Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities
The past decade has seen significant progress in artificial intelligence (AI), which has resulted in algorithms being adopted for resolving a variety of problems. However, this success has been met by increasing model complexity and employing black-box AI models that lack transparency. In response t...
Saved in:
Published in | Knowledge-based systems Vol. 263; p. 110273 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The past decade has seen significant progress in artificial intelligence (AI), which has resulted in algorithms being adopted for resolving a variety of problems. However, this success has been met by increasing model complexity and employing black-box AI models that lack transparency. In response to this need, Explainable AI (XAI) has been proposed to make AI more transparent and thus advance the adoption of AI in critical domains. Although there are several reviews of XAI topics in the literature that have identified challenges and potential research directions of XAI, these challenges and research directions are scattered. This study, hence, presents a systematic meta-survey of challenges and future research directions in XAI organized in two themes: (1) general challenges and research directions of XAI and (2) challenges and research directions of XAI based on machine learning life cycle’s phases: design, development, and deployment. We believe that our meta-survey contributes to XAI literature by providing a guide for future exploration in the XAI area. |
---|---|
AbstractList | The past decade has seen significant progress in artificial intelligence (AI), which has resulted in algorithms being adopted for resolving a variety of problems. However, this success has been met by increasing model complexity and employing black-box AI models that lack transparency. In response to this need, Explainable AI (XAI) has been proposed to make AI more transparent and thus advance the adoption of AI in critical domains. Although there are several reviews of XAI topics in the literature that have identified challenges and potential research directions of XAI, these challenges and research directions are scattered. This study, hence, presents a systematic meta-survey of challenges and future research directions in XAI organized in two themes: (1) general challenges and research directions of XAI and (2) challenges and research directions of XAI based on machine learning life cycle’s phases: design, development, and deployment. We believe that our meta-survey contributes to XAI literature by providing a guide for future exploration in the XAI area. |
ArticleNumber | 110273 |
Author | Omlin, Christian Saeed, Waddah |
Author_xml | – sequence: 1 givenname: Waddah orcidid: 0000-0002-2280-4427 surname: Saeed fullname: Saeed, Waddah email: waddah.saeed@dmu.ac.uk organization: Center for Artificial Intelligence (CAIR), University of Agder, Jon Lilletuns vei 9, Grimstad, 4879, Agder, Norway – sequence: 2 givenname: Christian surname: Omlin fullname: Omlin, Christian email: christian.omlin@uia.no organization: Center for Artificial Intelligence (CAIR), University of Agder, Jon Lilletuns vei 9, Grimstad, 4879, Agder, Norway |
BookMark | eNqFkDFLAzEYhoNUsK3-A4eMOtyZ5O6aXAehSNVCwUXBRUKa-6Kp16QkuWL_vVfq5KDTNz0P7_eM0MB5BwhdUpJTQic36_zT-biPOSOsyCkljBcnaEgFZxkvST1AQ1JXJOOkomdoFOOaEMIYFUP0Nv_atso6tWoBzxb46nW2uJ7iGe51CTYqWY03kFQWu7CDPfYG6y4EcAnrD9W24N4hYuUabLrUBcB-u_Uhdc4mC_EcnRrVRrj4uWP0cj9_vnvMlk8Pi7vZMtNFxVJWFOUKGKxMoWotgNQU6rLghuvVRDCtBOcUoKlMTQVhRnPdlNTUQpeVMApEMUbTo1cHH2MAI7VN_XbvUlC2lZTIQyi5lsdQ8hBKHkP1cPkL3ga7UWH_H3Z7xKB_bGchyKgtOA2NDaCTbLz9W_ANalCIaw |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123853 crossref_primary_10_1016_j_caeai_2024_100266 crossref_primary_10_1016_j_knosys_2025_113092 crossref_primary_10_1016_j_knosys_2023_111107 crossref_primary_10_1016_j_isatra_2025_01_013 crossref_primary_10_1016_j_bspc_2024_106457 crossref_primary_10_1007_s42001_024_00248_9 crossref_primary_10_1016_j_engappai_2024_109359 crossref_primary_10_3390_ai4030033 crossref_primary_10_3390_biomedinformatics4020075 crossref_primary_10_1063_5_0226151 crossref_primary_10_1007_s11042_024_18287_9 crossref_primary_10_3389_frobt_2024_1444763 crossref_primary_10_1016_j_dss_2023_114121 crossref_primary_10_1145_3711123 crossref_primary_10_1016_j_acags_2024_100206 crossref_primary_10_1007_s00330_023_09902_8 crossref_primary_10_29109_gujsc_1506335 crossref_primary_10_3390_diagnostics15030273 crossref_primary_10_1016_j_tele_2024_102135 crossref_primary_10_1016_j_ijmedinf_2024_105689 crossref_primary_10_1088_1361_6501_ad36d9 crossref_primary_10_1007_s10462_024_10854_8 crossref_primary_10_1080_17425255_2023_2298827 crossref_primary_10_1016_j_rineng_2024_103036 crossref_primary_10_1111_inm_13303 crossref_primary_10_1016_j_procs_2024_08_026 crossref_primary_10_1186_s13561_023_00422_1 crossref_primary_10_1007_s11042_023_17666_y crossref_primary_10_1016_j_eswa_2024_123993 crossref_primary_10_1016_j_inffus_2024_102457 crossref_primary_10_1016_j_compbiomed_2024_108685 crossref_primary_10_2174_0126662558286756231206062720 crossref_primary_10_1029_2024EF004588 crossref_primary_10_1109_ACCESS_2024_3516045 crossref_primary_10_7240_jeps_1506705 crossref_primary_10_1002_jcsm_13282 crossref_primary_10_1016_j_asoc_2024_112674 crossref_primary_10_1007_s10462_024_10890_4 crossref_primary_10_1007_s43681_025_00668_x crossref_primary_10_1016_j_ecolind_2024_112636 crossref_primary_10_1007_s00138_024_01653_w crossref_primary_10_1016_j_eswa_2023_120042 crossref_primary_10_1016_j_imavis_2024_105298 crossref_primary_10_1109_ACCESS_2024_3418499 crossref_primary_10_1016_j_eswa_2024_124710 crossref_primary_10_1016_j_aiia_2024_12_004 crossref_primary_10_3390_asi7050093 crossref_primary_10_3389_forgp_2025_1538438 crossref_primary_10_1016_j_neucom_2024_127759 crossref_primary_10_1016_j_neucom_2024_128969 crossref_primary_10_1093_radadv_umae003 crossref_primary_10_1145_3696319 crossref_primary_10_1109_ACCESS_2025_3546681 crossref_primary_10_3390_electronics13214152 crossref_primary_10_1016_j_rineng_2024_103290 crossref_primary_10_1016_j_ymssp_2024_111948 crossref_primary_10_31857_S0002338824010122 crossref_primary_10_1016_j_xops_2025_100710 crossref_primary_10_1109_ACCESS_2025_3537859 crossref_primary_10_1080_15309576_2025_2469784 crossref_primary_10_3389_fenvs_2024_1426942 crossref_primary_10_1007_s11063_025_11732_2 crossref_primary_10_1088_1741_2552_ad6593 crossref_primary_10_3390_electronics12214510 crossref_primary_10_1016_j_enganabound_2023_12_024 crossref_primary_10_3390_bs14070616 crossref_primary_10_1016_j_ins_2024_120160 crossref_primary_10_1016_j_knosys_2024_112086 crossref_primary_10_3390_app14072737 crossref_primary_10_1109_TAFFC_2023_3296373 crossref_primary_10_1016_j_knosys_2025_113215 crossref_primary_10_1016_j_jenvman_2024_123364 crossref_primary_10_1162_coli_a_00549 crossref_primary_10_1109_OJVT_2024_3369691 crossref_primary_10_1016_j_chb_2024_108422 crossref_primary_10_1007_s44230_023_00058_8 crossref_primary_10_4018_JGIM_354062 crossref_primary_10_1016_j_eswa_2024_124733 crossref_primary_10_3390_s25030854 crossref_primary_10_3390_app14051811 crossref_primary_10_3390_agronomy13051397 crossref_primary_10_3390_w17050676 crossref_primary_10_1016_j_knosys_2023_111147 crossref_primary_10_1007_s11831_024_10103_9 crossref_primary_10_1007_s12559_024_10373_2 crossref_primary_10_3233_JIFS_219407 crossref_primary_10_1016_j_procs_2024_09_443 crossref_primary_10_1007_s43926_025_00092_x crossref_primary_10_3390_app14198884 crossref_primary_10_1007_s12559_024_10325_w crossref_primary_10_1007_s42484_025_00254_8 crossref_primary_10_1088_1361_6501_ad99f4 crossref_primary_10_1016_j_eswa_2025_126557 crossref_primary_10_1016_j_jrt_2025_100108 crossref_primary_10_1109_TNNLS_2023_3270027 crossref_primary_10_4236_ojapps_2024_149167 crossref_primary_10_1007_s10676_025_09821_w crossref_primary_10_2478_jaiscr_2025_0013 crossref_primary_10_1109_OJCOMS_2025_3534626 crossref_primary_10_1080_09377255_2024_2362012 crossref_primary_10_3389_fdgth_2023_1208350 crossref_primary_10_3390_app15020538 crossref_primary_10_1016_j_imu_2023_101436 crossref_primary_10_1109_ACCESS_2024_3422416 crossref_primary_10_15388_23_INFOR526 crossref_primary_10_1016_j_engappai_2025_110175 crossref_primary_10_1109_ACCESS_2024_3360484 crossref_primary_10_1109_ACCESS_2024_3365135 crossref_primary_10_1007_s10462_024_10916_x crossref_primary_10_1007_s00146_024_02128_2 crossref_primary_10_1145_3719014 crossref_primary_10_1002_jum_16535 crossref_primary_10_51583_IJLTEMAS_2024_130524 crossref_primary_10_1016_j_compind_2024_104233 crossref_primary_10_1109_TKDE_2024_3420180 crossref_primary_10_1371_journal_pone_0308758 crossref_primary_10_3390_smartcities7040064 crossref_primary_10_2478_jaiscr_2023_0018 crossref_primary_10_1007_s40860_024_00240_0 crossref_primary_10_1109_TLT_2024_3383325 crossref_primary_10_1109_ACCESS_2024_3450299 crossref_primary_10_1016_j_ins_2024_121735 crossref_primary_10_3390_medicina61030405 crossref_primary_10_1007_s00146_024_02056_1 crossref_primary_10_1080_01969722_2023_2296251 crossref_primary_10_1002_rse2_415 crossref_primary_10_1145_3604281 crossref_primary_10_3389_frai_2023_1264372 crossref_primary_10_1016_j_compbiomed_2025_109749 crossref_primary_10_1007_s10479_024_06088_0 crossref_primary_10_1007_s10506_024_09397_8 crossref_primary_10_1080_10447318_2024_2400388 crossref_primary_10_1007_s10462_024_10910_3 crossref_primary_10_1016_j_eswa_2023_122778 crossref_primary_10_1108_IJHG_11_2024_0140 crossref_primary_10_1371_journal_pone_0301429 crossref_primary_10_3390_ai6030059 crossref_primary_10_3390_bdcc8110160 crossref_primary_10_1111_cbdd_14262 crossref_primary_10_1021_acs_jcim_4c00720 crossref_primary_10_1109_TAI_2023_3308555 crossref_primary_10_1016_j_cor_2024_106914 crossref_primary_10_1007_s12312_024_01374_1 crossref_primary_10_3390_smartcities7060132 crossref_primary_10_1007_s10639_025_13385_z crossref_primary_10_1016_j_engappai_2025_110363 crossref_primary_10_1134_S1064230724700138 crossref_primary_10_1109_ACCESS_2024_3431437 crossref_primary_10_3390_electronics14050929 crossref_primary_10_1109_ACCESS_2024_3467062 crossref_primary_10_2174_0126662558266152231128060222 crossref_primary_10_1109_ACCESS_2024_3412789 crossref_primary_10_1007_s10489_023_04857_1 crossref_primary_10_3390_electronics13132438 crossref_primary_10_3390_computers13100252 crossref_primary_10_2174_0126662558285074231120063921 crossref_primary_10_1016_j_compind_2024_104128 crossref_primary_10_57197_JDR_2024_0101 crossref_primary_10_1016_j_ejrad_2024_111884 crossref_primary_10_1016_j_scrs_2024_101037 crossref_primary_10_3389_fmed_2025_1529993 crossref_primary_10_1007_s44230_024_00066_2 crossref_primary_10_1371_journal_pone_0315762 crossref_primary_10_1007_s10462_024_10972_3 crossref_primary_10_3390_s24123728 crossref_primary_10_2196_53863 crossref_primary_10_1016_j_compbiomed_2025_109838 crossref_primary_10_1109_ACCESS_2025_3536095 crossref_primary_10_1111_exsy_70017 crossref_primary_10_1007_s00146_024_02014_x crossref_primary_10_1145_3705724 crossref_primary_10_1016_j_oceaneng_2025_120460 crossref_primary_10_1109_TC_2024_3500377 crossref_primary_10_1016_j_knosys_2024_112363 crossref_primary_10_1007_s10462_023_10525_0 crossref_primary_10_18502_kss_v9i32_17439 crossref_primary_10_1007_s13748_025_00367_y crossref_primary_10_1109_TFUZZ_2024_3485212 crossref_primary_10_1016_j_eswa_2023_121365 crossref_primary_10_1016_j_future_2023_12_003 crossref_primary_10_1016_j_knosys_2024_112015 crossref_primary_10_1016_j_ress_2025_110834 crossref_primary_10_1145_3688569 crossref_primary_10_1016_j_cose_2024_103842 crossref_primary_10_1051_sands_2024020 crossref_primary_10_1080_01431161_2024_2349267 crossref_primary_10_1007_s00146_024_02040_9 crossref_primary_10_3390_make6030098 crossref_primary_10_3390_electronics13193806 crossref_primary_10_1002_capr_12764 crossref_primary_10_1016_j_icte_2024_05_007 crossref_primary_10_1186_s12911_024_02649_2 crossref_primary_10_1016_j_compeleceng_2024_109370 crossref_primary_10_32604_cmc_2024_057877 crossref_primary_10_1016_j_knosys_2024_111812 crossref_primary_10_1002_ibra_12174 crossref_primary_10_1016_j_inffus_2024_102424 crossref_primary_10_1109_TMI_2024_3467384 crossref_primary_10_3390_info15010004 crossref_primary_10_1145_3702004 crossref_primary_10_1186_s42400_024_00241_9 crossref_primary_10_1007_s00521_024_10437_2 crossref_primary_10_32604_cmc_2024_046880 crossref_primary_10_1109_ACCESS_2024_3519741 crossref_primary_10_3390_make6010031 crossref_primary_10_1016_j_asoc_2025_112771 crossref_primary_10_1109_TSC_2024_3407588 crossref_primary_10_1145_3674501 crossref_primary_10_3390_math11204272 crossref_primary_10_1016_j_watres_2024_123080 crossref_primary_10_1109_ACCESS_2024_3387547 crossref_primary_10_1016_j_compeleceng_2024_109246 crossref_primary_10_1016_j_aos_2024_101567 crossref_primary_10_1109_TSC_2023_3327822 crossref_primary_10_1007_s11128_024_04391_0 crossref_primary_10_1002_asi_24889 |
Cites_doi | 10.1145/3377325.3377514 10.1016/j.visinf.2020.04.005 10.1145/3236009 10.1016/j.media.2022.102470 10.1109/MCG.2018.042731661 10.3390/make3040048 10.1371/journal.pone.0181142 10.1109/CVPR.2019.00509 10.1109/MC.2020.2996587 10.1109/JPROC.2021.3060483 10.1145/3522747 10.1109/ACCESS.2021.3051315 10.1093/jamia/ocaa053 10.1631/FITEE.1700808 10.1126/scirobotics.abm4183 10.1016/j.clsr.2017.08.007 10.1109/TCDS.2016.2628365 10.1007/s10462-019-09716-5 10.1038/s42256-019-0048-x 10.1016/j.media.2021.101985 10.3390/electronics10050593 10.1109/ACCESS.2020.3032756 10.1109/CVPR.2018.00867 10.3390/app11104573 10.3389/frai.2021.550030 10.1016/0893-6080(95)00086-0 10.1016/j.scitotenv.2021.149797 10.1109/CVPR52688.2022.01514 10.1038/s41586-019-1923-7 10.1109/ACCESS.2021.3070212 10.1073/pnas.1900654116 10.1145/3375627.3375830 10.1145/3485766 10.1148/ryai.2020190043 10.1006/knac.1993.1008 10.1016/j.neucom.2020.08.011 10.1145/3457607 10.1016/j.patter.2020.100049 10.1109/ACCESS.2018.2870052 10.1016/j.jclepro.2015.04.041 10.1016/j.artint.2021.103471 10.1109/COMST.2021.3058573 10.1109/TVCG.2017.2744358 10.1109/TRPMS.2021.3066428 10.1016/j.inffus.2019.12.012 10.1145/3400051.3400058 10.1109/MIC.2020.3031769 10.1145/3236386.3241340 10.1126/scirobotics.aay7120 10.1109/TKDE.2020.2983930 10.1016/j.jbi.2020.103655 10.1016/j.knosys.2015.02.018 10.1177/1473871620904671 10.1016/0950-7051(96)81920-4 10.3390/electronics8080832 10.1145/2939672.2939778 10.1016/j.neucom.2020.01.036 10.1016/j.artint.2018.07.007 10.1038/s41551-018-0324-9 10.3390/app11115088 10.1007/s11257-017-9195-0 10.1007/s10115-013-0679-x 10.1007/BF00993103 10.1109/ACCESS.2022.3197671 10.1613/jair.1.12228 10.3233/SW-190382 10.1109/CVPR.2018.00915 10.1016/j.imavis.2021.104194 10.1109/TVCG.2017.2744938 10.1145/3457188 10.1109/TKDE.2016.2606428 10.1561/1500000066 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) |
Copyright_xml | – notice: 2023 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.knosys.2023.110273 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
ExternalDocumentID | 10_1016_j_knosys_2023_110273 S0950705123000230 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SSH UHS WUQ |
ID | FETCH-LOGICAL-c352t-334be2ebf3a9c8e091e9437f7cb682ca8771eed5f91802fc7cd41f98c458fae83 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Thu Apr 24 22:59:03 EDT 2025 Tue Jul 01 00:20:24 EDT 2025 Fri Feb 23 02:39:42 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Meta-survey Black-box Explainable AI (XAI) Machine learning Responsible AI Interpretable AI |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-334be2ebf3a9c8e091e9437f7cb682ca8771eed5f91802fc7cd41f98c458fae83 |
ORCID | 0000-0002-2280-4427 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0950705123000230 |
ParticipantIDs | crossref_citationtrail_10_1016_j_knosys_2023_110273 crossref_primary_10_1016_j_knosys_2023_110273 elsevier_sciencedirect_doi_10_1016_j_knosys_2023_110273 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-05 |
PublicationDateYYYYMMDD | 2023-03-05 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Towell, Shavlik (b121) 1993; 13 M. Danilevsky, K. Qian, R. Aharonov, Y. Katsis, B. Kawas, P. Sen, A Survey of the State of Explainable AI for Natural Language Processing, in: Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, 2020, pp. 447–459. Weller (b112) 2019 Lu, Garcia, Hansen, Gleicher, Maciejewski (b77) 2017 Štrumbelj, Kononenko (b89) 2014; 41 Tudorache (b158) 2020; 11 Xie, Niu, Liu, Chen, Tang, Yu (b118) 2021; 69 Liang, Li, Yan, Li, Jiang (b105) 2021; 419 Zhang, Chen (b114) 2020; 14 D.H. Park, L.A. Hendricks, Z. Akata, A. Rohrbach, B. Schiele, T. Darrell, M. Rohrbach, Multimodal Explanations: Justifying Decisions and Pointing to the Evidence, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018. Vilone, Longo (b70) 2020 Van Deemter (b95) 2012 Wells, Bednarz (b110) 2021; 4 S.J. Oh, M. Augustin, B. Schiele, M. Fritz, Towards Reverse-Engineering Black-Box Neural Networks, in: International Conference on Learning Representations, 2018. Lipton (b19) 2018; 16 He, Wang, Miao, Sun (b39) 2021; 112 Daniel (b96) 2017 Lee, Yune, Mansouri, Kim, Tajmir, Guerrier, Ebert, Pomerantz, Romero, Kamalian (b129) 2019; 3 Goodman, Flaxman (b7) 2017; 38 Confalonieri, Coba, Wagner, Besold (b13) 2021; 11 Black, Nederpelt (b117) 2020 M.T. Ribeiro, S. Singh, C. Guestrin, ” Why should i trust you?” Explaining the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–1144. Moraffah, Karami, Guo, Raglin, Liu (b74) 2020; 22 Saraswat, Bhattacharya, Verma, Prasad, Tanwar, Sharma, Bokoro, Sharma (b80) 2022 Friedman (b98) 2001 Senior, Evans, Jumper, Kirkpatrick, Sifre, Green, Qin, Žídek, Nelson, Bridgland (b142) 2020; 577 Nguyen, Yosinski, Clune (b17) 2015 Ras, Xie, van Gerven, Doran (b50) 2022; 73 Gunning, Stefik, Choi, Miller, Stumpf, Yang (b34) 2019; 4 D. Slack, S. Hilgard, E. Jia, S. Singh, H. Lakkaraju, Fooling lime and shap: Adversarial attacks on post hoc explanation methods, in: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 2020, pp. 180–186. Rawal, Mccoy, Rawat, Sadler, Amant (b58) 2021; 1 Messina, Pino, Parra, Soto, Besa, Uribe, Andía, Tejos, Prieto, Capurro (b52) 2022; 54 Mueller, Hoffman, Clancey, Emrey, Klein (b60) 2019 Payrovnaziri, Chen, Rengifo-Moreno, Miller, Bian, Chen, Liu, He (b9) 2020; 27 Madsen, Reddy, Chandar (b56) 2022 Hall, Gill, Schmidt (b130) 2019 D.L. Arendt, N. Nur, Z. Huang, G. Fair, W. Dou, Parallel embeddings: a visualization technique for contrasting learned representations, in: Proceedings of the 25th International Conference on Intelligent User Interfaces, 2020, pp. 259–274. Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus (b16) 2013 Akata, Balliet, de Rijke, Dignum, Dignum, Eiben, Fokkens, Grossi, Hindriks, Hoos, Hung, Jonker, Monz, Neerincx, Oliehoek, Prakken, Schlobach, van der Gaag, van Harmelen, van Hoof, van Riemsdijk, van Wynsberghe, Verbrugge, Verheij, Vossen, Welling (b21) 2020; 53 Mi, Li, Zhou (b46) 2020; 8 D. Gunning, Broad Agency Announcement Explainable Artificial Intelligence (XAI), Technical report, 2016. Lucieri, Bajwa, Dengel, Ahmed (b59) 2020 Sai, Mohankumar, Khapra (b94) 2022; 55 Tjoa, Guan (b109) 2020 He, Ma, Wang (b104) 2020; 387 O. Biran, C. Cotton, Explanation and justification in machine learning: A survey, in: IJCAI-17 Workshop on Explainable AI, Vol. 8, XAI, (1) 2017, pp. 8–13. Pezzotti, Höllt, Van Gemert, Lelieveldt, Eisemann, Vilanova (b125) 2018; 24 Cheng, Wang, Li (b64) 2020 Carvalho, Pereira, Cardoso (b26) 2019; 8 Joshi, Walambe, Kotecha (b108) 2021; 9 Zhang, Tiňo, Leonardis, Tang (b23) 2020 Zhou, Gandomi, Chen, Holzinger (b27) 2021; 10 Fe-Fei, Fergus, Perona (b119) 2003 Grant, Wischik (b144) 2020; 88 J.M. Darias, B. Díaz-Agudo, J.A. Recio-García, A Systematic Review on Model-agnostic XAI Libraries, in: ICCBR Workshops, 2021, pp. 28–39. Chatzimparmpas, Martins, Jusufi, Kerren (b24) 2020; 19 Barredo Arrieta, Díaz-Rodríguez, Del Ser, Bennetot, Tabik, Barbado, Garcia, Gil-Lopez, Molina, Benjamins, Chatila, Herrera (b2) 2020; 58 Beaudouin, Bloch, Bounie, Clémençon, d’Alché Buc, Eagan, Maxwell, Mozharovskyi, Parekh (b100) 2020 Preece (b35) 2018 Dao, Lee (b101) 2020 Li, Cao, Shi, Bai, Gao, Qiu, Wang, Gao, Zhang, Xue, Chen (b47) 2020 Samek, Wiegand, Müller (b14) 2017 Burkart, Huber (b18) 2021; 70 Zeiler, Fergus (b131) 2014 Choo, Liu (b102) 2018; 38 Naiseh, Jiang, Ma, Ali (b106) 2020 Murdoch, Singh, Kumbier, Abbasi-Asl, Yu (b90) 2019; 116 Salehi, Selamat, Fujita (b29) 2015; 80 Gade, Geyik, Kenthapadi, Mithal, Taly (b6) 2020 Qazi, Fayaz, Wadi, Raj, Rahim, Khan (b31) 2015; 104 Buhrmester, Münch, Arens (b51) 2021; 3 Omlin, Giles (b122) 1996; 9 Reyes, Meier, Pereira, Silva, Dahlweid, Tengg-Kobligk, Summers, Wiest (b43) 2020; 2 Ahmad, Eckert, Teredesai (b116) 2019 Seeliger, Pfaff, Krcmar (b49) 2019 Gulum, Trombley, Kantardzic (b54) 2021; 11 Panigutti, Perotti, Pedreschi (b155) 2020 Islam, Eberle, Ghafoor, Ahmed (b61) 2021 Liu, Shi, Cao, Zhu, Liu (b126) 2018; 24 Deeks (b82) 2019; 119 LeDell, Poirier (b152) 2020 Ras, van Gerven, Haselager (b36) 2018 Dazeley, Vamplew, Cruz (b75) 2021 Miller (b67) 2019; 267 Keele (b28) 2007 Huang, Kroening, Ruan, Sharp, Sun, Thamo, Wu, Yi (b111) 2020; 37 Williamson, Feng (b91) 2020 Samek, Montavon, Lapuschkin, Anders, Müller (b53) 2021; 109 Tomsett, Preece, Braines, Cerutti, Chakraborty, Srivastava, Pearson, Kaplan (b81) 2020; 1 Arras, Horn, Montavon, Müller, Samek (b15) 2017; 12 Ahmad, Teredesai, Eckert (b32) 2018 Bénard, Biau, Da Veiga, Scornet (b92) 2022 Zhang, Zhu (b103) 2018; 19 Confalonieri, Weyde, Besold, Moscoso del Prado Martín (b156) 2021; 296 Liu, Kailkhura, Loveland, Han (b141) 2019 Rajapaksha, Bergmeir, Hyndman (b85) 2022 Dikshit, Pradhan (b87) 2021; 801 Płońska, Płoński (b153) 2021 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b97) 2017 Rudin (b25) 2019; 1 Langley, Meadows, Sridharan, Choi (b150) 2017 Mehrabi, Morstatter, Saxena, Lerman, Galstyan (b40) 2021; 54 Konečný, McMahan, Yu, Richtárik, Suresh, Bacon (b148) 2016 T. Orekondy, B. Schiele, M. Fritz, Knockoff Nets: Stealing Functionality of Black-Box Models, in: Conference on Computer Vision and Pattern Recognition, 2019. Belle, Papantonis (b65) 2021 Gaur, Faldu, Sheth (b120) 2021; 25 Chakraborty, Tomsett, Raghavendra, Harborne, Alzantot, Cerutti, Srivastava, Preece, Julier, Rao, Kelley, Braines, Sensoy, Willis, Gurram (b22) 2017 van der Velden, Kuijf, Gilhuijs, Viergever (b127) 2022; 79 C.F. Baumgartner, L.M. Koch, K.C. Tezcan, J.X. Ang, E. Konukoglu, Visual feature attribution using wasserstein gans, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8309–8319. Xuan, Zhang, Kwon, Ma (b134) 2022; 28 Longo, Goebel, Lecue, Kieseberg, Holzinger (b44) 2020 Yuan, Yu, Gui, Ji (b72) 2022 Wallkötter, Tulli, Castellano, Paiva, Chetouani (b57) 2021; 10 Stepin, Alonso, Catala, Pereira-Fariña (b76) 2021; 9 Xie, Katariya, Tang, Huang, Rao, Subbian, Ji (b86) 2022 Li, Fujiwara, Choi, Kim, Ma (b132) 2020; 4 Neerincx, van der Waa, Kaptein, van Diggelen (b151) 2018 Wahab, Mourad, Otrok, Taleb (b147) 2021; 23 Rojat, Puget, Filliat, Del Ser, Gelin, Díaz-Rodríguez (b73) 2021 Jiang, Yang, Gao, Zhang, Ma, Qian (b128) 2019 Fox, Long, Magazzeni (b33) 2017 A. Kotriwala, B. Klöpper, M. Dix, G. Gopalakrishnan, D. Ziobro, A. Potschka, XAI for Operations in the Process Industry-Applications, Theses, and Research Directions, in: AAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering, 2021. Doshi-Velez, Kim (b5) 2017 Doshi-Velez, Kortz, Budish, Bavitz, Gershman, O’Brien, Scott, Schieber, Waldo, Weinberger (b99) 2017 Krening, Harrison, Feigh, Isbell, Riedl, Thomaz (b143) 2017; 9 Molnar, Casalicchio, Bischl (b42) 2020 Samek, Müller (b8) 2019 Guidotti, Monreale, Ruggieri, Turini, Giannotti, Pedreschi (b10) 2018; 51 Antoniadi, Du, Guendouz, Wei, Mazo, Becker, Mooney (b55) 2021; 11 Molnar (b11) 2019 Naiseh, Jiang, Ma, Ali (b62) 2020 Markus, Kors, Rijnbeek (b20) 2021; 113 Murtaza, Shuib, Abdul Wahab, Mujtaba, Nweke, Al-garadi, Zulfiqar, Raza, Azmi (b30) 2020; 53 Wang, Yeung (b135) 2016; 28 Gruber (b154) 1993; 5 (b78) 2019 Holzinger, Kieseberg, Weippl, Tjoa (b113) 2018 Schwalbe, Finzel (b37) 2021 Zilke, Loza Mencía, Janssen (b124) 2016 Andrews, Diederich, Tickle (b123) 1995; 8 L. Veiber, K. Allix, Y. Arslan, T.F. Bissyandé, J. Klein, Challenges towards production-ready explainable machine learning, in: 2020 {USENIX} Conference on Operational Machine Learning, OpML 20, 2020. Fan, Xiong, Li, Wang (b38) 2021 Došilović, Brčić, Hlupić (b41) 2018 Villaronga, Kieseberg, Li (b145) 2018; 34 Kovalerchuk, Ahmad, Teredesai (b68) 2021 Atakishiyev, Salameh, Yao, Goebel (b66) 2021 Yuan, Gao, Zheng, Edmonds, Wu, Rossano, Lu, Zhu, Zhu (b136) 2022; 7 Huang, Joseph, Nelson, Rubinstein, Tygar (b139) 2011 Hoffmann, Magazzeni (b149) 2019 Reiter (b93) 2019 Choi, Bahadori, Schuetz, Stewart, Sun (b157) 2016; vol. 56 Adadi, Berrada (b1) 2018; 6 Anjomshoae, Najjar, Calvaresi, Främling (b115) 2019 Pocevičiūtė, Eilertsen, Lundström (b45) 2020 Nunes, Jannach (b48) 2017; 27 McMahan, Moore, Ramage, Hampson, y Arcas (b146) 2017 S. Chen, Q. Zhao, REX: Reasoning-aware and Grounded Explanation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 15586–15595. Abdul, Vermeulen, Wang, Lim, Kankanhalli (b69) 2018 Madsen (10.1016/j.knosys.2023.110273_b56) 2022 Lee (10.1016/j.knosys.2023.110273_b129) 2019; 3 Rajapaksha (10.1016/j.knosys.2023.110273_b85) 2022 10.1016/j.knosys.2023.110273_b12 Vilone (10.1016/j.knosys.2023.110273_b70) 2020 Towell (10.1016/j.knosys.2023.110273_b121) 1993; 13 Vaswani (10.1016/j.knosys.2023.110273_b97) 2017 Langley (10.1016/j.knosys.2023.110273_b150) 2017 10.1016/j.knosys.2023.110273_b107 Chatzimparmpas (10.1016/j.knosys.2023.110273_b24) 2020; 19 Yuan (10.1016/j.knosys.2023.110273_b72) 2022 Ras (10.1016/j.knosys.2023.110273_b50) 2022; 73 Goodman (10.1016/j.knosys.2023.110273_b7) 2017; 38 Antoniadi (10.1016/j.knosys.2023.110273_b55) 2021; 11 Chakraborty (10.1016/j.knosys.2023.110273_b22) 2017 Xie (10.1016/j.knosys.2023.110273_b118) 2021; 69 Hoffmann (10.1016/j.knosys.2023.110273_b149) 2019 Buhrmester (10.1016/j.knosys.2023.110273_b51) 2021; 3 Fox (10.1016/j.knosys.2023.110273_b33) 2017 Carvalho (10.1016/j.knosys.2023.110273_b26) 2019; 8 Kovalerchuk (10.1016/j.knosys.2023.110273_b68) 2021 Salehi (10.1016/j.knosys.2023.110273_b29) 2015; 80 10.1016/j.knosys.2023.110273_b88 Zeiler (10.1016/j.knosys.2023.110273_b131) 2014 Lipton (10.1016/j.knosys.2023.110273_b19) 2018; 16 Wang (10.1016/j.knosys.2023.110273_b135) 2016; 28 Gunning (10.1016/j.knosys.2023.110273_b34) 2019; 4 Rawal (10.1016/j.knosys.2023.110273_b58) 2021; 1 Guidotti (10.1016/j.knosys.2023.110273_b10) 2018; 51 Miller (10.1016/j.knosys.2023.110273_b67) 2019; 267 Grant (10.1016/j.knosys.2023.110273_b144) 2020; 88 Lu (10.1016/j.knosys.2023.110273_b77) 2017 10.1016/j.knosys.2023.110273_b3 10.1016/j.knosys.2023.110273_b4 Deeks (10.1016/j.knosys.2023.110273_b82) 2019; 119 van der Velden (10.1016/j.knosys.2023.110273_b127) 2022; 79 Gade (10.1016/j.knosys.2023.110273_b6) 2020 Choi (10.1016/j.knosys.2023.110273_b157) 2016; vol. 56 Mueller (10.1016/j.knosys.2023.110273_b60) 2019 Burkart (10.1016/j.knosys.2023.110273_b18) 2021; 70 Došilović (10.1016/j.knosys.2023.110273_b41) 2018 Seeliger (10.1016/j.knosys.2023.110273_b49) 2019 Mi (10.1016/j.knosys.2023.110273_b46) 2020; 8 LeDell (10.1016/j.knosys.2023.110273_b152) 2020 Payrovnaziri (10.1016/j.knosys.2023.110273_b9) 2020; 27 Messina (10.1016/j.knosys.2023.110273_b52) 2022; 54 Li (10.1016/j.knosys.2023.110273_b132) 2020; 4 Choo (10.1016/j.knosys.2023.110273_b102) 2018; 38 Islam (10.1016/j.knosys.2023.110273_b61) 2021 Daniel (10.1016/j.knosys.2023.110273_b96) 2017 Liu (10.1016/j.knosys.2023.110273_b126) 2018; 24 Lucieri (10.1016/j.knosys.2023.110273_b59) 2020 Fe-Fei (10.1016/j.knosys.2023.110273_b119) 2003 Black (10.1016/j.knosys.2023.110273_b117) 2020 Ahmad (10.1016/j.knosys.2023.110273_b32) 2018 Wallkötter (10.1016/j.knosys.2023.110273_b57) 2021; 10 Konečný (10.1016/j.knosys.2023.110273_b148) 2016 Pocevičiūtė (10.1016/j.knosys.2023.110273_b45) 2020 Ahmad (10.1016/j.knosys.2023.110273_b116) 2019 Sai (10.1016/j.knosys.2023.110273_b94) 2022; 55 Zhou (10.1016/j.knosys.2023.110273_b27) 2021; 10 Confalonieri (10.1016/j.knosys.2023.110273_b13) 2021; 11 Reyes (10.1016/j.knosys.2023.110273_b43) 2020; 2 Beaudouin (10.1016/j.knosys.2023.110273_b100) 2020 Molnar (10.1016/j.knosys.2023.110273_b11) 2019 Rudin (10.1016/j.knosys.2023.110273_b25) 2019; 1 Dikshit (10.1016/j.knosys.2023.110273_b87) 2021; 801 Qazi (10.1016/j.knosys.2023.110273_b31) 2015; 104 Barredo Arrieta (10.1016/j.knosys.2023.110273_b2) 2020; 58 Zilke (10.1016/j.knosys.2023.110273_b124) 2016 Bénard (10.1016/j.knosys.2023.110273_b92) 2022 (10.1016/j.knosys.2023.110273_b78) 2019 Zhang (10.1016/j.knosys.2023.110273_b103) 2018; 19 Samek (10.1016/j.knosys.2023.110273_b8) 2019 Naiseh (10.1016/j.knosys.2023.110273_b106) 2020 Tjoa (10.1016/j.knosys.2023.110273_b109) 2020 Confalonieri (10.1016/j.knosys.2023.110273_b156) 2021; 296 Krening (10.1016/j.knosys.2023.110273_b143) 2017; 9 Xuan (10.1016/j.knosys.2023.110273_b134) 2022; 28 Saraswat (10.1016/j.knosys.2023.110273_b80) 2022 Van Deemter (10.1016/j.knosys.2023.110273_b95) 2012 Gruber (10.1016/j.knosys.2023.110273_b154) 1993; 5 Murdoch (10.1016/j.knosys.2023.110273_b90) 2019; 116 Friedman (10.1016/j.knosys.2023.110273_b98) 2001 Senior (10.1016/j.knosys.2023.110273_b142) 2020; 577 Jiang (10.1016/j.knosys.2023.110273_b128) 2019 Liu (10.1016/j.knosys.2023.110273_b141) 2019 Moraffah (10.1016/j.knosys.2023.110273_b74) 2020; 22 Gaur (10.1016/j.knosys.2023.110273_b120) 2021; 25 10.1016/j.knosys.2023.110273_b140 Preece (10.1016/j.knosys.2023.110273_b35) 2018 Adadi (10.1016/j.knosys.2023.110273_b1) 2018; 6 Molnar (10.1016/j.knosys.2023.110273_b42) 2020 Omlin (10.1016/j.knosys.2023.110273_b122) 1996; 9 Gulum (10.1016/j.knosys.2023.110273_b54) 2021; 11 Doshi-Velez (10.1016/j.knosys.2023.110273_b99) 2017 McMahan (10.1016/j.knosys.2023.110273_b146) 2017 Keele (10.1016/j.knosys.2023.110273_b28) 2007 Atakishiyev (10.1016/j.knosys.2023.110273_b66) 2021 Pezzotti (10.1016/j.knosys.2023.110273_b125) 2018; 24 Wahab (10.1016/j.knosys.2023.110273_b147) 2021; 23 Dazeley (10.1016/j.knosys.2023.110273_b75) 2021 Murtaza (10.1016/j.knosys.2023.110273_b30) 2020; 53 Stepin (10.1016/j.knosys.2023.110273_b76) 2021; 9 Huang (10.1016/j.knosys.2023.110273_b139) 2011 Zhang (10.1016/j.knosys.2023.110273_b23) 2020 He (10.1016/j.knosys.2023.110273_b104) 2020; 387 Tudorache (10.1016/j.knosys.2023.110273_b158) 2020; 11 Arras (10.1016/j.knosys.2023.110273_b15) 2017; 12 Płońska (10.1016/j.knosys.2023.110273_b153) 2021 Naiseh (10.1016/j.knosys.2023.110273_b62) 2020 Joshi (10.1016/j.knosys.2023.110273_b108) 2021; 9 Štrumbelj (10.1016/j.knosys.2023.110273_b89) 2014; 41 Neerincx (10.1016/j.knosys.2023.110273_b151) 2018 Tomsett (10.1016/j.knosys.2023.110273_b81) 2020; 1 Xie (10.1016/j.knosys.2023.110273_b86) 2022 Reiter (10.1016/j.knosys.2023.110273_b93) 2019 Hall (10.1016/j.knosys.2023.110273_b130) 2019 Abdul (10.1016/j.knosys.2023.110273_b69) 2018 Huang (10.1016/j.knosys.2023.110273_b111) 2020; 37 Panigutti (10.1016/j.knosys.2023.110273_b155) 2020 Belle (10.1016/j.knosys.2023.110273_b65) 2021 Andrews (10.1016/j.knosys.2023.110273_b123) 1995; 8 Weller (10.1016/j.knosys.2023.110273_b112) 2019 10.1016/j.knosys.2023.110273_b79 Akata (10.1016/j.knosys.2023.110273_b21) 2020; 53 Cheng (10.1016/j.knosys.2023.110273_b64) 2020 10.1016/j.knosys.2023.110273_b84 10.1016/j.knosys.2023.110273_b83 Longo (10.1016/j.knosys.2023.110273_b44) 2020 Nguyen (10.1016/j.knosys.2023.110273_b17) 2015 Mehrabi (10.1016/j.knosys.2023.110273_b40) 2021; 54 Fan (10.1016/j.knosys.2023.110273_b38) 2021 Dao (10.1016/j.knosys.2023.110273_b101) 2020 Samek (10.1016/j.knosys.2023.110273_b14) 2017 Szegedy (10.1016/j.knosys.2023.110273_b16) 2013 Anjomshoae (10.1016/j.knosys.2023.110273_b115) 2019 Williamson (10.1016/j.knosys.2023.110273_b91) 2020 10.1016/j.knosys.2023.110273_b133 He (10.1016/j.knosys.2023.110273_b39) 2021; 112 10.1016/j.knosys.2023.110273_b63 Liang (10.1016/j.knosys.2023.110273_b105) 2021; 419 Yuan (10.1016/j.knosys.2023.110273_b136) 2022; 7 Li (10.1016/j.knosys.2023.110273_b47) 2020 Nunes (10.1016/j.knosys.2023.110273_b48) 2017; 27 Villaronga (10.1016/j.knosys.2023.110273_b145) 2018; 34 Holzinger (10.1016/j.knosys.2023.110273_b113) 2018 10.1016/j.knosys.2023.110273_b71 Wells (10.1016/j.knosys.2023.110273_b110) 2021; 4 Markus (10.1016/j.knosys.2023.110273_b20) 2021; 113 Schwalbe (10.1016/j.knosys.2023.110273_b37) 2021 Doshi-Velez (10.1016/j.knosys.2023.110273_b5) 2017 Ras (10.1016/j.knosys.2023.110273_b36) 2018 Samek (10.1016/j.knosys.2023.110273_b53) 2021; 109 10.1016/j.knosys.2023.110273_b138 Rojat (10.1016/j.knosys.2023.110273_b73) 2021 Zhang (10.1016/j.knosys.2023.110273_b114) 2020; 14 10.1016/j.knosys.2023.110273_b137 |
References_xml | – volume: 8 start-page: 373 year: 1995 end-page: 389 ident: b123 article-title: Survey and critique of techniques for extracting rules from trained artificial neural networks publication-title: Knowl.-Based Syst. – year: 2021 ident: b37 article-title: A comprehensive taxonomy for explainable artificial intelligence: A systematic survey of surveys on methods and concepts – reference: A. Kotriwala, B. Klöpper, M. Dix, G. Gopalakrishnan, D. Ziobro, A. Potschka, XAI for Operations in the Process Industry-Applications, Theses, and Research Directions, in: AAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering, 2021. – volume: 34 start-page: 304 year: 2018 end-page: 313 ident: b145 article-title: Humans forget, machines remember: Artificial intelligence and the right to be forgotten publication-title: Comput. Law Secur. Rev. – year: 2020 ident: b47 article-title: A survey of data-driven and knowledge-aware explainable AI publication-title: IEEE Trans. Knowl. Data Eng. – volume: 14 start-page: 1 year: 2020 end-page: 101 ident: b114 article-title: Explainable recommendation: A survey and new perspectives publication-title: Found. Trends® Inform. Retr. – volume: vol. 56 start-page: 301 year: 2016 end-page: 318 ident: b157 article-title: Doctor AI: Predicting clinical events via recurrent neural networks publication-title: Proceedings of the 1st Machine Learning for Healthcare Conference – start-page: 1189 year: 2001 end-page: 1232 ident: b98 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Statist. – start-page: 475 year: 2020 end-page: 486 ident: b64 article-title: Interpretability of deep learning: A survey publication-title: The International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery – volume: 9 start-page: 59800 year: 2021 end-page: 59821 ident: b108 article-title: A review on explainability in multimodal deep neural nets publication-title: IEEE Access – volume: 577 start-page: 706 year: 2020 end-page: 710 ident: b142 article-title: Improved protein structure prediction using potentials from deep learning publication-title: Nature – volume: 10 start-page: 593 year: 2021 ident: b27 article-title: Evaluating the quality of machine learning explanations: A survey on methods and metrics publication-title: Electronics – volume: 54 year: 2022 ident: b52 article-title: A survey on deep learning and explainability for automatic report generation from medical images publication-title: ACM Comput. Surv. – start-page: 1 year: 2018 end-page: 18 ident: b69 article-title: Trends and trajectories for explainable, accountable and intelligible systems: An HCI research agenda publication-title: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems – reference: M. Danilevsky, K. Qian, R. Aharonov, Y. Katsis, B. Kawas, P. Sen, A Survey of the State of Explainable AI for Natural Language Processing, in: Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, 2020, pp. 447–459. – reference: S. Chen, Q. Zhao, REX: Reasoning-aware and Grounded Explanation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 15586–15595. – volume: 27 start-page: 1173 year: 2020 end-page: 1185 ident: b9 article-title: Explainable artificial intelligence models using real-world electronic health record data: a systematic scoping review publication-title: J. Am. Med. Inform. Assoc. – volume: 2 year: 2020 ident: b43 article-title: On the interpretability of artificial intelligence in radiology: Challenges and opportunities publication-title: Radiol. Artif. Intell. – volume: 8 year: 2019 ident: b26 article-title: Machine learning interpretability: A survey on methods and metrics publication-title: Electronics – year: 2022 ident: b86 article-title: Task-agnostic graph explanations – year: 2017 ident: b33 article-title: Explainable planning – start-page: 204 year: 2018 end-page: 214 ident: b151 article-title: Using perceptual and cognitive explanations for enhanced human-agent team performance publication-title: Engineering Psychology and Cognitive Ergonomics – year: 2019 ident: b78 article-title: Explainable AI: The Basics – start-page: 1 year: 2018 end-page: 8 ident: b113 article-title: Current advances, trends and challenges of machine learning and knowledge extraction: From machine learning to explainable AI publication-title: Machine Learning and Knowledge Extraction – start-page: 56 year: 2020 end-page: 88 ident: b45 article-title: Survey of XAI in digital pathology publication-title: Artificial Intelligence and Machine Learning for Digital Pathology: State-of-the-Art and Future Challenges – start-page: 0210 year: 2018 end-page: 0215 ident: b41 article-title: Explainable artificial intelligence: A survey publication-title: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics – volume: 387 start-page: 346 year: 2020 end-page: 358 ident: b104 article-title: Extract interpretability-accuracy balanced rules from artificial neural networks: A review publication-title: Neurocomputing – start-page: 23 year: 2019 end-page: 40 ident: b112 article-title: Transparency: Motivations and challenges publication-title: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning – volume: 296 year: 2021 ident: b156 article-title: Using ontologies to enhance human understandability of global post-hoc explanations of black-box models publication-title: Artificial Intelligence – start-page: 39 year: 2021 ident: b65 article-title: Principles and practice of explainable machine learning publication-title: Front. Big Data – volume: 28 start-page: 2326 year: 2022 end-page: 2337 ident: b134 article-title: VAC-CNN: A visual analytics system for comparative studies of deep convolutional neural networks publication-title: IEEE Trans. Vis. Comput. Graphics – reference: T. Orekondy, B. Schiele, M. Fritz, Knockoff Nets: Stealing Functionality of Black-Box Models, in: Conference on Computer Vision and Pattern Recognition, 2019. – volume: 11 year: 2021 ident: b13 article-title: A historical perspective of explainable artificial intelligence publication-title: WIREs Data Min. Knowl. Discov. – volume: 53 start-page: 1655 year: 2020 end-page: 1720 ident: b30 article-title: Deep learning-based breast cancer classification through medical imaging modalities: state of the art and research challenges publication-title: Artif. Intell. Rev. – year: 2007 ident: b28 article-title: Guidelines for Performing Systematic Literature Reviews in Software Engineering – start-page: 5563 year: 2022 end-page: 5582 ident: b92 article-title: SHAFF: Fast and consistent shapley effect estimates via random forests publication-title: International Conference on Artificial Intelligence and Statistics – volume: 24 start-page: 98 year: 2018 end-page: 108 ident: b125 article-title: DeepEyes: Progressive visual analytics for designing deep neural networks publication-title: IEEE Trans. Vis. Comput. Graphics – start-page: 5998 year: 2017 end-page: 6008 ident: b97 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – reference: S.J. Oh, M. Augustin, B. Schiele, M. Fritz, Towards Reverse-Engineering Black-Box Neural Networks, in: International Conference on Learning Representations, 2018. – volume: 1 year: 2020 ident: b81 article-title: Rapid trust calibration through interpretable and uncertainty-aware AI publication-title: Patterns – start-page: 1134 year: 2003 end-page: 1141 ident: b119 article-title: A Bayesian approach to unsupervised one-shot learning of object categories publication-title: Proceedings Ninth IEEE International Conference on Computer Vision, Vol. 2 – start-page: 1 year: 2020 end-page: 16 ident: b44 article-title: Explainable artificial intelligence: Concepts, applications, research challenges and visions publication-title: Machine Learning and Knowledge Extraction – volume: 267 start-page: 1 year: 2019 end-page: 38 ident: b67 article-title: Explanation in artificial intelligence: Insights from the social sciences publication-title: Artificial Intelligence – volume: 19 start-page: 207 year: 2020 end-page: 233 ident: b24 article-title: A survey of surveys on the use of visualization for interpreting machine learning models publication-title: Inf. Vis. – year: 2013 ident: b16 article-title: Intriguing properties of neural networks – year: 2019 ident: b116 article-title: The challenge of imputation in explainable artificial intelligence models publication-title: Proceedings of the Workshop on Artificial Intelligence Safety – year: 2021 ident: b75 article-title: Explainable reinforcement learning for broad-xai: A conceptual framework and survey – year: 2017 ident: b96 article-title: Thinking, fast and slow – volume: 22 start-page: 18 year: 2020 end-page: 33 ident: b74 article-title: Causal interpretability for machine learning - problems, methods and evaluation publication-title: SIGKDD Explor. Newsl. – volume: 9 start-page: 11974 year: 2021 end-page: 12001 ident: b76 article-title: A survey of contrastive and counterfactual explanation generation methods for explainable artificial intelligence publication-title: IEEE Access – volume: 10 year: 2021 ident: b57 article-title: Explainable embodied agents through social cues: A review publication-title: J. Hum.-Robot Interact. – year: 2022 ident: b80 article-title: Explainable AI for healthcare 5.0: Opportunities and challenges publication-title: IEEE Access – volume: 55 start-page: 1 year: 2022 end-page: 39 ident: b94 article-title: A survey of evaluation metrics used for NLG systems publication-title: ACM Comput. Surv. – start-page: 43 year: 2011 end-page: 58 ident: b139 article-title: Adversarial machine learning publication-title: Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence – start-page: 1 year: 2019 end-page: 16 ident: b49 article-title: Semantic web technologies for explainable machine learning models: A literature review publication-title: PROFILES/SEMEX@ ISWC, Vol. 2465 – volume: 3 start-page: 966 year: 2021 end-page: 989 ident: b51 article-title: Analysis of explainers of black box deep neural networks for computer vision: A survey publication-title: Mach. Learn. Knowl. Extr. – volume: 16 start-page: 31 year: 2018 end-page: 57 ident: b19 article-title: The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery publication-title: Queue – year: 2021 ident: b73 article-title: Explainable artificial intelligence (xai) on timeseries data: A survey – volume: 25 start-page: 51 year: 2021 end-page: 59 ident: b120 article-title: Semantics of the black-box: Can knowledge graphs help make deep learning systems more interpretable and explainable? publication-title: IEEE Internet Comput. – year: 2017 ident: b14 article-title: Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models – start-page: 19 year: 2018 end-page: 36 ident: b36 article-title: Explanation methods in deep learning: Users, values, concerns and challenges publication-title: Explainable and Interpretable Models in Computer Vision and Machine Learning – volume: 6 start-page: 52138 year: 2018 end-page: 52160 ident: b1 article-title: Peeking inside the black-box: A survey on explainable artificial intelligence (XAI) publication-title: IEEE Access – volume: 113 year: 2021 ident: b20 article-title: The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies publication-title: J. Biomed. Inform. – volume: 88 start-page: 1350 year: 2020 ident: b144 article-title: Show us the data: Privacy, explainability, and why the law can’t have both publication-title: Geo. Wash. L. Rev. – year: 2022 ident: b56 article-title: Post-hoc interpretability for neural NLP: A survey publication-title: ACM Comput. Surv. – year: 2021 ident: b66 article-title: Explainable artificial intelligence for autonomous driving: A comprehensive overview and field guide for future research directions – start-page: 1078 year: 2019 end-page: 1088 ident: b115 article-title: Explainable agents and robots: Results from a systematic literature review publication-title: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems – year: 2020 ident: b59 article-title: Achievements and challenges in explaining deep learning based computer-aided diagnosis systems – volume: 37 year: 2020 ident: b111 article-title: A survey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence, and interpretability publication-title: Comp. Sci. Rev. – volume: 3 start-page: 173 year: 2019 end-page: 182 ident: b129 article-title: An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets publication-title: Nat. Biomed. Eng. – volume: 801 year: 2021 ident: b87 article-title: Interpretable and explainable AI (XAI) model for spatial drought prediction publication-title: Sci. Total Environ. – start-page: 277 year: 2019 end-page: 282 ident: b149 article-title: Explainable AI planning (XAIP): Overview and the case of contrastive explanation (extended abstract) publication-title: Reasoning Web. Explainable Artificial Intelligence: 15th International Summer School 2019, Bolzano, Italy, September 20–24, 2019, Tutorial Lectures – reference: M.T. Ribeiro, S. Singh, C. Guestrin, ” Why should i trust you?” Explaining the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–1144. – start-page: 629 year: 2020 end-page: 639 ident: b155 article-title: Doctor XAI: An ontology-based approach to black-box sequential data classification explanations publication-title: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency – volume: 11 start-page: 5088 year: 2021 ident: b55 article-title: Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: a systematic review publication-title: Appl. Sci. – volume: 4 start-page: 122 year: 2020 end-page: 131 ident: b132 article-title: A visual analytics system for multi-model comparison on clinical data predictions publication-title: Vis. Inform. – volume: 23 start-page: 1342 year: 2021 end-page: 1397 ident: b147 article-title: Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems publication-title: IEEE Commun. Surv. Tutor. – year: 2020 ident: b117 article-title: Dimensions of Data Quality (DDQ) – year: 2017 ident: b5 article-title: Towards a rigorous science of interpretable machine learning – volume: 419 start-page: 168 year: 2021 end-page: 182 ident: b105 article-title: Explaining the black-box model: A survey of local interpretation methods for deep neural networks publication-title: Neurocomputing – volume: 11 start-page: 125 year: 2020 end-page: 138 ident: b158 article-title: Ontology engineering: Current state, challenges, and future directions publication-title: Semant. Web – volume: 1 start-page: 206 year: 2019 end-page: 215 ident: b25 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat. Mach. Intell. – start-page: 1 year: 2019 end-page: 5 ident: b141 article-title: Generative counterfactual introspection for explainable deep learning publication-title: 2019 IEEE Global Conference on Signal and Information Processing – start-page: 63 year: 2018 end-page: 72 ident: b35 article-title: Asking ‘Why’ in AI: Explainability of intelligent systems – perspectives and challenges publication-title: Intelligent Systems in Accounting, Finance and Management, Vol. 25, No. 2 – reference: L. Veiber, K. Allix, Y. Arslan, T.F. Bissyandé, J. Klein, Challenges towards production-ready explainable machine learning, in: 2020 {USENIX} Conference on Operational Machine Learning, OpML 20, 2020. – volume: 109 start-page: 247 year: 2021 end-page: 278 ident: b53 article-title: Explaining deep neural networks and beyond: A review of methods and applications publication-title: Proc. IEEE – volume: 41 start-page: 647 year: 2014 end-page: 665 ident: b89 article-title: Explaining prediction models and individual predictions with feature contributions publication-title: Knowl. Inf. Syst. – volume: 104 start-page: 1 year: 2015 end-page: 12 ident: b31 article-title: The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review publication-title: J. Clean. Prod. – volume: 73 year: 2022 ident: b50 article-title: Explainable deep learning: A field guide for the uninitiated publication-title: J. Artif. Int. Res. – year: 2021 ident: b61 article-title: Explainable artificial intelligence approaches: A survey – start-page: 1 year: 2020 end-page: 21 ident: b109 article-title: A survey on explainable artificial intelligence (XAI): Toward medical XAI publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 1273 year: 2017 end-page: 1282 ident: b146 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Artificial Intelligence and Statistics – volume: 27 start-page: 393 year: 2017 end-page: 444 ident: b48 article-title: A systematic review and taxonomy of explanations in decision support and recommender systems publication-title: User Model. User Adapt. Interact. – reference: D.H. Park, L.A. Hendricks, Z. Akata, A. Rohrbach, B. Schiele, T. Darrell, M. Rohrbach, Multimodal Explanations: Justifying Decisions and Pointing to the Evidence, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018. – start-page: 3 year: 2019 end-page: 7 ident: b93 article-title: Natural language generation challenges for explainable AI publication-title: Proceedings of the 1st Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence – reference: O. Biran, C. Cotton, Explanation and justification in machine learning: A survey, in: IJCAI-17 Workshop on Explainable AI, Vol. 8, XAI, (1) 2017, pp. 8–13. – volume: 5 start-page: 199 year: 1993 end-page: 220 ident: b154 article-title: A translation approach to portable ontology specifications publication-title: Knowl. Acquis. – start-page: 539 year: 2017 end-page: 562 ident: b77 article-title: The state-of-the-art in predictive visual analytics publication-title: Computer Graphics Forum, Vol. 36, No. 3 – volume: 7 start-page: eabm4183 year: 2022 ident: b136 article-title: In situ bidirectional human-robot value alignment publication-title: Science Robotics – year: 2019 ident: b130 article-title: Proposed guidelines for the responsible use of explainable machine learning – volume: 1 start-page: 1 year: 2021 ident: b58 article-title: Recent advances in trustworthy explainable artificial intelligence: Status, challenges and perspectives publication-title: IEEE Trans. Artif. Intell. – year: 2019 ident: b11 article-title: Interpretable Machine Learning – start-page: 212 year: 2020 end-page: 228 ident: b106 article-title: Explainable recommendations in intelligent systems: Delivery methods, modalities and risks publication-title: Research Challenges in Information Science – volume: 28 start-page: 3395 year: 2016 end-page: 3408 ident: b135 article-title: Towards Bayesian deep learning: A framework and some existing methods publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 5 year: 2019 end-page: 22 ident: b8 article-title: Towards explainable artificial intelligence publication-title: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning – volume: 38 start-page: 84 year: 2018 end-page: 92 ident: b102 article-title: Visual analytics for explainable deep learning publication-title: IEEE Comput. Graph. Appl. – volume: 70 start-page: 245 year: 2021 end-page: 317 ident: b18 article-title: A survey on the explainability of supervised machine learning publication-title: J. Artificial Intelligence Res. – volume: 112 year: 2021 ident: b39 article-title: Interpretable visual reasoning: A survey publication-title: Image Vis. Comput. – reference: D. Gunning, Broad Agency Announcement Explainable Artificial Intelligence (XAI), Technical report, 2016. – year: 2020 ident: b152 article-title: H2O autoML: Scalable automatic machine learning publication-title: 7th ICML Workshop on Automated Machine Learning – volume: 12 year: 2017 ident: b15 article-title: ” What is relevant in a text document?”: An interpretable machine learning approach publication-title: PLoS One – start-page: 1 year: 2022 end-page: 19 ident: b72 article-title: Explainability in graph neural networks: A taxonomic survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: J.M. Darias, B. Díaz-Agudo, J.A. Recio-García, A Systematic Review on Model-agnostic XAI Libraries, in: ICCBR Workshops, 2021, pp. 28–39. – start-page: 417 year: 2020 end-page: 431 ident: b42 article-title: Interpretable machine learning – A brief history, state-of-the-art and challenges publication-title: ECML PKDD 2020 Workshops – volume: 80 start-page: 78 year: 2015 end-page: 97 ident: b29 article-title: Systematic mapping study on granular computing publication-title: Knowl.-Based Syst. – volume: 4 year: 2019 ident: b34 article-title: XAI—Explainable artificial intelligence publication-title: Science Robotics – volume: 24 start-page: 77 year: 2018 end-page: 87 ident: b126 article-title: Analyzing the training processes of deep generative models publication-title: IEEE Trans. Vis. Comput. Graphics – start-page: 217 year: 2021 end-page: 267 ident: b68 article-title: Survey of explainable machine learning with visual and granular methods beyond quasi-explanations publication-title: Interpretable Artificial Intelligence: A Perspective of Granular Computing – volume: 119 start-page: 1829 year: 2019 end-page: 1850 ident: b82 article-title: The judicial demand for explainable artificial intelligence publication-title: Columbia Law Rev. – volume: 116 start-page: 22071 year: 2019 end-page: 22080 ident: b90 article-title: Definitions, methods, and applications in interpretable machine learning publication-title: Proc. Natl. Acad. Sci. – start-page: 447 year: 2018 ident: b32 article-title: Interpretable machine learning in healthcare publication-title: 2018 IEEE International Conference on Healthcare Informatics – volume: 38 start-page: 50 year: 2017 end-page: 57 ident: b7 article-title: European union regulations on algorithmic decision-making and a “right to explanation” publication-title: AI Mag. – volume: 79 year: 2022 ident: b127 article-title: Explainable artificial intelligence (XAI) in deep learning-based medical image analysis publication-title: Med. Image Anal. – volume: 51 year: 2018 ident: b10 article-title: A survey of methods for explaining black box models publication-title: ACM Comput. Surv. – start-page: 10282 year: 2020 end-page: 10291 ident: b91 article-title: Efficient nonparametric statistical inference on population feature importance using Shapley values publication-title: International Conference on Machine Learning – start-page: 4762 year: 2017 end-page: 4763 ident: b150 article-title: Explainable agency for intelligent autonomous systems publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence – year: 2021 ident: b153 article-title: MLJAR: State-of-the-art Automated Machine Learning Framework for Tabular Data. Version 0.10.3 – year: 2016 ident: b148 article-title: Federated learning: Strategies for improving communication efficiency – year: 2020 ident: b70 article-title: Explainable artificial intelligence: a systematic review – year: 2020 ident: b100 article-title: Flexible and context-specific AI explainability: a multidisciplinary approach – volume: 4 start-page: 48 year: 2021 ident: b110 article-title: Explainable AI and reinforcement learning—A systematic review of current approaches and trends publication-title: Front. Artif. Intell. – volume: 13 start-page: 71 year: 1993 end-page: 101 ident: b121 article-title: Extracting refined rules from knowledge-based neural networks publication-title: Mach. Learn. – year: 2019 ident: b60 article-title: Explanation in human-AI systems: A literature meta-review, synopsis of key ideas and publications, and bibliography for explainable AI – start-page: 427 year: 2015 end-page: 436 ident: b17 article-title: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 2045 year: 2019 end-page: 2048 ident: b128 article-title: An interpretable ensemble deep learning model for diabetic retinopathy disease classification publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society – year: 2017 ident: b99 article-title: Accountability of AI under the law: The role of explanation – start-page: 699 year: 2020 ident: b6 article-title: Explainable AI in industry: Practical challenges and lessons learned: Implications tutorial publication-title: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency – start-page: 818 year: 2014 end-page: 833 ident: b131 article-title: Visualizing and understanding convolutional networks publication-title: Computer Vision – ECCV 2014 – volume: 58 start-page: 82 year: 2020 end-page: 115 ident: b2 article-title: Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI publication-title: Inf. Fusion – volume: 54 year: 2021 ident: b40 article-title: A survey on bias and fairness in machine learning publication-title: ACM Comput. Surv. – volume: 8 start-page: 191969 year: 2020 end-page: 191985 ident: b46 article-title: Review study of interpretation methods for future interpretable machine learning publication-title: IEEE Access – start-page: 518 year: 2020 end-page: 533 ident: b62 article-title: Personalising explainable recommendations: Literature and conceptualisation publication-title: Trends and Innovations in Information Systems and Technologies – reference: D. Slack, S. Hilgard, E. Jia, S. Singh, H. Lakkaraju, Fooling lime and shap: Adversarial attacks on post hoc explanation methods, in: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 2020, pp. 180–186. – year: 2020 ident: b23 article-title: A survey on neural network interpretability – volume: 11 year: 2021 ident: b54 article-title: A review of explainable deep learning cancer detection models in medical imaging publication-title: Appl. Sci. – year: 2020 ident: b101 article-title: Demystifying deep neural networks through interpretation: A survey – volume: 53 start-page: 18 year: 2020 end-page: 28 ident: b21 article-title: A research agenda for hybrid intelligence: Augmenting human intellect with collaborative, adaptive, responsible, and explainable artificial intelligence publication-title: Computer – volume: 9 start-page: 44 year: 2017 end-page: 55 ident: b143 article-title: Learning from explanations using sentiment and advice in RL publication-title: IEEE Trans. Cogn. Dev. Syst. – start-page: 1 year: 2017 end-page: 6 ident: b22 article-title: Interpretability of deep learning models: A survey of results publication-title: 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation – start-page: 457 year: 2016 end-page: 473 ident: b124 article-title: DeepRED – rule extraction from deep neural networks publication-title: Discovery Science – year: 2021 ident: b38 article-title: On interpretability of artificial neural networks: A survey publication-title: IEEE Trans. Radiat. Plasma Med. Sci. – volume: 19 start-page: 27 year: 2018 end-page: 39 ident: b103 article-title: Visual interpretability for deep learning: a survey publication-title: Front. Inf. Technol. Electron. Eng. – year: 2022 ident: b85 article-title: LoMEF: A framework to produce local explanations for global model time series forecasts publication-title: Int. J. Forecast. – reference: C.F. Baumgartner, L.M. Koch, K.C. Tezcan, J.X. Ang, E. Konukoglu, Visual feature attribution using wasserstein gans, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8309–8319. – volume: 69 year: 2021 ident: b118 article-title: A survey on incorporating domain knowledge into deep learning for medical image analysis publication-title: Med. Image Anal. – volume: 9 start-page: 41 year: 1996 end-page: 52 ident: b122 article-title: Extraction of rules from discrete-time recurrent neural networks publication-title: Neural Netw. – year: 2012 ident: b95 article-title: Not Exactly: In Praise of Vagueness – reference: D.L. Arendt, N. Nur, Z. Huang, G. Fair, W. Dou, Parallel embeddings: a visualization technique for contrasting learned representations, in: Proceedings of the 25th International Conference on Intelligent User Interfaces, 2020, pp. 259–274. – start-page: 212 year: 2020 ident: 10.1016/j.knosys.2023.110273_b106 article-title: Explainable recommendations in intelligent systems: Delivery methods, modalities and risks – start-page: 19 year: 2018 ident: 10.1016/j.knosys.2023.110273_b36 article-title: Explanation methods in deep learning: Users, values, concerns and challenges – year: 2017 ident: 10.1016/j.knosys.2023.110273_b99 – ident: 10.1016/j.knosys.2023.110273_b133 doi: 10.1145/3377325.3377514 – ident: 10.1016/j.knosys.2023.110273_b107 – year: 2016 ident: 10.1016/j.knosys.2023.110273_b148 – year: 2020 ident: 10.1016/j.knosys.2023.110273_b152 article-title: H2O autoML: Scalable automatic machine learning – volume: 4 start-page: 122 issue: 2 year: 2020 ident: 10.1016/j.knosys.2023.110273_b132 article-title: A visual analytics system for multi-model comparison on clinical data predictions publication-title: Vis. Inform. doi: 10.1016/j.visinf.2020.04.005 – volume: 51 issue: 5 year: 2018 ident: 10.1016/j.knosys.2023.110273_b10 article-title: A survey of methods for explaining black box models publication-title: ACM Comput. Surv. doi: 10.1145/3236009 – volume: 79 year: 2022 ident: 10.1016/j.knosys.2023.110273_b127 article-title: Explainable artificial intelligence (XAI) in deep learning-based medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102470 – volume: 38 start-page: 84 issue: 04 year: 2018 ident: 10.1016/j.knosys.2023.110273_b102 article-title: Visual analytics for explainable deep learning publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/MCG.2018.042731661 – volume: 38 start-page: 50 issue: 3 year: 2017 ident: 10.1016/j.knosys.2023.110273_b7 article-title: European union regulations on algorithmic decision-making and a “right to explanation” publication-title: AI Mag. – volume: 3 start-page: 966 issue: 4 year: 2021 ident: 10.1016/j.knosys.2023.110273_b51 article-title: Analysis of explainers of black box deep neural networks for computer vision: A survey publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make3040048 – volume: 12 issue: 8 year: 2017 ident: 10.1016/j.knosys.2023.110273_b15 article-title: ” What is relevant in a text document?”: An interpretable machine learning approach publication-title: PLoS One doi: 10.1371/journal.pone.0181142 – ident: 10.1016/j.knosys.2023.110273_b137 doi: 10.1109/CVPR.2019.00509 – start-page: 447 year: 2018 ident: 10.1016/j.knosys.2023.110273_b32 article-title: Interpretable machine learning in healthcare – year: 2017 ident: 10.1016/j.knosys.2023.110273_b14 – year: 2019 ident: 10.1016/j.knosys.2023.110273_b130 – year: 2017 ident: 10.1016/j.knosys.2023.110273_b96 – volume: 53 start-page: 18 issue: 8 year: 2020 ident: 10.1016/j.knosys.2023.110273_b21 article-title: A research agenda for hybrid intelligence: Augmenting human intellect with collaborative, adaptive, responsible, and explainable artificial intelligence publication-title: Computer doi: 10.1109/MC.2020.2996587 – volume: 109 start-page: 247 issue: 3 year: 2021 ident: 10.1016/j.knosys.2023.110273_b53 article-title: Explaining deep neural networks and beyond: A review of methods and applications publication-title: Proc. IEEE doi: 10.1109/JPROC.2021.3060483 – volume: 54 issue: 10s year: 2022 ident: 10.1016/j.knosys.2023.110273_b52 article-title: A survey on deep learning and explainability for automatic report generation from medical images publication-title: ACM Comput. Surv. doi: 10.1145/3522747 – start-page: 10282 year: 2020 ident: 10.1016/j.knosys.2023.110273_b91 article-title: Efficient nonparametric statistical inference on population feature importance using Shapley values – volume: 37 year: 2020 ident: 10.1016/j.knosys.2023.110273_b111 article-title: A survey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence, and interpretability publication-title: Comp. Sci. Rev. – volume: 9 start-page: 11974 year: 2021 ident: 10.1016/j.knosys.2023.110273_b76 article-title: A survey of contrastive and counterfactual explanation generation methods for explainable artificial intelligence publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3051315 – ident: 10.1016/j.knosys.2023.110273_b71 – start-page: 629 year: 2020 ident: 10.1016/j.knosys.2023.110273_b155 article-title: Doctor XAI: An ontology-based approach to black-box sequential data classification explanations – volume: 27 start-page: 1173 issue: 7 year: 2020 ident: 10.1016/j.knosys.2023.110273_b9 article-title: Explainable artificial intelligence models using real-world electronic health record data: a systematic scoping review publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocaa053 – year: 2017 ident: 10.1016/j.knosys.2023.110273_b5 – year: 2020 ident: 10.1016/j.knosys.2023.110273_b23 – start-page: 818 year: 2014 ident: 10.1016/j.knosys.2023.110273_b131 article-title: Visualizing and understanding convolutional networks – volume: vol. 56 start-page: 301 year: 2016 ident: 10.1016/j.knosys.2023.110273_b157 article-title: Doctor AI: Predicting clinical events via recurrent neural networks – volume: 19 start-page: 27 year: 2018 ident: 10.1016/j.knosys.2023.110273_b103 article-title: Visual interpretability for deep learning: a survey publication-title: Front. Inf. Technol. Electron. Eng. doi: 10.1631/FITEE.1700808 – start-page: 699 year: 2020 ident: 10.1016/j.knosys.2023.110273_b6 article-title: Explainable AI in industry: Practical challenges and lessons learned: Implications tutorial – start-page: 56 year: 2020 ident: 10.1016/j.knosys.2023.110273_b45 article-title: Survey of XAI in digital pathology – year: 2021 ident: 10.1016/j.knosys.2023.110273_b61 – volume: 7 start-page: eabm4183 issue: 68 year: 2022 ident: 10.1016/j.knosys.2023.110273_b136 article-title: In situ bidirectional human-robot value alignment publication-title: Science Robotics doi: 10.1126/scirobotics.abm4183 – volume: 34 start-page: 304 issue: 2 year: 2018 ident: 10.1016/j.knosys.2023.110273_b145 article-title: Humans forget, machines remember: Artificial intelligence and the right to be forgotten publication-title: Comput. Law Secur. Rev. doi: 10.1016/j.clsr.2017.08.007 – start-page: 1 year: 2019 ident: 10.1016/j.knosys.2023.110273_b49 article-title: Semantic web technologies for explainable machine learning models: A literature review – year: 2020 ident: 10.1016/j.knosys.2023.110273_b101 – volume: 9 start-page: 44 issue: 1 year: 2017 ident: 10.1016/j.knosys.2023.110273_b143 article-title: Learning from explanations using sentiment and advice in RL publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2016.2628365 – volume: 53 start-page: 1655 issue: 3 year: 2020 ident: 10.1016/j.knosys.2023.110273_b30 article-title: Deep learning-based breast cancer classification through medical imaging modalities: state of the art and research challenges publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09716-5 – start-page: 417 year: 2020 ident: 10.1016/j.knosys.2023.110273_b42 article-title: Interpretable machine learning – A brief history, state-of-the-art and challenges – start-page: 475 year: 2020 ident: 10.1016/j.knosys.2023.110273_b64 article-title: Interpretability of deep learning: A survey – volume: 1 start-page: 206 issue: 5 year: 2019 ident: 10.1016/j.knosys.2023.110273_b25 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0048-x – volume: 28 start-page: 2326 issue: 6 year: 2022 ident: 10.1016/j.knosys.2023.110273_b134 article-title: VAC-CNN: A visual analytics system for comparative studies of deep convolutional neural networks publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2021 ident: 10.1016/j.knosys.2023.110273_b153 – volume: 69 year: 2021 ident: 10.1016/j.knosys.2023.110273_b118 article-title: A survey on incorporating domain knowledge into deep learning for medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.101985 – start-page: 2045 year: 2019 ident: 10.1016/j.knosys.2023.110273_b128 article-title: An interpretable ensemble deep learning model for diabetic retinopathy disease classification – volume: 11 issue: 1 year: 2021 ident: 10.1016/j.knosys.2023.110273_b13 article-title: A historical perspective of explainable artificial intelligence publication-title: WIREs Data Min. Knowl. Discov. – volume: 10 start-page: 593 issue: 5 year: 2021 ident: 10.1016/j.knosys.2023.110273_b27 article-title: Evaluating the quality of machine learning explanations: A survey on methods and metrics publication-title: Electronics doi: 10.3390/electronics10050593 – volume: 88 start-page: 1350 year: 2020 ident: 10.1016/j.knosys.2023.110273_b144 article-title: Show us the data: Privacy, explainability, and why the law can’t have both publication-title: Geo. Wash. L. Rev. – ident: 10.1016/j.knosys.2023.110273_b12 – volume: 8 start-page: 191969 year: 2020 ident: 10.1016/j.knosys.2023.110273_b46 article-title: Review study of interpretation methods for future interpretable machine learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3032756 – ident: 10.1016/j.knosys.2023.110273_b140 doi: 10.1109/CVPR.2018.00867 – start-page: 5998 year: 2017 ident: 10.1016/j.knosys.2023.110273_b97 article-title: Attention is all you need – start-page: 1 year: 2020 ident: 10.1016/j.knosys.2023.110273_b109 article-title: A survey on explainable artificial intelligence (XAI): Toward medical XAI publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 11 issue: 10 year: 2021 ident: 10.1016/j.knosys.2023.110273_b54 article-title: A review of explainable deep learning cancer detection models in medical imaging publication-title: Appl. Sci. doi: 10.3390/app11104573 – year: 2019 ident: 10.1016/j.knosys.2023.110273_b11 – volume: 4 start-page: 48 year: 2021 ident: 10.1016/j.knosys.2023.110273_b110 article-title: Explainable AI and reinforcement learning—A systematic review of current approaches and trends publication-title: Front. Artif. Intell. doi: 10.3389/frai.2021.550030 – ident: 10.1016/j.knosys.2023.110273_b63 – volume: 9 start-page: 41 issue: 1 year: 1996 ident: 10.1016/j.knosys.2023.110273_b122 article-title: Extraction of rules from discrete-time recurrent neural networks publication-title: Neural Netw. doi: 10.1016/0893-6080(95)00086-0 – year: 2012 ident: 10.1016/j.knosys.2023.110273_b95 – year: 2019 ident: 10.1016/j.knosys.2023.110273_b78 – start-page: 1 year: 2020 ident: 10.1016/j.knosys.2023.110273_b44 article-title: Explainable artificial intelligence: Concepts, applications, research challenges and visions – start-page: 1273 year: 2017 ident: 10.1016/j.knosys.2023.110273_b146 article-title: Communication-efficient learning of deep networks from decentralized data – start-page: 427 year: 2015 ident: 10.1016/j.knosys.2023.110273_b17 article-title: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images – start-page: 0210 year: 2018 ident: 10.1016/j.knosys.2023.110273_b41 article-title: Explainable artificial intelligence: A survey – volume: 801 year: 2021 ident: 10.1016/j.knosys.2023.110273_b87 article-title: Interpretable and explainable AI (XAI) model for spatial drought prediction publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.149797 – ident: 10.1016/j.knosys.2023.110273_b84 doi: 10.1109/CVPR52688.2022.01514 – start-page: 518 year: 2020 ident: 10.1016/j.knosys.2023.110273_b62 article-title: Personalising explainable recommendations: Literature and conceptualisation – volume: 577 start-page: 706 issue: 7792 year: 2020 ident: 10.1016/j.knosys.2023.110273_b142 article-title: Improved protein structure prediction using potentials from deep learning publication-title: Nature doi: 10.1038/s41586-019-1923-7 – ident: 10.1016/j.knosys.2023.110273_b4 – year: 2021 ident: 10.1016/j.knosys.2023.110273_b37 – volume: 9 start-page: 59800 year: 2021 ident: 10.1016/j.knosys.2023.110273_b108 article-title: A review on explainability in multimodal deep neural nets publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3070212 – volume: 116 start-page: 22071 issue: 44 year: 2019 ident: 10.1016/j.knosys.2023.110273_b90 article-title: Definitions, methods, and applications in interpretable machine learning publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1900654116 – year: 2020 ident: 10.1016/j.knosys.2023.110273_b100 – start-page: 277 year: 2019 ident: 10.1016/j.knosys.2023.110273_b149 article-title: Explainable AI planning (XAIP): Overview and the case of contrastive explanation (extended abstract) – start-page: 1 year: 2017 ident: 10.1016/j.knosys.2023.110273_b22 article-title: Interpretability of deep learning models: A survey of results – year: 2021 ident: 10.1016/j.knosys.2023.110273_b73 – ident: 10.1016/j.knosys.2023.110273_b79 doi: 10.1145/3375627.3375830 – year: 2007 ident: 10.1016/j.knosys.2023.110273_b28 – start-page: 39 year: 2021 ident: 10.1016/j.knosys.2023.110273_b65 article-title: Principles and practice of explainable machine learning publication-title: Front. Big Data – year: 2022 ident: 10.1016/j.knosys.2023.110273_b56 article-title: Post-hoc interpretability for neural NLP: A survey publication-title: ACM Comput. Surv. – volume: 55 start-page: 1 issue: 2 year: 2022 ident: 10.1016/j.knosys.2023.110273_b94 article-title: A survey of evaluation metrics used for NLG systems publication-title: ACM Comput. Surv. doi: 10.1145/3485766 – volume: 2 issue: 3 year: 2020 ident: 10.1016/j.knosys.2023.110273_b43 article-title: On the interpretability of artificial intelligence in radiology: Challenges and opportunities publication-title: Radiol. Artif. Intell. doi: 10.1148/ryai.2020190043 – volume: 5 start-page: 199 issue: 2 year: 1993 ident: 10.1016/j.knosys.2023.110273_b154 article-title: A translation approach to portable ontology specifications publication-title: Knowl. Acquis. doi: 10.1006/knac.1993.1008 – volume: 419 start-page: 168 year: 2021 ident: 10.1016/j.knosys.2023.110273_b105 article-title: Explaining the black-box model: A survey of local interpretation methods for deep neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.08.011 – start-page: 4762 year: 2017 ident: 10.1016/j.knosys.2023.110273_b150 article-title: Explainable agency for intelligent autonomous systems – volume: 54 issue: 6 year: 2021 ident: 10.1016/j.knosys.2023.110273_b40 article-title: A survey on bias and fairness in machine learning publication-title: ACM Comput. Surv. doi: 10.1145/3457607 – volume: 1 issue: 4 year: 2020 ident: 10.1016/j.knosys.2023.110273_b81 article-title: Rapid trust calibration through interpretable and uncertainty-aware AI publication-title: Patterns doi: 10.1016/j.patter.2020.100049 – start-page: 5563 year: 2022 ident: 10.1016/j.knosys.2023.110273_b92 article-title: SHAFF: Fast and consistent shapley effect estimates via random forests – volume: 119 start-page: 1829 issue: 7 year: 2019 ident: 10.1016/j.knosys.2023.110273_b82 article-title: The judicial demand for explainable artificial intelligence publication-title: Columbia Law Rev. – volume: 6 start-page: 52138 year: 2018 ident: 10.1016/j.knosys.2023.110273_b1 article-title: Peeking inside the black-box: A survey on explainable artificial intelligence (XAI) publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – start-page: 3 year: 2019 ident: 10.1016/j.knosys.2023.110273_b93 article-title: Natural language generation challenges for explainable AI – volume: 104 start-page: 1 year: 2015 ident: 10.1016/j.knosys.2023.110273_b31 article-title: The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.04.041 – start-page: 63 year: 2018 ident: 10.1016/j.knosys.2023.110273_b35 article-title: Asking ‘Why’ in AI: Explainability of intelligent systems – perspectives and challenges – year: 2020 ident: 10.1016/j.knosys.2023.110273_b117 – volume: 296 year: 2021 ident: 10.1016/j.knosys.2023.110273_b156 article-title: Using ontologies to enhance human understandability of global post-hoc explanations of black-box models publication-title: Artificial Intelligence doi: 10.1016/j.artint.2021.103471 – year: 2020 ident: 10.1016/j.knosys.2023.110273_b70 – volume: 23 start-page: 1342 issue: 2 year: 2021 ident: 10.1016/j.knosys.2023.110273_b147 article-title: Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2021.3058573 – year: 2021 ident: 10.1016/j.knosys.2023.110273_b75 – volume: 24 start-page: 98 issue: 1 year: 2018 ident: 10.1016/j.knosys.2023.110273_b125 article-title: DeepEyes: Progressive visual analytics for designing deep neural networks publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2017.2744358 – year: 2021 ident: 10.1016/j.knosys.2023.110273_b38 article-title: On interpretability of artificial neural networks: A survey publication-title: IEEE Trans. Radiat. Plasma Med. Sci. doi: 10.1109/TRPMS.2021.3066428 – start-page: 1 year: 2019 ident: 10.1016/j.knosys.2023.110273_b141 article-title: Generative counterfactual introspection for explainable deep learning – volume: 58 start-page: 82 year: 2020 ident: 10.1016/j.knosys.2023.110273_b2 article-title: Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.12.012 – start-page: 43 year: 2011 ident: 10.1016/j.knosys.2023.110273_b139 article-title: Adversarial machine learning – start-page: 1189 year: 2001 ident: 10.1016/j.knosys.2023.110273_b98 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Statist. – volume: 22 start-page: 18 issue: 1 year: 2020 ident: 10.1016/j.knosys.2023.110273_b74 article-title: Causal interpretability for machine learning - problems, methods and evaluation publication-title: SIGKDD Explor. Newsl. doi: 10.1145/3400051.3400058 – volume: 25 start-page: 51 issue: 1 year: 2021 ident: 10.1016/j.knosys.2023.110273_b120 article-title: Semantics of the black-box: Can knowledge graphs help make deep learning systems more interpretable and explainable? publication-title: IEEE Internet Comput. doi: 10.1109/MIC.2020.3031769 – start-page: 1078 year: 2019 ident: 10.1016/j.knosys.2023.110273_b115 article-title: Explainable agents and robots: Results from a systematic literature review – start-page: 5 year: 2019 ident: 10.1016/j.knosys.2023.110273_b8 article-title: Towards explainable artificial intelligence – volume: 16 start-page: 31 issue: 3 year: 2018 ident: 10.1016/j.knosys.2023.110273_b19 article-title: The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery publication-title: Queue doi: 10.1145/3236386.3241340 – volume: 73 year: 2022 ident: 10.1016/j.knosys.2023.110273_b50 article-title: Explainable deep learning: A field guide for the uninitiated publication-title: J. Artif. Int. Res. – volume: 4 issue: 37 year: 2019 ident: 10.1016/j.knosys.2023.110273_b34 article-title: XAI—Explainable artificial intelligence publication-title: Science Robotics doi: 10.1126/scirobotics.aay7120 – year: 2020 ident: 10.1016/j.knosys.2023.110273_b47 article-title: A survey of data-driven and knowledge-aware explainable AI publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2020.2983930 – volume: 113 year: 2021 ident: 10.1016/j.knosys.2023.110273_b20 article-title: The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2020.103655 – volume: 80 start-page: 78 year: 2015 ident: 10.1016/j.knosys.2023.110273_b29 article-title: Systematic mapping study on granular computing publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.02.018 – year: 2022 ident: 10.1016/j.knosys.2023.110273_b85 article-title: LoMEF: A framework to produce local explanations for global model time series forecasts publication-title: Int. J. Forecast. – start-page: 23 year: 2019 ident: 10.1016/j.knosys.2023.110273_b112 article-title: Transparency: Motivations and challenges – ident: 10.1016/j.knosys.2023.110273_b138 – volume: 19 start-page: 207 issue: 3 year: 2020 ident: 10.1016/j.knosys.2023.110273_b24 article-title: A survey of surveys on the use of visualization for interpreting machine learning models publication-title: Inf. Vis. doi: 10.1177/1473871620904671 – start-page: 1 year: 2018 ident: 10.1016/j.knosys.2023.110273_b69 article-title: Trends and trajectories for explainable, accountable and intelligible systems: An HCI research agenda – year: 2019 ident: 10.1016/j.knosys.2023.110273_b116 article-title: The challenge of imputation in explainable artificial intelligence models – volume: 8 start-page: 373 issue: 6 year: 1995 ident: 10.1016/j.knosys.2023.110273_b123 article-title: Survey and critique of techniques for extracting rules from trained artificial neural networks publication-title: Knowl.-Based Syst. doi: 10.1016/0950-7051(96)81920-4 – start-page: 457 year: 2016 ident: 10.1016/j.knosys.2023.110273_b124 article-title: DeepRED – rule extraction from deep neural networks – volume: 8 issue: 8 year: 2019 ident: 10.1016/j.knosys.2023.110273_b26 article-title: Machine learning interpretability: A survey on methods and metrics publication-title: Electronics doi: 10.3390/electronics8080832 – ident: 10.1016/j.knosys.2023.110273_b88 doi: 10.1145/2939672.2939778 – ident: 10.1016/j.knosys.2023.110273_b3 – year: 2021 ident: 10.1016/j.knosys.2023.110273_b66 – volume: 387 start-page: 346 year: 2020 ident: 10.1016/j.knosys.2023.110273_b104 article-title: Extract interpretability-accuracy balanced rules from artificial neural networks: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.036 – volume: 267 start-page: 1 year: 2019 ident: 10.1016/j.knosys.2023.110273_b67 article-title: Explanation in artificial intelligence: Insights from the social sciences publication-title: Artificial Intelligence doi: 10.1016/j.artint.2018.07.007 – volume: 3 start-page: 173 issue: 3 year: 2019 ident: 10.1016/j.knosys.2023.110273_b129 article-title: An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0324-9 – year: 2017 ident: 10.1016/j.knosys.2023.110273_b33 – year: 2020 ident: 10.1016/j.knosys.2023.110273_b59 – start-page: 539 year: 2017 ident: 10.1016/j.knosys.2023.110273_b77 article-title: The state-of-the-art in predictive visual analytics – volume: 11 start-page: 5088 issue: 11 year: 2021 ident: 10.1016/j.knosys.2023.110273_b55 article-title: Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: a systematic review publication-title: Appl. Sci. doi: 10.3390/app11115088 – year: 2013 ident: 10.1016/j.knosys.2023.110273_b16 – volume: 27 start-page: 393 issue: 3 year: 2017 ident: 10.1016/j.knosys.2023.110273_b48 article-title: A systematic review and taxonomy of explanations in decision support and recommender systems publication-title: User Model. User Adapt. Interact. doi: 10.1007/s11257-017-9195-0 – volume: 1 start-page: 1 issue: 01 year: 2021 ident: 10.1016/j.knosys.2023.110273_b58 article-title: Recent advances in trustworthy explainable artificial intelligence: Status, challenges and perspectives publication-title: IEEE Trans. Artif. Intell. – volume: 41 start-page: 647 issue: 3 year: 2014 ident: 10.1016/j.knosys.2023.110273_b89 article-title: Explaining prediction models and individual predictions with feature contributions publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-013-0679-x – volume: 13 start-page: 71 issue: 1 year: 1993 ident: 10.1016/j.knosys.2023.110273_b121 article-title: Extracting refined rules from knowledge-based neural networks publication-title: Mach. Learn. doi: 10.1007/BF00993103 – start-page: 217 year: 2021 ident: 10.1016/j.knosys.2023.110273_b68 article-title: Survey of explainable machine learning with visual and granular methods beyond quasi-explanations – start-page: 1 year: 2018 ident: 10.1016/j.knosys.2023.110273_b113 article-title: Current advances, trends and challenges of machine learning and knowledge extraction: From machine learning to explainable AI – start-page: 1 year: 2022 ident: 10.1016/j.knosys.2023.110273_b72 article-title: Explainability in graph neural networks: A taxonomic survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2022 ident: 10.1016/j.knosys.2023.110273_b80 article-title: Explainable AI for healthcare 5.0: Opportunities and challenges publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3197671 – volume: 70 start-page: 245 year: 2021 ident: 10.1016/j.knosys.2023.110273_b18 article-title: A survey on the explainability of supervised machine learning publication-title: J. Artificial Intelligence Res. doi: 10.1613/jair.1.12228 – start-page: 204 year: 2018 ident: 10.1016/j.knosys.2023.110273_b151 article-title: Using perceptual and cognitive explanations for enhanced human-agent team performance – year: 2019 ident: 10.1016/j.knosys.2023.110273_b60 – volume: 11 start-page: 125 issue: 1 year: 2020 ident: 10.1016/j.knosys.2023.110273_b158 article-title: Ontology engineering: Current state, challenges, and future directions publication-title: Semant. Web doi: 10.3233/SW-190382 – ident: 10.1016/j.knosys.2023.110273_b83 doi: 10.1109/CVPR.2018.00915 – start-page: 1134 year: 2003 ident: 10.1016/j.knosys.2023.110273_b119 article-title: A Bayesian approach to unsupervised one-shot learning of object categories – volume: 112 year: 2021 ident: 10.1016/j.knosys.2023.110273_b39 article-title: Interpretable visual reasoning: A survey publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2021.104194 – volume: 24 start-page: 77 issue: 1 year: 2018 ident: 10.1016/j.knosys.2023.110273_b126 article-title: Analyzing the training processes of deep generative models publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2017.2744938 – year: 2022 ident: 10.1016/j.knosys.2023.110273_b86 – volume: 10 issue: 3 year: 2021 ident: 10.1016/j.knosys.2023.110273_b57 article-title: Explainable embodied agents through social cues: A review publication-title: J. Hum.-Robot Interact. doi: 10.1145/3457188 – volume: 28 start-page: 3395 issue: 12 year: 2016 ident: 10.1016/j.knosys.2023.110273_b135 article-title: Towards Bayesian deep learning: A framework and some existing methods publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2606428 – volume: 14 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.knosys.2023.110273_b114 article-title: Explainable recommendation: A survey and new perspectives publication-title: Found. Trends® Inform. Retr. doi: 10.1561/1500000066 |
SSID | ssj0002218 |
Score | 2.720917 |
Snippet | The past decade has seen significant progress in artificial intelligence (AI), which has resulted in algorithms being adopted for resolving a variety of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110273 |
SubjectTerms | Black-box Deep learning Explainable AI (XAI) Interpretable AI Machine learning Meta-survey Responsible AI |
Title | Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities |
URI | https://dx.doi.org/10.1016/j.knosys.2023.110273 |
Volume | 263 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OBBD7E2yTaJt6VYWsVetNCLLEk2C_WxW9qt0Iu_3WQ3axVEwWOWGVgmk5lJ-OYbAE4TbXMIE20UGy0RlVQgRYxBTMSBIYG2C_egfzfs9Ef0ZhyMa6Bb9cI4WKWP_WVML6K1_9Ly1mxNJ5PWvS0OrL_ahEUK1hZ3b6eUOS-_eF_BPDAu3vicMHLSVftcgfF6TrP50pF2Y-Lw8JiRn9PTl5TT2wIbvlaEYfk726Bm0h2wWc1hgP5Y7oJHB6TzXVAwHMCzcTg4v4IhXNE0w1eTSzRfzN7MEmYJ1CUtE9TVLJU5lGkMS4YRmE1dVb5IC7bVPTDqXT90-8iPTUDaVlM5IoQqg41KiBSaG1sQGEEJS5hWHY615Iy1bWYMEuHY3xLNdEzbieCaBjyRhpN9UE-z1BwASJVQ9uptd-xSUopjrgnnismYmI7GSjYAqawVac8p7kZbvEQVeOwpKm0cORtHpY0bAH1qTUtOjT_kWbUR0TffiGzY_1Xz8N-aR2DdrQq0WXAM6vlsYU5s-ZGrZuFfTbAWDm77ww8LNtxk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB60HvTiW3ybg4IeYm2SbbKCh-KD1tdFhV5kTbJZ8LUttlV68U_5B012s1ZBFASP-8iSnQzzTcI33wCsJ9piCA8rODZaYiZZiBU1BvMwDgwNtL1wB_pn59X6FTtuBs0heCtqYRyt0sf-PKZn0drfKXtrltu3t-ULmxxYf7WARTPVlh3PrDwx_Re7b-vsNQ7sIm8QcnR4uV_HvrUA1jbj6GJKmTLEqITKUAtjQdOEjPKEa1UVREvBecWiR5CETiEt0VzHrJKEQrNAJNIIar87DCPMhgvXNmH7dcArISQ7VHSzw256Rb1eRiq7T1udvlMJJ9QR8Amn3-PhJ4w7moRxn5yiWv7_UzBk0mmYKBo_IB8HZuDaMfd82RWqNdBms9bY2kU1NNCFRo-mK3Gn9_Rs-qiVIJ3rQCFdNG_pIJnGKJc0Qa222wb00kzedRau_sWYc1BKW6mZB8RUqOxe37rIjmSMxEJTIRSXMTVVTZRcAFpYK9JexNz10niICrbaXZTbOHI2jnIbLwD-GNXORTx-eZ8XCxF9ccbI4syPIxf_PHINRuuXZ6fRaeP8ZAnG3JOM6hYsQ6n71DMrNvfpqtXM1xDc_LdzvwMmahk7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+AI+%28XAI%29%3A+A+systematic+meta-survey+of+current+challenges+and+future+opportunities&rft.jtitle=Knowledge-based+systems&rft.au=Saeed%2C+Waddah&rft.au=Omlin%2C+Christian&rft.date=2023-03-05&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=263&rft_id=info:doi/10.1016%2Fj.knosys.2023.110273&rft.externalDocID=S0950705123000230 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |