Safety and efficacy of dynamic catheter-directed cerebral digital subtraction angiography for diagnosis of bowhunter syndrome spectrum disorders: A systematic review of the literature
Dynamic catheter-directed cerebral digital subtraction angiography (dcDSA) is the gold standard for diagnosing dynamic vascular occlusion syndromes such as bowhunter syndrome (BHS). Nonetheless, concerns about its safety exist and no standardized protocols have been published to date. We describe ou...
Saved in:
Published in | Interventional neuroradiology p. 15910199241236820 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
13.03.2024
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Dynamic catheter-directed cerebral digital subtraction angiography (dcDSA) is the gold standard for diagnosing dynamic vascular occlusion syndromes such as bowhunter syndrome (BHS). Nonetheless, concerns about its safety exist and no standardized protocols have been published to date.
We describe our methodology and insights regarding the use of dcDSA in patients with BHS. We also perform a systematic literature review to identify cases of typical and atypical presentations of BHS wherein dcDSA was utilized and report on any procedural complications related to dcDSA.
Our study included 104 cases wherein dcDSA was used for the diagnosis of BHS. There were 0 reported complications of dcDSA. DcDSA successfully established diagnosis in 102 of these cases. Thirty-eight cases were deemed atypical presentations of BHS. Fourteen patients endorsed symptoms during neck flexion/extension. In eight cases, there was dynamic occlusion of bilateral vertebral arteries during a single maneuver. Three patients had multiple areas of occlusion along a single vertebral artery (VA). An anomalous entry of the VA above the C6 transverse foramen was observed in four patients. One patient had VA occlusion with neutral head position and recanalization upon contralateral lateral head tilt.
Our study highlights the safety and diagnostic benefits of dcDSA in characterizing the broad spectrum of BHS pathology encountered in clinical practice. This technique offers a powerful means to evaluate changes in cerebral blood flow and cervical arterial morphology in real time, overcoming the constraints of static imaging methods. Our findings pave the way for further studies on dcDSA to enhance cross-sectional imaging methods for the characterization of BHS and other dynamic vascular occlusion syndromes. |
---|---|
ISSN: | 2385-2011 |
DOI: | 10.1177/15910199241236820 |