Nanomodel visualization of fluid injections in tight formations
The transport and phase change of a complex fluid mixture under nanoconfinement is of fundamental importance in nanoscience, and limits the recovery efficiency from tight oil reservoirs (<10%). Herein, through experiments and supporting theory we characterize the transport and phase change of a n...
Saved in:
Published in | Nanoscale Vol. 10; no. 46; pp. 21994 - 22002 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
29.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The transport and phase change of a complex fluid mixture under nanoconfinement is of fundamental importance in nanoscience, and limits the recovery efficiency from tight oil reservoirs (<10%). Herein, through experiments and supporting theory we characterize the transport and phase change of a nanoconfined complex fluid mixture. Our nanofluidic platform, nanomodel, replicates shale reservoirs in terms of mean pore size (∼100 nm), permeability (∼μD) and porosity (∼10%). We screen conditions for the most promising shale EOR strategies, directly quantifying their pore-scale efficiency and underlying mechanisms. We find that immiscible gas (N2) flooding presents a prohibitively large capillary pressure threshold (∼2 MPa). Miscible (CO2) gas flooding eliminates this threshold leading to film-wise stable oil displacement with high recovery efficiency. Strong capillary forces present barriers as well as opportunities for recovery strategies unique to nanoporous reservoirs by transitioning from a miscible to an immiscible condition locally within the reservoir. These results quantify the fundamental transport and phase change mechanisms applicable to nanoconfined complex fluids, with direct implications in unconventional oil as well as nanoporous media more broadly. |
---|---|
AbstractList | The transport and phase change of a complex fluid mixture under nanoconfinement is of fundamental importance in nanoscience, and limits the recovery efficiency from tight oil reservoirs (<10%). Herein, through experiments and supporting theory we characterize the transport and phase change of a nanoconfined complex fluid mixture. Our nanofluidic platform, nanomodel, replicates shale reservoirs in terms of mean pore size (∼100 nm), permeability (∼μD) and porosity (∼10%). We screen conditions for the most promising shale EOR strategies, directly quantifying their pore-scale efficiency and underlying mechanisms. We find that immiscible gas (N2) flooding presents a prohibitively large capillary pressure threshold (∼2 MPa). Miscible (CO2) gas flooding eliminates this threshold leading to film-wise stable oil displacement with high recovery efficiency. Strong capillary forces present barriers as well as opportunities for recovery strategies unique to nanoporous reservoirs by transitioning from a miscible to an immiscible condition locally within the reservoir. These results quantify the fundamental transport and phase change mechanisms applicable to nanoconfined complex fluids, with direct implications in unconventional oil as well as nanoporous media more broadly. The transport and phase change of a complex fluid mixture under nanoconfinement is of fundamental importance in nanoscience, and limits the recovery efficiency from tight oil reservoirs (<10%). Herein, through experiments and supporting theory we characterize the transport and phase change of a nanoconfined complex fluid mixture. Our nanofluidic platform, nanomodel, replicates shale reservoirs in terms of mean pore size (∼100 nm), permeability (∼μD) and porosity (∼10%). We screen conditions for the most promising shale EOR strategies, directly quantifying their pore-scale efficiency and underlying mechanisms. We find that immiscible gas (N 2 ) flooding presents a prohibitively large capillary pressure threshold (∼2 MPa). Miscible (CO 2 ) gas flooding eliminates this threshold leading to film-wise stable oil displacement with high recovery efficiency. Strong capillary forces present barriers as well as opportunities for recovery strategies unique to nanoporous reservoirs by transitioning from a miscible to an immiscible condition locally within the reservoir. These results quantify the fundamental transport and phase change mechanisms applicable to nanoconfined complex fluids, with direct implications in unconventional oil as well as nanoporous media more broadly. The transport and phase change of a complex fluid mixture under nanoconfinement is of fundamental importance in nanoscience, and limits the recovery efficiency from tight oil reservoirs (<10%). Herein, through experiments and supporting theory we characterize the transport and phase change of a nanoconfined complex fluid mixture. Our nanofluidic platform, nanomodel, replicates shale reservoirs in terms of mean pore size (∼100 nm), permeability (∼μD) and porosity (∼10%). We screen conditions for the most promising shale EOR strategies, directly quantifying their pore-scale efficiency and underlying mechanisms. We find that immiscible gas (N2) flooding presents a prohibitively large capillary pressure threshold (∼2 MPa). Miscible (CO2) gas flooding eliminates this threshold leading to film-wise stable oil displacement with high recovery efficiency. Strong capillary forces present barriers as well as opportunities for recovery strategies unique to nanoporous reservoirs by transitioning from a miscible to an immiscible condition locally within the reservoir. These results quantify the fundamental transport and phase change mechanisms applicable to nanoconfined complex fluids, with direct implications in unconventional oil as well as nanoporous media more broadly. |
Author | Zhong, Junjie Abedini, Ali Qi, Zhenbang Mostowfi, Farshid Xu, Lining Xu, Yi Sinton, David |
Author_xml | – sequence: 1 givenname: Junjie surname: Zhong fullname: Zhong, Junjie email: sinton@mie.utoronto.ca organization: Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S3G8 Canada. sinton@mie.utoronto.ca – sequence: 2 givenname: Ali surname: Abedini fullname: Abedini, Ali – sequence: 3 givenname: Lining surname: Xu fullname: Xu, Lining – sequence: 4 givenname: Yi surname: Xu fullname: Xu, Yi – sequence: 5 givenname: Zhenbang surname: Qi fullname: Qi, Zhenbang – sequence: 6 givenname: Farshid surname: Mostowfi fullname: Mostowfi, Farshid – sequence: 7 givenname: David surname: Sinton fullname: Sinton, David |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30452051$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0E1LAzEQBuAgFWurF3-ALHgRoZpkusnuSUrxC0oF0fOSzYem7CY12RX017vb1h48zTA8DDPvCA2cdxqhM4KvCYb8RmYuYJYDFwfomOIpngBwOtj3bDpEoxhXuEcMjtAQ8DSlOCXH6HYpnK-90lXyZWMrKvsjGutd4k1iqtaqxLqVlv0odm3S2PePJjE-1BsWT9ChEVXUp7s6Rm_3d6_zx8ni-eFpPltMJKS0mVBKgSpVyhQEYZwDI7kiWY45BpYLQWRKpMkYYYZ1f3BVdi9ISqWipeFawxhdbveug_9sdWyK2kapq0o47dtYUAIpgwwz6OjFP7rybXDddb3KCee4o2N0tVUy-BiDNsU62FqE74Lgoo-1mGfLl02ssw6f71a2Za3Vnv7lCL_vnHLo |
CitedBy_id | crossref_primary_10_1007_s11707_020_0837_x crossref_primary_10_1063_5_0145727 crossref_primary_10_3389_feart_2024_1401947 crossref_primary_10_1007_s11242_020_01526_6 crossref_primary_10_1016_j_fuel_2023_129344 crossref_primary_10_1016_j_earscirev_2022_104203 crossref_primary_10_1016_j_petrol_2022_111201 crossref_primary_10_1021_acs_jpclett_0c00591 crossref_primary_10_2139_ssrn_3978746 crossref_primary_10_1021_acs_energyfuels_1c00332 crossref_primary_10_1016_j_ijggc_2021_103445 crossref_primary_10_1039_C9RE00056A crossref_primary_10_1016_j_petrol_2021_109415 crossref_primary_10_1016_j_energy_2022_124524 crossref_primary_10_1016_j_fuel_2021_122480 crossref_primary_10_1016_j_petrol_2019_03_072 crossref_primary_10_1021_acs_energyfuels_2c00519 crossref_primary_10_1063_5_0213861 crossref_primary_10_1016_j_fuel_2024_130876 crossref_primary_10_1021_acs_energyfuels_2c01943 crossref_primary_10_3390_en16134994 crossref_primary_10_1016_j_coal_2023_104266 crossref_primary_10_1016_j_fuel_2019_115976 crossref_primary_10_1016_j_jngse_2020_103745 crossref_primary_10_1016_j_fuel_2021_121928 crossref_primary_10_1063_5_0181334 crossref_primary_10_1038_s41598_021_82839_4 crossref_primary_10_1007_s11242_021_01663_6 crossref_primary_10_3390_en15249567 crossref_primary_10_1016_j_fuel_2022_123370 crossref_primary_10_1016_j_fuel_2022_123371 crossref_primary_10_3390_en16237846 crossref_primary_10_2118_205019_PA crossref_primary_10_1016_j_fuel_2022_125633 crossref_primary_10_1016_j_petrol_2021_109789 crossref_primary_10_1016_j_fuel_2021_122390 crossref_primary_10_1021_acs_iecr_0c04025 crossref_primary_10_1021_acs_langmuir_3c02673 crossref_primary_10_1039_D0RE00023J crossref_primary_10_2139_ssrn_3975660 crossref_primary_10_1016_j_jece_2022_109036 crossref_primary_10_1063_5_0089950 crossref_primary_10_1016_j_energy_2022_123649 crossref_primary_10_1029_2019WR026944 crossref_primary_10_1016_j_petrol_2021_109420 crossref_primary_10_1016_j_jcou_2023_102479 crossref_primary_10_1021_acs_energyfuels_9b03658 |
Cites_doi | 10.1016/j.fuel.2015.06.092 10.1021/acsnano.6b02942 10.1021/acsanm.8b00064 10.1016/j.energy.2016.01.028 10.1038/s41598-017-15362-0 10.1039/C7LC01193H 10.1038/s41467-018-04133-8 10.1021/nn200767x 10.1002/smll.201703575 10.1126/science.328.5986.1624 10.1021/acsami.7b10421 10.1016/j.fuel.2017.08.084 10.1039/c0ee00541j 10.1016/j.fuel.2015.03.029 10.1038/477271a 10.1017/S0022112088000953 10.1016/j.ijhydene.2009.09.017 10.1038/494307a 10.1007/s10404-018-2057-1 10.1149/2.0861712jes 10.1016/j.petlm.2017.09.006 10.1021/acs.langmuir.8b01819 10.1016/j.jngse.2016.11.041 10.2516/ogst:2005036 10.1016/j.fluid.2017.11.022 10.1038/srep24936 10.1306/10240808059 10.1016/j.jngse.2014.12.002 10.1016/j.petrol.2017.03.028 10.1016/j.petlm.2016.11.011 10.1016/j.petrol.2017.09.022 10.1126/science.1235009 10.1126/science.1079033 10.1021/acs.energyfuels.7b00031 10.1016/j.fuel.2017.08.095 10.1021/acs.langmuir.8b02408 10.1016/j.juogr.2016.05.003 10.1021/acs.accounts.8b00010 10.1021/acs.analchem.7b05358 10.1126/sciadv.1501227 10.1021/acsnano.7b08121 10.1021/acs.jpclett.7b03003 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/c8nr06937a |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 22002 |
ExternalDocumentID | 10_1039_C8NR06937A 30452051 |
Genre | Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP H13 HZ~ H~N J3I NPM O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY AAYXX CITATION 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c352t-22232ddbc53a16773619d189070369aa1c51cf8616f637a7db337c22cd2bf7ee3 |
ISSN | 2040-3364 |
IngestDate | Fri Oct 25 04:09:07 EDT 2024 Thu Oct 10 16:42:46 EDT 2024 Fri Aug 23 00:27:31 EDT 2024 Sat Sep 28 08:37:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c352t-22232ddbc53a16773619d189070369aa1c51cf8616f637a7db337c22cd2bf7ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6293-9580 0000-0002-6542-167X 0000-0003-2714-6408 |
PMID | 30452051 |
PQID | 2139177056 |
PQPubID | 2047485 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2135638063 proquest_journals_2139177056 crossref_primary_10_1039_C8NR06937A pubmed_primary_30452051 |
PublicationCentury | 2000 |
PublicationDate | 2018-Nov-29 |
PublicationDateYYYYMMDD | 2018-11-29 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-Nov-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhao (C8NR06937A-(cit5)/*[position()=1]) 2017; 7 Anbari (C8NR06937A-(cit45)/*[position()=1]) 2018; 14 Kerr (C8NR06937A-(cit8)/*[position()=1]) 2010; 328 Jia (C8NR06937A-(cit43)/*[position()=1]) 2017; 4 Lackner (C8NR06937A-(cit11)/*[position()=1]) 2003; 300 Bruno (C8NR06937A-(cit47)/*[position()=1]) 2018; 9 Conti (C8NR06937A-(cit7)/*[position()=1]) 2018 Zhong (C8NR06937A-(cit17)/*[position()=1]) 2018; 9 Gamadi (C8NR06937A-(cit39)/*[position()=1]) 2014 Zhang (C8NR06937A-(cit21)/*[position()=1]) 2018; 12 Peng (C8NR06937A-(cit4)/*[position()=1]) 2017; 9 Sheng (C8NR06937A-(cit23)/*[position()=1]) 2017; 159 Alibakhshi (C8NR06937A-(cit29)/*[position()=1]) 2016; 6 Gozalpour (C8NR06937A-(cit34)/*[position()=1]) 2005; 60 Phan (C8NR06937A-(cit13)/*[position()=1]) 2016; 10 Sander (C8NR06937A-(cit22)/*[position()=1]) 2017; 37 Lidon (C8NR06937A-(cit44)/*[position()=1]) 2018; 34 Zhong (C8NR06937A-(cit30)/*[position()=1]) 2018; 34 Weekes (C8NR06937A-(cit33)/*[position()=1]) 2018; 51 Zhong (C8NR06937A-(cit46)/*[position()=1]) 2018; 18 Wozniak (C8NR06937A-(cit26)/*[position()=1]) 2010 Ren (C8NR06937A-(cit35)/*[position()=1]) 2016; 98 Lee (C8NR06937A-(cit1)/*[position()=1]) 2017; 164 Jin (C8NR06937A-(cit16)/*[position()=1]) 2018; 458 Denney (C8NR06937A-(cit24)/*[position()=1]) 2001; 53 Sheng (C8NR06937A-(cit15)/*[position()=1]) 2015; 22 Raccis (C8NR06937A-(cit40)/*[position()=1]) 2011; 5 Liu (C8NR06937A-(cit19)/*[position()=1]) 2018; 22 Yu (C8NR06937A-(cit25)/*[position()=1]) 2016; 15 Sharbatian (C8NR06937A-(cit36)/*[position()=1]) 2018; 90 Ma (C8NR06937A-(cit38)/*[position()=1]) 2015; 154 Howarth (C8NR06937A-(cit9)/*[position()=1]) 2011; 477 Dai (C8NR06937A-(cit32)/*[position()=1]) 2009; 34 Nelson (C8NR06937A-(cit20)/*[position()=1]) 2009; 93 Zhou (C8NR06937A-(cit3)/*[position()=1]) 2016; 2 Hughes (C8NR06937A-(cit6)/*[position()=1]) 2013; 494 Lenormand (C8NR06937A-(cit31)/*[position()=1]) 1988; 189 Pendergast (C8NR06937A-(cit2)/*[position()=1]) 2011; 4 Li (C8NR06937A-(cit14)/*[position()=1]) 2017; 31 Li (C8NR06937A-(cit27)/*[position()=1]) 2017; 3 Yu (C8NR06937A-(cit41)/*[position()=1]) 2015; 159 Hejazi (C8NR06937A-(cit28)/*[position()=1]) 2017; 210 Sayed (C8NR06937A-(cit12)/*[position()=1]) 2017; 157 Li (C8NR06937A-(cit42)/*[position()=1]) 2017; 153 Wang (C8NR06937A-(cit37)/*[position()=1]) 2017; 210 Vidic (C8NR06937A-(cit10)/*[position()=1]) 2013; 340 Jatukaran (C8NR06937A-(cit18)/*[position()=1]) 2018; 1 |
References_xml | – volume: 159 start-page: 354 year: 2015 ident: C8NR06937A-(cit41)/*[position()=1] publication-title: Fuel doi: 10.1016/j.fuel.2015.06.092 contributor: fullname: Yu – volume: 10 start-page: 7646 year: 2016 ident: C8NR06937A-(cit13)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b02942 contributor: fullname: Phan – volume: 1 start-page: 1332 year: 2018 ident: C8NR06937A-(cit18)/*[position()=1] publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b00064 contributor: fullname: Jatukaran – volume: 98 start-page: 108 year: 2016 ident: C8NR06937A-(cit35)/*[position()=1] publication-title: Energy doi: 10.1016/j.energy.2016.01.028 contributor: fullname: Ren – volume: 7 start-page: 15413 year: 2017 ident: C8NR06937A-(cit5)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-017-15362-0 contributor: fullname: Zhao – volume-title: US Energy Information Administration year: 2018 ident: C8NR06937A-(cit7)/*[position()=1] contributor: fullname: Conti – volume: 18 start-page: 568 year: 2018 ident: C8NR06937A-(cit46)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C7LC01193H contributor: fullname: Zhong – volume: 9 start-page: 1682 year: 2018 ident: C8NR06937A-(cit47)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-04133-8 contributor: fullname: Bruno – volume: 5 start-page: 4607 year: 2011 ident: C8NR06937A-(cit40)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn200767x contributor: fullname: Raccis – volume: 14 start-page: 1703575 year: 2018 ident: C8NR06937A-(cit45)/*[position()=1] publication-title: Small doi: 10.1002/smll.201703575 contributor: fullname: Anbari – volume: 328 start-page: 1624 year: 2010 ident: C8NR06937A-(cit8)/*[position()=1] publication-title: Science doi: 10.1126/science.328.5986.1624 contributor: fullname: Kerr – volume: 9 start-page: 32782 year: 2017 ident: C8NR06937A-(cit4)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10421 contributor: fullname: Peng – volume: 210 start-page: 758 year: 2017 ident: C8NR06937A-(cit28)/*[position()=1] publication-title: Fuel doi: 10.1016/j.fuel.2017.08.084 contributor: fullname: Hejazi – volume: 4 start-page: 1946 year: 2011 ident: C8NR06937A-(cit2)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00541j contributor: fullname: Pendergast – volume: 154 start-page: 35 year: 2015 ident: C8NR06937A-(cit38)/*[position()=1] publication-title: Fuel doi: 10.1016/j.fuel.2015.03.029 contributor: fullname: Ma – volume: 477 start-page: 271 year: 2011 ident: C8NR06937A-(cit9)/*[position()=1] publication-title: Nature doi: 10.1038/477271a contributor: fullname: Howarth – volume: 189 start-page: 165 year: 1988 ident: C8NR06937A-(cit31)/*[position()=1] publication-title: J. Fluid Mech. doi: 10.1017/S0022112088000953 contributor: fullname: Lenormand – volume: 34 start-page: 9461 year: 2009 ident: C8NR06937A-(cit32)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.09.017 contributor: fullname: Dai – volume: 494 start-page: 307 year: 2013 ident: C8NR06937A-(cit6)/*[position()=1] publication-title: Nature doi: 10.1038/494307a contributor: fullname: Hughes – volume: 22 start-page: 39 year: 2018 ident: C8NR06937A-(cit19)/*[position()=1] publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-018-2057-1 contributor: fullname: Liu – volume: 164 start-page: F1149 year: 2017 ident: C8NR06937A-(cit1)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.0861712jes contributor: fullname: Lee – volume-title: SPE East. Reg. Meeting year: 2010 ident: C8NR06937A-(cit26)/*[position()=1] contributor: fullname: Wozniak – volume: 4 start-page: 7 year: 2017 ident: C8NR06937A-(cit43)/*[position()=1] publication-title: Petroleum doi: 10.1016/j.petlm.2017.09.006 contributor: fullname: Jia – volume: 34 start-page: 9927 year: 2018 ident: C8NR06937A-(cit30)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01819 contributor: fullname: Zhong – volume: 157 start-page: 164 year: 2017 ident: C8NR06937A-(cit12)/*[position()=1] publication-title: J. Pet. Sci. Technol. contributor: fullname: Sayed – volume: 37 start-page: 248 year: 2017 ident: C8NR06937A-(cit22)/*[position()=1] publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.11.041 contributor: fullname: Sander – volume: 60 start-page: 537 year: 2005 ident: C8NR06937A-(cit34)/*[position()=1] publication-title: Oil Gas Sci. Technol. doi: 10.2516/ogst:2005036 contributor: fullname: Gozalpour – volume: 458 start-page: 177 year: 2018 ident: C8NR06937A-(cit16)/*[position()=1] publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2017.11.022 contributor: fullname: Jin – volume-title: SPE improv. Oil Recovery Symposium year: 2014 ident: C8NR06937A-(cit39)/*[position()=1] contributor: fullname: Gamadi – volume: 6 start-page: 24936 year: 2016 ident: C8NR06937A-(cit29)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep24936 contributor: fullname: Alibakhshi – volume: 93 start-page: 329 year: 2009 ident: C8NR06937A-(cit20)/*[position()=1] publication-title: AAPG Bull. doi: 10.1306/10240808059 contributor: fullname: Nelson – volume: 22 start-page: 252 year: 2015 ident: C8NR06937A-(cit15)/*[position()=1] publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2014.12.002 contributor: fullname: Sheng – volume: 153 start-page: 36 year: 2017 ident: C8NR06937A-(cit42)/*[position()=1] publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2017.03.028 contributor: fullname: Li – volume: 53 start-page: 55 year: 2001 ident: C8NR06937A-(cit24)/*[position()=1] publication-title: J. Pet. Technol. contributor: fullname: Denney – volume: 3 start-page: 79 year: 2017 ident: C8NR06937A-(cit27)/*[position()=1] publication-title: Petroleum doi: 10.1016/j.petlm.2016.11.011 contributor: fullname: Li – volume: 159 start-page: 654 year: 2017 ident: C8NR06937A-(cit23)/*[position()=1] publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2017.09.022 contributor: fullname: Sheng – volume: 340 start-page: 1235009 year: 2013 ident: C8NR06937A-(cit10)/*[position()=1] publication-title: Science doi: 10.1126/science.1235009 contributor: fullname: Vidic – volume: 300 start-page: 1677 year: 2003 ident: C8NR06937A-(cit11)/*[position()=1] publication-title: Science doi: 10.1126/science.1079033 contributor: fullname: Lackner – volume: 31 start-page: 3856 year: 2017 ident: C8NR06937A-(cit14)/*[position()=1] publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b00031 contributor: fullname: Li – volume: 210 start-page: 425 year: 2017 ident: C8NR06937A-(cit37)/*[position()=1] publication-title: Fuel doi: 10.1016/j.fuel.2017.08.095 contributor: fullname: Wang – volume: 34 start-page: 12017 year: 2018 ident: C8NR06937A-(cit44)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.8b02408 contributor: fullname: Lidon – volume: 15 start-page: 56 year: 2016 ident: C8NR06937A-(cit25)/*[position()=1] publication-title: J. Unconv. Oil Gas Resour. doi: 10.1016/j.juogr.2016.05.003 contributor: fullname: Yu – volume: 51 start-page: 910 year: 2018 ident: C8NR06937A-(cit33)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00010 contributor: fullname: Weekes – volume: 90 start-page: 2461 year: 2018 ident: C8NR06937A-(cit36)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b05358 contributor: fullname: Sharbatian – volume: 2 start-page: e1501227 year: 2016 ident: C8NR06937A-(cit3)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1501227 contributor: fullname: Zhou – volume: 12 start-page: 795 year: 2018 ident: C8NR06937A-(cit21)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b08121 contributor: fullname: Zhang – volume: 9 start-page: 497 year: 2018 ident: C8NR06937A-(cit17)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b03003 contributor: fullname: Zhong |
SSID | ssj0069363 |
Score | 2.5099669 |
Snippet | The transport and phase change of a complex fluid mixture under nanoconfinement is of fundamental importance in nanoscience, and limits the recovery efficiency... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 21994 |
SubjectTerms | Capillarity Capillary pressure Carbon dioxide Diffusion length Efficiency Enhanced oil recovery Flooding Fluidics Fluids Miscibility Nanofluids Phase change Phase diagrams Phase transitions Pore size Porosity Reservoirs Scale efficiency Transport |
Title | Nanomodel visualization of fluid injections in tight formations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30452051 https://www.proquest.com/docview/2139177056 https://search.proquest.com/docview/2135638063 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvcAB8e62BQXBDQXWdmLHJ7RULRWURUK7YuES-SlSoSzqJhz66xk7z0VFKlyiyEkcxZ_1zTfxzBihF45orLA1scyU9A5KGktBk9jbMqBDYVjIkPs4Z6fL5P0qXQ375YXskkq90pdX5pX8D6rQBrj6LNl_QLbvFBrgHPCFIyAMx2thDNS4DlvZvPxVbHx25GUvAN2PuvBllc5DqFUTLV55R3xIV9yMhanvagN49Th_-94F69bleTFMDOWtXdHkxhRd66pu_fvOEPZtX4vxfwWc-QS79ueDDfxDfLAhpXybLKejSZH8QX3NdsWtHSU-_ONKkp5SX-NUZ-XFlIE6Gpmibvl9_ik_WZ6d5Yvj1eIm2iVAIsBeu7MPb9996ewsPMpoV3CWitdDf9sS4y9-Q9APi7voTiv8o1mD4j10w5b30e1ROcgH6E2PZ7SFZ7R2UcAzGvCE0yjgGQ14PkTLk-PF0WncbnARa9C9Vey1GTFG6ZRKzDin4M0anAlPw0xIiXWKtcsYZo7Bd3GjAA5NiDZEOW4tfYR2ynVp91DkiFTUap5aIhKjdaZS4RJNjOOJFlJP0PNuTPKfTR2TPMQfUJEfZfPPYeRmE3TYDVfezvNNTsBJwJyDUp6gZ_1lYCG_tCRLu67DPSkwOejdCXrcDHP_Gr8WT4D796_x9AG6NczFQ7RTXdT2Cai-Sj1t4f8NRetbXw |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanomodel+visualization+of+fluid+injections+in+tight+formations&rft.jtitle=Nanoscale&rft.au=Zhong%2C+Junjie&rft.au=Abedini%2C+Ali&rft.au=Xu%2C+Lining&rft.au=Xu%2C+Yi&rft.date=2018-11-29&rft.eissn=2040-3372&rft.volume=10&rft.issue=46&rft.spage=21994&rft.epage=22002&rft_id=info:doi/10.1039%2Fc8nr06937a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |