10_1016_j_jiec_2022_05_002
crossref_primary_10_3390_nano12132200
crossref_primary_10_1002_cssc_202202078
crossref_primary_10_1007_s40242_024_4121_6
crossref_primary_10_1016_j_cplett_2024_141389
crossref_primary_10_1016_j_ces_2022_117490
crossref_primary_10_1016_j_jallcom_2022_168135
crossref_primary_10_1039_D2NR00143H
crossref_primary_10_1007_s40843_021_1978_3
crossref_primary_10_1002_smll_202402492
crossref_primary_10_1007_s10800_025_02263_8
crossref_primary_10_1016_j_seppur_2023_124350
crossref_primary_10_1016_j_pmatsci_2024_101410
crossref_primary_10_3390_chemistry6020017
crossref_primary_10_1016_j_jcis_2022_07_062
crossref_primary_10_1016_j_jcis_2024_11_029
crossref_primary_10_1016_j_apsusc_2021_152235
crossref_primary_10_1016_j_cej_2023_147155
crossref_primary_10_1016_j_fuproc_2022_107537
crossref_primary_10_1016_j_apsusc_2022_153142
crossref_primary_10_1021_acssuschemeng_4c02912
crossref_primary_10_1016_j_jcis_2023_12_138
crossref_primary_10_1016_j_jece_2024_112996
crossref_primary_10_1016_j_cej_2021_130062
crossref_primary_10_1021_acs_jpcc_3c07521
crossref_primary_10_1021_acsami_3c15403
crossref_primary_10_1039_D1NJ04668C
crossref_primary_10_1080_10584587_2022_2072134
crossref_primary_10_1016_j_apcatb_2022_121150
crossref_primary_10_1016_j_powtec_2023_119051
crossref_primary_10_1002_adfm_202201011
crossref_primary_10_1039_D3DT00516J
crossref_primary_10_3390_catal13091241
crossref_primary_10_1021_acssuschemeng_4c06394
crossref_primary_10_1002_er_7335
crossref_primary_10_1016_j_fuel_2024_131462
crossref_primary_10_1039_D2CE01491B
crossref_primary_10_1039_D4NR01869A
crossref_primary_10_1016_j_ijhydene_2024_05_224
crossref_primary_10_1016_j_ijhydene_2024_05_462
crossref_primary_10_1021_acssuschemeng_2c05636
crossref_primary_10_1021_acsestwater_2c00509
crossref_primary_10_1016_j_cej_2021_130873
crossref_primary_10_1007_s12274_023_5608_z
crossref_primary_10_1007_s11426_023_1649_y
crossref_primary_10_1016_j_ijhydene_2024_09_320
crossref_primary_10_1021_acsaenm_3c00271
crossref_primary_10_1016_j_ijhydene_2023_09_023
crossref_primary_10_1038_s41467_023_37441_9
crossref_primary_10_1016_j_ceramint_2024_04_223
crossref_primary_10_1039_D1TA02318G
crossref_primary_10_1039_D3QI02220J
crossref_primary_10_1002_admi_202101165
crossref_primary_10_1016_j_cej_2021_133578
crossref_primary_10_1016_j_jelechem_2023_117788
crossref_primary_10_1016_j_cej_2023_145076
crossref_primary_10_1002_admt_202401757
crossref_primary_10_1016_j_ccr_2023_215460
crossref_primary_10_1016_j_jcis_2025_01_109
crossref_primary_10_1039_D1CY01019K
crossref_primary_10_1039_D1TA02658E
crossref_primary_10_1039_D2TA04879E
crossref_primary_10_1039_D4TA03393K
crossref_primary_10_1016_j_jallcom_2023_172710
crossref_primary_10_1016_j_apcatb_2021_120160
crossref_primary_10_1016_j_ijhydene_2022_09_126
crossref_primary_10_1016_j_jallcom_2024_173888
crossref_primary_10_1021_acs_inorgchem_1c01783
crossref_primary_10_1039_D3TA05422E
crossref_primary_10_1016_j_ijhydene_2024_04_032
crossref_primary_10_1039_D2QI01470J
crossref_primary_10_1002_adma_202110103
crossref_primary_10_1007_s12613_023_2721_7
crossref_primary_10_1021_acs_jpclett_4c00604
crossref_primary_10_1002_slct_202404897
crossref_primary_10_1021_acsomega_2c06461
crossref_primary_10_1007_s12598_022_02104_z
crossref_primary_10_1002_chem_202303779
crossref_primary_10_1002_smll_202408266
crossref_primary_10_1016_j_nanoen_2024_110020
crossref_primary_10_1039_D1TA11055A
crossref_primary_10_1039_D4CC01830C
crossref_primary_10_1002_smll_202106127
crossref_primary_10_1016_j_jcis_2021_07_008
crossref_primary_10_1039_D2CC00867J
crossref_primary_10_1039_D3CC00815K
crossref_primary_10_1002_ece2_19
crossref_primary_10_1021_acsaem_4c02111
crossref_primary_10_1002_smll_202310040
crossref_primary_10_1016_j_ijhydene_2023_03_088
crossref_primary_10_2139_ssrn_4127698
crossref_primary_10_1002_chem_202301129
crossref_primary_10_1016_j_ensm_2025_104040
crossref_primary_10_1016_j_ccr_2024_216296
crossref_primary_10_1016_j_cej_2022_139400
crossref_primary_10_1002_smll_202202336
crossref_primary_10_1039_D1QM00658D
crossref_primary_10_1016_j_jcis_2022_05_027
crossref_primary_10_1016_j_scriptamat_2024_116242
crossref_primary_10_1016_j_seppur_2022_121961
crossref_primary_10_1007_s12274_022_4874_7
crossref_primary_10_1039_D5TA00039D
crossref_primary_10_1016_j_apcatb_2021_120987
crossref_primary_10_1016_j_cej_2023_148429
crossref_primary_10_1016_j_colsurfa_2021_126896
crossref_primary_10_1016_j_jallcom_2022_166779
crossref_primary_10_1016_j_electacta_2024_143813
crossref_primary_10_3389_fchem_2022_951639
crossref_primary_10_1021_acsami_5c01010
crossref_primary_10_1016_j_jelechem_2025_118996
crossref_primary_10_1039_D2NJ04801A
crossref_primary_10_1021_acs_iecr_1c01806
crossref_primary_10_1016_j_cej_2024_156219
crossref_primary_10_1016_j_cej_2022_140401
crossref_primary_10_1007_s12274_024_6485_9
crossref_primary_10_1016_j_jcis_2025_137329
crossref_primary_10_1021_acsami_3c12041
Cites_doi 10.1002/anie.201701477
10.1021/jacs.6b01606
10.1039/C6EE00377J
10.1039/C8CC08951E
10.1016/j.jtice.2018.11.024
10.1039/C4CS00236A
10.1021/acscatal.8b01046
10.1524/zkri.220.5.567.65075
10.1016/j.mattod.2015.10.006
10.1021/acsomega.8b00847
10.1002/smll.201804212
10.1038/ncomms11981
10.1002/bscb.19810901210
10.1021/nl4026902
10.1016/S0169-4332(97)00167-0
10.1021/ja4027715
10.1021/acsenergylett.8b00342
10.1039/C7CC07186H
10.1002/smtd.201800083
10.1016/S0144-8617(97)00250-6
10.1021/ja307507a
10.1039/C9CE01883B
10.1016/j.elecom.2013.03.040
10.13171/mjc.2.6.2014.08.03.23
10.1021/acscatal.9b00191
10.1016/0009-2614(85)80574-1
10.1002/advs.201800064
10.1103/PhysRevB.46.6671
10.1039/c3sc50205h
10.1002/smll.201800136
10.1016/0021-9797(92)90401-7
10.1103/PhysRevLett.77.3865
10.1021/cr1002326
10.1021/acsenergylett.8b00696
10.1103/PhysRevB.41.7892
10.1038/ncomms12876
10.1016/0021-9797(85)90280-2
10.1016/j.electacta.2017.04.121
10.1002/aenm.201703585
10.1016/j.cpc.2005.07.011
10.1039/C5NR01077B
10.1039/C7TA08166A
10.1039/C8CS00094H
10.1126/science.1212858
10.1002/adma.201706076
10.1103/PhysRevB.67.075204
10.1039/c3cp51213d
10.1002/adma.201601019
10.1002/adma.201904496
10.1021/acs.chemrev.6b00398
10.1039/C7CC08843D
10.1016/j.apcata.2005.08.043
10.1021/acsami.7b07984
10.1002/aenm.201900881
10.1021/jo971176v
10.1016/j.ijhydene.2019.12.031
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2020.105606
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2020_105606
S2211285520311794
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c352t-34796e820da8519facf2fb86733f88cf5d53e62c7b9f5861f996cfbeeca8295d3
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Tue Jul 01 00:56:42 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
Fri Feb 23 02:39:47 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multivacancies
Oxygen evolution reaction
Layered double hydroxide
Methyl-isorhodanate
Targeted atoms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-34796e820da8519facf2fb86733f88cf5d53e62c7b9f5861f996cfbeeca8295d3
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S2211285520311794-ga1_lrg.jpg
ParticipantIDs crossref_citationtrail_10_1016_j_nanoen_2020_105606
crossref_primary_10_1016_j_nanoen_2020_105606
elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_105606
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhao, Jia, Chen, Shang, Waterhouse, Wu, Tung, OHare, Zhang (bib14) 2016; 138
Zhang, Lai, Ma, Zhang (bib17) 2018; 47
Siriwardane, Cook (bib37) 1985; 108
Probert, Payne (bib60) 2003; 67
Kasyan, Kasyan, Tarabara, Okovytyy, Golodayeva, Tokar, Podolyan (bib41) 2008; 6
Trotochaud, Ranney, Williams, Boettcher (bib11) 2012; 134
Qu, Wang, Li, Li, Zhang, Lin, Zhou, Wang, Yang, Hu, Zhu, Zhao, Han, Wang, Xu, Gu, Luo, Zheng, Wu (bib19) 2019; 31
Long, Wang, Xiao, An, Yang (bib8) 2016; 19
Zhang, Zhao, Zhao, Shi, Waterhouse, Zhang (bib52) 2019; 9
Zhou, Silva, Woods, Pondick, Feng, Liang, Liu, Lin, Deng, Brena, Xia, Peng, Liu, Wang, Araujo, Cha (bib3) 2018; 30
Gong, Li, Wang, Liang, Wu, Zhou, Wang, Regier, Wei, Dai (bib53) 2013; 135
Uvdal, Bodö, Liedberg (bib39) 1992; 149
Vanderbilt (bib58) 1990; 41
Cho, Logar, Lee, Cai, Prinz, Zheng (bib30) 2014; 14
Fringant, Rinaudo, Foray, Bardet (bib43) 1998; 35
Koper (bib4) 2013; 4
Asnavandi, Yin, Li, Sun, Zhao (bib26) 2018; 3
Ling, Yan, Jiao, Wang, Zheng, Zheng, Mao, Du, Hu, Jaroniec, Qiao (bib21) 2016; 7
Rajakumar, Manickam, Gandhi, Muthukumar (bib33) 2020; 45
Hunter, Gray, Müller (bib2) 2016; 116
Li, Huang, Sun, Luo, Yang, Qin, Wang, Li, Lv, Zhang, Guo (bib5) 2019; 15
Sun, Gao, Lei, Xie (bib16) 2015; 44
Suntivich, May, Gasteiger, Goodenough, Shao-Horn (bib27) 2011; 334
Hunter, Hieringer, Winkler, Gray, Müller (bib32) 2016; 9
Godwin, Lyons (bib12) 2013; 32
Wang, Zhang, Liu, Xie, Feng, Liu, Shao, Wang (bib28) 2017; 56
Zhao, Zhang, Jia, Waterhouse, Shi, Zhang, Zhan, Tao, Wu, Tung, O'Hare, Zhang (bib48) 2018; 8
Xu, Zeng, Luo, Ling, Xiao, Zhou, Sun, Liao (bib38) 2017; 241
Long, Wang, Xiao, An, Yang (bib15) 2016; 19
Nikolova, Edreva-Kardjieva, Gouliev, Grozeva, Tzvetkov (bib34) 2006; 297
Nishiwaki, Kawamura, Abe, Iori (bib44) 1980
He, Xie, Rehman, Wang, Wan, Jiang, Chu, Song (bib22) 2018; 3
Head, Zerner (bib59) 1985; 122
Perdew, Burke, Ernzerhof (bib55) 1996; 77
Hasnip, Pickard (bib56) 2006; 174
Wang, Qiao, Li, Wang (bib45) 2018; 14
Doyle, Godwin, Brandon, Lyons (bib13) 2013; 15
Zhang, Zhang, Pan, Shen, Mahmood, Ma, Shi, Jia, Wang, Zhang, Xu, Zou (bib24) 2018; 8
Dutta, Indra, Feng, Song, Paik (bib47) 2017; 9
Choi, Park, Yang, Jin, Tomboc, Lee (bib23) 2020; 22
Meng, Lin, Sun, Chen, Chen, Du, Zhou (bib29) 2019; 55
Perdew, Chevary, Vosko, Jackson, Pederson, Singh, Fiolhais (bib57) 1992; 46
Sun, Gao, Lei, Xie (bib20) 2015; 44
Walter, Warren, McKone, Boettcher, Mi, Santori, Lewis (bib1) 2010; 110
Yu, Cao, Li, Long, Yang, Clark, Nakabayashi, Shibata, Delaunay (bib9) 2019; 9
Grimblot, Dufresne, And, Bonnelle, Soc (bib35) 1981; 90
Nayak, Parida (bib46) 2018; 3
Stewart, Matthew, Chris, Phil, Matt, Keith, Mike (bib54) 2005; 220
Zhou, Wang, Xie, Chen, Liu, Chen, Huo, Wang (bib31) 2017; 53
Fan, Chen, Ji, Huang, Claesson, Daniel, Philippe, Rensmo, Li, Luo, Sun (bib6) 2016; 7
Yu, Martin, Clearfield, Luo, Sun (bib51) 2015; 7
Wang, Yan, El Hankari, Zou, Wang (bib10) 2018; 5
Tian, Wang, Wo, Li, Song, Li, Li, Du (bib49) 2019; 96
Liu, Zheng, Wang, Lu, Vasileff, Qiao (bib18) 2018; 54
Zhou, Xiong, Cai, Han, Jia, Xie, Duan, Xie, Zheng, Sun, Duan (bib25) 2018; 2
Gottlieb, Kotlyar, Nudelman (bib40) 1997; 62
Ping, Wang, Lu, Chen, Chen, Huang, Ma, Tan, Yang, Cao, Wang, Wu, Ying, Zhang (bib7) 2016; 28
Jarraya, Abdelhedi, Abid, Abid, Gharbi (bib42) 2014; 2
Ji, Peng, Fan, Li, Qin, Ramakrishna (bib50) 2017; 5
Lin, Seshadri, Kelber (bib36) 1997; 119
Grimblot (10.1016/j.nanoen.2020.105606_bib35) 1981; 90
Gottlieb (10.1016/j.nanoen.2020.105606_bib40) 1997; 62
Hunter (10.1016/j.nanoen.2020.105606_bib2) 2016; 116
Sun (10.1016/j.nanoen.2020.105606_bib16) 2015; 44
Li (10.1016/j.nanoen.2020.105606_bib5) 2019; 15
Liu (10.1016/j.nanoen.2020.105606_bib18) 2018; 54
Lin (10.1016/j.nanoen.2020.105606_bib36) 1997; 119
Ji (10.1016/j.nanoen.2020.105606_bib50) 2017; 5
Zhou (10.1016/j.nanoen.2020.105606_bib31) 2017; 53
Long (10.1016/j.nanoen.2020.105606_bib8) 2016; 19
Walter (10.1016/j.nanoen.2020.105606_bib1) 2010; 110
Wang (10.1016/j.nanoen.2020.105606_bib10) 2018; 5
Nishiwaki (10.1016/j.nanoen.2020.105606_bib44) 1980
Perdew (10.1016/j.nanoen.2020.105606_bib57) 1992; 46
Zhang (10.1016/j.nanoen.2020.105606_bib17) 2018; 47
Sun (10.1016/j.nanoen.2020.105606_bib20) 2015; 44
Nikolova (10.1016/j.nanoen.2020.105606_bib34) 2006; 297
Fan (10.1016/j.nanoen.2020.105606_bib6) 2016; 7
Siriwardane (10.1016/j.nanoen.2020.105606_bib37) 1985; 108
Yu (10.1016/j.nanoen.2020.105606_bib51) 2015; 7
Kasyan (10.1016/j.nanoen.2020.105606_bib41) 2008; 6
Trotochaud (10.1016/j.nanoen.2020.105606_bib11) 2012; 134
Godwin (10.1016/j.nanoen.2020.105606_bib12) 2013; 32
Hunter (10.1016/j.nanoen.2020.105606_bib32) 2016; 9
Probert (10.1016/j.nanoen.2020.105606_bib60) 2003; 67
Wang (10.1016/j.nanoen.2020.105606_bib28) 2017; 56
Dutta (10.1016/j.nanoen.2020.105606_bib47) 2017; 9
Zhou (10.1016/j.nanoen.2020.105606_bib25) 2018; 2
Long (10.1016/j.nanoen.2020.105606_bib15) 2016; 19
Ping (10.1016/j.nanoen.2020.105606_bib7) 2016; 28
Suntivich (10.1016/j.nanoen.2020.105606_bib27) 2011; 334
Stewart (10.1016/j.nanoen.2020.105606_bib54) 2005; 220
Asnavandi (10.1016/j.nanoen.2020.105606_bib26) 2018; 3
Xu (10.1016/j.nanoen.2020.105606_bib38) 2017; 241
Yu (10.1016/j.nanoen.2020.105606_bib9) 2019; 9
Zhao (10.1016/j.nanoen.2020.105606_bib48) 2018; 8
Tian (10.1016/j.nanoen.2020.105606_bib49) 2019; 96
Zhang (10.1016/j.nanoen.2020.105606_bib24) 2018; 8
Zhou (10.1016/j.nanoen.2020.105606_bib3) 2018; 30
Choi (10.1016/j.nanoen.2020.105606_bib23) 2020; 22
Vanderbilt (10.1016/j.nanoen.2020.105606_bib58) 1990; 41
Perdew (10.1016/j.nanoen.2020.105606_bib55) 1996; 77
Meng (10.1016/j.nanoen.2020.105606_bib29) 2019; 55
Doyle (10.1016/j.nanoen.2020.105606_bib13) 2013; 15
Fringant (10.1016/j.nanoen.2020.105606_bib43) 1998; 35
Zhao (10.1016/j.nanoen.2020.105606_bib14) 2016; 138
Hasnip (10.1016/j.nanoen.2020.105606_bib56) 2006; 174
Nayak (10.1016/j.nanoen.2020.105606_bib46) 2018; 3
Zhang (10.1016/j.nanoen.2020.105606_bib52) 2019; 9
Ling (10.1016/j.nanoen.2020.105606_bib21) 2016; 7
Koper (10.1016/j.nanoen.2020.105606_bib4) 2013; 4
Wang (10.1016/j.nanoen.2020.105606_bib45) 2018; 14
Qu (10.1016/j.nanoen.2020.105606_bib19) 2019; 31
Gong (10.1016/j.nanoen.2020.105606_bib53) 2013; 135
Uvdal (10.1016/j.nanoen.2020.105606_bib39) 1992; 149
Head (10.1016/j.nanoen.2020.105606_bib59) 1985; 122
Jarraya (10.1016/j.nanoen.2020.105606_bib42) 2014; 2
Rajakumar (10.1016/j.nanoen.2020.105606_bib33) 2020; 45
Cho (10.1016/j.nanoen.2020.105606_bib30) 2014; 14
He (10.1016/j.nanoen.2020.105606_bib22) 2018; 3
References_xml – volume: 9
  start-page: 1900881
  year: 2019
  ident: bib52
  publication-title: Adv. Energy Mater.
– volume: 110
  start-page: 6446
  year: 2010
  end-page: 6473
  ident: bib1
  publication-title: Chem. Rev.
– volume: 9
  start-page: 1605
  year: 2019
  end-page: 1611
  ident: bib9
  publication-title: ACS Catal.
– volume: 138
  start-page: 6517
  year: 2016
  end-page: 6524
  ident: bib14
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 12876
  year: 2016
  ident: bib21
  publication-title: Nat. Commun.
– volume: 55
  start-page: 2904
  year: 2019
  end-page: 2907
  ident: bib29
  publication-title: Chem. Commun.
– volume: 6
  start-page: 161
  year: 2008
  end-page: 174
  ident: bib41
  publication-title: Cent. Eur. J. Chem.
– volume: 56
  start-page: 5867
  year: 2017
  end-page: 5871
  ident: bib28
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1515
  year: 2018
  end-page: 1520
  ident: bib26
  publication-title: ACS Energy Lett.
– volume: 15
  start-page: 13737
  year: 2013
  end-page: 13783
  ident: bib13
  publication-title: Phys. Chem. Chem. Phys.
– volume: 19
  start-page: 213
  year: 2016
  end-page: 226
  ident: bib8
  publication-title: Mater. Today
– volume: 297
  start-page: 135
  year: 2006
  end-page: 144
  ident: bib34
  publication-title: Appl. Catal. A
– volume: 45
  start-page: 3905
  year: 2020
  end-page: 3915
  ident: bib33
  publication-title: Int. J. Hydrog. Energy
– volume: 122
  start-page: 264
  year: 1985
  end-page: 270
  ident: bib59
  publication-title: Chem. Phys. Lett.
– volume: 149
  start-page: 162
  year: 1992
  end-page: 173
  ident: bib39
  publication-title: J. Colloid Interf. Sci.
– start-page: 2693
  year: 1980
  end-page: 2699
  ident: bib44
  publication-title: J. Chem. Soc. Pak.
– volume: 35
  start-page: 97
  year: 1998
  end-page: 106
  ident: bib43
  publication-title: Carbohydr. Polym.
– volume: 14
  start-page: 1800136
  year: 2018
  ident: bib45
  publication-title: Small
– volume: 4
  start-page: 2710
  year: 2013
  end-page: 2723
  ident: bib4
  publication-title: Chem. Sci.
– volume: 108
  start-page: 414
  year: 1985
  end-page: 422
  ident: bib37
  publication-title: J. Colloid Interf. Sci.
– volume: 41
  start-page: 7892
  year: 1990
  end-page: 7895
  ident: bib58
  publication-title: Phys. Rev. B
– volume: 28
  start-page: 7640
  year: 2016
  end-page: 7645
  ident: bib7
  publication-title: Adv. Mater.
– volume: 334
  start-page: 1383
  year: 2011
  ident: bib27
  publication-title: Science
– volume: 135
  start-page: 8452
  year: 2013
  end-page: 8455
  ident: bib53
  publication-title: J. Am. Chem. Soc.
– volume: 90
  start-page: 1261
  year: 1981
  end-page: 1269
  ident: bib35
  publication-title: Chem. Belg.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib55
  publication-title: Phys. Rev. Lett.
– volume: 116
  start-page: 14120
  year: 2016
  end-page: 14136
  ident: bib2
  publication-title: Chem. Rev.
– volume: 62
  start-page: 7512
  year: 1997
  end-page: 7515
  ident: bib40
  publication-title: J. Syn. Organ. Chem.
– volume: 47
  start-page: 3301
  year: 2018
  end-page: 3338
  ident: bib17
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 33766
  year: 2017
  end-page: 33774
  ident: bib47
  publication-title: ACS Appl. Mater. Inter.
– volume: 2
  start-page: 708
  year: 2014
  end-page: 719
  ident: bib42
  publication-title: Mediterr. J. Chem.
– volume: 5
  start-page: 1800064
  year: 2018
  ident: bib10
  publication-title: Adv. Sci.
– volume: 7
  start-page: 9448
  year: 2015
  end-page: 9451
  ident: bib51
  publication-title: Nanoscale
– volume: 31
  start-page: 1904496
  year: 2019
  ident: bib19
  publication-title: Adv. Mater.
– volume: 15
  start-page: 1804212
  year: 2019
  ident: bib5
  publication-title: Small
– volume: 22
  start-page: 1500
  year: 2020
  end-page: 1513
  ident: bib23
  publication-title: CrystEngComm
– volume: 96
  start-page: 273
  year: 2019
  end-page: 280
  ident: bib49
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 14
  start-page: 24
  year: 2014
  end-page: 31
  ident: bib30
  publication-title: Nano Lett.
– volume: 32
  start-page: 39
  year: 2013
  end-page: 42
  ident: bib12
  publication-title: Electrochem. Commun.
– volume: 67
  year: 2003
  ident: bib60
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 23898
  year: 2017
  end-page: 23908
  ident: bib50
  publication-title: J. Mater. Chem. A
– volume: 53
  start-page: 11778
  year: 2017
  end-page: 11781
  ident: bib31
  publication-title: Chem. Commun.
– volume: 174
  start-page: 24
  year: 2006
  end-page: 29
  ident: bib56
  publication-title: Comput. Phys. Commun.
– volume: 44
  start-page: 623
  year: 2015
  end-page: 636
  ident: bib16
  publication-title: Chem. Soc. Rev.
– volume: 54
  start-page: 463
  year: 2018
  end-page: 466
  ident: bib18
  publication-title: Chem. Commun.
– volume: 3
  start-page: 861
  year: 2018
  end-page: 868
  ident: bib22
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 1800083
  year: 2018
  ident: bib25
  publication-title: Small Methods
– volume: 119
  start-page: 83
  year: 1997
  end-page: 92
  ident: bib36
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 11981
  year: 2016
  ident: bib6
  publication-title: Nat. Commun.
– volume: 8
  start-page: 3803
  year: 2018
  end-page: 3811
  ident: bib24
  publication-title: ACS Catal.
– volume: 44
  start-page: 623
  year: 2015
  end-page: 636
  ident: bib20
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 1734
  year: 2016
  end-page: 1743
  ident: bib32
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 1706076
  year: 2018
  ident: bib3
  publication-title: Adv. Mater.
– volume: 241
  start-page: 41
  year: 2017
  end-page: 49
  ident: bib38
  publication-title: Electrochim. Acta
– volume: 46
  start-page: 6671
  year: 1992
  end-page: 6687
  ident: bib57
  publication-title: Phys. Rev. B
– volume: 19
  start-page: 213
  year: 2016
  end-page: 226
  ident: bib15
  publication-title: Mater. Today
– volume: 8
  start-page: 1703585
  year: 2018
  ident: bib48
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 7324
  year: 2018
  end-page: 7343
  ident: bib46
  publication-title: ACS Omega
– volume: 134
  start-page: 17253
  year: 2012
  end-page: 17261
  ident: bib11
  publication-title: J. Am. Chem. Soc.
– volume: 220
  start-page: 567
  year: 2005
  end-page: 570
  ident: bib54
  publication-title: Z. Krist. Cryst. Mater.
– volume: 56
  start-page: 5867
  year: 2017
  ident: 10.1016/j.nanoen.2020.105606_bib28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701477
– volume: 138
  start-page: 6517
  year: 2016
  ident: 10.1016/j.nanoen.2020.105606_bib14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01606
– volume: 9
  start-page: 1734
  year: 2016
  ident: 10.1016/j.nanoen.2020.105606_bib32
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00377J
– volume: 55
  start-page: 2904
  year: 2019
  ident: 10.1016/j.nanoen.2020.105606_bib29
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC08951E
– volume: 96
  start-page: 273
  year: 2019
  ident: 10.1016/j.nanoen.2020.105606_bib49
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2018.11.024
– volume: 44
  start-page: 623
  year: 2015
  ident: 10.1016/j.nanoen.2020.105606_bib16
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00236A
– volume: 8
  start-page: 3803
  year: 2018
  ident: 10.1016/j.nanoen.2020.105606_bib24
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01046
– volume: 220
  start-page: 567
  year: 2005
  ident: 10.1016/j.nanoen.2020.105606_bib54
  publication-title: Z. Krist. Cryst. Mater.
  doi: 10.1524/zkri.220.5.567.65075
– volume: 19
  start-page: 213
  year: 2016
  ident: 10.1016/j.nanoen.2020.105606_bib8
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.10.006
– volume: 3
  start-page: 7324
  year: 2018
  ident: 10.1016/j.nanoen.2020.105606_bib46
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00847
– volume: 15
  start-page: 1804212
  year: 2019
  ident: 10.1016/j.nanoen.2020.105606_bib5
  publication-title: Small
  doi: 10.1002/smll.201804212
– volume: 7
  start-page: 11981
  year: 2016
  ident: 10.1016/j.nanoen.2020.105606_bib6
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11981
– volume: 90
  start-page: 1261
  year: 1981
  ident: 10.1016/j.nanoen.2020.105606_bib35
  publication-title: Chem. Belg.
  doi: 10.1002/bscb.19810901210
– volume: 14
  start-page: 24
  year: 2014
  ident: 10.1016/j.nanoen.2020.105606_bib30
  publication-title: Nano Lett.
  doi: 10.1021/nl4026902
– volume: 119
  start-page: 83
  year: 1997
  ident: 10.1016/j.nanoen.2020.105606_bib36
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(97)00167-0
– volume: 135
  start-page: 8452
  year: 2013
  ident: 10.1016/j.nanoen.2020.105606_bib53
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4027715
– volume: 3
  start-page: 861
  year: 2018
  ident: 10.1016/j.nanoen.2020.105606_bib22
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00342
– volume: 53
  start-page: 11778
  year: 2017
  ident: 10.1016/j.nanoen.2020.105606_bib31
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC07186H
– volume: 2
  start-page: 1800083
  year: 2018
  ident: 10.1016/j.nanoen.2020.105606_bib25
  publication-title: Small Methods
  doi: 10.1002/smtd.201800083
– volume: 35
  start-page: 97
  year: 1998
  ident: 10.1016/j.nanoen.2020.105606_bib43
  publication-title: Carbohydr. Polym.
  doi: 10.1016/S0144-8617(97)00250-6
– volume: 134
  start-page: 17253
  year: 2012
  ident: 10.1016/j.nanoen.2020.105606_bib11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307507a
– volume: 22
  start-page: 1500
  year: 2020
  ident: 10.1016/j.nanoen.2020.105606_bib23
  publication-title: CrystEngComm
  doi: 10.1039/C9CE01883B
– volume: 32
  start-page: 39
  year: 2013
  ident: 10.1016/j.nanoen.2020.105606_bib12
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2013.03.040
– volume: 2
  start-page: 708
  year: 2014
  ident: 10.1016/j.nanoen.2020.105606_bib42
  publication-title: Mediterr. J. Chem.
  doi: 10.13171/mjc.2.6.2014.08.03.23
– volume: 9
  start-page: 1605
  year: 2019
  ident: 10.1016/j.nanoen.2020.105606_bib9
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00191
– volume: 122
  start-page: 264
  year: 1985
  ident: 10.1016/j.nanoen.2020.105606_bib59
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(85)80574-1
– volume: 5
  start-page: 1800064
  year: 2018
  ident: 10.1016/j.nanoen.2020.105606_bib10
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800064
– volume: 46
  start-page: 6671
  year: 1992
  ident: 10.1016/j.nanoen.2020.105606_bib57
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.6671
– volume: 4
  start-page: 2710
  year: 2013
  ident: 10.1016/j.nanoen.2020.105606_bib4
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc50205h
– volume: 14
  start-page: 1800136
  year: 2018
  ident: 10.1016/j.nanoen.2020.105606_bib45
  publication-title: Small
  doi: 10.1002/smll.201800136
– volume: 149
  start-page: 162
  year: 1992
  ident: 10.1016/j.nanoen.2020.105606_bib39
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/0021-9797(92)90401-7
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.nanoen.2020.105606_bib55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 110
  start-page: 6446
  year: 2010
  ident: 10.1016/j.nanoen.2020.105606_bib1
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 3
  start-page: 1515
  year: 2018
  ident: 10.1016/j.nanoen.2020.105606_bib26
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00696
– volume: 41
  start-page: 7892
  year: 1990
  ident: 10.1016/j.nanoen.2020.105606_bib58
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.7892
– volume: 7
  start-page: 12876
  year: 2016
  ident: 10.1016/j.nanoen.2020.105606_bib21
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12876
– volume: 108
  start-page: 414
  year: 1985
  ident: 10.1016/j.nanoen.2020.105606_bib37
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/0021-9797(85)90280-2
– volume: 241
  start-page: 41
  year: 2017
  ident: 10.1016/j.nanoen.2020.105606_bib38
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.04.121
– volume: 8
  start-page: 1703585
  year: 2018
  ident: 10.1016/j.nanoen.2020.105606_bib48
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703585
– volume: 174
  start-page: 24
  year: 2006
  ident: 10.1016/j.nanoen.2020.105606_bib56
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2005.07.011
– volume: 7
  start-page: 9448
  year: 2015
  ident: 10.1016/j.nanoen.2020.105606_bib51
  publication-title: Nanoscale
  doi: 10.1039/C5NR01077B
– start-page: 2693
  year: 1980
  ident: 10.1016/j.nanoen.2020.105606_bib44
  publication-title: J. Chem. Soc. Pak.
– volume: 5
  start-page: 23898
  year: 2017
  ident: 10.1016/j.nanoen.2020.105606_bib50
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08166A
– volume: 47
  start-page: 3301
  year: 2018
  ident: 10.1016/j.nanoen.2020.105606_bib17
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00094H
– volume: 19
  start-page: 213
  year: 2016
  ident: 10.1016/j.nanoen.2020.105606_bib15
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.10.006
– volume: 334
  start-page: 1383
  year: 2011
  ident: 10.1016/j.nanoen.2020.105606_bib27
  publication-title: Science
  doi: 10.1126/science.1212858
– volume: 44
  start-page: 623
  year: 2015
  ident: 10.1016/j.nanoen.2020.105606_bib20
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00236A
– volume: 30
  start-page: 1706076
  year: 2018
  ident: 10.1016/j.nanoen.2020.105606_bib3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706076
– volume: 67
  year: 2003
  ident: 10.1016/j.nanoen.2020.105606_bib60
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.075204
– volume: 15
  start-page: 13737
  year: 2013
  ident: 10.1016/j.nanoen.2020.105606_bib13
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51213d
– volume: 28
  start-page: 7640
  year: 2016
  ident: 10.1016/j.nanoen.2020.105606_bib7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601019
– volume: 31
  start-page: 1904496
  year: 2019
  ident: 10.1016/j.nanoen.2020.105606_bib19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904496
– volume: 6
  start-page: 161
  year: 2008
  ident: 10.1016/j.nanoen.2020.105606_bib41
  publication-title: Cent. Eur. J. Chem.
– volume: 116
  start-page: 14120
  year: 2016
  ident: 10.1016/j.nanoen.2020.105606_bib2
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00398
– volume: 54
  start-page: 463
  year: 2018
  ident: 10.1016/j.nanoen.2020.105606_bib18
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC08843D
– volume: 297
  start-page: 135
  year: 2006
  ident: 10.1016/j.nanoen.2020.105606_bib34
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2005.08.043
– volume: 9
  start-page: 33766
  year: 2017
  ident: 10.1016/j.nanoen.2020.105606_bib47
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.7b07984
– volume: 9
  start-page: 1900881
  year: 2019
  ident: 10.1016/j.nanoen.2020.105606_bib52
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900881
– volume: 62
  start-page: 7512
  year: 1997
  ident: 10.1016/j.nanoen.2020.105606_bib40
  publication-title: J. Syn. Organ. Chem.
  doi: 10.1021/jo971176v
– volume: 45
  start-page: 3905
  year: 2020
  ident: 10.1016/j.nanoen.2020.105606_bib33
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.12.031
SSID ssj0000651712
Score 2.6696372
Snippet The fabrication of porous structure in the ultrathin materials still faces high difficulties. In particular, the precise modulations in the porosity and size...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105606
SubjectTerms Layered double hydroxide
Methyl-isorhodanate
Multivacancies
Oxygen evolution reaction
Targeted atoms
Title Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor
URI https://dx.doi.org/10.1016/j.nanoen.2020.105606
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4jVuTpU2PQx3za4I62K0kaYKT2Y5ZBS_-7b6krUwQBa8lL5TXx3u_pL_3fggd9wKlOLeKSGYp6QWmSwTrKhIoSJgijGzo1RtuRuFw3Luc8EkDnda9MI5WWeX-Mqf7bF096VTe7Myn0849hbMLFZxTiEsXVq6DvRe5KD_5CL7uWaDEBpH_6enWE2dQd9B5mlcms9y4Qai0VKF30kc_VailqjPYQOsVXMT98o02UcNkW2htaYjgNkr7Re57_mfvuOR1w2M8mg4Mvj4b4iLHHhga7LmDb1J7Pd4XDGgV357fYX-B4-aSYHcniyV-eYa9cCn3pDGsfswXO2g8OH84HZJKO4FogFQFcQ2ioYHynkrAVLGV2lKrwPmMWSG05SlnJqQ6UrHlIgwsnHu0VcZoKWjMU7aLmlmemT2EGZNWRoBEhNWu_KsYNhCppiaN0siqFmK1vxJdDRZ3-hazpGaQPSWllxPn5aT0cguRL6t5OVjjj_VR_SmSbwGSQO7_1XL_35YHaJU6CounnB2iZrF4NUeAQQrV9kHWRiv9i6vh6BPz4Nt7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHIAD4inGMweuYTRp2uw4jU0DxpB4SNyqJE3E0GgRK0hc-O04aYuGhEDiGsVR5bq24372h9BRGCjFuVVEMktJGJgTItiJIoEChymi2EaeveFyFA3uwvN7fj-HunUvjINVVr6_9OneW1crrUqbrefxuHVD4e5CBecU7NKZ1TxaCOHzdTQGxx_BV6EFYmwQ-7-eToA4ibqFzuO8Mpnlxk1CpSUNveM--ilEzYSd_ipaqfJF3CkfaQ3NmWwdLc9MEdxAaafIfdP_5B2XwG5YxqNx3-Dh6QAXOfaZocEePPgmtSfknWJIV_FV7xr7Co4bTIJdURZLPH2Cs3DJ96Qx7H7IXzbRXb932x2QijyBaMipCuI6RCMD8T2VkFS1rdSWWgXaZ8wKoS1POTMR1bFqWy6iwMLFR1tljJaCtnnKtlAjyzOzjTBj0soYUhFhtYv_qg0HiFRTk8ZpbFUTsVpfia4mizuCi0lSQ8gek1LLidNyUmq5iciX1HM5WeOP_XH9KpJvFpKA8_9VcuffkodocXB7OUyGZ6OLXbREHZ7F48_2UKN4eTX7kJAU6sAb3CcWut0J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically+targeting+NiFe+LDH+to+create+multivacancies+for+OER+catalysis+with+a+small+organic+anchor&rft.jtitle=Nano+energy&rft.au=Wang%2C+Yaqiong&rft.au=Tao%2C+Shi&rft.au=Lin%2C+He&rft.au=Wang%2C+Gaopeng&rft.date=2021-03-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=81&rft_id=info:doi/10.1016%2Fj.nanoen.2020.105606&rft.externalDocID=S2211285520311794
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon