Multi-tenant resource sharing with equitable-priority-based performance isolation of slices for 5G cellular systems
Network slicing is a promising technique to enable multi-tenant operation in fifth generation (5G) cellular systems. However, efficient implementation of this technique at the air interface requires an adequate resource allocation policy that provides slice isolation and takes into account the heter...
Saved in:
Published in | Computer communications Vol. 188; pp. 39 - 51 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Network slicing is a promising technique to enable multi-tenant operation in fifth generation (5G) cellular systems. However, efficient implementation of this technique at the air interface requires an adequate resource allocation policy that provides slice isolation and takes into account the heterogeneity of services and their performance requirements. We propose a new slicing scheme aimed at slice performance isolation, efficient capacity utilization, and fair resource allocation among all users. The policy ensures a slice-specific minimum data rate to all slice users as long as their number remains within a contracted limit, yet provides higher data rates whenever capacity is available. Specifically, we incorporate the best features of the complete partitioning and complete sharing policies, while ensuring flexibility and customization for network operators. The proposed scheme is based on an iterative solution of a convex programming problem characterized by polynomial complexity, which makes it suitable for on-line implementation. Associated algorithms are also proposed. Our numerical results demonstrate that the proposed slicing scheme is capable to accommodate heterogeneous traffic and provides performance isolation of slices while maintaining resource utilization at the level of complete sharing. Depending on the system parameters, the proposed scheme allows to improve session loss probability by an order of magnitude as compared to static slicing, while keeping the user data rates comparable to that of the complete sharing scheme and improving the average user satisfaction index by up to 90%. Overall, the proposed scheme results in efficient resource utilization compared to slicing policies in which slice isolation is provided via reservation by setting fixed upper or lower capacity bounds. |
---|---|
AbstractList | Network slicing is a promising technique to enable multi-tenant operation in fifth generation (5G) cellular systems. However, efficient implementation of this technique at the air interface requires an adequate resource allocation policy that provides slice isolation and takes into account the heterogeneity of services and their performance requirements. We propose a new slicing scheme aimed at slice performance isolation, efficient capacity utilization, and fair resource allocation among all users. The policy ensures a slice-specific minimum data rate to all slice users as long as their number remains within a contracted limit, yet provides higher data rates whenever capacity is available. Specifically, we incorporate the best features of the complete partitioning and complete sharing policies, while ensuring flexibility and customization for network operators. The proposed scheme is based on an iterative solution of a convex programming problem characterized by polynomial complexity, which makes it suitable for on-line implementation. Associated algorithms are also proposed. Our numerical results demonstrate that the proposed slicing scheme is capable to accommodate heterogeneous traffic and provides performance isolation of slices while maintaining resource utilization at the level of complete sharing. Depending on the system parameters, the proposed scheme allows to improve session loss probability by an order of magnitude as compared to static slicing, while keeping the user data rates comparable to that of the complete sharing scheme and improving the average user satisfaction index by up to 90%. Overall, the proposed scheme results in efficient resource utilization compared to slicing policies in which slice isolation is provided via reservation by setting fixed upper or lower capacity bounds. |
Author | Correia, Luis M. Samouylov, Konstantin Moltchanov, Dmitri Gaidamaka, Yuliya Yarkina, Natalia |
Author_xml | – sequence: 1 givenname: Natalia orcidid: 0000-0003-3197-2737 surname: Yarkina fullname: Yarkina, Natalia email: natalia.yarkina@tuni.fi organization: Tampere University, Finland – sequence: 2 givenname: Luis M. surname: Correia fullname: Correia, Luis M. organization: IST/INESC-ID, Universidade de Lisboa, Portugal – sequence: 3 givenname: Dmitri orcidid: 0000-0003-4007-7187 surname: Moltchanov fullname: Moltchanov, Dmitri organization: Tampere University, Finland – sequence: 4 givenname: Yuliya orcidid: 0000-0003-2655-4805 surname: Gaidamaka fullname: Gaidamaka, Yuliya organization: Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia – sequence: 5 givenname: Konstantin surname: Samouylov fullname: Samouylov, Konstantin organization: Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia |
BookMark | eNqFkE1LAzEQhoNUsFX_gYf8ga2TzSa760GQ4hdUvCh4C9l01qakm5qkSv-9KfXkQeGFOQzPMO8zIaPBD0jIBYMpAyYvV1Pj1znTEspyCjmsPSJj1tS8qIG_jcgYWAUFl7I6IZMYVwBQ1TUfk_i0dckWCQc9JBow-m0wSONSBzu80y-blhQ_tjbpzmGxCdYHm3ZFpyMu6AZD78NaD5mw0TudrB-o72l01mCkeUnFPTXo3NbpQOMuJlzHM3Lcaxfx_Geekte725fZQzF_vn-c3cwLw0WZCoalqYSuQZYNQmN007G2b_UCahSdFLIS0ggwpeGVqJtStjVvsAORJXAtkZ-S6nDXBB9jwF7l_9c67BQDtRenVuogTu3FKchhbcaufmEm199XS0Fb9x98fYAxF_u0GFQ0FrOghQ1oklp4-_eBbycTkIs |
CitedBy_id | crossref_primary_10_3390_fi15100343 crossref_primary_10_1016_j_comnet_2024_110904 crossref_primary_10_3390_math11041046 crossref_primary_10_1109_TNET_2023_3297883 crossref_primary_10_1109_TMC_2022_3228286 crossref_primary_10_3390_fi16110397 crossref_primary_10_1016_j_comnet_2024_110433 crossref_primary_10_3390_fi14100299 crossref_primary_10_3390_fi17030118 crossref_primary_10_1016_j_yofte_2025_104176 |
Cites_doi | 10.1109/TNET.2018.2878965 10.1016/j.comnet.2019.106984 10.1109/MCOM.2017.1601119 10.1109/TVT.2019.2948702 10.1109/JIOT.2020.3041102 10.1155/2018/4163612 10.1109/TVT.2019.2952216 10.1109/TWC.2018.2859918 10.1016/j.comnet.2020.107135 10.1109/TNET.2020.2979667 10.1109/ACCESS.2019.2939935 10.3390/math8071177 10.1109/TVT.2019.2922668 10.1109/JSAC.2019.2927100 10.1109/MCOM.2017.1600939 10.1109/ACCESS.2018.2872781 10.1109/ACCESS.2018.2818751 10.1109/ACCESS.2018.2822398 10.1016/j.comcom.2021.09.034 10.1109/ACCESS.2016.2560218 10.1109/TWC.2017.2789294 10.1109/TMC.2019.2896950 10.1109/COMST.2018.2815638 10.1109/ACCESS.2019.2944719 10.1109/TNET.2019.2895378 10.1002/ett.4460080106 10.1109/ACCESS.2019.2929732 10.1109/TCOMM.2021.3090423 10.1109/TNSM.2019.2893126 10.1109/TVT.2021.3061906 10.1109/LWC.2018.2842189 10.1109/ACCESS.2019.2913323 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.comcom.2022.02.019 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-703X |
EndPage | 51 |
ExternalDocumentID | 10_1016_j_comcom_2022_02_019 S0140366422000627 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K WH7 ZMT ~G- 07C 29F AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD F0J FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW SSH TAE UHS VH1 VOH WUQ XPP ZY4 |
ID | FETCH-LOGICAL-c352t-1e2c45a70628e08ca8b19f9ad07e5b656456c50c2c34578269738eb050223a6e3 |
IEDL.DBID | .~1 |
ISSN | 0140-3664 |
IngestDate | Thu Apr 24 23:01:41 EDT 2025 Tue Jul 01 02:43:07 EDT 2025 Fri Feb 23 02:40:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Preemption Prioritization Quality assurance Performance isolation Network slicing |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-1e2c45a70628e08ca8b19f9ad07e5b656456c50c2c34578269738eb050223a6e3 |
ORCID | 0000-0003-2655-4805 0000-0003-3197-2737 0000-0003-4007-7187 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0140366422000627 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_comcom_2022_02_019 crossref_citationtrail_10_1016_j_comcom_2022_02_019 elsevier_sciencedirect_doi_10_1016_j_comcom_2022_02_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-15 |
PublicationDateYYYYMMDD | 2022-04-15 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Computer communications |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lieto, Malanchini, Capone (b36) 2018 (b9) 2019 Vlaskina, Polyakov, Gudkova (b40) 2019 (b8) 2001 Vincenzi, Lopez-Aguilera, Garcia-Villegas (b42) 2019; 7 Hazra, Adhikari, Amgoth, Srirama (b43) 2020; 8 Kelly (b52) 1997; 8 Boutiba, Ksentini, Brik, Challal, Balla (b5) 2022; 181 Khatibi, Correia (b3) 2017; 73 Salvat, Zanzi, Garcia-Saavedra, Sciancalepore, Costa-Pérez (b37) 2018 5G; System Architecture for the 5G System, 3GPP TS 23.501 version 15.2.0 Release 15, ETSI, 2018 Afolabi, Taleb, Samdanis, Ksentini, Flinck (b6) 2018; 20 D’Oro, Restuccia, Melodia, Palazzo (b26) 2018; 26 Fossati, Moretti, Perny, Secci (b30) 2020; 28 Bertsekas, Gallager (b51) 1992 Gonzalez, Ordonez-Lucena, Helvik, Nencioni, Xie, Lopez, Grønsund (b45) 2020 Kotulski, Nowak, Sepczuk, Tunia (b46) 2020; 171 Rouzbehani, Correia, Caeiro (b47) 2018 Begishev, Sopin, Moltchanov, Kovalchukov, Samuylov, Andreev, Koucheryavy, Samouylov (b48) 2021; 70 Begishev, Moltchanov, Sopin, Samuylov, Andreev, Koucheryavy, Samouylov (b49) 2019; 68 Akgül, Malanchini, Capone (b17) 2019; 16 Guan, Wen, Wang, Lu, Shen (b23) 2018; 6 Yan, Feng, Zhou, Sun, Liang (b29) 2019; 68 Jain, Hawe, Chiu (b50) 1984 . Tun, Tran, Ngo, Pandey, Han, Hong (b34) 2019; 37 Marabissi, Fantacci (b15) 2019; 7 GSM Association Official Document NG.116 (11/2020) (b7) 2020 Caballero, Banchs, De Veciana, Costa-Pérez (b25) 2019; 27 Mei, Wang, Zheng, Boudreau, Sediq, Abou-Zeid (b44) 2021; 69 (b21) 2018 Bertsekas (b53) 1999 Vassilaras, Gkatzikis, Liakopoulos, Stiakogiannakis, Qi, Shi, Liu, Debbah, Paschos (b22) 2017; 55 Lee, Loo, Chuah, Wang (b16) 2018; 17 iLab (b55) 2017 Bega, Gramaglia, Banchs, Sciancalepore, Costa-Pérez (b39) 2020; 19 Zhao, Qin, Feng, Sun (b38) 2020; 31 García-Morales, Lucas-Estañ, Gozalvez (b33) 2019; 7 (b10) 2018 Parsaeefard, Dawadi, Derakhshani, Le-Ngoc (b41) 2016; 4 Yarkina, Gaidamaka, Correia, Samouylov (b57) 2020; 8 Requirements of the IMT-2020 Network, ITU-T Rec. Y.3101, ITU-T, 2018, URL Popovski, Trillingsgaard, Simeone, Durisi (b32) 2018; 6 Sun, Qin, Feng, Zhang, Imran (b19) 2020 Narmanlioglu, Zeydan, Arslan (b31) 2018; 6 O-RAN Alliance (b4) 2021 Barakabitze, Ahmad, Mijumbi, Hines (b20) 2020; 167 Papa, Klugel, Goratti, Rasheed, Kellerer (b14) 2019 Ksentini, Nikaein (b12) 2017; 55 Vo, Nguyen, Le, Tran (b28) 2018; 7 Zhou, Zhao, Liang, Zheng, Hanzo (b35) 2020; 69 Kokku, Mahindra, Zhang, Rangarajan (b11) 2013 Vilà, Sallent, Umbert, Pérez-Romero (b13) 2019; 7 (b54) 2020 Caballero, Banchs, de Veciana, Costa-Pérez, Azcorra (b18) 2018; 17 Sun, Xiong, Boateng, Liu, Jiang (b24) 2020; 157 P. Kermani, L. L. Kleinrock, Analysis of Buffer Allocation Schemes in a Multiplexing Node, in: Conference Record, International Conference on Communications, Vol. 2, Chicago, Illinois, 1977, 30.4–269–275. Arif Hossain, Ansari (b27) 2021 Kokku (10.1016/j.comcom.2022.02.019_b11) 2013 Jain (10.1016/j.comcom.2022.02.019_b50) 1984 Boutiba (10.1016/j.comcom.2022.02.019_b5) 2022; 181 Begishev (10.1016/j.comcom.2022.02.019_b48) 2021; 70 Yarkina (10.1016/j.comcom.2022.02.019_b57) 2020; 8 Arif Hossain (10.1016/j.comcom.2022.02.019_b27) 2021 Rouzbehani (10.1016/j.comcom.2022.02.019_b47) 2018 Vassilaras (10.1016/j.comcom.2022.02.019_b22) 2017; 55 Begishev (10.1016/j.comcom.2022.02.019_b49) 2019; 68 Parsaeefard (10.1016/j.comcom.2022.02.019_b41) 2016; 4 Papa (10.1016/j.comcom.2022.02.019_b14) 2019 (10.1016/j.comcom.2022.02.019_b9) 2019 Vincenzi (10.1016/j.comcom.2022.02.019_b42) 2019; 7 Bertsekas (10.1016/j.comcom.2022.02.019_b53) 1999 Sun (10.1016/j.comcom.2022.02.019_b24) 2020; 157 (10.1016/j.comcom.2022.02.019_b8) 2001 Bega (10.1016/j.comcom.2022.02.019_b39) 2020; 19 Popovski (10.1016/j.comcom.2022.02.019_b32) 2018; 6 Zhao (10.1016/j.comcom.2022.02.019_b38) 2020; 31 Zhou (10.1016/j.comcom.2022.02.019_b35) 2020; 69 GSM Association Official Document NG.116 (11/2020) (10.1016/j.comcom.2022.02.019_b7) 2020 Lee (10.1016/j.comcom.2022.02.019_b16) 2018; 17 (10.1016/j.comcom.2022.02.019_b10) 2018 Yan (10.1016/j.comcom.2022.02.019_b29) 2019; 68 O-RAN Alliance (10.1016/j.comcom.2022.02.019_b4) 2021 (10.1016/j.comcom.2022.02.019_b21) 2018 Lieto (10.1016/j.comcom.2022.02.019_b36) 2018 Barakabitze (10.1016/j.comcom.2022.02.019_b20) 2020; 167 Sun (10.1016/j.comcom.2022.02.019_b19) 2020 Narmanlioglu (10.1016/j.comcom.2022.02.019_b31) 2018; 6 D’Oro (10.1016/j.comcom.2022.02.019_b26) 2018; 26 Tun (10.1016/j.comcom.2022.02.019_b34) 2019; 37 Marabissi (10.1016/j.comcom.2022.02.019_b15) 2019; 7 Ksentini (10.1016/j.comcom.2022.02.019_b12) 2017; 55 Caballero (10.1016/j.comcom.2022.02.019_b18) 2018; 17 Khatibi (10.1016/j.comcom.2022.02.019_b3) 2017; 73 Hazra (10.1016/j.comcom.2022.02.019_b43) 2020; 8 Salvat (10.1016/j.comcom.2022.02.019_b37) 2018 Vlaskina (10.1016/j.comcom.2022.02.019_b40) 2019 Vilà (10.1016/j.comcom.2022.02.019_b13) 2019; 7 Kotulski (10.1016/j.comcom.2022.02.019_b46) 2020; 171 iLab (10.1016/j.comcom.2022.02.019_b55) 2017 Vo (10.1016/j.comcom.2022.02.019_b28) 2018; 7 Bertsekas (10.1016/j.comcom.2022.02.019_b51) 1992 Mei (10.1016/j.comcom.2022.02.019_b44) 2021; 69 10.1016/j.comcom.2022.02.019_b56 Kelly (10.1016/j.comcom.2022.02.019_b52) 1997; 8 Afolabi (10.1016/j.comcom.2022.02.019_b6) 2018; 20 Caballero (10.1016/j.comcom.2022.02.019_b25) 2019; 27 García-Morales (10.1016/j.comcom.2022.02.019_b33) 2019; 7 (10.1016/j.comcom.2022.02.019_b54) 2020 Fossati (10.1016/j.comcom.2022.02.019_b30) 2020; 28 Guan (10.1016/j.comcom.2022.02.019_b23) 2018; 6 10.1016/j.comcom.2022.02.019_b1 10.1016/j.comcom.2022.02.019_b2 Akgül (10.1016/j.comcom.2022.02.019_b17) 2019; 16 Gonzalez (10.1016/j.comcom.2022.02.019_b45) 2020 |
References_xml | – reference: P. Kermani, L. L. Kleinrock, Analysis of Buffer Allocation Schemes in a Multiplexing Node, in: Conference Record, International Conference on Communications, Vol. 2, Chicago, Illinois, 1977, 30.4–269–275. – reference: Requirements of the IMT-2020 Network, ITU-T Rec. Y.3101, ITU-T, 2018, URL – year: 2018 ident: b21 article-title: Framework for the Support of Network Slicing in the IMT-2020 Network – volume: 28 start-page: 1311 year: 2020 end-page: 1324 ident: b30 article-title: Multi-resource allocation for network slicing publication-title: IEEE/ACM Trans. Netw. – volume: 68 start-page: 12345 year: 2019 end-page: 12359 ident: b49 article-title: Quantifying the impact of guard capacity on session continuity in 3GPP new radio systems publication-title: IEEE Trans. Veh. Technol. – year: 2021 ident: b27 article-title: Network slicing for NOMA-enabled edge computing publication-title: IEEE Trans. Cloud Comput. – volume: 171 year: 2020 ident: b46 article-title: 5G networks: Types of isolation and their parameters in RAN and CN slices publication-title: Comput. Netw. – volume: 26 start-page: 2815 year: 2018 end-page: 2828 ident: b26 article-title: Low-complexity distributed radio access network slicing: Algorithms and experimental results publication-title: IEEE/ACM Trans. Netw. – volume: 167 year: 2020 ident: b20 article-title: 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges publication-title: Comput. Netw. – volume: 8 start-page: 5185 year: 2020 end-page: 5193 ident: b43 article-title: Stackelberg game for service deployment of IoT-enabled applications in 6G-aware fog networks publication-title: IEEE Internet Things J. – year: 2001 ident: b8 article-title: UMTS QoS Concept and Architecture – year: 2017 ident: b55 article-title: Video big data report: Top 10 most demanding videos on the net [online] – volume: 7 start-page: 970 year: 2018 end-page: 973 ident: b28 article-title: Slicing the edge: Resource allocation for RAN network slicing publication-title: IEEE Wirel. Commun. Lett. – volume: 55 start-page: 112 year: 2017 end-page: 119 ident: b22 article-title: The algorithmic aspects of network slicing publication-title: IEEE Commun. Mag. – volume: 7 start-page: 97130 year: 2019 end-page: 97142 ident: b15 article-title: Highly flexible RAN slicing approach to manage isolation, priority, efficiency publication-title: IEEE Access – volume: 7 start-page: 143139 year: 2019 end-page: 143159 ident: b33 article-title: Latency-sensitive 5G RAN slicing for industry 4.0 publication-title: IEEE Access – volume: 73 start-page: 1 year: 2017 end-page: 7 ident: b3 article-title: Modelling virtual radio resource management in full heterogeneous networks publication-title: EURASIP J. Wirel. Commun. Netw. – reference: 5G; System Architecture for the 5G System, 3GPP TS 23.501 version 15.2.0 Release 15, ETSI, 2018, – volume: 55 start-page: 102 year: 2017 end-page: 108 ident: b12 article-title: Toward enforcing network slicing on RAN: Flexibility and resources abstraction publication-title: IEEE Commun. Mag. – volume: 69 start-page: 6063 year: 2021 end-page: 6078 ident: b44 article-title: Intelligent radio access network slicing for service provisioning in 6G: A hierarchical deep reinforcement learning approach publication-title: IEEE Trans. Commun. – year: 2020 ident: b19 article-title: Service provisioning framework for RAN slicing: User admissibility, slice association and bandwidth allocation publication-title: IEEE Trans. Mob. Comput. – start-page: 1 year: 2018 end-page: 7 ident: b36 article-title: Enabling dynamic resource sharing for slice customization in 5G networks publication-title: 2018 IEEE Global Communications Conference – year: 2019 ident: b9 article-title: GSM, UMTS, LTE; Policy and charging control architecture – year: 2018 ident: b47 article-title: A service-oriented approach for radio resource management in virtual RANs publication-title: Hindawi Wirel. Commun. Mobile Comput. – volume: 8 start-page: 33 year: 1997 end-page: 37 ident: b52 article-title: Charging and rate control for elastic traffic publication-title: Eur. Trans. Telecommun. – volume: 6 start-page: 20348 year: 2018 end-page: 20363 ident: b31 article-title: Service-aware multi-resource allocation in software-defined next generation cellular networks publication-title: IEEE Access – volume: 8 start-page: 1177 year: 2020 ident: b57 article-title: An analytical model for 5G network resource sharing with flexible SLA-oriented slice isolation publication-title: MDPI Math. – volume: 37 start-page: 1794 year: 2019 end-page: 1807 ident: b34 article-title: Wireless network slicing: Generalized kelly mechanism-based resource allocation publication-title: IEEE J. Sel. Areas Commun. – volume: 31 year: 2020 ident: b38 article-title: Network slice selection in softwarization-based mobile networks publication-title: Trans. Emerg. Telecommun. Technol. – volume: 4 start-page: 2738 year: 2016 end-page: 2750 ident: b41 article-title: Joint user-association and resource-allocation in virtualized wireless networks publication-title: IEEE Access – year: 2020 ident: b7 article-title: Generic Network Slice Template – start-page: 353 year: 2018 end-page: 365 ident: b37 article-title: Overbooking network slices through yield-driven end-to-end orchestration publication-title: 14th Int. Conf. on Emerging Networking EXperiments and Technologies (CoNEXT ’18), New York, NY, USA – volume: 68 start-page: 7691 year: 2019 end-page: 7703 ident: b29 article-title: Intelligent resource scheduling for 5G radio access network slicing publication-title: IEEE Trans. Veh. Technol. – volume: 17 start-page: 6419 year: 2018 end-page: 6432 ident: b18 article-title: Network slicing for guaranteed rate services: Admission control and resource allocation games publication-title: IEEE Trans. Wirel. Commun. – volume: 157 year: 2020 ident: b24 article-title: Resource slicing and customization in RAN with dueling deep Q-network publication-title: J. Netw. Comput. Appl. – volume: 16 start-page: 220 year: 2019 end-page: 233 ident: b17 article-title: Dynamic resource trading in sliced mobile networks publication-title: IEEE Trans. Netw. Serv. Manag. – volume: 6 start-page: 55765 year: 2018 end-page: 55779 ident: b32 article-title: 5G wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view publication-title: IEEE Access – volume: 19 start-page: 498 year: 2020 end-page: 512 ident: b39 article-title: A machine learning approach to 5G infrastructure market optimization publication-title: IEEE Trans. Mob. Comput. – year: 2021 ident: b4 article-title: Operator defined open and intelligent radio access networks [online] – volume: 20 start-page: 2429 year: 2018 end-page: 2453 ident: b6 article-title: Network slicing and softwarization: A survey on principles, enabling technologies, and solutions publication-title: IEEE Commun. Surv. Tutor. – volume: 27 start-page: 662 year: 2019 end-page: 675 ident: b25 article-title: Network slicing games: Enabling customization in multi-tenant mobile networks publication-title: IEEE/ACM Trans. Netw. – volume: 7 start-page: 128283 year: 2019 end-page: 128297 ident: b42 article-title: Maximizing infrastructure providers’ revenue through network slicing in 5G publication-title: IEEE Access – volume: 181 start-page: 284 year: 2022 end-page: 292 ident: b5 article-title: Nrflex: Enforcing network slicing in 5G new radio publication-title: Comput. Commun. – volume: 6 start-page: 19691 year: 2018 end-page: 19701 ident: b23 article-title: A service-oriented deployment policy of end-to-end network slicing based on complex network theory publication-title: IEEE Access – year: 1992 ident: b51 article-title: Data Networks – start-page: 1 year: 2013 end-page: 10 ident: b11 article-title: CellSlice: Cellular wireless resource slicing for active RAN sharing publication-title: 5th Int. Conf. on Communication Systems and Networks – volume: 69 start-page: 1163 year: 2020 end-page: 1167 ident: b35 article-title: Utility analysis of radio access network slicing publication-title: IEEE Trans. Veh. Technol. – year: 2020 ident: b54 article-title: NR Intra Band Carrier Aggregation (CA) Rel-16 for xCC Down Link (DL) / yCC Up Link (UL) Including Contiguous and Non-Contiguous Spectrum (X – reference: . – volume: 17 start-page: 2146 year: 2018 end-page: 2161 ident: b16 article-title: Dynamic network slicing for multitenant heterogeneous cloud radio access networks publication-title: IEEE Trans. Wirel. Commun. – start-page: 1 year: 2019 end-page: 7 ident: b14 article-title: Optimizing dynamic RAN slicing in programmable 5G networks publication-title: IEEE Int. Conf. on Communications – year: 1984 ident: b50 article-title: A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer Systems – year: 1999 ident: b53 article-title: Nonlinear Programming – volume: 70 start-page: 2657 year: 2021 end-page: 2672 ident: b48 article-title: Joint use of guard capacity and multiconnectivity for improved session continuity in millimeter-wave 5G NR systems publication-title: IEEE Trans. Veh. Technol. – volume: 7 start-page: 57651 year: 2019 end-page: 57662 ident: b13 article-title: An analytical model for multi-tenant radio access networks supporting guaranteed bit rate services publication-title: IEEE Access – start-page: 12 year: 2020 end-page: 16 ident: b45 article-title: The isolation concept in the 5G network slicing publication-title: 2020 European Conference on Networks and Communications – start-page: 621 year: 2019 end-page: 634 ident: b40 article-title: Modeling and performance analysis of elastic traffic with minimum rate guarantee transmission under network slicing publication-title: Internet of Things, Smart Spaces, and Next Generation Networks and Systems – year: 2018 ident: b10 article-title: GSM, UMTS, LTE, 5G; Release Description – year: 1984 ident: 10.1016/j.comcom.2022.02.019_b50 – volume: 26 start-page: 2815 issue: 6 year: 2018 ident: 10.1016/j.comcom.2022.02.019_b26 article-title: Low-complexity distributed radio access network slicing: Algorithms and experimental results publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2018.2878965 – volume: 167 year: 2020 ident: 10.1016/j.comcom.2022.02.019_b20 article-title: 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges publication-title: Comput. Netw. doi: 10.1016/j.comnet.2019.106984 – volume: 55 start-page: 102 issue: 6 year: 2017 ident: 10.1016/j.comcom.2022.02.019_b12 article-title: Toward enforcing network slicing on RAN: Flexibility and resources abstraction publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2017.1601119 – start-page: 1 year: 2018 ident: 10.1016/j.comcom.2022.02.019_b36 article-title: Enabling dynamic resource sharing for slice customization in 5G networks – year: 2020 ident: 10.1016/j.comcom.2022.02.019_b7 – year: 2001 ident: 10.1016/j.comcom.2022.02.019_b8 – volume: 68 start-page: 12345 issue: 12 year: 2019 ident: 10.1016/j.comcom.2022.02.019_b49 article-title: Quantifying the impact of guard capacity on session continuity in 3GPP new radio systems publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2948702 – volume: 8 start-page: 5185 issue: 7 year: 2020 ident: 10.1016/j.comcom.2022.02.019_b43 article-title: Stackelberg game for service deployment of IoT-enabled applications in 6G-aware fog networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3041102 – year: 2018 ident: 10.1016/j.comcom.2022.02.019_b47 article-title: A service-oriented approach for radio resource management in virtual RANs publication-title: Hindawi Wirel. Commun. Mobile Comput. doi: 10.1155/2018/4163612 – volume: 69 start-page: 1163 issue: 1 year: 2020 ident: 10.1016/j.comcom.2022.02.019_b35 article-title: Utility analysis of radio access network slicing publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2952216 – ident: 10.1016/j.comcom.2022.02.019_b56 – volume: 17 start-page: 6419 issue: 10 year: 2018 ident: 10.1016/j.comcom.2022.02.019_b18 article-title: Network slicing for guaranteed rate services: Admission control and resource allocation games publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2018.2859918 – volume: 171 year: 2020 ident: 10.1016/j.comcom.2022.02.019_b46 article-title: 5G networks: Types of isolation and their parameters in RAN and CN slices publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107135 – volume: 31 issue: 1 year: 2020 ident: 10.1016/j.comcom.2022.02.019_b38 article-title: Network slice selection in softwarization-based mobile networks publication-title: Trans. Emerg. Telecommun. Technol. – start-page: 12 year: 2020 ident: 10.1016/j.comcom.2022.02.019_b45 article-title: The isolation concept in the 5G network slicing – year: 1999 ident: 10.1016/j.comcom.2022.02.019_b53 – start-page: 353 year: 2018 ident: 10.1016/j.comcom.2022.02.019_b37 article-title: Overbooking network slices through yield-driven end-to-end orchestration – volume: 157 issue: C year: 2020 ident: 10.1016/j.comcom.2022.02.019_b24 article-title: Resource slicing and customization in RAN with dueling deep Q-network publication-title: J. Netw. Comput. Appl. – year: 1992 ident: 10.1016/j.comcom.2022.02.019_b51 – volume: 28 start-page: 1311 issue: 3 year: 2020 ident: 10.1016/j.comcom.2022.02.019_b30 article-title: Multi-resource allocation for network slicing publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2020.2979667 – volume: 7 start-page: 128283 year: 2019 ident: 10.1016/j.comcom.2022.02.019_b42 article-title: Maximizing infrastructure providers’ revenue through network slicing in 5G publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939935 – year: 2018 ident: 10.1016/j.comcom.2022.02.019_b10 – volume: 8 start-page: 1177 year: 2020 ident: 10.1016/j.comcom.2022.02.019_b57 article-title: An analytical model for 5G network resource sharing with flexible SLA-oriented slice isolation publication-title: MDPI Math. doi: 10.3390/math8071177 – volume: 68 start-page: 7691 issue: 8 year: 2019 ident: 10.1016/j.comcom.2022.02.019_b29 article-title: Intelligent resource scheduling for 5G radio access network slicing publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2922668 – volume: 37 start-page: 1794 issue: 8 year: 2019 ident: 10.1016/j.comcom.2022.02.019_b34 article-title: Wireless network slicing: Generalized kelly mechanism-based resource allocation publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2019.2927100 – year: 2020 ident: 10.1016/j.comcom.2022.02.019_b19 article-title: Service provisioning framework for RAN slicing: User admissibility, slice association and bandwidth allocation publication-title: IEEE Trans. Mob. Comput. – volume: 55 start-page: 112 issue: 8 year: 2017 ident: 10.1016/j.comcom.2022.02.019_b22 article-title: The algorithmic aspects of network slicing publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2017.1600939 – volume: 73 start-page: 1 year: 2017 ident: 10.1016/j.comcom.2022.02.019_b3 article-title: Modelling virtual radio resource management in full heterogeneous networks publication-title: EURASIP J. Wirel. Commun. Netw. – volume: 6 start-page: 55765 year: 2018 ident: 10.1016/j.comcom.2022.02.019_b32 article-title: 5G wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2872781 – year: 2020 ident: 10.1016/j.comcom.2022.02.019_b54 – start-page: 1 year: 2013 ident: 10.1016/j.comcom.2022.02.019_b11 article-title: CellSlice: Cellular wireless resource slicing for active RAN sharing – volume: 6 start-page: 20348 year: 2018 ident: 10.1016/j.comcom.2022.02.019_b31 article-title: Service-aware multi-resource allocation in software-defined next generation cellular networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2818751 – volume: 6 start-page: 19691 year: 2018 ident: 10.1016/j.comcom.2022.02.019_b23 article-title: A service-oriented deployment policy of end-to-end network slicing based on complex network theory publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2822398 – ident: 10.1016/j.comcom.2022.02.019_b2 – start-page: 1 year: 2019 ident: 10.1016/j.comcom.2022.02.019_b14 article-title: Optimizing dynamic RAN slicing in programmable 5G networks – volume: 181 start-page: 284 year: 2022 ident: 10.1016/j.comcom.2022.02.019_b5 article-title: Nrflex: Enforcing network slicing in 5G new radio publication-title: Comput. Commun. doi: 10.1016/j.comcom.2021.09.034 – volume: 4 start-page: 2738 year: 2016 ident: 10.1016/j.comcom.2022.02.019_b41 article-title: Joint user-association and resource-allocation in virtualized wireless networks publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2560218 – volume: 17 start-page: 2146 issue: 4 year: 2018 ident: 10.1016/j.comcom.2022.02.019_b16 article-title: Dynamic network slicing for multitenant heterogeneous cloud radio access networks publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2017.2789294 – year: 2018 ident: 10.1016/j.comcom.2022.02.019_b21 – volume: 19 start-page: 498 issue: 3 year: 2020 ident: 10.1016/j.comcom.2022.02.019_b39 article-title: A machine learning approach to 5G infrastructure market optimization publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2019.2896950 – volume: 20 start-page: 2429 issue: 3 year: 2018 ident: 10.1016/j.comcom.2022.02.019_b6 article-title: Network slicing and softwarization: A survey on principles, enabling technologies, and solutions publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2018.2815638 – year: 2021 ident: 10.1016/j.comcom.2022.02.019_b4 – volume: 7 start-page: 143139 year: 2019 ident: 10.1016/j.comcom.2022.02.019_b33 article-title: Latency-sensitive 5G RAN slicing for industry 4.0 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944719 – year: 2019 ident: 10.1016/j.comcom.2022.02.019_b9 – start-page: 621 year: 2019 ident: 10.1016/j.comcom.2022.02.019_b40 article-title: Modeling and performance analysis of elastic traffic with minimum rate guarantee transmission under network slicing – volume: 27 start-page: 662 issue: 2 year: 2019 ident: 10.1016/j.comcom.2022.02.019_b25 article-title: Network slicing games: Enabling customization in multi-tenant mobile networks publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2019.2895378 – year: 2017 ident: 10.1016/j.comcom.2022.02.019_b55 – year: 2021 ident: 10.1016/j.comcom.2022.02.019_b27 article-title: Network slicing for NOMA-enabled edge computing publication-title: IEEE Trans. Cloud Comput. – volume: 8 start-page: 33 issue: 1 year: 1997 ident: 10.1016/j.comcom.2022.02.019_b52 article-title: Charging and rate control for elastic traffic publication-title: Eur. Trans. Telecommun. doi: 10.1002/ett.4460080106 – volume: 7 start-page: 97130 year: 2019 ident: 10.1016/j.comcom.2022.02.019_b15 article-title: Highly flexible RAN slicing approach to manage isolation, priority, efficiency publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929732 – volume: 69 start-page: 6063 issue: 9 year: 2021 ident: 10.1016/j.comcom.2022.02.019_b44 article-title: Intelligent radio access network slicing for service provisioning in 6G: A hierarchical deep reinforcement learning approach publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2021.3090423 – ident: 10.1016/j.comcom.2022.02.019_b1 – volume: 16 start-page: 220 issue: 1 year: 2019 ident: 10.1016/j.comcom.2022.02.019_b17 article-title: Dynamic resource trading in sliced mobile networks publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2019.2893126 – volume: 70 start-page: 2657 issue: 3 year: 2021 ident: 10.1016/j.comcom.2022.02.019_b48 article-title: Joint use of guard capacity and multiconnectivity for improved session continuity in millimeter-wave 5G NR systems publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3061906 – volume: 7 start-page: 970 issue: 6 year: 2018 ident: 10.1016/j.comcom.2022.02.019_b28 article-title: Slicing the edge: Resource allocation for RAN network slicing publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2018.2842189 – volume: 7 start-page: 57651 year: 2019 ident: 10.1016/j.comcom.2022.02.019_b13 article-title: An analytical model for multi-tenant radio access networks supporting guaranteed bit rate services publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2913323 |
SSID | ssj0004773 |
Score | 2.451101 |
Snippet | Network slicing is a promising technique to enable multi-tenant operation in fifth generation (5G) cellular systems. However, efficient implementation of this... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 39 |
SubjectTerms | Network slicing Performance isolation Preemption Prioritization Quality assurance |
Title | Multi-tenant resource sharing with equitable-priority-based performance isolation of slices for 5G cellular systems |
URI | https://dx.doi.org/10.1016/j.comcom.2022.02.019 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYED4inGY8qBa1hfSZrjNDEGiJ2YtFvVpJkoQlvZuiu_HTtt2ZAQSEi9tKmrynFt1_n8hZBriIFGihlkblkWMMj_I6ZTETMIflrxwHBrsaD_NBajSfQw5dMWGTS9MAirrH1_5dOdt66v9Gpt9oo87zlYUiggf3bdJgF2lEeRRCu_-djAPCJZrTIjjBHvbtrnHMYLno2YkQACmWPuRL6dn8LTVsgZHpD9Olek_ep1DknLzo_I3haD4DFZuQZaBokvaIgu61o8Xb2kOE6xykrt-zovsUOKFct8gZvVMYxdGS02TQM0Bxt0k0QXMwq5J7gPCoOU31Gs7SNYlVasz6sTMhnePg9GrN5HgRlIr0rm28BEPJXYLmm92KSx9tVMpZknLdcC-WSE4Z4JTBghu71QMoyt9jioJUyFDU9Je76Y2zNCtacsSFrEnsKfp02R0N1mIpSxgm9Zd0jYqC8xNck47nXxljRostekUnqCSk88OHzVIexLqqhINv64XzYzk3wzlgTiwK-S5_-WvCC7eIYLST6_JO1yubZXkI-UuusMrkt2-vePo_EnBc_gwA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ7U9qAejM9Yn3vwuikFdoFj01hb-zi1SW-EXbYRY1ps6f93hofWxGhiwgkYQmaXmdnh-74FeMAcqD25wMotjm2O9b_LVSR9jslPBcLWwhhq6I8nsj9zn-diXoNuxYUhWGUZ-4uYnkfr8kyr9GYrTZJWDktyJNbPOdvE9vagQepUog6NzmDYn3zRI73iRzMhGcmgYtDlMC98PMFGbMxluXgnSe78lKF2sk7vGI7KcpF1ijc6gZpZnsLhjojgGWxyDi3H2hedxNZlO55tXiK6zqjRysz7NsmIJMXTdbKi_eo4pa-YpV-8AZbgNMzHia0WDMtPjCAMLzLxxKi9T3hVVgg_b85h1nucdvu83EqBa6ywMt42tnZF5BFj0li-jnzVDhZBFFueEUqSpIzUwtK2dlwSuJeB5_hGWQLd4kTSOBdQX66W5hKYsgKDlobgp7j4NBFpuptYOp4f4OesmuBU7gt1qTNO2128hRWg7DUsnB6S00MLj3bQBP5plRY6G3_c71UjE36bLyGmgl8tr_5teQ_7_el4FI4Gk-E1HNi08s6hjzdQz9Zbc4vlSabuyun3Ab4S42s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-tenant+resource+sharing+with+equitable-priority-based+performance+isolation+of+slices+for+5G+cellular+systems&rft.jtitle=Computer+communications&rft.au=Yarkina%2C+Natalia&rft.au=Correia%2C+Luis+M.&rft.au=Moltchanov%2C+Dmitri&rft.au=Gaidamaka%2C+Yuliya&rft.date=2022-04-15&rft.issn=0140-3664&rft.volume=188&rft.spage=39&rft.epage=51&rft_id=info:doi/10.1016%2Fj.comcom.2022.02.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_comcom_2022_02_019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon |