A review of nickel-molybdenum based hydrogen evolution electrocatalysts from theory to experiment

Hydrogen evolution reaction (HER) from alkaline electrolytes is one of most promising methods for producing hydrogen. The remaining obstacles include the development of high performance and earth-abundant electrocatalysts which can be cost-effectively fabricated in large-scale. Ni-Mo based materials...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. A, General Vol. 651; p. 119013
Main Authors Park, Sun Hwa, To, Dung T., Myung, Nosang V.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 05.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen evolution reaction (HER) from alkaline electrolytes is one of most promising methods for producing hydrogen. The remaining obstacles include the development of high performance and earth-abundant electrocatalysts which can be cost-effectively fabricated in large-scale. Ni-Mo based materials are one of potential candidates which might meet the most needs. In this review, we summarize the latest progress in Ni-Mo based HER catalysts in alkaline electrolytes from theoretical calculation to experimental results. This work also summarizes several different strategies to enhance the HER rate. Finally, the future perspective of the next generation electrocatalysts is discussed. [Display omitted] •Latest development of Ni-Mo based electrocatalysts for hydrogen production.•Theoretical calculations and experimental evaluations of various Ni-Mo alloys.•Effective strategies to improve the hydrogen evolution reaction performance.
AbstractList Hydrogen evolution reaction (HER) from alkaline electrolytes is one of most promising methods for producing hydrogen. The remaining obstacles include the development of high performance and earth-abundant electrocatalysts which can be cost-effectively fabricated in large-scale. Ni-Mo based materials are one of potential candidates which might meet the most needs. In this review, we summarize the latest progress in Ni-Mo based HER catalysts in alkaline electrolytes from theoretical calculation to experimental results. This work also summarizes several different strategies to enhance the HER rate. Finally, the future perspective of the next generation electrocatalysts is discussed. [Display omitted] •Latest development of Ni-Mo based electrocatalysts for hydrogen production.•Theoretical calculations and experimental evaluations of various Ni-Mo alloys.•Effective strategies to improve the hydrogen evolution reaction performance.
ArticleNumber 119013
Author To, Dung T.
Park, Sun Hwa
Myung, Nosang V.
Author_xml – sequence: 1
  givenname: Sun Hwa
  surname: Park
  fullname: Park, Sun Hwa
  email: psh@kriss.kr
  organization: Smart Devices Team, Korea Research Institute of Standards and Science, Deajeon 34113, Republic of Korea
– sequence: 2
  givenname: Dung T.
  surname: To
  fullname: To, Dung T.
  email: dto@nd.edu
  organization: Department of Chemical and Biomolecular Engineering, University of Notre Dame, USA
– sequence: 3
  givenname: Nosang V.
  surname: Myung
  fullname: Myung, Nosang V.
  email: nmyung@nd.edu
  organization: Department of Chemical and Biomolecular Engineering, University of Notre Dame, USA
BookMark eNqFkMtOwzAQRS1UJNrCH7DwD6TYjhM7LJCqipeExAYkdpbjTKhLEle2W8jfkyisWMBqZnPu3DkLNOtcBwhdUrKihOZXu5XeGx31ihHGVpQWhKYnaE6lSJNUimyG5qRgeSJz8naGFiHsCCGMF9kc6TX2cLTwiV2NO2s-oEla1_RlBd2hxaUOUOFtX3n3Dh2Go2sO0bpha8BE78arTR9iwLV3LY5bcL7H0WH42oO3LXTxHJ3Wuglw8TOX6PXu9mXzkDw93z9u1k-JSTMWE1oxLjSUeSlkQTmTIDlnOeM85ymHWghaEmFybcoaqDRES6EJM6nIgPNCpkt0PeUa70LwUCtjox7LRq9toyhRoyy1U5MsNcpSk6wB5r_g_dBe-_4_7GbCYHhssOhVMBY6A5X1gx9VOft3wDfXFomF
CitedBy_id crossref_primary_10_1007_s43452_024_01013_5
crossref_primary_10_1002_aenm_202405285
crossref_primary_10_1002_ghg_2257
crossref_primary_10_1021_acs_jpclett_3c03216
crossref_primary_10_1039_D3EE00142C
crossref_primary_10_1016_j_ijhydene_2024_11_243
crossref_primary_10_1039_D4QM00814F
crossref_primary_10_1039_D4RA08619H
crossref_primary_10_1002_smll_202402200
crossref_primary_10_1002_ese3_1723
crossref_primary_10_1016_j_colsurfa_2024_135677
crossref_primary_10_1021_acs_chemmater_3c02978
crossref_primary_10_1002_open_202400069
crossref_primary_10_1016_j_jelechem_2023_117973
crossref_primary_10_1016_j_apcatb_2023_123332
crossref_primary_10_1016_j_apcatb_2024_124388
crossref_primary_10_1088_2631_7990_ad038f
crossref_primary_10_1016_j_corsci_2023_111692
crossref_primary_10_1016_j_rsurfi_2024_100305
crossref_primary_10_1021_acs_chemrev_3c00712
crossref_primary_10_1021_acsomega_4c10407
crossref_primary_10_1016_j_ijhydene_2024_10_194
crossref_primary_10_1016_j_mcat_2024_114069
crossref_primary_10_1007_s10562_024_04714_x
crossref_primary_10_3390_ma17174353
crossref_primary_10_1021_acsami_4c17743
crossref_primary_10_1039_D4CE01090F
crossref_primary_10_1016_j_jechem_2023_12_015
crossref_primary_10_1039_D4TA05392C
crossref_primary_10_1002_smll_202402355
crossref_primary_10_1016_j_electacta_2024_145358
crossref_primary_10_1016_j_ijhydene_2024_07_050
crossref_primary_10_3390_ma16083280
crossref_primary_10_1016_j_apcata_2023_119312
crossref_primary_10_1039_D4EE04528A
crossref_primary_10_1038_s41467_025_55856_4
crossref_primary_10_1016_j_ijhydene_2023_08_066
crossref_primary_10_1039_D3DT02843G
crossref_primary_10_1002_cey2_528
crossref_primary_10_1016_j_ijhydene_2025_03_228
Cites_doi 10.1002/cphc.200600441
10.1021/acscatal.7b01800
10.1021/acs.jpcc.9b01281
10.1016/S0013-4686(98)00403-4
10.1021/acsenergylett.7b01103
10.1103/PhysRevLett.93.156801
10.1021/acsaem.8b02087
10.1016/j.jmst.2020.09.046
10.1016/j.nanoen.2020.105375
10.2298/JSC131118136D
10.1007/s12678-017-0382-x
10.1016/j.jallcom.2003.08.044
10.1039/C8NR08039A
10.1007/s10800-015-0908-y
10.1039/C9TA00899C
10.1039/D0TA08802A
10.1002/inf2.12357
10.1002/anie.201710556
10.1002/cssc.201900617
10.1016/j.electacta.2020.137366
10.1039/C9NR05311E
10.1002/ange.201508613
10.1016/j.nanoen.2016.02.023
10.1002/aenm.201601735
10.1038/s41467-020-18585-4
10.1021/acs.jpclett.1c02676
10.1002/cssc.202000678
10.1039/C9SC03831K
10.1039/C5TA02974K
10.1126/science.1211934
10.1021/acsami.7b16125
10.1016/j.nanoen.2016.07.005
10.1021/acsanm.2c00774
10.1002/anie.201204842
10.1038/sdata.2016.80
10.1016/S0360-3199(00)00120-8
10.1002/pssa.2211360108
10.1038/376238a0
10.1021/acsami.1c02169
10.1016/j.apsusc.2020.147894
10.1039/C9EE01202H
10.1002/advs.201700464
10.1021/acsenergylett.8b00454
10.1063/1.1878333
10.1007/s12274-015-0965-x
10.1021/acsami.2c09004
10.1039/C8CS00846A
10.1149/1.2095612
10.1016/0013-4686(84)85007-0
10.1016/j.apcatb.2020.119137
10.1002/smtd.202000494
10.1016/j.jpowsour.2021.229708
10.1016/j.electacta.2017.11.069
10.1021/cr1002326
10.1016/j.jcat.2020.05.011
10.1038/ncomms15437
10.1039/D0TA04241B
10.1016/0022-5088(87)90145-7
10.1149/1.1856988
10.1038/natrevmats.2017.59
10.1021/cs300691m
10.1126/science.aad4998
10.1039/C9TA03220G
10.1002/chem.202000209
10.1038/nmat3313
10.1016/S0013-4686(00)00549-1
10.1016/j.jechem.2018.09.016
10.1021/acsami.0c11716
10.1016/j.nanoen.2018.08.025
10.1039/C4EE00440J
10.1039/C5TA04723D
10.1039/D2TA03934F
10.1002/adts.202200513
10.1002/smll.201701648
10.1039/tf9585401053
10.1002/anie.201407031
10.1149/1.2069207
10.1073/pnas.0603395103
10.1021/acsaem.0c02104
10.1007/BF01154945
10.1021/acscatal.2c01011
10.1002/adma.202007100
10.1016/j.ijhydene.2019.07.048
10.1016/j.ijhydene.2020.11.007
10.1002/celc.201402089
10.1590/S0100-40422013000800017
10.1002/ange.202013047
10.1016/j.jcis.2021.08.090
10.1016/j.ijhydene.2017.11.131
10.1016/j.ijhydene.2011.10.024
10.1039/C6TA10802D
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.apcata.2022.119013
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3875
ExternalDocumentID 10_1016_j_apcata_2022_119013
S0926860X22005361
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPD
SSG
SSZ
T5K
XPP
ZMT
~02
~G-
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AI.
AIIUN
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
ID FETCH-LOGICAL-c352t-1d247aeb6b7891428e844262446434ef771b07c6acbfe18c0a87a02c375e44983
IEDL.DBID .~1
ISSN 0926-860X
IngestDate Thu Apr 24 22:57:29 EDT 2025
Tue Jul 01 00:39:27 EDT 2025
Fri Feb 23 02:38:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Alkaline electrolyte
Hydrogen evolution reaction
Nickel
Electrocatalysts
Ni-Mo alloy
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-1d247aeb6b7891428e844262446434ef771b07c6acbfe18c0a87a02c375e44983
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0926860X22005361
ParticipantIDs crossref_citationtrail_10_1016_j_apcata_2022_119013
crossref_primary_10_1016_j_apcata_2022_119013
elsevier_sciencedirect_doi_10_1016_j_apcata_2022_119013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-05
PublicationDateYYYYMMDD 2023-02-05
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-05
  day: 05
PublicationDecade 2020
PublicationTitle Applied catalysis. A, General
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kitchin, Nørskov, Barteau, Chen (bib48) 2004; 93
Wang, Zhu, Vasileff, Jiao, Chen, Song, Zheng, Zheng, Qiao (bib49) 2018; 3
Yu, Duan, Feng, Yu, Gao, Yu (bib84) 2021; 33
Gong, Wang, Chen, Hwang, Dai1 (bib10) 2016; 9
Danilovic, Subbaraman, Strmcnik, Stamenkovic, Markovic (bib5) 2013; 78
Jin, Yue, Shu, Huang, Shen (bib74) 2017; 5
Wang, Wang, Liu, Zheng, Li (bib87) 2016; 22
Pham, Gu Kang, Kim, Pak, Han, Leem (bib66) 2021; 537
Nørskov, Bligaard, Logadottir, Kitchin, Chen, Pandelov, Stimming (bib18) 2005; 152
Norskov, Besenbacher (bib26) 1987; 130
An, Long, Ma, Hu, Lin, Zhou, Xing, Huang, Yang (bib34) 2019
Yan, Maark, Khorshidi, Sethuraman, Peterson, Guduru (bib57) 2016; 128
Parsons (bib17) 1958; 54
Duan, Yu, Yang, Zheng, Zhang, Yang, Gao, Zhang, Yu, Liu, Ding, Gu, Zheng, Shi, Jiang, Zhu, Gao, Yu (bib41) 2020; 11
Dubouis, Grimaud (bib33) 2019; 10
Tian, Wei, Guo, Wu, Chen, Xu, Cao, Liu, Wang, Ding, Tua, Zeng (bib100) 2021; 77
Yu, Le, Tran, Lee (bib9) 2020; 26
Hu, Zhang, Gong (bib39) 2019; 12
Mahmood, Yao, Zhang, Pan, Zhang, Zou (bib82) 2018; 5
Schalenbach, Speck, Ledendecker, Kasian, Goehl, Mingers, Breitbach, Springer, Cherevko, Mayrhofer (bib58) 2018; 259
Jaksic (bib20) 2001; 26
Ledendecker, Schlott, Antonietti, Meyer, Shalom (bib22) 2017; 7
Danilovic, Subbaraman, Strmcnik, Chang, Paulikas, Stamenkovic, Markovic (bib44) 2012; 51
Subbaraman, Tripkovic, Chang, Strmcnik, Paulikas, Hirunsit, Chan, Greeley, Stamenkovic, Markovic (bib38) 2012; 11
Santos, Schmickler (bib50) 2006; 7
Santos, Sequeira (bib12) 2013; 36
Subbaraman, Tripkovic, Strmcnik, Chang, Paulikas, Stamenkovic, Markovic (bib35) 2011; 334
Yan, Cao, Ning, Lin, Qin, Liu, Gu (bib99) 2022; 5
Zhou, Lin, Luo, Yan, Wu, Wang, Shen (bib15) 2020; 388
Lewis, Nocera (bib1) 2006; 103
Xia, Guo (bib51) 2019; 48
To, Park, Kim, Cho, Myung (bib45) 2022; 10
W.C. Conner Jr., in: Z. Paal, P.G. Menon (Eds.), Hydrogen Effects in Catalysis, Chapter 12, Marcel Dekker, 1988, p. 311.
Vij, Sultan, Harzandi, Meena, Tiwari, Lee, Yoon, Kim (bib8) 2017; 7
Hammer, Nørskov (bib19) 1995; 376
Chen, Zhang, Zhang, Tang, Luo, Niu, Dai, Wan, Hu (bib46) 2017
Karolus, Łągiewka (bib56) 2004; 367
Durst, Siebel, Simon, Hasché, Herranz, Gasteiger (bib37) 2014; 7
Raj (bib16) 1993; 28
Zhang, Ouyang, Xu, Xia, Zhang, Rawat, Fan (bib61) 2018; 14
Liu, Wang, Wu, Zhang, Zhang, Xiong, Wu, Lai, Wang (bib76) 2022; 10
Xie, Wang, Ding, Zou, Cui, Xu, Jiang (bib78) 2020; 8
Wang, Zhang, Xu, Wan, Lu, Li, Sun (bib71) 2014; 1
Seh, Kibsgaard, Dickens, Chorkendorff, Norskov, Jaramillo (bib2) 2017; 355
Huang, Yua, Zhang, Xiao, Zhou, Zhang, An, Zhang, Yu (bib90) 2020; 276
Chang, Zhu, Zhao, Chen, Chen, Gao (bib97) 2021; 46
Zheng, Jiao, Jaroniec, Qiao (bib11) 2015; 54
Rommal, Moran (bib13) 1988; 135
Huang, Li, Luo, Liao, Ye, Chen (bib72) 2019; 11
He, Hong, Jian, Li, Cai, Liu (bib101) 2019; 46
Jaksic (bib28) 1984; 29
Zeng, Li (bib6) 2015; 3
Cao, Chen, Yin, Gan, Zang, Xu, Wang (bib31) 2019; 7
Barlocco, Cipriano, Liberto, Pacchioni (bib103) 2022
Zhang, Liang, Wu, Liu, Zhang, Jiang, Li, Xu (bib93) 2020; 3
Yu, Mishra, Xie, Zhou, Sun, Zhoua, Ni, Luo, Yu, Yu, Chen, Ren (bib81) 2018; 53
Shang, Zhao, Kong, Shi, Waterhouse, Wen, Zhang (bib89) 2020; 78
Crabtree, Dresselhaus, Buchanan (bib3) 2004; 57
Patil, Mantri, House, Yang, McKone (bib69) 2019; 2
Zhang, Debow, Song, Qian, Creasy, DeLacy, Rao (bib98) 2021; 12
Fang, Gao, Dong, Xia, Yip, Qin, Qu, Ho (bib75) 2016; 27
Zhang, Han, Cai, Zhang, Wang, Li, Sun, Zhang, Lai, Wang (bib77) 2022; 9
Mohammed-Ibrahim, Sun (bib86) 2019; 34
Chen, Sasaki, Ma, Frenkel, Marinkovic, Muckerman, Zhu, Adzic (bib88) 2012; 51
Tian, Cheng, Liu, Sun, He, Asiri (bib73) 2015; 3
McKone, Sadtler, Werlang, Lewis, Gray (bib68) 2013; 3
Walter, Warren, McKone, Boettcher, Mi, Santori, Lewis (bib4) 2010; 110
Zhang, Wang, Liu, Liao, Liu, Zhuang, Chen, Zschech, Feng (bib24) 2017; 8
Gutić, Jovanović, Dobrota, Metarapi, Rafailović, Pašti, Mentus (bib30) 2018; 43
Jaksic (bib21) 2000; 3
Wijten, Mandemaker, van Eeden, Dubbeld, Weckhuysen (bib60) 2020; 13
Bai, Liu (bib55) 1993; 136
Highfield, Claude, Oguro (bib25) 1999; 44
Zhang, Zheng, Gu, Tang, Li, Wang (bib64) 2019; 11
Manazoğlu, Hapçı, Orhan (bib27) 2016; 46
Liu, Zhang, Bu, Ma, Yang, Zhong, Li, Wang, Zhang (bib65) 2020; 12
Zheng, He, Chen, Gao, Zhang, Xiao, Tian (bib53) 2019; 123
Yao, Huang, Fang, Kuang, Jia, Ren, Liu, Lv, Liu, Xu, Yan (bib92) 2020
Tran, Xu, Radhakrishnan, Winston, Sun, Persson, Ong (bib67) 2016
Luo, Guo (bib54) 2017; 2
Zhai, Ma, Chen, Ho, Dai, Qu (bib63) 2022; 4
Elias, Hegde (bib94) 2017; 8
Peng, Min, Bendavid, Chu, Lu, Amal, Han (bib62) 2022; 14
Yuan, Cui, Zhu, Li, Wu, Liang (bib79) 2021; 365
Ďurovič, Hnát, Bouzek (bib85) 2021; 493
Wang, Yang, Shi, Chen, Zhou, Wang, Di, Zhao, Zhong, Cheng, Zhou, Li (bib40) 2021; 133
Chem, Duan, Wei, Wang, Ni (bib7) 2019; 7
Liberto, Cipriano, Pacchioni (bib102) 2022; 12
Rößner, Schwarz, Veremchuk, Zerdoumi, Seyller, Armbrüster (bib47) 2021; 13
Huang, Jiang, An, Cao (bib83) 2020; 8
Wijten, Riemersma, Gauthier, Mandemaker, (Tiny) Verhoeven, Hofmann, Chan, Weckhuysen (bib59) 2019; 12
Li, Wang, Wang, Li, Yao, Jiang (bib43) 2020; 5
Yang, Zhou, Yan, Bian, Hu, Wang, Zhang, Shi, Wang, Zhen, Fu (bib91) 2022; 606
Gao, Gou, Zhou, Ho, Ma, Qu (bib80) 2018; 10
Jakšić, Vojnović, Krstajić (bib29) 2000; 45
Li, Sun, Qin, Zhang, Wang, Luo, Yang, Guo (bib52) 2020
Lin, Hourng, Kuo (bib95) 2012; 37
Zhang, Xiao, Guo, Yang, Lei, Luo, Li (bib96) 2021; 31
Zhang, Liu, Cui, Chen, Liu, Geng (bib32) 2018; 5
Yu, Zhao, Zheng, Tong, Zhang, Xu, Li, Ma, Shi (bib42) 2018; 3
Zhang, Li, Zhou, Chang, Kuang, Sun (bib70) 2017; 13
Soares, Teschke, Torriani (bib14) 1992; 139
Zheng, Jiao, Vasileff, Qiao (bib36) 2018; 57
Jaksic (10.1016/j.apcata.2022.119013_bib28) 1984; 29
Shang (10.1016/j.apcata.2022.119013_bib89) 2020; 78
Liu (10.1016/j.apcata.2022.119013_bib65) 2020; 12
Wang (10.1016/j.apcata.2022.119013_bib71) 2014; 1
Yu (10.1016/j.apcata.2022.119013_bib9) 2020; 26
10.1016/j.apcata.2022.119013_bib23
Durst (10.1016/j.apcata.2022.119013_bib37) 2014; 7
Fang (10.1016/j.apcata.2022.119013_bib75) 2016; 27
Rößner (10.1016/j.apcata.2022.119013_bib47) 2021; 13
Ďurovič (10.1016/j.apcata.2022.119013_bib85) 2021; 493
Jaksic (10.1016/j.apcata.2022.119013_bib21) 2000; 3
Zhang (10.1016/j.apcata.2022.119013_bib32) 2018; 5
Wijten (10.1016/j.apcata.2022.119013_bib59) 2019; 12
Raj (10.1016/j.apcata.2022.119013_bib16) 1993; 28
Wijten (10.1016/j.apcata.2022.119013_bib60) 2020; 13
Yan (10.1016/j.apcata.2022.119013_bib99) 2022; 5
Walter (10.1016/j.apcata.2022.119013_bib4) 2010; 110
Zhang (10.1016/j.apcata.2022.119013_bib77) 2022; 9
Highfield (10.1016/j.apcata.2022.119013_bib25) 1999; 44
Zhang (10.1016/j.apcata.2022.119013_bib98) 2021; 12
Crabtree (10.1016/j.apcata.2022.119013_bib3) 2004; 57
Hammer (10.1016/j.apcata.2022.119013_bib19) 1995; 376
Bai (10.1016/j.apcata.2022.119013_bib55) 1993; 136
Zheng (10.1016/j.apcata.2022.119013_bib11) 2015; 54
Zheng (10.1016/j.apcata.2022.119013_bib36) 2018; 57
Yu (10.1016/j.apcata.2022.119013_bib42) 2018; 3
Zhang (10.1016/j.apcata.2022.119013_bib61) 2018; 14
Lewis (10.1016/j.apcata.2022.119013_bib1) 2006; 103
Kitchin (10.1016/j.apcata.2022.119013_bib48) 2004; 93
Seh (10.1016/j.apcata.2022.119013_bib2) 2017; 355
Gutić (10.1016/j.apcata.2022.119013_bib30) 2018; 43
Jaksic (10.1016/j.apcata.2022.119013_bib20) 2001; 26
Chen (10.1016/j.apcata.2022.119013_bib88) 2012; 51
Yao (10.1016/j.apcata.2022.119013_bib92) 2020
Li (10.1016/j.apcata.2022.119013_bib52) 2020
Wang (10.1016/j.apcata.2022.119013_bib87) 2016; 22
Parsons (10.1016/j.apcata.2022.119013_bib17) 1958; 54
Liberto (10.1016/j.apcata.2022.119013_bib102) 2022; 12
Lin (10.1016/j.apcata.2022.119013_bib95) 2012; 37
Tran (10.1016/j.apcata.2022.119013_bib67) 2016
Nørskov (10.1016/j.apcata.2022.119013_bib18) 2005; 152
Zhang (10.1016/j.apcata.2022.119013_bib70) 2017; 13
Mahmood (10.1016/j.apcata.2022.119013_bib82) 2018; 5
Pham (10.1016/j.apcata.2022.119013_bib66) 2021; 537
Manazoğlu (10.1016/j.apcata.2022.119013_bib27) 2016; 46
Zhang (10.1016/j.apcata.2022.119013_bib96) 2021; 31
He (10.1016/j.apcata.2022.119013_bib101) 2019; 46
Gong (10.1016/j.apcata.2022.119013_bib10) 2016; 9
Schalenbach (10.1016/j.apcata.2022.119013_bib58) 2018; 259
Jin (10.1016/j.apcata.2022.119013_bib74) 2017; 5
Dubouis (10.1016/j.apcata.2022.119013_bib33) 2019; 10
Danilovic (10.1016/j.apcata.2022.119013_bib44) 2012; 51
Huang (10.1016/j.apcata.2022.119013_bib83) 2020; 8
Chem (10.1016/j.apcata.2022.119013_bib7) 2019; 7
Hu (10.1016/j.apcata.2022.119013_bib39) 2019; 12
Patil (10.1016/j.apcata.2022.119013_bib69) 2019; 2
Zhang (10.1016/j.apcata.2022.119013_bib24) 2017; 8
Xia (10.1016/j.apcata.2022.119013_bib51) 2019; 48
Zhang (10.1016/j.apcata.2022.119013_bib93) 2020; 3
McKone (10.1016/j.apcata.2022.119013_bib68) 2013; 3
Tian (10.1016/j.apcata.2022.119013_bib100) 2021; 77
Yu (10.1016/j.apcata.2022.119013_bib84) 2021; 33
Soares (10.1016/j.apcata.2022.119013_bib14) 1992; 139
Cao (10.1016/j.apcata.2022.119013_bib31) 2019; 7
Chang (10.1016/j.apcata.2022.119013_bib97) 2021; 46
Liu (10.1016/j.apcata.2022.119013_bib76) 2022; 10
Duan (10.1016/j.apcata.2022.119013_bib41) 2020; 11
Barlocco (10.1016/j.apcata.2022.119013_bib103) 2022
Karolus (10.1016/j.apcata.2022.119013_bib56) 2004; 367
Subbaraman (10.1016/j.apcata.2022.119013_bib38) 2012; 11
Danilovic (10.1016/j.apcata.2022.119013_bib5) 2013; 78
Wang (10.1016/j.apcata.2022.119013_bib40) 2021; 133
Huang (10.1016/j.apcata.2022.119013_bib72) 2019; 11
Santos (10.1016/j.apcata.2022.119013_bib50) 2006; 7
Chen (10.1016/j.apcata.2022.119013_bib46) 2017
Yu (10.1016/j.apcata.2022.119013_bib81) 2018; 53
Huang (10.1016/j.apcata.2022.119013_bib90) 2020; 276
Xie (10.1016/j.apcata.2022.119013_bib78) 2020; 8
Zeng (10.1016/j.apcata.2022.119013_bib6) 2015; 3
Elias (10.1016/j.apcata.2022.119013_bib94) 2017; 8
Santos (10.1016/j.apcata.2022.119013_bib12) 2013; 36
Tian (10.1016/j.apcata.2022.119013_bib73) 2015; 3
Yang (10.1016/j.apcata.2022.119013_bib91) 2022; 606
Vij (10.1016/j.apcata.2022.119013_bib8) 2017; 7
Subbaraman (10.1016/j.apcata.2022.119013_bib35) 2011; 334
Yuan (10.1016/j.apcata.2022.119013_bib79) 2021; 365
Peng (10.1016/j.apcata.2022.119013_bib62) 2022; 14
Li (10.1016/j.apcata.2022.119013_bib43) 2020; 5
Jakšić (10.1016/j.apcata.2022.119013_bib29) 2000; 45
Zhai (10.1016/j.apcata.2022.119013_bib63) 2022; 4
Zhang (10.1016/j.apcata.2022.119013_bib64) 2019; 11
To (10.1016/j.apcata.2022.119013_bib45) 2022; 10
Wang (10.1016/j.apcata.2022.119013_bib49) 2018; 3
Luo (10.1016/j.apcata.2022.119013_bib54) 2017; 2
Mohammed-Ibrahim (10.1016/j.apcata.2022.119013_bib86) 2019; 34
Gao (10.1016/j.apcata.2022.119013_bib80) 2018; 10
Ledendecker (10.1016/j.apcata.2022.119013_bib22) 2017; 7
Norskov (10.1016/j.apcata.2022.119013_bib26) 1987; 130
Rommal (10.1016/j.apcata.2022.119013_bib13) 1988; 135
Yan (10.1016/j.apcata.2022.119013_bib57) 2016; 128
Zhou (10.1016/j.apcata.2022.119013_bib15) 2020; 388
An (10.1016/j.apcata.2022.119013_bib34) 2019
Zheng (10.1016/j.apcata.2022.119013_bib53) 2019; 123
References_xml – volume: 388
  start-page: 122
  year: 2020
  end-page: 129
  ident: bib15
  article-title: Mechanistic study on nickel-molybdenum based electrocatalysts for the hydrogen evolution reaction
  publication-title: J. Catal.
– volume: 5
  start-page: 2508
  year: 2017
  end-page: 2513
  ident: bib74
  article-title: Three-dimensional porous MoNi
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 40822
  year: 2022
  end-page: 40833
  ident: bib62
  article-title: Stabilizing the unstable: Chromium coating on NiMo electrode for enhanced stability in intermittent water electrolysis
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 15437
  year: 2017
  ident: bib24
  article-title: Efficient hydrogen production on MoNi
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1539
  year: 1984
  end-page: 1550
  ident: bib28
  article-title: Electrocatalysis of hydrogen evolution in the light of brewer-engel theory for bonding in metals and intermetallic phases
  publication-title: Electrochim. Acta
– volume: 130
  start-page: 475
  year: 1987
  end-page: 490
  ident: bib26
  article-title: Theory of hydrogen interaction with metals
  publication-title: J. Less-Common Met.
– volume: 12
  start-page: 2620
  year: 2019
  end-page: 2645
  ident: bib39
  article-title: Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2017
  ident: bib22
  article-title: Experimental and theoretical assessment of Ni-based binary compounds for the hydrogen evolution reaction
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 11361
  year: 2021
  end-page: 11370
  ident: bib98
  article-title: Interface catalysis of nickel molybdenum (NiMo) alloys on two-dimensional (2D) MXene for enhanced hydrogen electrochemistry
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 12169
  year: 2020
  end-page: 12176
  ident: bib78
  article-title: Accelerating hydrogen evolution at neutral pH by destabilization of water with a conducting oxophilic metal oxide
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 7778
  year: 2022
  end-page: 7786
  ident: bib99
  article-title: NiMo-based nanorod arrays supported on Ni foams for efficient hydrogen electrocatalysis
  publication-title: ACS Appl. Nano Mater.
– volume: 33
  year: 2021
  ident: bib84
  article-title: Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects
  publication-title: Adv. Mater.
– volume: 37
  start-page: 1311
  year: 2012
  end-page: 1320
  ident: bib95
  article-title: The effect of magnetic force on hydrogen production efficiency in water electrolysis
  publication-title: J. Hydrog. Energy
– volume: 123
  start-page: 9247
  year: 2019
  end-page: 9254
  ident: bib53
  article-title: Ni
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 237
  year: 2018
  end-page: 244
  ident: bib42
  article-title: Hydrogen evolution reaction in alkaline media: alpha- or beta-nickel hydroxide on the surface of platinum?
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 375
  year: 2017
  ident: bib94
  article-title: Effect of magnetic field on HER of water electrolysis on Ni–W alloy
  publication-title: Electrocatalysis
– volume: 28
  start-page: 4375
  year: 1993
  end-page: 4382
  ident: bib16
  article-title: Nickel-based, binary-composite electrocatalysts for the cathodes in the energy-efficient industrial production of hydrogen from alkaline-water electrolytic cells
  publication-title: J. Mater. Sci.
– volume: 365
  year: 2021
  ident: bib79
  article-title: Structure engineering of electrodeposited NiMo films for highly efficient and durable seawater splitting
  publication-title: Electrochim. Acta
– volume: 110
  start-page: 6446
  year: 2010
  end-page: 6473
  ident: bib4
  article-title: Solar water splitting cells
  publication-title: Chem. Rev.
– volume: 7
  start-page: 14971
  year: 2019
  end-page: 15005
  ident: bib7
  article-title: Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution
  publication-title: J. Mater. Chem. A
– year: 2022
  ident: bib103
  article-title: Modeling hydrogen and oxygen evolution reactions on single atom catalysts with density functional theory: role of the functional
  publication-title: Adv. Theory Simul.
– volume: 9
  year: 2022
  ident: bib77
  article-title: Platinum clusters anchored amorphous NiMo hydroxide with collaborative electronic transfer for overall water splitting under high current density
  publication-title: Adv. Mater. Interfaces
– volume: 51
  start-page: 12495
  year: 2012
  end-page: 12498
  ident: bib44
  article-title: Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  year: 2022
  ident: bib63
  article-title: Recent progress on the long-term stability of hydrogen evolution reaction electrocatalysts
  publication-title: InfoMat
– year: 2020
  ident: bib92
  article-title: Promoting electrocatalytic hydrogen evolution reaction and oxygen evolution reaction by fields: effects of electric field, magnetic field, strain, and light, all methods
  publication-title: Small Methods
– volume: 103
  start-page: 15729
  year: 2006
  end-page: 15735
  ident: bib1
  article-title: Powering the planet: chemical challenges in solar energy utilization
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 1728
  year: 2018
  end-page: 1733
  ident: bib80
  article-title: Amine-modulated/engineered interfaces of NiMo electrocatalysts for improved hydrogen evolution reaction in alkaline solutions
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 167
  year: 2000
  end-page: 182
  ident: bib21
  article-title: Volcano plots along the periodic table, their causes and consequences on electrocatalysis for hydrogen electrode reactions
  publication-title: J. New Mater. Electrochem. Syst.
– volume: 22
  start-page: 111
  year: 2016
  end-page: 119
  ident: bib87
  article-title: A highly efficient and stable biphasic nanocrystalline Ni–Mo–N catalyst for hydrogen evolution in both acidic and alkaline electrolytes
  publication-title: Nano Energy
– volume: 9
  start-page: 28
  year: 2016
  end-page: 46
  ident: bib10
  article-title: A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction
  publication-title: Nano Res.
– volume: 7
  start-page: 2255
  year: 2014
  end-page: 2260
  ident: bib37
  article-title: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism
  publication-title: Energy Environ. Sci.
– volume: 133
  start-page: 5835
  year: 2021
  end-page: 5841
  ident: bib40
  article-title: Alloying nickel with molybdenum significantly accelerates alkaline
  publication-title: Angew. Chem.
– volume: 10
  year: 2022
  ident: bib45
  article-title: Effects of NH
  publication-title: Front. Chem.
– volume: 78
  start-page: 2007
  year: 2013
  end-page: 2015
  ident: bib5
  article-title: Electrocatalysis of the HER in acid and alkaline media
  publication-title: J. Serb. Chem. Soc.
– volume: 26
  start-page: 559
  year: 2001
  end-page: 578
  ident: bib20
  article-title: Hypo–hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions
  publication-title: Int. J. Hydrog. Energy
– volume: 10
  start-page: 9165
  year: 2019
  end-page: 9181
  ident: bib33
  article-title: The hydrogen evolution reaction: from material to interfacial descriptors
  publication-title: Chem. Sci.
– volume: 34
  start-page: 111
  year: 2019
  end-page: 160
  ident: bib86
  article-title: Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction (HER) in alkaline medium to achieve efficient water splitting–a review
  publication-title: J. Energy Chem.
– year: 2019
  ident: bib34
  article-title: One-step controllable synthesis of catalytic Ni
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 9353
  year: 2019
  end-page: 9361
  ident: bib64
  article-title: Facile synthesis, characterization and DFT studies of a nanostructured nickel–molybdenum–phosphorous planar electrode as an active electrocatalyst for the hydrogen evolution reaction
  publication-title: Nanoscale
– volume: 2
  start-page: 2524
  year: 2019
  end-page: 2533
  ident: bib69
  article-title: Enhancing the performance of Ni-Mo alkaline hydrogen evolution electrocatalysts with carbon supports
  publication-title: ACS Appl. Energy Mater.
– volume: 57
  start-page: 39
  year: 2004
  end-page: 44
  ident: bib3
  article-title: The hydrogen economy
  publication-title: Phys. Today
– year: 2016
  ident: bib67
  article-title: Data descriptor: surface energies of elemental crystals
  publication-title: Sci. Data
– volume: 54
  start-page: 52
  year: 2015
  end-page: 65
  ident: bib11
  article-title: Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1198
  year: 2018
  end-page: 1204
  ident: bib49
  article-title: Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 3491
  year: 2019
  end-page: 3500
  ident: bib59
  article-title: Electrolyte effects on the stability of Ni-Mo cathodes for the hydrogen evolution reaction
  publication-title: ChemSusChem
– volume: 12
  start-page: 36259
  year: 2020
  end-page: 36267
  ident: bib65
  article-title: Single-crystalline Mo-nanowire-mediated directional growth of high-index-faceted MoNi electrocatalyst for ultralong-term alkaline hydrogen evolution
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  year: 2018
  ident: bib82
  article-title: Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions
  publication-title: Adv. Sci.
– volume: 355
  year: 2017
  ident: bib2
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
– volume: 46
  start-page: 191
  year: 2016
  end-page: 204
  ident: bib27
  article-title: Effect of electrolysis parameters of Ni–Mo alloy on the electrocatalytic activity for hydrogen evaluation and their stability in alkali medium
  publication-title: J. Appl. Electrochem
– volume: 11
  start-page: 4789
  year: 2020
  ident: bib41
  article-title: Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes
  publication-title: Nat. Commun.
– volume: 26
  start-page: 6423
  year: 2020
  end-page: 6436
  ident: bib9
  article-title: Earth-abundant transition-metal-based bifunctional rlectrocatalysts for overall water splitting in alkaline media
  publication-title: Chem. Eur. J.
– volume: 12
  start-page: 5846
  year: 2022
  end-page: 5856
  ident: bib102
  article-title: Universal principles for the rational design of single atom electrocatalysts? Handle with care
  publication-title: ACS Catal.
– volume: 77
  start-page: 108
  year: 2021
  end-page: 116
  ident: bib100
  article-title: Hierarchical NiMoP
  publication-title: J. Mater. Sci. Technol.
– volume: 10
  start-page: 15395
  year: 2022
  end-page: 15401
  ident: bib76
  article-title: Pt doping and strong metal–support interaction as a strategy for NiMo-based electrocatalysts to boost the hydrogen evolution reaction in alkaline solution
  publication-title: J. Mater. Chem. A
– volume: 48
  start-page: 3265
  year: 2019
  ident: bib51
  article-title: Strain engineering of metal-based nanomaterials for energy electrocatalysis
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 25465
  year: 2020
  ident: bib83
  article-title: Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting
  publication-title: J. Mater. Chem. A
– volume: 128
  start-page: 6283
  year: 2016
  end-page: 6289
  ident: bib57
  article-title: The influence of elastic strain on catalytic activity in the hydrogen evolution reaction
  publication-title: Angew. Chem.
– volume: 3
  start-page: 20056
  year: 2015
  end-page: 20059
  ident: bib73
  article-title: Self-supported NiMo hollow nanorod array: an efficient 3D bifunctional catalytic electrode for overall water splitting
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 1138
  year: 2014
  end-page: 1144
  ident: bib71
  article-title: A 3D nanoporous Ni–Mo electrocatalyst with negligible overpotential for alkaline hydrogen evolution
  publication-title: ChemElectroChem
– volume: 7
  start-page: 10338
  year: 2019
  end-page: 10345
  ident: bib31
  article-title: Investigation of the correlation between the phase structure and activity of Ni–Mo–O derived electrocatalysts for the hydrogen evolution reaction
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 14942
  year: 2015
  end-page: 14962
  ident: bib6
  article-title: Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction
  publication-title: J. Mater. Chem. A
– volume: 57
  start-page: 7568
  year: 2018
  end-page: 7579
  ident: bib36
  article-title: The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 46
  start-page: 23066
  year: 2019
  end-page: 23073
  ident: bib101
  article-title: High-performance alkaline hydrogen evolution of NiMoP
  publication-title: Int. J. Hydrog. Energy
– volume: 54
  start-page: 1053
  year: 1958
  end-page: 1063
  ident: bib17
  article-title: The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen
  publication-title: Trans. Faraday Soc.
– volume: 78
  year: 2020
  ident: bib89
  article-title: Underwater superaerophobic Ni nanoparticle-decorated nickel–molybdenum nitride nanowire arrays for hydrogen evolution in neutral media
  publication-title: Nano Energy
– volume: 31
  year: 2021
  ident: bib96
  article-title: Macroporous array induced multiscale modulation at the surface/interface of Co(OH)
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 7196
  year: 2017
  end-page: 7225
  ident: bib8
  article-title: Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions
  publication-title: ACS Catal.
– volume: 537
  year: 2021
  ident: bib66
  article-title: Catalytic activity of Ni
  publication-title: Appl. Surf. Sci.
– volume: 376
  start-page: 238
  year: 1995
  end-page: 240
  ident: bib19
  article-title: Why gold is the noblest of all the metals
  publication-title: Nature
– year: 2017
  ident: bib46
  article-title: Self‐templated fabrication of MoNi
  publication-title: Adv. Energy
– volume: 5
  year: 2018
  ident: bib32
  article-title: Colloidal synthesis of Mo–Ni Alloy nanoparticles as bifunctional electrocatalysts for efficient overall water splitting
  publication-title: Adv. Mater. Interfaces
– volume: 139
  start-page: 98
  year: 1992
  end-page: 105
  ident: bib14
  article-title: Hydride effect on the kinetics of the hydrogen evolution reaction on nickel cathodes in alkaline media
  publication-title: J. Electrochem. Soc.
– volume: 13
  start-page: 23616
  year: 2021
  end-page: 23626
  ident: bib47
  article-title: Challenging the durability of intermetallic Mo−Ni compounds in the hydrogen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 16846
  year: 2018
  end-page: 16858
  ident: bib30
  article-title: Simple routes for the improvement of hydrogen evolution activity of Ni-Mo catalysts: from sol-gel derived powder catalysts to graphene supported co-electrodeposits
  publication-title: Int. J. Hydrog. Energy
– volume: 51
  start-page: 1
  year: 2012
  end-page: 6
  ident: bib88
  article-title: Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets
  publication-title: Angew. Chem. Int
– volume: 11
  start-page: 550
  year: 2012
  end-page: 557
  ident: bib38
  article-title: Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts
  publication-title: Nat. Mater.
– volume: 44
  start-page: 2805
  year: 1999
  end-page: 2814
  ident: bib25
  article-title: Electrocatalytic synergism in Ni/Mo cathodes for hydrogen evolution in acid medium: a new model
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 2282
  year: 2006
  end-page: 2285
  ident: bib50
  article-title: d-band catalysis in electrochemistry
  publication-title: ChemPhysChem
– volume: 152
  start-page: J23
  year: 2005
  end-page: J26
  ident: bib18
  article-title: Trends in the exchange current for hydrogen evolution
  publication-title: J. Electrochem. Soc.
– volume: 493
  year: 2021
  ident: bib85
  article-title: Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review
  publication-title: J. Power Sources
– volume: 2
  start-page: 17059
  year: 2017
  ident: bib54
  article-title: Strain-controlled electrocatalysis on multimetallic nanomaterials
  publication-title: Nat. Rev. Mater.
– volume: 3
  start-page: 10303
  year: 2020
  end-page: 10316
  ident: bib93
  article-title: Recent advances in magnetic field-enhanced electrocatalysis
  publication-title: ACS Appl. Energy Mater.
– volume: 27
  start-page: 247
  year: 2016
  end-page: 254
  ident: bib75
  article-title: Hierarchical NiMo-based 3D electrocatalysts for highly-efficient Hydrogen evolution in alkaline conditions
  publication-title: Nano Energy
– volume: 276
  year: 2020
  ident: bib90
  article-title: N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction
  publication-title: Appl. Catal. B Environ.
– volume: 13
  start-page: 3172
  year: 2020
  end-page: 3179
  ident: bib60
  article-title: In situ study on Ni-Mo stability in a water-splitting device: effect of catalyst substrate and electric potential
  publication-title: ChemSusChem
– volume: 93
  year: 2004
  ident: bib48
  article-title: Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces
  publication-title: Phys. Rev. Lett.
– volume: 367
  start-page: 235
  year: 2004
  end-page: 238
  ident: bib56
  article-title: Crystallite size and lattice strain in nanocrystalline Ni–Mo alloys studied by Rietveld refinement
  publication-title: J. Alloy. Compd.
– volume: 45
  start-page: 4151
  year: 2000
  end-page: 4158
  ident: bib29
  article-title: Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes
  publication-title: Electrochim. Acta
– volume: 259
  start-page: 1154
  year: 2018
  end-page: 1161
  ident: bib58
  article-title: Nickel-molybdenum alloy catalysts for the hydrogen evolution reaction: activity and stability revised
  publication-title: Electrochim. Acta
– reference: W.C. Conner Jr., in: Z. Paal, P.G. Menon (Eds.), Hydrogen Effects in Catalysis, Chapter 12, Marcel Dekker, 1988, p. 311.
– volume: 3
  start-page: 166
  year: 2013
  end-page: 169
  ident: bib68
  article-title: Ni−Mo nanopowders for efficient electrochemical hydrogen evolution
  publication-title: ACS Catal.
– volume: 606
  start-page: 1004
  year: 2022
  end-page: 1013
  ident: bib91
  article-title: Synergistic mechanism of Ni(OH)
  publication-title: J. Colloid Interface Sci.
– volume: 334
  start-page: 1256
  year: 2011
  end-page: 1260
  ident: bib35
  article-title: Enhancing hydrogen evolution activity in water splitting by tailoring Li
  publication-title: Science
– volume: 5
  year: 2020
  ident: bib43
  article-title: Enhancing hydrogen evolution reaction by synergistically coupling NiMo alloy with Ni(OH)
  publication-title: ChemistrySelect
– volume: 14
  year: 2018
  ident: bib61
  article-title: Prereduction of metal oxides via carbon plasma treatment for efficient and stable electrocatalytic hydrogen evolution
  publication-title: Small
– volume: 36
  start-page: 1176
  year: 2013
  end-page: 1193
  ident: bib12
  article-title: Hydrogen production by alkaline water electrolysis
  publication-title: Quim. Nova
– volume: 53
  start-page: 492
  year: 2018
  end-page: 500
  ident: bib81
  article-title: Ternary Ni
  publication-title: Nano Energy
– volume: 11
  start-page: 19429
  year: 2019
  end-page: 19436
  ident: bib72
  article-title: Self-templated construction of 1D NiMo nanowires via a Li electrochemical tuning method for the hydrogen evolution reaction
  publication-title: Nanoscale
– volume: 13
  year: 2017
  ident: bib70
  article-title: Superaerophobic ultrathin Ni–Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction
  publication-title: Small
– volume: 136
  start-page: 73
  year: 1993
  end-page: 80
  ident: bib55
  article-title: Construction of the Gibbs free energy diagram and interpretation of phase evolution in the Ni-Mo dystem
  publication-title: Phys. Status Solidi (a)
– volume: 135
  start-page: 343
  year: 1988
  end-page: 346
  ident: bib13
  article-title: The role of absorbed hydrogen on the voltage-time behavior of nickel cathodes in hydrogen evolution
  publication-title: J. Electrochem. Soc.
– year: 2020
  ident: bib52
  article-title: Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials
  publication-title: Adv. Energy Mater.
– volume: 46
  start-page: 3493
  year: 2021
  end-page: 3503
  ident: bib97
  article-title: NiMo/Cu-nanosheets/Ni-foam composite as a high performance electrocatalyst for hydrogen evolution over a wide pH range
  publication-title: Int. J. Hydrog. Energy
– volume: 7
  start-page: 2282
  year: 2006
  ident: 10.1016/j.apcata.2022.119013_bib50
  article-title: d-band catalysis in electrochemistry
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200600441
– volume: 7
  start-page: 7196
  year: 2017
  ident: 10.1016/j.apcata.2022.119013_bib8
  article-title: Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01800
– volume: 123
  start-page: 9247
  year: 2019
  ident: 10.1016/j.apcata.2022.119013_bib53
  article-title: NimMon (m + n = 5) Clusters for hydrogen electric reduction: synergistic effect of Ni and Mo on the adsorption and OH breaking of H2O
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b01281
– volume: 44
  start-page: 2805
  year: 1999
  ident: 10.1016/j.apcata.2022.119013_bib25
  article-title: Electrocatalytic synergism in Ni/Mo cathodes for hydrogen evolution in acid medium: a new model
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(98)00403-4
– volume: 14
  year: 2018
  ident: 10.1016/j.apcata.2022.119013_bib61
  article-title: Prereduction of metal oxides via carbon plasma treatment for efficient and stable electrocatalytic hydrogen evolution
  publication-title: Small
– volume: 3
  start-page: 237
  issue: 1
  year: 2018
  ident: 10.1016/j.apcata.2022.119013_bib42
  article-title: Hydrogen evolution reaction in alkaline media: alpha- or beta-nickel hydroxide on the surface of platinum?
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01103
– volume: 93
  year: 2004
  ident: 10.1016/j.apcata.2022.119013_bib48
  article-title: Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.156801
– volume: 2
  start-page: 2524
  year: 2019
  ident: 10.1016/j.apcata.2022.119013_bib69
  article-title: Enhancing the performance of Ni-Mo alkaline hydrogen evolution electrocatalysts with carbon supports
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b02087
– volume: 9
  year: 2022
  ident: 10.1016/j.apcata.2022.119013_bib77
  article-title: Platinum clusters anchored amorphous NiMo hydroxide with collaborative electronic transfer for overall water splitting under high current density
  publication-title: Adv. Mater. Interfaces
– volume: 77
  start-page: 108
  year: 2021
  ident: 10.1016/j.apcata.2022.119013_bib100
  article-title: Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.09.046
– volume: 78
  year: 2020
  ident: 10.1016/j.apcata.2022.119013_bib89
  article-title: Underwater superaerophobic Ni nanoparticle-decorated nickel–molybdenum nitride nanowire arrays for hydrogen evolution in neutral media
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105375
– volume: 78
  start-page: 2007
  year: 2013
  ident: 10.1016/j.apcata.2022.119013_bib5
  article-title: Electrocatalysis of the HER in acid and alkaline media
  publication-title: J. Serb. Chem. Soc.
  doi: 10.2298/JSC131118136D
– volume: 8
  start-page: 375
  year: 2017
  ident: 10.1016/j.apcata.2022.119013_bib94
  article-title: Effect of magnetic field on HER of water electrolysis on Ni–W alloy
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-017-0382-x
– volume: 367
  start-page: 235
  year: 2004
  ident: 10.1016/j.apcata.2022.119013_bib56
  article-title: Crystallite size and lattice strain in nanocrystalline Ni–Mo alloys studied by Rietveld refinement
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2003.08.044
– volume: 11
  start-page: 9353
  year: 2019
  ident: 10.1016/j.apcata.2022.119013_bib64
  article-title: Facile synthesis, characterization and DFT studies of a nanostructured nickel–molybdenum–phosphorous planar electrode as an active electrocatalyst for the hydrogen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/C8NR08039A
– volume: 46
  start-page: 191
  year: 2016
  ident: 10.1016/j.apcata.2022.119013_bib27
  article-title: Effect of electrolysis parameters of Ni–Mo alloy on the electrocatalytic activity for hydrogen evaluation and their stability in alkali medium
  publication-title: J. Appl. Electrochem
  doi: 10.1007/s10800-015-0908-y
– volume: 7
  start-page: 10338
  year: 2019
  ident: 10.1016/j.apcata.2022.119013_bib31
  article-title: Investigation of the correlation between the phase structure and activity of Ni–Mo–O derived electrocatalysts for the hydrogen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00899C
– volume: 8
  start-page: 25465
  year: 2020
  ident: 10.1016/j.apcata.2022.119013_bib83
  article-title: Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08802A
– volume: 5
  year: 2018
  ident: 10.1016/j.apcata.2022.119013_bib32
  article-title: Colloidal synthesis of Mo–Ni Alloy nanoparticles as bifunctional electrocatalysts for efficient overall water splitting
  publication-title: Adv. Mater. Interfaces
– volume: 4
  year: 2022
  ident: 10.1016/j.apcata.2022.119013_bib63
  article-title: Recent progress on the long-term stability of hydrogen evolution reaction electrocatalysts
  publication-title: InfoMat
  doi: 10.1002/inf2.12357
– volume: 57
  start-page: 7568
  year: 2018
  ident: 10.1016/j.apcata.2022.119013_bib36
  article-title: The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710556
– volume: 12
  start-page: 3491
  year: 2019
  ident: 10.1016/j.apcata.2022.119013_bib59
  article-title: Electrolyte effects on the stability of Ni-Mo cathodes for the hydrogen evolution reaction
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201900617
– volume: 365
  year: 2021
  ident: 10.1016/j.apcata.2022.119013_bib79
  article-title: Structure engineering of electrodeposited NiMo films for highly efficient and durable seawater splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.137366
– volume: 11
  start-page: 19429
  year: 2019
  ident: 10.1016/j.apcata.2022.119013_bib72
  article-title: Self-templated construction of 1D NiMo nanowires via a Li electrochemical tuning method for the hydrogen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/C9NR05311E
– volume: 128
  start-page: 6283
  year: 2016
  ident: 10.1016/j.apcata.2022.119013_bib57
  article-title: The influence of elastic strain on catalytic activity in the hydrogen evolution reaction
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201508613
– volume: 22
  start-page: 111
  year: 2016
  ident: 10.1016/j.apcata.2022.119013_bib87
  article-title: A highly efficient and stable biphasic nanocrystalline Ni–Mo–N catalyst for hydrogen evolution in both acidic and alkaline electrolytes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.02.023
– volume: 7
  year: 2017
  ident: 10.1016/j.apcata.2022.119013_bib22
  article-title: Experimental and theoretical assessment of Ni-based binary compounds for the hydrogen evolution reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601735
– volume: 11
  start-page: 4789
  year: 2020
  ident: 10.1016/j.apcata.2022.119013_bib41
  article-title: Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18585-4
– volume: 12
  start-page: 11361
  year: 2021
  ident: 10.1016/j.apcata.2022.119013_bib98
  article-title: Interface catalysis of nickel molybdenum (NiMo) alloys on two-dimensional (2D) MXene for enhanced hydrogen electrochemistry
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c02676
– volume: 13
  start-page: 3172
  year: 2020
  ident: 10.1016/j.apcata.2022.119013_bib60
  article-title: In situ study on Ni-Mo stability in a water-splitting device: effect of catalyst substrate and electric potential
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202000678
– volume: 10
  start-page: 9165
  year: 2019
  ident: 10.1016/j.apcata.2022.119013_bib33
  article-title: The hydrogen evolution reaction: from material to interfacial descriptors
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03831K
– year: 2017
  ident: 10.1016/j.apcata.2022.119013_bib46
  article-title: Self‐templated fabrication of MoNi4/MoO3–x nanorod arrays with dual active components for highly efficient hydrogen evolution
  publication-title: Adv. Energy
– volume: 3
  start-page: 14942
  year: 2015
  ident: 10.1016/j.apcata.2022.119013_bib6
  article-title: Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02974K
– volume: 334
  start-page: 1256
  year: 2011
  ident: 10.1016/j.apcata.2022.119013_bib35
  article-title: Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces
  publication-title: Science
  doi: 10.1126/science.1211934
– volume: 10
  start-page: 1728
  issue: 2
  year: 2018
  ident: 10.1016/j.apcata.2022.119013_bib80
  article-title: Amine-modulated/engineered interfaces of NiMo electrocatalysts for improved hydrogen evolution reaction in alkaline solutions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16125
– volume: 27
  start-page: 247
  year: 2016
  ident: 10.1016/j.apcata.2022.119013_bib75
  article-title: Hierarchical NiMo-based 3D electrocatalysts for highly-efficient Hydrogen evolution in alkaline conditions
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.07.005
– volume: 5
  start-page: 7778
  year: 2022
  ident: 10.1016/j.apcata.2022.119013_bib99
  article-title: NiMo-based nanorod arrays supported on Ni foams for efficient hydrogen electrocatalysis
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.2c00774
– volume: 51
  start-page: 1
  year: 2012
  ident: 10.1016/j.apcata.2022.119013_bib88
  article-title: Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets
  publication-title: Angew. Chem. Int
– ident: 10.1016/j.apcata.2022.119013_bib23
– volume: 51
  start-page: 12495
  year: 2012
  ident: 10.1016/j.apcata.2022.119013_bib44
  article-title: Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204842
– year: 2016
  ident: 10.1016/j.apcata.2022.119013_bib67
  article-title: Data descriptor: surface energies of elemental crystals
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.80
– volume: 26
  start-page: 559
  year: 2001
  ident: 10.1016/j.apcata.2022.119013_bib20
  article-title: Hypo–hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/S0360-3199(00)00120-8
– volume: 136
  start-page: 73
  year: 1993
  ident: 10.1016/j.apcata.2022.119013_bib55
  article-title: Construction of the Gibbs free energy diagram and interpretation of phase evolution in the Ni-Mo dystem
  publication-title: Phys. Status Solidi (a)
  doi: 10.1002/pssa.2211360108
– volume: 376
  start-page: 238
  year: 1995
  ident: 10.1016/j.apcata.2022.119013_bib19
  article-title: Why gold is the noblest of all the metals
  publication-title: Nature
  doi: 10.1038/376238a0
– volume: 13
  start-page: 23616
  year: 2021
  ident: 10.1016/j.apcata.2022.119013_bib47
  article-title: Challenging the durability of intermetallic Mo−Ni compounds in the hydrogen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c02169
– volume: 537
  year: 2021
  ident: 10.1016/j.apcata.2022.119013_bib66
  article-title: Catalytic activity of Ni3Mo surfaces for hydrogen evolution reaction: a density functional theory approach
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147894
– volume: 12
  start-page: 2620
  year: 2019
  ident: 10.1016/j.apcata.2022.119013_bib39
  article-title: Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01202H
– volume: 5
  year: 2018
  ident: 10.1016/j.apcata.2022.119013_bib82
  article-title: Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700464
– volume: 3
  start-page: 1198
  year: 2018
  ident: 10.1016/j.apcata.2022.119013_bib49
  article-title: Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00454
– volume: 57
  start-page: 39
  year: 2004
  ident: 10.1016/j.apcata.2022.119013_bib3
  article-title: The hydrogen economy
  publication-title: Phys. Today
  doi: 10.1063/1.1878333
– volume: 9
  start-page: 28
  issue: 1
  year: 2016
  ident: 10.1016/j.apcata.2022.119013_bib10
  article-title: A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0965-x
– volume: 14
  start-page: 40822
  year: 2022
  ident: 10.1016/j.apcata.2022.119013_bib62
  article-title: Stabilizing the unstable: Chromium coating on NiMo electrode for enhanced stability in intermittent water electrolysis
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c09004
– volume: 48
  start-page: 3265
  year: 2019
  ident: 10.1016/j.apcata.2022.119013_bib51
  article-title: Strain engineering of metal-based nanomaterials for energy electrocatalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00846A
– volume: 135
  start-page: 343
  year: 1988
  ident: 10.1016/j.apcata.2022.119013_bib13
  article-title: The role of absorbed hydrogen on the voltage-time behavior of nickel cathodes in hydrogen evolution
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2095612
– volume: 29
  start-page: 1539
  year: 1984
  ident: 10.1016/j.apcata.2022.119013_bib28
  article-title: Electrocatalysis of hydrogen evolution in the light of brewer-engel theory for bonding in metals and intermetallic phases
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(84)85007-0
– volume: 276
  year: 2020
  ident: 10.1016/j.apcata.2022.119013_bib90
  article-title: N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119137
– year: 2020
  ident: 10.1016/j.apcata.2022.119013_bib92
  article-title: Promoting electrocatalytic hydrogen evolution reaction and oxygen evolution reaction by fields: effects of electric field, magnetic field, strain, and light, all methods
  publication-title: Small Methods
  doi: 10.1002/smtd.202000494
– volume: 493
  year: 2021
  ident: 10.1016/j.apcata.2022.119013_bib85
  article-title: Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229708
– volume: 259
  start-page: 1154
  year: 2018
  ident: 10.1016/j.apcata.2022.119013_bib58
  article-title: Nickel-molybdenum alloy catalysts for the hydrogen evolution reaction: activity and stability revised
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.11.069
– volume: 110
  start-page: 6446
  year: 2010
  ident: 10.1016/j.apcata.2022.119013_bib4
  article-title: Solar water splitting cells
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 388
  start-page: 122
  year: 2020
  ident: 10.1016/j.apcata.2022.119013_bib15
  article-title: Mechanistic study on nickel-molybdenum based electrocatalysts for the hydrogen evolution reaction
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.05.011
– year: 2020
  ident: 10.1016/j.apcata.2022.119013_bib52
  article-title: Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 15437
  year: 2017
  ident: 10.1016/j.apcata.2022.119013_bib24
  article-title: Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15437
– volume: 8
  start-page: 12169
  year: 2020
  ident: 10.1016/j.apcata.2022.119013_bib78
  article-title: Accelerating hydrogen evolution at neutral pH by destabilization of water with a conducting oxophilic metal oxide
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA04241B
– volume: 3
  start-page: 167
  year: 2000
  ident: 10.1016/j.apcata.2022.119013_bib21
  article-title: Volcano plots along the periodic table, their causes and consequences on electrocatalysis for hydrogen electrode reactions
  publication-title: J. New Mater. Electrochem. Syst.
– volume: 31
  year: 2021
  ident: 10.1016/j.apcata.2022.119013_bib96
  article-title: Macroporous array induced multiscale modulation at the surface/interface of Co(OH)2/NiMo self-supporting electrode for effective overall water splitting
  publication-title: Adv. Funct. Mater.
– volume: 130
  start-page: 475
  year: 1987
  ident: 10.1016/j.apcata.2022.119013_bib26
  article-title: Theory of hydrogen interaction with metals
  publication-title: J. Less-Common Met.
  doi: 10.1016/0022-5088(87)90145-7
– year: 2019
  ident: 10.1016/j.apcata.2022.119013_bib34
  article-title: One-step controllable synthesis of catalytic Ni4Mo/MoOx/Cu nanointerfaces for highly efficient water reduction
  publication-title: Adv. Energy Mater.
– volume: 152
  start-page: J23
  issue: 3
  year: 2005
  ident: 10.1016/j.apcata.2022.119013_bib18
  article-title: Trends in the exchange current for hydrogen evolution
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 2
  start-page: 17059
  year: 2017
  ident: 10.1016/j.apcata.2022.119013_bib54
  article-title: Strain-controlled electrocatalysis on multimetallic nanomaterials
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.59
– volume: 3
  start-page: 166
  year: 2013
  ident: 10.1016/j.apcata.2022.119013_bib68
  article-title: Ni−Mo nanopowders for efficient electrochemical hydrogen evolution
  publication-title: ACS Catal.
  doi: 10.1021/cs300691m
– volume: 355
  year: 2017
  ident: 10.1016/j.apcata.2022.119013_bib2
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 7
  start-page: 14971
  year: 2019
  ident: 10.1016/j.apcata.2022.119013_bib7
  article-title: Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03220G
– volume: 26
  start-page: 6423
  year: 2020
  ident: 10.1016/j.apcata.2022.119013_bib9
  article-title: Earth-abundant transition-metal-based bifunctional rlectrocatalysts for overall water splitting in alkaline media
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.202000209
– volume: 11
  start-page: 550
  year: 2012
  ident: 10.1016/j.apcata.2022.119013_bib38
  article-title: Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3313
– volume: 45
  start-page: 4151
  year: 2000
  ident: 10.1016/j.apcata.2022.119013_bib29
  article-title: Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(00)00549-1
– volume: 34
  start-page: 111
  year: 2019
  ident: 10.1016/j.apcata.2022.119013_bib86
  article-title: Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction (HER) in alkaline medium to achieve efficient water splitting–a review
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2018.09.016
– volume: 12
  start-page: 36259
  year: 2020
  ident: 10.1016/j.apcata.2022.119013_bib65
  article-title: Single-crystalline Mo-nanowire-mediated directional growth of high-index-faceted MoNi electrocatalyst for ultralong-term alkaline hydrogen evolution
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c11716
– volume: 53
  start-page: 492
  year: 2018
  ident: 10.1016/j.apcata.2022.119013_bib81
  article-title: Ternary Ni2(1-x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.025
– volume: 7
  start-page: 2255
  year: 2014
  ident: 10.1016/j.apcata.2022.119013_bib37
  article-title: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00440J
– volume: 3
  start-page: 20056
  year: 2015
  ident: 10.1016/j.apcata.2022.119013_bib73
  article-title: Self-supported NiMo hollow nanorod array: an efficient 3D bifunctional catalytic electrode for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04723D
– volume: 10
  start-page: 15395
  year: 2022
  ident: 10.1016/j.apcata.2022.119013_bib76
  article-title: Pt doping and strong metal–support interaction as a strategy for NiMo-based electrocatalysts to boost the hydrogen evolution reaction in alkaline solution
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA03934F
– year: 2022
  ident: 10.1016/j.apcata.2022.119013_bib103
  article-title: Modeling hydrogen and oxygen evolution reactions on single atom catalysts with density functional theory: role of the functional
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.202200513
– volume: 13
  year: 2017
  ident: 10.1016/j.apcata.2022.119013_bib70
  article-title: Superaerophobic ultrathin Ni–Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction
  publication-title: Small
  doi: 10.1002/smll.201701648
– volume: 54
  start-page: 1053
  year: 1958
  ident: 10.1016/j.apcata.2022.119013_bib17
  article-title: The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9585401053
– volume: 54
  start-page: 52
  year: 2015
  ident: 10.1016/j.apcata.2022.119013_bib11
  article-title: Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201407031
– volume: 139
  start-page: 98
  year: 1992
  ident: 10.1016/j.apcata.2022.119013_bib14
  article-title: Hydride effect on the kinetics of the hydrogen evolution reaction on nickel cathodes in alkaline media
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2069207
– volume: 103
  start-page: 15729
  year: 2006
  ident: 10.1016/j.apcata.2022.119013_bib1
  article-title: Powering the planet: chemical challenges in solar energy utilization
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0603395103
– volume: 3
  start-page: 10303
  issue: 11
  year: 2020
  ident: 10.1016/j.apcata.2022.119013_bib93
  article-title: Recent advances in magnetic field-enhanced electrocatalysis
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c02104
– volume: 28
  start-page: 4375
  year: 1993
  ident: 10.1016/j.apcata.2022.119013_bib16
  article-title: Nickel-based, binary-composite electrocatalysts for the cathodes in the energy-efficient industrial production of hydrogen from alkaline-water electrolytic cells
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF01154945
– volume: 12
  start-page: 5846
  year: 2022
  ident: 10.1016/j.apcata.2022.119013_bib102
  article-title: Universal principles for the rational design of single atom electrocatalysts? Handle with care
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c01011
– volume: 33
  year: 2021
  ident: 10.1016/j.apcata.2022.119013_bib84
  article-title: Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007100
– volume: 46
  start-page: 23066
  year: 2019
  ident: 10.1016/j.apcata.2022.119013_bib101
  article-title: High-performance alkaline hydrogen evolution of NiMoP2 nanowire boosted by bimetallic synergic effect
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.07.048
– volume: 46
  start-page: 3493
  year: 2021
  ident: 10.1016/j.apcata.2022.119013_bib97
  article-title: NiMo/Cu-nanosheets/Ni-foam composite as a high performance electrocatalyst for hydrogen evolution over a wide pH range
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2020.11.007
– volume: 1
  start-page: 1138
  year: 2014
  ident: 10.1016/j.apcata.2022.119013_bib71
  article-title: A 3D nanoporous Ni–Mo electrocatalyst with negligible overpotential for alkaline hydrogen evolution
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201402089
– volume: 36
  start-page: 1176
  year: 2013
  ident: 10.1016/j.apcata.2022.119013_bib12
  article-title: Hydrogen production by alkaline water electrolysis
  publication-title: Quim. Nova
  doi: 10.1590/S0100-40422013000800017
– volume: 133
  start-page: 5835
  year: 2021
  ident: 10.1016/j.apcata.2022.119013_bib40
  article-title: Alloying nickel with molybdenum significantly accelerates alkaline
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202013047
– volume: 10
  year: 2022
  ident: 10.1016/j.apcata.2022.119013_bib45
  article-title: Effects of NH4+/citrate complexing agent ratio on Ni–Mo and Ni–Mo–O electrodeposits from ammonium citrate baths
  publication-title: Front. Chem.
– volume: 606
  start-page: 1004
  year: 2022
  ident: 10.1016/j.apcata.2022.119013_bib91
  article-title: Synergistic mechanism of Ni(OH)2/NiMoS heterostructure electrocatalyst with crystalline/amorphous interfaces for efficient hydrogen evolution over all pH ranges
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.08.090
– volume: 43
  start-page: 16846
  year: 2018
  ident: 10.1016/j.apcata.2022.119013_bib30
  article-title: Simple routes for the improvement of hydrogen evolution activity of Ni-Mo catalysts: from sol-gel derived powder catalysts to graphene supported co-electrodeposits
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.11.131
– volume: 5
  year: 2020
  ident: 10.1016/j.apcata.2022.119013_bib43
  article-title: Enhancing hydrogen evolution reaction by synergistically coupling NiMo alloy with Ni(OH)2 nanosheet on carbon cloth
  publication-title: ChemistrySelect
– volume: 37
  start-page: 1311
  year: 2012
  ident: 10.1016/j.apcata.2022.119013_bib95
  article-title: The effect of magnetic force on hydrogen production efficiency in water electrolysis
  publication-title: J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.10.024
– volume: 5
  start-page: 2508
  year: 2017
  ident: 10.1016/j.apcata.2022.119013_bib74
  article-title: Three-dimensional porous MoNi4 networks constructed by nanosheets as bifunctional electrocatalysts for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10802D
SSID ssj0002495
Score 2.6029637
SecondaryResourceType review_article
Snippet Hydrogen evolution reaction (HER) from alkaline electrolytes is one of most promising methods for producing hydrogen. The remaining obstacles include the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119013
SubjectTerms Alkaline electrolyte
Electrocatalysts
Hydrogen evolution reaction
Ni-Mo alloy
Nickel
Title A review of nickel-molybdenum based hydrogen evolution electrocatalysts from theory to experiment
URI https://dx.doi.org/10.1016/j.apcata.2022.119013
Volume 651
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jHtSD6FScHyMHr3H9SJP0OIZjKu6ig91K0qY4me3YqtCLf7t5baoTRMFrSaC89_q--t7vh9ClUpInWiuSitiB34yCSO2GRMRMyVglaZpCH_J-wsZTejsLZi00bHZhYKzS-v7ap1fe2j7pW2n2l_N5_8EJPSaYM_OgMeJXJRClHKz86v1rzAO4lSu8PY8RON2sz1UzXnIJTRJTJXqe8R0mNPo_h6eNkDPaR3s2V8SD-nUOUEtnHbQ9bCjaOmh3A03wEMkBrhdRcJ7ibG4-zwV5yRelSmDcHUO8SvBTmaxyYzRYv1mjw5YJp2rklOtijWHlBFcbjiUucvxFAnCEpqPrx-GYWAYFEpvEqiBu4lEutWKKixCw1bSgAEFvakDqU51y7iqHx8xoJdWu0ZYUXDpe7PNAUxoK_xi1szzTJwjzEKAGHa41RHVTpCkVqIBRoVPK_ER2kd8ILootvDiwXCyiZo7sOarFHYG4o1rcXUQ-by1reI0_zvNGJ9E3M4lMBPj15um_b56hHeCYr0a1g3PULlav-sJkIoXqVabWQ1uDm7vx5ANs3d9A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kHqoH8Ylv9-B1aZpsdjfHUpRqbS-20FvYTTZYqU2pUei_dyfZVAVR8BoyEGZn55WZ7wO41lqJ1BhNM5l4-JtRUmXaEZUJ1yrRaZZl2IccDHlvzO4n4WQDuvUuDI5VOt9f-fTSW7snLafN1mI6bT16kc8l9yY-NkYCLIE2EZ0qbMBm567fG64dMtIrl5B7PqcoUG_QlWNeaoF9Elso-r51HzY6Bj9HqC9R53YXdly6SDrVF-3BhpnvQ7Nbs7Ttw_YXQMEDUB1S7aKQPCPzqb2hM_qSz1Y6xYl3giErJU-rdJlbuyHm3dkdcWQ4ZS9n9Vq8Etw6IeWS44oUOfnkATiE8e3NqNujjkSBJja3Kmg79ZlQRnMtZITwakYyRKG3ZSALmMmEaGtPJNweTGba9sCUFMrzk0CEhrFIBkfQmOdzcwxERIg26AljMLDbOk3rUIecSZMxHqTqBIJacXHiEMaR6GIW16Nkz3Gl7hjVHVfqPgG6llpUCBt_vC_qM4m_WUpsg8Cvkqf_lryCZm80eIgf7ob9M9hCyvlycjs8h0axfDMXNjEp9KUzvA8eN-Hx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+nickel-molybdenum+based+hydrogen+evolution+electrocatalysts+from+theory+to+experiment&rft.jtitle=Applied+catalysis.+A%2C+General&rft.au=Park%2C+Sun+Hwa&rft.au=To%2C+Dung+T.&rft.au=Myung%2C+Nosang+V.&rft.date=2023-02-05&rft.pub=Elsevier+B.V&rft.issn=0926-860X&rft.eissn=1873-3875&rft.volume=651&rft_id=info:doi/10.1016%2Fj.apcata.2022.119013&rft.externalDocID=S0926860X22005361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-860X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-860X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-860X&client=summon