Nanomodel visualization of fluid injections in tight formations

The transport and phase change of a complex fluid mixture under nanoconfinement is of fundamental importance in nanoscience, and limits the recovery efficiency from tight oil reservoirs (<10%). Herein, through experiments and supporting theory we characterize the transport and phase change of a n...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 10; no. 46; pp. 21994 - 22002
Main Authors Zhong, Junjie, Abedini, Ali, Xu, Lining, Xu, Yi, Qi, Zhenbang, Mostowfi, Farshid, Sinton, David
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 29.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The transport and phase change of a complex fluid mixture under nanoconfinement is of fundamental importance in nanoscience, and limits the recovery efficiency from tight oil reservoirs (<10%). Herein, through experiments and supporting theory we characterize the transport and phase change of a nanoconfined complex fluid mixture. Our nanofluidic platform, nanomodel, replicates shale reservoirs in terms of mean pore size (∼100 nm), permeability (∼μD) and porosity (∼10%). We screen conditions for the most promising shale EOR strategies, directly quantifying their pore-scale efficiency and underlying mechanisms. We find that immiscible gas (N2) flooding presents a prohibitively large capillary pressure threshold (∼2 MPa). Miscible (CO2) gas flooding eliminates this threshold leading to film-wise stable oil displacement with high recovery efficiency. Strong capillary forces present barriers as well as opportunities for recovery strategies unique to nanoporous reservoirs by transitioning from a miscible to an immiscible condition locally within the reservoir. These results quantify the fundamental transport and phase change mechanisms applicable to nanoconfined complex fluids, with direct implications in unconventional oil as well as nanoporous media more broadly.
AbstractList The transport and phase change of a complex fluid mixture under nanoconfinement is of fundamental importance in nanoscience, and limits the recovery efficiency from tight oil reservoirs (<10%). Herein, through experiments and supporting theory we characterize the transport and phase change of a nanoconfined complex fluid mixture. Our nanofluidic platform, nanomodel, replicates shale reservoirs in terms of mean pore size (∼100 nm), permeability (∼μD) and porosity (∼10%). We screen conditions for the most promising shale EOR strategies, directly quantifying their pore-scale efficiency and underlying mechanisms. We find that immiscible gas (N2) flooding presents a prohibitively large capillary pressure threshold (∼2 MPa). Miscible (CO2) gas flooding eliminates this threshold leading to film-wise stable oil displacement with high recovery efficiency. Strong capillary forces present barriers as well as opportunities for recovery strategies unique to nanoporous reservoirs by transitioning from a miscible to an immiscible condition locally within the reservoir. These results quantify the fundamental transport and phase change mechanisms applicable to nanoconfined complex fluids, with direct implications in unconventional oil as well as nanoporous media more broadly.
The transport and phase change of a complex fluid mixture under nanoconfinement is of fundamental importance in nanoscience, and limits the recovery efficiency from tight oil reservoirs (<10%). Herein, through experiments and supporting theory we characterize the transport and phase change of a nanoconfined complex fluid mixture. Our nanofluidic platform, nanomodel, replicates shale reservoirs in terms of mean pore size (∼100 nm), permeability (∼μD) and porosity (∼10%). We screen conditions for the most promising shale EOR strategies, directly quantifying their pore-scale efficiency and underlying mechanisms. We find that immiscible gas (N 2 ) flooding presents a prohibitively large capillary pressure threshold (∼2 MPa). Miscible (CO 2 ) gas flooding eliminates this threshold leading to film-wise stable oil displacement with high recovery efficiency. Strong capillary forces present barriers as well as opportunities for recovery strategies unique to nanoporous reservoirs by transitioning from a miscible to an immiscible condition locally within the reservoir. These results quantify the fundamental transport and phase change mechanisms applicable to nanoconfined complex fluids, with direct implications in unconventional oil as well as nanoporous media more broadly.
The transport and phase change of a complex fluid mixture under nanoconfinement is of fundamental importance in nanoscience, and limits the recovery efficiency from tight oil reservoirs (&lt;10%). Herein, through experiments and supporting theory we characterize the transport and phase change of a nanoconfined complex fluid mixture. Our nanofluidic platform, nanomodel, replicates shale reservoirs in terms of mean pore size (∼100 nm), permeability (∼μD) and porosity (∼10%). We screen conditions for the most promising shale EOR strategies, directly quantifying their pore-scale efficiency and underlying mechanisms. We find that immiscible gas (N2) flooding presents a prohibitively large capillary pressure threshold (∼2 MPa). Miscible (CO2) gas flooding eliminates this threshold leading to film-wise stable oil displacement with high recovery efficiency. Strong capillary forces present barriers as well as opportunities for recovery strategies unique to nanoporous reservoirs by transitioning from a miscible to an immiscible condition locally within the reservoir. These results quantify the fundamental transport and phase change mechanisms applicable to nanoconfined complex fluids, with direct implications in unconventional oil as well as nanoporous media more broadly.
Author Zhong, Junjie
Abedini, Ali
Qi, Zhenbang
Mostowfi, Farshid
Xu, Lining
Xu, Yi
Sinton, David
Author_xml – sequence: 1
  givenname: Junjie
  surname: Zhong
  fullname: Zhong, Junjie
  email: sinton@mie.utoronto.ca
  organization: Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S3G8 Canada. sinton@mie.utoronto.ca
– sequence: 2
  givenname: Ali
  surname: Abedini
  fullname: Abedini, Ali
– sequence: 3
  givenname: Lining
  surname: Xu
  fullname: Xu, Lining
– sequence: 4
  givenname: Yi
  surname: Xu
  fullname: Xu, Yi
– sequence: 5
  givenname: Zhenbang
  surname: Qi
  fullname: Qi, Zhenbang
– sequence: 6
  givenname: Farshid
  surname: Mostowfi
  fullname: Mostowfi, Farshid
– sequence: 7
  givenname: David
  surname: Sinton
  fullname: Sinton, David
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30452051$$D View this record in MEDLINE/PubMed
BookMark eNpd0E1LAzEQBuAgFWurF3-ALHgRoZpkusnuSUrxC0oF0fOSzYem7CY12RX017vb1h48zTA8DDPvCA2cdxqhM4KvCYb8RmYuYJYDFwfomOIpngBwOtj3bDpEoxhXuEcMjtAQ8DSlOCXH6HYpnK-90lXyZWMrKvsjGutd4k1iqtaqxLqVlv0odm3S2PePJjE-1BsWT9ChEVXUp7s6Rm_3d6_zx8ni-eFpPltMJKS0mVBKgSpVyhQEYZwDI7kiWY45BpYLQWRKpMkYYYZ1f3BVdi9ISqWipeFawxhdbveug_9sdWyK2kapq0o47dtYUAIpgwwz6OjFP7rybXDddb3KCee4o2N0tVUy-BiDNsU62FqE74Lgoo-1mGfLl02ssw6f71a2Za3Vnv7lCL_vnHLo
CitedBy_id crossref_primary_10_1007_s11707_020_0837_x
crossref_primary_10_1063_5_0145727
crossref_primary_10_3389_feart_2024_1401947
crossref_primary_10_1007_s11242_020_01526_6
crossref_primary_10_1016_j_fuel_2023_129344
crossref_primary_10_1016_j_earscirev_2022_104203
crossref_primary_10_1016_j_petrol_2022_111201
crossref_primary_10_1021_acs_jpclett_0c00591
crossref_primary_10_2139_ssrn_3978746
crossref_primary_10_1021_acs_energyfuels_1c00332
crossref_primary_10_1016_j_ijggc_2021_103445
crossref_primary_10_1039_C9RE00056A
crossref_primary_10_1016_j_petrol_2021_109415
crossref_primary_10_1016_j_energy_2022_124524
crossref_primary_10_1016_j_fuel_2021_122480
crossref_primary_10_1016_j_petrol_2019_03_072
crossref_primary_10_1021_acs_energyfuels_2c00519
crossref_primary_10_1063_5_0213861
crossref_primary_10_1016_j_fuel_2024_130876
crossref_primary_10_1021_acs_energyfuels_2c01943
crossref_primary_10_3390_en16134994
crossref_primary_10_1016_j_coal_2023_104266
crossref_primary_10_1016_j_fuel_2019_115976
crossref_primary_10_1016_j_jngse_2020_103745
crossref_primary_10_1016_j_fuel_2021_121928
crossref_primary_10_1063_5_0181334
crossref_primary_10_1038_s41598_021_82839_4
crossref_primary_10_1007_s11242_021_01663_6
crossref_primary_10_3390_en15249567
crossref_primary_10_1016_j_fuel_2022_123370
crossref_primary_10_1016_j_fuel_2022_123371
crossref_primary_10_3390_en16237846
crossref_primary_10_2118_205019_PA
crossref_primary_10_1016_j_fuel_2022_125633
crossref_primary_10_1016_j_petrol_2021_109789
crossref_primary_10_1016_j_fuel_2021_122390
crossref_primary_10_1021_acs_iecr_0c04025
crossref_primary_10_1021_acs_langmuir_3c02673
crossref_primary_10_1039_D0RE00023J
crossref_primary_10_2139_ssrn_3975660
crossref_primary_10_1016_j_jece_2022_109036
crossref_primary_10_1063_5_0089950
crossref_primary_10_1016_j_energy_2022_123649
crossref_primary_10_1029_2019WR026944
crossref_primary_10_1016_j_petrol_2021_109420
crossref_primary_10_1016_j_jcou_2023_102479
crossref_primary_10_1021_acs_energyfuels_9b03658
Cites_doi 10.1016/j.fuel.2015.06.092
10.1021/acsnano.6b02942
10.1021/acsanm.8b00064
10.1016/j.energy.2016.01.028
10.1038/s41598-017-15362-0
10.1039/C7LC01193H
10.1038/s41467-018-04133-8
10.1021/nn200767x
10.1002/smll.201703575
10.1126/science.328.5986.1624
10.1021/acsami.7b10421
10.1016/j.fuel.2017.08.084
10.1039/c0ee00541j
10.1016/j.fuel.2015.03.029
10.1038/477271a
10.1017/S0022112088000953
10.1016/j.ijhydene.2009.09.017
10.1038/494307a
10.1007/s10404-018-2057-1
10.1149/2.0861712jes
10.1016/j.petlm.2017.09.006
10.1021/acs.langmuir.8b01819
10.1016/j.jngse.2016.11.041
10.2516/ogst:2005036
10.1016/j.fluid.2017.11.022
10.1038/srep24936
10.1306/10240808059
10.1016/j.jngse.2014.12.002
10.1016/j.petrol.2017.03.028
10.1016/j.petlm.2016.11.011
10.1016/j.petrol.2017.09.022
10.1126/science.1235009
10.1126/science.1079033
10.1021/acs.energyfuels.7b00031
10.1016/j.fuel.2017.08.095
10.1021/acs.langmuir.8b02408
10.1016/j.juogr.2016.05.003
10.1021/acs.accounts.8b00010
10.1021/acs.analchem.7b05358
10.1126/sciadv.1501227
10.1021/acsnano.7b08121
10.1021/acs.jpclett.7b03003
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/c8nr06937a
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 22002
ExternalDocumentID 10_1039_C8NR06937A
30452051
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
H13
HZ~
H~N
J3I
NPM
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c352t-22232ddbc53a16773619d189070369aa1c51cf8616f637a7db337c22cd2bf7ee3
ISSN 2040-3364
IngestDate Fri Oct 25 04:09:07 EDT 2024
Thu Oct 10 16:42:46 EDT 2024
Fri Aug 23 00:27:31 EDT 2024
Sat Sep 28 08:37:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-22232ddbc53a16773619d189070369aa1c51cf8616f637a7db337c22cd2bf7ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6293-9580
0000-0002-6542-167X
0000-0003-2714-6408
PMID 30452051
PQID 2139177056
PQPubID 2047485
PageCount 9
ParticipantIDs proquest_miscellaneous_2135638063
proquest_journals_2139177056
crossref_primary_10_1039_C8NR06937A
pubmed_primary_30452051
PublicationCentury 2000
PublicationDate 2018-Nov-29
PublicationDateYYYYMMDD 2018-11-29
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-Nov-29
  day: 29
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhao (C8NR06937A-(cit5)/*[position()=1]) 2017; 7
Anbari (C8NR06937A-(cit45)/*[position()=1]) 2018; 14
Kerr (C8NR06937A-(cit8)/*[position()=1]) 2010; 328
Jia (C8NR06937A-(cit43)/*[position()=1]) 2017; 4
Lackner (C8NR06937A-(cit11)/*[position()=1]) 2003; 300
Bruno (C8NR06937A-(cit47)/*[position()=1]) 2018; 9
Conti (C8NR06937A-(cit7)/*[position()=1]) 2018
Zhong (C8NR06937A-(cit17)/*[position()=1]) 2018; 9
Gamadi (C8NR06937A-(cit39)/*[position()=1]) 2014
Zhang (C8NR06937A-(cit21)/*[position()=1]) 2018; 12
Peng (C8NR06937A-(cit4)/*[position()=1]) 2017; 9
Sheng (C8NR06937A-(cit23)/*[position()=1]) 2017; 159
Alibakhshi (C8NR06937A-(cit29)/*[position()=1]) 2016; 6
Gozalpour (C8NR06937A-(cit34)/*[position()=1]) 2005; 60
Phan (C8NR06937A-(cit13)/*[position()=1]) 2016; 10
Sander (C8NR06937A-(cit22)/*[position()=1]) 2017; 37
Lidon (C8NR06937A-(cit44)/*[position()=1]) 2018; 34
Zhong (C8NR06937A-(cit30)/*[position()=1]) 2018; 34
Weekes (C8NR06937A-(cit33)/*[position()=1]) 2018; 51
Zhong (C8NR06937A-(cit46)/*[position()=1]) 2018; 18
Wozniak (C8NR06937A-(cit26)/*[position()=1]) 2010
Ren (C8NR06937A-(cit35)/*[position()=1]) 2016; 98
Lee (C8NR06937A-(cit1)/*[position()=1]) 2017; 164
Jin (C8NR06937A-(cit16)/*[position()=1]) 2018; 458
Denney (C8NR06937A-(cit24)/*[position()=1]) 2001; 53
Sheng (C8NR06937A-(cit15)/*[position()=1]) 2015; 22
Raccis (C8NR06937A-(cit40)/*[position()=1]) 2011; 5
Liu (C8NR06937A-(cit19)/*[position()=1]) 2018; 22
Yu (C8NR06937A-(cit25)/*[position()=1]) 2016; 15
Sharbatian (C8NR06937A-(cit36)/*[position()=1]) 2018; 90
Ma (C8NR06937A-(cit38)/*[position()=1]) 2015; 154
Howarth (C8NR06937A-(cit9)/*[position()=1]) 2011; 477
Dai (C8NR06937A-(cit32)/*[position()=1]) 2009; 34
Nelson (C8NR06937A-(cit20)/*[position()=1]) 2009; 93
Zhou (C8NR06937A-(cit3)/*[position()=1]) 2016; 2
Hughes (C8NR06937A-(cit6)/*[position()=1]) 2013; 494
Lenormand (C8NR06937A-(cit31)/*[position()=1]) 1988; 189
Pendergast (C8NR06937A-(cit2)/*[position()=1]) 2011; 4
Li (C8NR06937A-(cit14)/*[position()=1]) 2017; 31
Li (C8NR06937A-(cit27)/*[position()=1]) 2017; 3
Yu (C8NR06937A-(cit41)/*[position()=1]) 2015; 159
Hejazi (C8NR06937A-(cit28)/*[position()=1]) 2017; 210
Sayed (C8NR06937A-(cit12)/*[position()=1]) 2017; 157
Li (C8NR06937A-(cit42)/*[position()=1]) 2017; 153
Wang (C8NR06937A-(cit37)/*[position()=1]) 2017; 210
Vidic (C8NR06937A-(cit10)/*[position()=1]) 2013; 340
Jatukaran (C8NR06937A-(cit18)/*[position()=1]) 2018; 1
References_xml – volume: 159
  start-page: 354
  year: 2015
  ident: C8NR06937A-(cit41)/*[position()=1]
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.06.092
  contributor:
    fullname: Yu
– volume: 10
  start-page: 7646
  year: 2016
  ident: C8NR06937A-(cit13)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02942
  contributor:
    fullname: Phan
– volume: 1
  start-page: 1332
  year: 2018
  ident: C8NR06937A-(cit18)/*[position()=1]
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b00064
  contributor:
    fullname: Jatukaran
– volume: 98
  start-page: 108
  year: 2016
  ident: C8NR06937A-(cit35)/*[position()=1]
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.028
  contributor:
    fullname: Ren
– volume: 7
  start-page: 15413
  year: 2017
  ident: C8NR06937A-(cit5)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15362-0
  contributor:
    fullname: Zhao
– volume-title: US Energy Information Administration
  year: 2018
  ident: C8NR06937A-(cit7)/*[position()=1]
  contributor:
    fullname: Conti
– volume: 18
  start-page: 568
  year: 2018
  ident: C8NR06937A-(cit46)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C7LC01193H
  contributor:
    fullname: Zhong
– volume: 9
  start-page: 1682
  year: 2018
  ident: C8NR06937A-(cit47)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04133-8
  contributor:
    fullname: Bruno
– volume: 5
  start-page: 4607
  year: 2011
  ident: C8NR06937A-(cit40)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn200767x
  contributor:
    fullname: Raccis
– volume: 14
  start-page: 1703575
  year: 2018
  ident: C8NR06937A-(cit45)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201703575
  contributor:
    fullname: Anbari
– volume: 328
  start-page: 1624
  year: 2010
  ident: C8NR06937A-(cit8)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.328.5986.1624
  contributor:
    fullname: Kerr
– volume: 9
  start-page: 32782
  year: 2017
  ident: C8NR06937A-(cit4)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10421
  contributor:
    fullname: Peng
– volume: 210
  start-page: 758
  year: 2017
  ident: C8NR06937A-(cit28)/*[position()=1]
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.08.084
  contributor:
    fullname: Hejazi
– volume: 4
  start-page: 1946
  year: 2011
  ident: C8NR06937A-(cit2)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00541j
  contributor:
    fullname: Pendergast
– volume: 154
  start-page: 35
  year: 2015
  ident: C8NR06937A-(cit38)/*[position()=1]
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.03.029
  contributor:
    fullname: Ma
– volume: 477
  start-page: 271
  year: 2011
  ident: C8NR06937A-(cit9)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/477271a
  contributor:
    fullname: Howarth
– volume: 189
  start-page: 165
  year: 1988
  ident: C8NR06937A-(cit31)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112088000953
  contributor:
    fullname: Lenormand
– volume: 34
  start-page: 9461
  year: 2009
  ident: C8NR06937A-(cit32)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.09.017
  contributor:
    fullname: Dai
– volume: 494
  start-page: 307
  year: 2013
  ident: C8NR06937A-(cit6)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/494307a
  contributor:
    fullname: Hughes
– volume: 22
  start-page: 39
  year: 2018
  ident: C8NR06937A-(cit19)/*[position()=1]
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-018-2057-1
  contributor:
    fullname: Liu
– volume: 164
  start-page: F1149
  year: 2017
  ident: C8NR06937A-(cit1)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0861712jes
  contributor:
    fullname: Lee
– volume-title: SPE East. Reg. Meeting
  year: 2010
  ident: C8NR06937A-(cit26)/*[position()=1]
  contributor:
    fullname: Wozniak
– volume: 4
  start-page: 7
  year: 2017
  ident: C8NR06937A-(cit43)/*[position()=1]
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2017.09.006
  contributor:
    fullname: Jia
– volume: 34
  start-page: 9927
  year: 2018
  ident: C8NR06937A-(cit30)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01819
  contributor:
    fullname: Zhong
– volume: 157
  start-page: 164
  year: 2017
  ident: C8NR06937A-(cit12)/*[position()=1]
  publication-title: J. Pet. Sci. Technol.
  contributor:
    fullname: Sayed
– volume: 37
  start-page: 248
  year: 2017
  ident: C8NR06937A-(cit22)/*[position()=1]
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.11.041
  contributor:
    fullname: Sander
– volume: 60
  start-page: 537
  year: 2005
  ident: C8NR06937A-(cit34)/*[position()=1]
  publication-title: Oil Gas Sci. Technol.
  doi: 10.2516/ogst:2005036
  contributor:
    fullname: Gozalpour
– volume: 458
  start-page: 177
  year: 2018
  ident: C8NR06937A-(cit16)/*[position()=1]
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2017.11.022
  contributor:
    fullname: Jin
– volume-title: SPE improv. Oil Recovery Symposium
  year: 2014
  ident: C8NR06937A-(cit39)/*[position()=1]
  contributor:
    fullname: Gamadi
– volume: 6
  start-page: 24936
  year: 2016
  ident: C8NR06937A-(cit29)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep24936
  contributor:
    fullname: Alibakhshi
– volume: 93
  start-page: 329
  year: 2009
  ident: C8NR06937A-(cit20)/*[position()=1]
  publication-title: AAPG Bull.
  doi: 10.1306/10240808059
  contributor:
    fullname: Nelson
– volume: 22
  start-page: 252
  year: 2015
  ident: C8NR06937A-(cit15)/*[position()=1]
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2014.12.002
  contributor:
    fullname: Sheng
– volume: 153
  start-page: 36
  year: 2017
  ident: C8NR06937A-(cit42)/*[position()=1]
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2017.03.028
  contributor:
    fullname: Li
– volume: 53
  start-page: 55
  year: 2001
  ident: C8NR06937A-(cit24)/*[position()=1]
  publication-title: J. Pet. Technol.
  contributor:
    fullname: Denney
– volume: 3
  start-page: 79
  year: 2017
  ident: C8NR06937A-(cit27)/*[position()=1]
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2016.11.011
  contributor:
    fullname: Li
– volume: 159
  start-page: 654
  year: 2017
  ident: C8NR06937A-(cit23)/*[position()=1]
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2017.09.022
  contributor:
    fullname: Sheng
– volume: 340
  start-page: 1235009
  year: 2013
  ident: C8NR06937A-(cit10)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1235009
  contributor:
    fullname: Vidic
– volume: 300
  start-page: 1677
  year: 2003
  ident: C8NR06937A-(cit11)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1079033
  contributor:
    fullname: Lackner
– volume: 31
  start-page: 3856
  year: 2017
  ident: C8NR06937A-(cit14)/*[position()=1]
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.7b00031
  contributor:
    fullname: Li
– volume: 210
  start-page: 425
  year: 2017
  ident: C8NR06937A-(cit37)/*[position()=1]
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.08.095
  contributor:
    fullname: Wang
– volume: 34
  start-page: 12017
  year: 2018
  ident: C8NR06937A-(cit44)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b02408
  contributor:
    fullname: Lidon
– volume: 15
  start-page: 56
  year: 2016
  ident: C8NR06937A-(cit25)/*[position()=1]
  publication-title: J. Unconv. Oil Gas Resour.
  doi: 10.1016/j.juogr.2016.05.003
  contributor:
    fullname: Yu
– volume: 51
  start-page: 910
  year: 2018
  ident: C8NR06937A-(cit33)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00010
  contributor:
    fullname: Weekes
– volume: 90
  start-page: 2461
  year: 2018
  ident: C8NR06937A-(cit36)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b05358
  contributor:
    fullname: Sharbatian
– volume: 2
  start-page: e1501227
  year: 2016
  ident: C8NR06937A-(cit3)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501227
  contributor:
    fullname: Zhou
– volume: 12
  start-page: 795
  year: 2018
  ident: C8NR06937A-(cit21)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08121
  contributor:
    fullname: Zhang
– volume: 9
  start-page: 497
  year: 2018
  ident: C8NR06937A-(cit17)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b03003
  contributor:
    fullname: Zhong
SSID ssj0069363
Score 2.5099669
Snippet The transport and phase change of a complex fluid mixture under nanoconfinement is of fundamental importance in nanoscience, and limits the recovery efficiency...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 21994
SubjectTerms Capillarity
Capillary pressure
Carbon dioxide
Diffusion length
Efficiency
Enhanced oil recovery
Flooding
Fluidics
Fluids
Miscibility
Nanofluids
Phase change
Phase diagrams
Phase transitions
Pore size
Porosity
Reservoirs
Scale efficiency
Transport
Title Nanomodel visualization of fluid injections in tight formations
URI https://www.ncbi.nlm.nih.gov/pubmed/30452051
https://www.proquest.com/docview/2139177056
https://search.proquest.com/docview/2135638063
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcAB8e62BQXBDQXWdmLHJ7RULRWURUK7YuES-SlSoSzqJhz66xk7z0VFKlyiyEkcxZ_1zTfxzBihF45orLA1scyU9A5KGktBk9jbMqBDYVjIkPs4Z6fL5P0qXQ375YXskkq90pdX5pX8D6rQBrj6LNl_QLbvFBrgHPCFIyAMx2thDNS4DlvZvPxVbHx25GUvAN2PuvBllc5DqFUTLV55R3xIV9yMhanvagN49Th_-94F69bleTFMDOWtXdHkxhRd66pu_fvOEPZtX4vxfwWc-QS79ueDDfxDfLAhpXybLKejSZH8QX3NdsWtHSU-_ONKkp5SX-NUZ-XFlIE6Gpmibvl9_ik_WZ6d5Yvj1eIm2iVAIsBeu7MPb9996ewsPMpoV3CWitdDf9sS4y9-Q9APi7voTiv8o1mD4j10w5b30e1ROcgH6E2PZ7SFZ7R2UcAzGvCE0yjgGQ14PkTLk-PF0WncbnARa9C9Vey1GTFG6ZRKzDin4M0anAlPw0xIiXWKtcsYZo7Bd3GjAA5NiDZEOW4tfYR2ynVp91DkiFTUap5aIhKjdaZS4RJNjOOJFlJP0PNuTPKfTR2TPMQfUJEfZfPPYeRmE3TYDVfezvNNTsBJwJyDUp6gZ_1lYCG_tCRLu67DPSkwOejdCXrcDHP_Gr8WT4D796_x9AG6NczFQ7RTXdT2Cai-Sj1t4f8NRetbXw
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanomodel+visualization+of+fluid+injections+in+tight+formations&rft.jtitle=Nanoscale&rft.au=Zhong%2C+Junjie&rft.au=Abedini%2C+Ali&rft.au=Xu%2C+Lining&rft.au=Xu%2C+Yi&rft.date=2018-11-29&rft.eissn=2040-3372&rft.volume=10&rft.issue=46&rft.spage=21994&rft.epage=22002&rft_id=info:doi/10.1039%2Fc8nr06937a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon