Facets for node-capacitated multicut polytopes from path-block cycles with two common nodes

A path-block cycle is a graph that consists of several cycles that all intersect in a common subset of nodes. The associated path-block-cycle inequalities are valid, and sometimes facet-defining, inequalities for polytopes in connection with graph partitioning problems and corresponding multicut pro...

Full description

Saved in:
Bibliographic Details
Published inDiscrete optimization Vol. 25; pp. 120 - 140
Main Author Sørensen, Michael M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A path-block cycle is a graph that consists of several cycles that all intersect in a common subset of nodes. The associated path-block-cycle inequalities are valid, and sometimes facet-defining, inequalities for polytopes in connection with graph partitioning problems and corresponding multicut problems. Special cases of the inequalities were introduced by De Souza and Laurent (1995) and shown to be facet-defining for the equicut polytope. Generalizations of these inequalities were shown by Ferreira et al. (1996) to be valid for node-capacitated graph partitioning polytopes on general graphs. This paper considers the special case of the inequalities, where all cycles intersect in two nodes, and establishes conditions under which these inequalities induce facets of node-capacitated multicut polytopes and bisection cut polytopes. These polytopes are associated with simple versions of the node-capacitated graph partitioning and bisection problems, where all node weights are assumed to be 1.
AbstractList A path-block cycle is a graph that consists of several cycles that all intersect in a common subset of nodes. The associated path-block-cycle inequalities are valid, and sometimes facet-defining, inequalities for polytopes in connection with graph partitioning problems and corresponding multicut problems. Special cases of the inequalities were introduced by De Souza and Laurent (1995) and shown to be facet-defining for the equicut polytope. Generalizations of these inequalities were shown by Ferreira et al. (1996) to be valid for node-capacitated graph partitioning polytopes on general graphs. This paper considers the special case of the inequalities, where all cycles intersect in two nodes, and establishes conditions under which these inequalities induce facets of node-capacitated multicut polytopes and bisection cut polytopes. These polytopes are associated with simple versions of the node-capacitated graph partitioning and bisection problems, where all node weights are assumed to be 1.
Author Sørensen, Michael M.
Author_xml – sequence: 1
  givenname: Michael M.
  orcidid: 0000-0002-6917-2025
  surname: Sørensen
  fullname: Sørensen, Michael M.
  email: mim@econ.au.dk
  organization: Department of Economics and Business Economics, Aarhus University, Fuglesangs Allé 4, DK-8210 Aarhus V, Denmark
BookMark eNp9kN9KwzAUh4NMcJu-gRd5gdb8adL2RpDhVBh4oyB4EdKTlGW2TUkyx97eznktHDiHw_l9HL4Fmg1-sAjdUpJTQuXdLjcu-jHljNAyJzwnhF6gOa1KnkkuP2bTLEqWCVbJK7SIcUcIL2ou5uhzrcGmiFsf8OCNzUCPGlzSyRrc77vkYJ_w6Ltj8qOd7oLv8ajTNms6D18YjtBN64NLW5wOHoPvez_8ouI1umx1F-3NX1-i9_Xj2-o527w-vaweNhlwwVJGjaWCtrwAYBUxteBStlK3jaxLYzQ1Ba9MPVUJZUN0IUgDwmpRMEMIE8CXqDhzIfgYg23VGFyvw1FRok6C1E6dBamTIEW4mgRNsftzzE6_fTsbVARnB7DGBQtJGe_-B_wAPbd0xQ
CitedBy_id crossref_primary_10_1016_j_disc_2022_112884
crossref_primary_10_1007_s12532_022_00228_y
Cites_doi 10.1007/BF01588778
10.1007/BF01588779
10.1137/060675253
10.1007/BF01581107
10.1023/B:JOCO.0000031417.96218.26
10.1016/j.disc.2010.08.009
10.1016/0166-218X(94)00151-3
10.1007/s10107-011-0503-x
10.1007/BF02592198
10.1016/j.disopt.2006.08.001
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.disopt.2017.03.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-636X
EndPage 140
ExternalDocumentID 10_1016_j_disopt_2017_03_001
S1572528617300476
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
J9A
KOM
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
~G-
0SF
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c352t-1de151f34cc280d95366f6afb697dda1d438d98d97c7b0a450bc5ea542d0025c3
IEDL.DBID .~1
ISSN 1572-5286
IngestDate Thu Sep 26 16:06:32 EDT 2024
Fri Feb 23 02:29:40 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Graph partitioning
Polyhedral combinatorics
90C27
90C57
Graph bisection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-1de151f34cc280d95366f6afb697dda1d438d98d97c7b0a450bc5ea542d0025c3
ORCID 0000-0002-6917-2025
OpenAccessLink https://doi.org/10.1016/j.disopt.2017.03.001
PageCount 21
ParticipantIDs crossref_primary_10_1016_j_disopt_2017_03_001
elsevier_sciencedirect_doi_10_1016_j_disopt_2017_03_001
PublicationCentury 2000
PublicationDate August 2017
2017-08-00
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationTitle Discrete optimization
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Faigle, Schrader, Suletzki (br000045) 1986; 57
Conforti, Rao, Sassano (br000030) 1990; 49
Sørensen (br000040) 2007; 4
Armbruster, Helmberg, Fügenschuh, Martin (br000050) 2008; 22
De Souza, Laurent (br000015) 1995; 62
Ferreira, Martin, de Souza, Weismantel, Wolsey (br000020) 1996; 74
Ferreira, Martin, de Souza, Weismantel, Wolsey (br000070) 1998; 81
Aardal, Weismantel (br000005) 1997
Labbé, Özsoy (br000065) 2010; 310
Sørensen (br000035) 2004; 8
Hager, Phan, Zhang (br000055) 2013; 137
Garey, Johnson (br000025) 1979
Nemhauser, Wolsey (br000010) 1988
Conforti, Rao, Sassano (br000060) 1990; 49
Sørensen (10.1016/j.disopt.2017.03.001_br000040) 2007; 4
Hager (10.1016/j.disopt.2017.03.001_br000055) 2013; 137
Aardal (10.1016/j.disopt.2017.03.001_br000005) 1997
Ferreira (10.1016/j.disopt.2017.03.001_br000020) 1996; 74
Labbé (10.1016/j.disopt.2017.03.001_br000065) 2010; 310
Nemhauser (10.1016/j.disopt.2017.03.001_br000010) 1988
Conforti (10.1016/j.disopt.2017.03.001_br000030) 1990; 49
Armbruster (10.1016/j.disopt.2017.03.001_br000050) 2008; 22
Garey (10.1016/j.disopt.2017.03.001_br000025) 1979
Ferreira (10.1016/j.disopt.2017.03.001_br000070) 1998; 81
Conforti (10.1016/j.disopt.2017.03.001_br000060) 1990; 49
Faigle (10.1016/j.disopt.2017.03.001_br000045) 1986; 57
De Souza (10.1016/j.disopt.2017.03.001_br000015) 1995; 62
Sørensen (10.1016/j.disopt.2017.03.001_br000035) 2004; 8
References_xml – volume: 49
  start-page: 49
  year: 1990
  end-page: 70
  ident: br000060
  article-title: The equipartition polytope I: Formulations, dimension and basic facets
  publication-title: Math. Program.
  contributor:
    fullname: Sassano
– year: 1988
  ident: br000010
  article-title: Integer and Combinatorial Optimization
  contributor:
    fullname: Wolsey
– volume: 4
  start-page: 221
  year: 2007
  end-page: 231
  ident: br000040
  article-title: Facet-defining inequalities for the simple graph partitioning polytope
  publication-title: Discrete Optim.
  contributor:
    fullname: Sørensen
– volume: 137
  start-page: 531
  year: 2013
  end-page: 556
  ident: br000055
  article-title: An exact algorithm for graph partitioning
  publication-title: Math. Program.
  contributor:
    fullname: Zhang
– volume: 74
  start-page: 247
  year: 1996
  end-page: 266
  ident: br000020
  article-title: Formulations and valid inequalities for the node capacitated graph partitioning problem
  publication-title: Math. Program.
  contributor:
    fullname: Wolsey
– volume: 22
  start-page: 1073
  year: 2008
  end-page: 1098
  ident: br000050
  article-title: On the graph bisection cut polytope
  publication-title: SIAM J. Discrete Math.
  contributor:
    fullname: Martin
– volume: 8
  start-page: 151
  year: 2004
  end-page: 170
  ident: br000035
  article-title: -Tree facets for the simple graph partitioning polytope
  publication-title: J. Comb. Optim.
  contributor:
    fullname: Sørensen
– volume: 310
  start-page: 3473
  year: 2010
  end-page: 3493
  ident: br000065
  article-title: Size-constrained graph partitioning polytopes
  publication-title: Discrete Math.
  contributor:
    fullname: Özsoy
– year: 1979
  ident: br000025
  article-title: Computers and Intractability
  contributor:
    fullname: Johnson
– volume: 57
  start-page: 109
  year: 1986
  end-page: 116
  ident: br000045
  article-title: A cutting plane algorithm for optimal graph partitioning
  publication-title: Methods Oper. Res.
  contributor:
    fullname: Suletzki
– volume: 62
  start-page: 167
  year: 1995
  end-page: 191
  ident: br000015
  article-title: Some new classes of facets for the equicut polytope
  publication-title: Discrete Appl. Math.
  contributor:
    fullname: Laurent
– year: 1997
  ident: br000005
  article-title: Polyhedral combinatorics
  publication-title: Annotated Bibliographies in Combinatorial Optimization
  contributor:
    fullname: Weismantel
– volume: 81
  start-page: 229
  year: 1998
  end-page: 256
  ident: br000070
  article-title: The node capacitated graph partitioning problem: A computational study
  publication-title: Math. Program.
  contributor:
    fullname: Wolsey
– volume: 49
  start-page: 71
  year: 1990
  end-page: 90
  ident: br000030
  article-title: The equipartition polytope II: Valid inequalities and facets
  publication-title: Math. Program.
  contributor:
    fullname: Sassano
– volume: 57
  start-page: 109
  year: 1986
  ident: 10.1016/j.disopt.2017.03.001_br000045
  article-title: A cutting plane algorithm for optimal graph partitioning
  publication-title: Methods Oper. Res.
  contributor:
    fullname: Faigle
– volume: 49
  start-page: 49
  year: 1990
  ident: 10.1016/j.disopt.2017.03.001_br000060
  article-title: The equipartition polytope I: Formulations, dimension and basic facets
  publication-title: Math. Program.
  doi: 10.1007/BF01588778
  contributor:
    fullname: Conforti
– volume: 49
  start-page: 71
  year: 1990
  ident: 10.1016/j.disopt.2017.03.001_br000030
  article-title: The equipartition polytope II: Valid inequalities and facets
  publication-title: Math. Program.
  doi: 10.1007/BF01588779
  contributor:
    fullname: Conforti
– year: 1997
  ident: 10.1016/j.disopt.2017.03.001_br000005
  article-title: Polyhedral combinatorics
  contributor:
    fullname: Aardal
– volume: 22
  start-page: 1073
  year: 2008
  ident: 10.1016/j.disopt.2017.03.001_br000050
  article-title: On the graph bisection cut polytope
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/060675253
  contributor:
    fullname: Armbruster
– volume: 81
  start-page: 229
  year: 1998
  ident: 10.1016/j.disopt.2017.03.001_br000070
  article-title: The node capacitated graph partitioning problem: A computational study
  publication-title: Math. Program.
  doi: 10.1007/BF01581107
  contributor:
    fullname: Ferreira
– volume: 8
  start-page: 151
  year: 2004
  ident: 10.1016/j.disopt.2017.03.001_br000035
  article-title: b-Tree facets for the simple graph partitioning polytope
  publication-title: J. Comb. Optim.
  doi: 10.1023/B:JOCO.0000031417.96218.26
  contributor:
    fullname: Sørensen
– volume: 310
  start-page: 3473
  year: 2010
  ident: 10.1016/j.disopt.2017.03.001_br000065
  article-title: Size-constrained graph partitioning polytopes
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2010.08.009
  contributor:
    fullname: Labbé
– volume: 62
  start-page: 167
  year: 1995
  ident: 10.1016/j.disopt.2017.03.001_br000015
  article-title: Some new classes of facets for the equicut polytope
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(94)00151-3
  contributor:
    fullname: De Souza
– volume: 137
  start-page: 531
  year: 2013
  ident: 10.1016/j.disopt.2017.03.001_br000055
  article-title: An exact algorithm for graph partitioning
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0503-x
  contributor:
    fullname: Hager
– volume: 74
  start-page: 247
  year: 1996
  ident: 10.1016/j.disopt.2017.03.001_br000020
  article-title: Formulations and valid inequalities for the node capacitated graph partitioning problem
  publication-title: Math. Program.
  doi: 10.1007/BF02592198
  contributor:
    fullname: Ferreira
– year: 1988
  ident: 10.1016/j.disopt.2017.03.001_br000010
  contributor:
    fullname: Nemhauser
– year: 1979
  ident: 10.1016/j.disopt.2017.03.001_br000025
  contributor:
    fullname: Garey
– volume: 4
  start-page: 221
  year: 2007
  ident: 10.1016/j.disopt.2017.03.001_br000040
  article-title: Facet-defining inequalities for the simple graph partitioning polytope
  publication-title: Discrete Optim.
  doi: 10.1016/j.disopt.2006.08.001
  contributor:
    fullname: Sørensen
SSID ssj0034935
Score 2.1354456
Snippet A path-block cycle is a graph that consists of several cycles that all intersect in a common subset of nodes. The associated path-block-cycle inequalities are...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 120
SubjectTerms Graph bisection
Graph partitioning
Polyhedral combinatorics
Title Facets for node-capacitated multicut polytopes from path-block cycles with two common nodes
URI https://dx.doi.org/10.1016/j.disopt.2017.03.001
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh68rs1jN9sc22JprfailYKHkOxuoGqT0EakF3-7M3lIBfEgBEKW3SVMNvPNJt98Q8hVKIXQPIqZshzFOAAA8wFJmOXGIkQlVFFUUbifeMMpv52JWYP061wYpFVWvr_06YW3rlralTXb2XzefrCFdITTAQhG1SiJstsotgVr-vrzm-bhcr8osomdGfau0-cKjhcydjJkVNqylDq1f4enDcgZ7JO9Klak3fJ2DkjDJIdkd0NB8Ig8D0Jl8hWF0JMmqTZMAfgpzBszmi5KaY2cZunbOk8zA_2W6YJiFWIWAYq9UrVGVhzFr7E0_0gpmAHWZTHV6phMBzeP_SGr6iUwBWFUzmxtAL9jlyvldCyNP2a92AvjyPOl1qGtudvRPhxSycgKubAiJUwouKMx9FHuCdlK0sScEuqgrhjM58F2iAsBL3knDn3uK821a6RsElabKchKWYyg5ou9BKVZAzRrYLlIm2sSWdsy-PF4A_Dcf448-_fIc7KDVyVb74Js5ct3cwkRRB61iiXSItvd3tP4Ds-j8XACraNZ7wu2u8im
link.rule.ids 315,783,787,3515,4511,24130,27583,27938,27939,45599,45677,45693,45888
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVKGYAB8RTl6YHVNA87TkZUURVou9BKlRiixHakAm2iNgh14du5Nw9UJMSAlCmxrejEuefGOT6XkOtICqF5nDBlOYpxIAAWAJMwy01EhE6ooqiiMBh6vTF_mIhJg3TqvTAoq6xifxnTi2hdnWlXaLaz6bT9ZAvpCMcHCkbXKOltkE2O_lkwqW8-v3UeLg-KKpvYmmHzev9cIfJCyU6Gkkpbll6n9u_8tMY53T2yWyWL9La8n33SMPMDsrNmIXhInruRMvmSQu5J56k2TAH7Kdw4ZjSdld4aOc3St1WeZgbaLdIZxTLELAYae6VqhbI4isuxNP9IKeAAE7MYanlExt27UafHqoIJTEEelTNbGyDwxOVKOb6l8c-sl3hREnuB1DqyNXd9HcAhlYytiAsrVsJEgjsacx_lHpPmPJ2bE0IdNBaD8Tz4HgJU4S33kyjggdJcu0bKFmE1TGFW-mKEtWDsJSxhDRHW0HJRN9cissYy_PF8Qwjdf_Y8_XfPK7LVGw36Yf9--HhGtvFKKd07J8188W4uIJ3I48tiunwBu6LHsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facets+for+node-capacitated+multicut+polytopes+from+path-block+cycles+with+two+common+nodes&rft.jtitle=Discrete+optimization&rft.au=S%C3%B8rensen%2C+Michael+M.&rft.date=2017-08-01&rft.pub=Elsevier+B.V&rft.issn=1572-5286&rft.eissn=1873-636X&rft.volume=25&rft.spage=120&rft.epage=140&rft_id=info:doi/10.1016%2Fj.disopt.2017.03.001&rft.externalDocID=S1572528617300476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-5286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-5286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-5286&client=summon