A review of nickel-molybdenum based hydrogen evolution electrocatalysts from theory to experiment
Hydrogen evolution reaction (HER) from alkaline electrolytes is one of most promising methods for producing hydrogen. The remaining obstacles include the development of high performance and earth-abundant electrocatalysts which can be cost-effectively fabricated in large-scale. Ni-Mo based materials...
Saved in:
Published in | Applied catalysis. A, General Vol. 651; p. 119013 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen evolution reaction (HER) from alkaline electrolytes is one of most promising methods for producing hydrogen. The remaining obstacles include the development of high performance and earth-abundant electrocatalysts which can be cost-effectively fabricated in large-scale. Ni-Mo based materials are one of potential candidates which might meet the most needs. In this review, we summarize the latest progress in Ni-Mo based HER catalysts in alkaline electrolytes from theoretical calculation to experimental results. This work also summarizes several different strategies to enhance the HER rate. Finally, the future perspective of the next generation electrocatalysts is discussed.
[Display omitted]
•Latest development of Ni-Mo based electrocatalysts for hydrogen production.•Theoretical calculations and experimental evaluations of various Ni-Mo alloys.•Effective strategies to improve the hydrogen evolution reaction performance. |
---|---|
AbstractList | Hydrogen evolution reaction (HER) from alkaline electrolytes is one of most promising methods for producing hydrogen. The remaining obstacles include the development of high performance and earth-abundant electrocatalysts which can be cost-effectively fabricated in large-scale. Ni-Mo based materials are one of potential candidates which might meet the most needs. In this review, we summarize the latest progress in Ni-Mo based HER catalysts in alkaline electrolytes from theoretical calculation to experimental results. This work also summarizes several different strategies to enhance the HER rate. Finally, the future perspective of the next generation electrocatalysts is discussed.
[Display omitted]
•Latest development of Ni-Mo based electrocatalysts for hydrogen production.•Theoretical calculations and experimental evaluations of various Ni-Mo alloys.•Effective strategies to improve the hydrogen evolution reaction performance. |
ArticleNumber | 119013 |
Author | To, Dung T. Park, Sun Hwa Myung, Nosang V. |
Author_xml | – sequence: 1 givenname: Sun Hwa surname: Park fullname: Park, Sun Hwa email: psh@kriss.kr organization: Smart Devices Team, Korea Research Institute of Standards and Science, Deajeon 34113, Republic of Korea – sequence: 2 givenname: Dung T. surname: To fullname: To, Dung T. email: dto@nd.edu organization: Department of Chemical and Biomolecular Engineering, University of Notre Dame, USA – sequence: 3 givenname: Nosang V. surname: Myung fullname: Myung, Nosang V. email: nmyung@nd.edu organization: Department of Chemical and Biomolecular Engineering, University of Notre Dame, USA |
BookMark | eNqFkMtOwzAQRS1UJNrCH7DwD6TYjhM7LJCqipeExAYkdpbjTKhLEle2W8jfkyisWMBqZnPu3DkLNOtcBwhdUrKihOZXu5XeGx31ihHGVpQWhKYnaE6lSJNUimyG5qRgeSJz8naGFiHsCCGMF9kc6TX2cLTwiV2NO2s-oEla1_RlBd2hxaUOUOFtX3n3Dh2Go2sO0bpha8BE78arTR9iwLV3LY5bcL7H0WH42oO3LXTxHJ3Wuglw8TOX6PXu9mXzkDw93z9u1k-JSTMWE1oxLjSUeSlkQTmTIDlnOeM85ymHWghaEmFybcoaqDRES6EJM6nIgPNCpkt0PeUa70LwUCtjox7LRq9toyhRoyy1U5MsNcpSk6wB5r_g_dBe-_4_7GbCYHhssOhVMBY6A5X1gx9VOft3wDfXFomF |
CitedBy_id | crossref_primary_10_1007_s43452_024_01013_5 crossref_primary_10_1002_aenm_202405285 crossref_primary_10_1002_ghg_2257 crossref_primary_10_1021_acs_jpclett_3c03216 crossref_primary_10_1039_D3EE00142C crossref_primary_10_1016_j_ijhydene_2024_11_243 crossref_primary_10_1039_D4QM00814F crossref_primary_10_1039_D4RA08619H crossref_primary_10_1002_smll_202402200 crossref_primary_10_1002_ese3_1723 crossref_primary_10_1016_j_colsurfa_2024_135677 crossref_primary_10_1021_acs_chemmater_3c02978 crossref_primary_10_1002_open_202400069 crossref_primary_10_1016_j_jelechem_2023_117973 crossref_primary_10_1016_j_apcatb_2023_123332 crossref_primary_10_1016_j_apcatb_2024_124388 crossref_primary_10_1088_2631_7990_ad038f crossref_primary_10_1016_j_corsci_2023_111692 crossref_primary_10_1016_j_rsurfi_2024_100305 crossref_primary_10_1021_acs_chemrev_3c00712 crossref_primary_10_1021_acsomega_4c10407 crossref_primary_10_1016_j_ijhydene_2024_10_194 crossref_primary_10_1016_j_mcat_2024_114069 crossref_primary_10_1007_s10562_024_04714_x crossref_primary_10_3390_ma17174353 crossref_primary_10_1021_acsami_4c17743 crossref_primary_10_1039_D4CE01090F crossref_primary_10_1016_j_jechem_2023_12_015 crossref_primary_10_1039_D4TA05392C crossref_primary_10_1002_smll_202402355 crossref_primary_10_1016_j_electacta_2024_145358 crossref_primary_10_1016_j_ijhydene_2024_07_050 crossref_primary_10_3390_ma16083280 crossref_primary_10_1016_j_apcata_2023_119312 crossref_primary_10_1039_D4EE04528A crossref_primary_10_1038_s41467_025_55856_4 crossref_primary_10_1016_j_ijhydene_2023_08_066 crossref_primary_10_1039_D3DT02843G crossref_primary_10_1002_cey2_528 crossref_primary_10_1016_j_ijhydene_2025_03_228 |
Cites_doi | 10.1002/cphc.200600441 10.1021/acscatal.7b01800 10.1021/acs.jpcc.9b01281 10.1016/S0013-4686(98)00403-4 10.1021/acsenergylett.7b01103 10.1103/PhysRevLett.93.156801 10.1021/acsaem.8b02087 10.1016/j.jmst.2020.09.046 10.1016/j.nanoen.2020.105375 10.2298/JSC131118136D 10.1007/s12678-017-0382-x 10.1016/j.jallcom.2003.08.044 10.1039/C8NR08039A 10.1007/s10800-015-0908-y 10.1039/C9TA00899C 10.1039/D0TA08802A 10.1002/inf2.12357 10.1002/anie.201710556 10.1002/cssc.201900617 10.1016/j.electacta.2020.137366 10.1039/C9NR05311E 10.1002/ange.201508613 10.1016/j.nanoen.2016.02.023 10.1002/aenm.201601735 10.1038/s41467-020-18585-4 10.1021/acs.jpclett.1c02676 10.1002/cssc.202000678 10.1039/C9SC03831K 10.1039/C5TA02974K 10.1126/science.1211934 10.1021/acsami.7b16125 10.1016/j.nanoen.2016.07.005 10.1021/acsanm.2c00774 10.1002/anie.201204842 10.1038/sdata.2016.80 10.1016/S0360-3199(00)00120-8 10.1002/pssa.2211360108 10.1038/376238a0 10.1021/acsami.1c02169 10.1016/j.apsusc.2020.147894 10.1039/C9EE01202H 10.1002/advs.201700464 10.1021/acsenergylett.8b00454 10.1063/1.1878333 10.1007/s12274-015-0965-x 10.1021/acsami.2c09004 10.1039/C8CS00846A 10.1149/1.2095612 10.1016/0013-4686(84)85007-0 10.1016/j.apcatb.2020.119137 10.1002/smtd.202000494 10.1016/j.jpowsour.2021.229708 10.1016/j.electacta.2017.11.069 10.1021/cr1002326 10.1016/j.jcat.2020.05.011 10.1038/ncomms15437 10.1039/D0TA04241B 10.1016/0022-5088(87)90145-7 10.1149/1.1856988 10.1038/natrevmats.2017.59 10.1021/cs300691m 10.1126/science.aad4998 10.1039/C9TA03220G 10.1002/chem.202000209 10.1038/nmat3313 10.1016/S0013-4686(00)00549-1 10.1016/j.jechem.2018.09.016 10.1021/acsami.0c11716 10.1016/j.nanoen.2018.08.025 10.1039/C4EE00440J 10.1039/C5TA04723D 10.1039/D2TA03934F 10.1002/adts.202200513 10.1002/smll.201701648 10.1039/tf9585401053 10.1002/anie.201407031 10.1149/1.2069207 10.1073/pnas.0603395103 10.1021/acsaem.0c02104 10.1007/BF01154945 10.1021/acscatal.2c01011 10.1002/adma.202007100 10.1016/j.ijhydene.2019.07.048 10.1016/j.ijhydene.2020.11.007 10.1002/celc.201402089 10.1590/S0100-40422013000800017 10.1002/ange.202013047 10.1016/j.jcis.2021.08.090 10.1016/j.ijhydene.2017.11.131 10.1016/j.ijhydene.2011.10.024 10.1039/C6TA10802D |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.apcata.2022.119013 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3875 |
ExternalDocumentID | 10_1016_j_apcata_2022_119013 S0926860X22005361 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFTJW AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPD SSG SSZ T5K XPP ZMT ~02 ~G- 53G AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGHFR AGQPQ AGRNS AI. AIIUN ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ |
ID | FETCH-LOGICAL-c352t-1d247aeb6b7891428e844262446434ef771b07c6acbfe18c0a87a02c375e44983 |
IEDL.DBID | .~1 |
ISSN | 0926-860X |
IngestDate | Thu Apr 24 22:57:29 EDT 2025 Tue Jul 01 00:39:27 EDT 2025 Fri Feb 23 02:38:49 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Alkaline electrolyte Hydrogen evolution reaction Nickel Electrocatalysts Ni-Mo alloy |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-1d247aeb6b7891428e844262446434ef771b07c6acbfe18c0a87a02c375e44983 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0926860X22005361 |
ParticipantIDs | crossref_citationtrail_10_1016_j_apcata_2022_119013 crossref_primary_10_1016_j_apcata_2022_119013 elsevier_sciencedirect_doi_10_1016_j_apcata_2022_119013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-05 |
PublicationDateYYYYMMDD | 2023-02-05 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Applied catalysis. A, General |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kitchin, Nørskov, Barteau, Chen (bib48) 2004; 93 Wang, Zhu, Vasileff, Jiao, Chen, Song, Zheng, Zheng, Qiao (bib49) 2018; 3 Yu, Duan, Feng, Yu, Gao, Yu (bib84) 2021; 33 Gong, Wang, Chen, Hwang, Dai1 (bib10) 2016; 9 Danilovic, Subbaraman, Strmcnik, Stamenkovic, Markovic (bib5) 2013; 78 Jin, Yue, Shu, Huang, Shen (bib74) 2017; 5 Wang, Wang, Liu, Zheng, Li (bib87) 2016; 22 Pham, Gu Kang, Kim, Pak, Han, Leem (bib66) 2021; 537 Nørskov, Bligaard, Logadottir, Kitchin, Chen, Pandelov, Stimming (bib18) 2005; 152 Norskov, Besenbacher (bib26) 1987; 130 An, Long, Ma, Hu, Lin, Zhou, Xing, Huang, Yang (bib34) 2019 Yan, Maark, Khorshidi, Sethuraman, Peterson, Guduru (bib57) 2016; 128 Parsons (bib17) 1958; 54 Duan, Yu, Yang, Zheng, Zhang, Yang, Gao, Zhang, Yu, Liu, Ding, Gu, Zheng, Shi, Jiang, Zhu, Gao, Yu (bib41) 2020; 11 Dubouis, Grimaud (bib33) 2019; 10 Tian, Wei, Guo, Wu, Chen, Xu, Cao, Liu, Wang, Ding, Tua, Zeng (bib100) 2021; 77 Yu, Le, Tran, Lee (bib9) 2020; 26 Hu, Zhang, Gong (bib39) 2019; 12 Mahmood, Yao, Zhang, Pan, Zhang, Zou (bib82) 2018; 5 Schalenbach, Speck, Ledendecker, Kasian, Goehl, Mingers, Breitbach, Springer, Cherevko, Mayrhofer (bib58) 2018; 259 Jaksic (bib20) 2001; 26 Ledendecker, Schlott, Antonietti, Meyer, Shalom (bib22) 2017; 7 Danilovic, Subbaraman, Strmcnik, Chang, Paulikas, Stamenkovic, Markovic (bib44) 2012; 51 Subbaraman, Tripkovic, Chang, Strmcnik, Paulikas, Hirunsit, Chan, Greeley, Stamenkovic, Markovic (bib38) 2012; 11 Santos, Schmickler (bib50) 2006; 7 Santos, Sequeira (bib12) 2013; 36 Subbaraman, Tripkovic, Strmcnik, Chang, Paulikas, Stamenkovic, Markovic (bib35) 2011; 334 Yan, Cao, Ning, Lin, Qin, Liu, Gu (bib99) 2022; 5 Zhou, Lin, Luo, Yan, Wu, Wang, Shen (bib15) 2020; 388 Lewis, Nocera (bib1) 2006; 103 Xia, Guo (bib51) 2019; 48 To, Park, Kim, Cho, Myung (bib45) 2022; 10 W.C. Conner Jr., in: Z. Paal, P.G. Menon (Eds.), Hydrogen Effects in Catalysis, Chapter 12, Marcel Dekker, 1988, p. 311. Vij, Sultan, Harzandi, Meena, Tiwari, Lee, Yoon, Kim (bib8) 2017; 7 Hammer, Nørskov (bib19) 1995; 376 Chen, Zhang, Zhang, Tang, Luo, Niu, Dai, Wan, Hu (bib46) 2017 Karolus, Łągiewka (bib56) 2004; 367 Durst, Siebel, Simon, Hasché, Herranz, Gasteiger (bib37) 2014; 7 Raj (bib16) 1993; 28 Zhang, Ouyang, Xu, Xia, Zhang, Rawat, Fan (bib61) 2018; 14 Liu, Wang, Wu, Zhang, Zhang, Xiong, Wu, Lai, Wang (bib76) 2022; 10 Xie, Wang, Ding, Zou, Cui, Xu, Jiang (bib78) 2020; 8 Wang, Zhang, Xu, Wan, Lu, Li, Sun (bib71) 2014; 1 Seh, Kibsgaard, Dickens, Chorkendorff, Norskov, Jaramillo (bib2) 2017; 355 Huang, Yua, Zhang, Xiao, Zhou, Zhang, An, Zhang, Yu (bib90) 2020; 276 Chang, Zhu, Zhao, Chen, Chen, Gao (bib97) 2021; 46 Zheng, Jiao, Jaroniec, Qiao (bib11) 2015; 54 Rommal, Moran (bib13) 1988; 135 Huang, Li, Luo, Liao, Ye, Chen (bib72) 2019; 11 He, Hong, Jian, Li, Cai, Liu (bib101) 2019; 46 Jaksic (bib28) 1984; 29 Zeng, Li (bib6) 2015; 3 Cao, Chen, Yin, Gan, Zang, Xu, Wang (bib31) 2019; 7 Barlocco, Cipriano, Liberto, Pacchioni (bib103) 2022 Zhang, Liang, Wu, Liu, Zhang, Jiang, Li, Xu (bib93) 2020; 3 Yu, Mishra, Xie, Zhou, Sun, Zhoua, Ni, Luo, Yu, Yu, Chen, Ren (bib81) 2018; 53 Shang, Zhao, Kong, Shi, Waterhouse, Wen, Zhang (bib89) 2020; 78 Crabtree, Dresselhaus, Buchanan (bib3) 2004; 57 Patil, Mantri, House, Yang, McKone (bib69) 2019; 2 Zhang, Debow, Song, Qian, Creasy, DeLacy, Rao (bib98) 2021; 12 Fang, Gao, Dong, Xia, Yip, Qin, Qu, Ho (bib75) 2016; 27 Zhang, Han, Cai, Zhang, Wang, Li, Sun, Zhang, Lai, Wang (bib77) 2022; 9 Mohammed-Ibrahim, Sun (bib86) 2019; 34 Chen, Sasaki, Ma, Frenkel, Marinkovic, Muckerman, Zhu, Adzic (bib88) 2012; 51 Tian, Cheng, Liu, Sun, He, Asiri (bib73) 2015; 3 McKone, Sadtler, Werlang, Lewis, Gray (bib68) 2013; 3 Walter, Warren, McKone, Boettcher, Mi, Santori, Lewis (bib4) 2010; 110 Zhang, Wang, Liu, Liao, Liu, Zhuang, Chen, Zschech, Feng (bib24) 2017; 8 Gutić, Jovanović, Dobrota, Metarapi, Rafailović, Pašti, Mentus (bib30) 2018; 43 Jaksic (bib21) 2000; 3 Wijten, Mandemaker, van Eeden, Dubbeld, Weckhuysen (bib60) 2020; 13 Bai, Liu (bib55) 1993; 136 Highfield, Claude, Oguro (bib25) 1999; 44 Zhang, Zheng, Gu, Tang, Li, Wang (bib64) 2019; 11 Manazoğlu, Hapçı, Orhan (bib27) 2016; 46 Liu, Zhang, Bu, Ma, Yang, Zhong, Li, Wang, Zhang (bib65) 2020; 12 Zheng, He, Chen, Gao, Zhang, Xiao, Tian (bib53) 2019; 123 Yao, Huang, Fang, Kuang, Jia, Ren, Liu, Lv, Liu, Xu, Yan (bib92) 2020 Tran, Xu, Radhakrishnan, Winston, Sun, Persson, Ong (bib67) 2016 Luo, Guo (bib54) 2017; 2 Zhai, Ma, Chen, Ho, Dai, Qu (bib63) 2022; 4 Elias, Hegde (bib94) 2017; 8 Peng, Min, Bendavid, Chu, Lu, Amal, Han (bib62) 2022; 14 Yuan, Cui, Zhu, Li, Wu, Liang (bib79) 2021; 365 Ďurovič, Hnát, Bouzek (bib85) 2021; 493 Wang, Yang, Shi, Chen, Zhou, Wang, Di, Zhao, Zhong, Cheng, Zhou, Li (bib40) 2021; 133 Chem, Duan, Wei, Wang, Ni (bib7) 2019; 7 Liberto, Cipriano, Pacchioni (bib102) 2022; 12 Rößner, Schwarz, Veremchuk, Zerdoumi, Seyller, Armbrüster (bib47) 2021; 13 Huang, Jiang, An, Cao (bib83) 2020; 8 Wijten, Riemersma, Gauthier, Mandemaker, (Tiny) Verhoeven, Hofmann, Chan, Weckhuysen (bib59) 2019; 12 Li, Wang, Wang, Li, Yao, Jiang (bib43) 2020; 5 Yang, Zhou, Yan, Bian, Hu, Wang, Zhang, Shi, Wang, Zhen, Fu (bib91) 2022; 606 Gao, Gou, Zhou, Ho, Ma, Qu (bib80) 2018; 10 Jakšić, Vojnović, Krstajić (bib29) 2000; 45 Li, Sun, Qin, Zhang, Wang, Luo, Yang, Guo (bib52) 2020 Lin, Hourng, Kuo (bib95) 2012; 37 Zhang, Xiao, Guo, Yang, Lei, Luo, Li (bib96) 2021; 31 Zhang, Liu, Cui, Chen, Liu, Geng (bib32) 2018; 5 Yu, Zhao, Zheng, Tong, Zhang, Xu, Li, Ma, Shi (bib42) 2018; 3 Zhang, Li, Zhou, Chang, Kuang, Sun (bib70) 2017; 13 Soares, Teschke, Torriani (bib14) 1992; 139 Zheng, Jiao, Vasileff, Qiao (bib36) 2018; 57 Jaksic (10.1016/j.apcata.2022.119013_bib28) 1984; 29 Shang (10.1016/j.apcata.2022.119013_bib89) 2020; 78 Liu (10.1016/j.apcata.2022.119013_bib65) 2020; 12 Wang (10.1016/j.apcata.2022.119013_bib71) 2014; 1 Yu (10.1016/j.apcata.2022.119013_bib9) 2020; 26 10.1016/j.apcata.2022.119013_bib23 Durst (10.1016/j.apcata.2022.119013_bib37) 2014; 7 Fang (10.1016/j.apcata.2022.119013_bib75) 2016; 27 Rößner (10.1016/j.apcata.2022.119013_bib47) 2021; 13 Ďurovič (10.1016/j.apcata.2022.119013_bib85) 2021; 493 Jaksic (10.1016/j.apcata.2022.119013_bib21) 2000; 3 Zhang (10.1016/j.apcata.2022.119013_bib32) 2018; 5 Wijten (10.1016/j.apcata.2022.119013_bib59) 2019; 12 Raj (10.1016/j.apcata.2022.119013_bib16) 1993; 28 Wijten (10.1016/j.apcata.2022.119013_bib60) 2020; 13 Yan (10.1016/j.apcata.2022.119013_bib99) 2022; 5 Walter (10.1016/j.apcata.2022.119013_bib4) 2010; 110 Zhang (10.1016/j.apcata.2022.119013_bib77) 2022; 9 Highfield (10.1016/j.apcata.2022.119013_bib25) 1999; 44 Zhang (10.1016/j.apcata.2022.119013_bib98) 2021; 12 Crabtree (10.1016/j.apcata.2022.119013_bib3) 2004; 57 Hammer (10.1016/j.apcata.2022.119013_bib19) 1995; 376 Bai (10.1016/j.apcata.2022.119013_bib55) 1993; 136 Zheng (10.1016/j.apcata.2022.119013_bib11) 2015; 54 Zheng (10.1016/j.apcata.2022.119013_bib36) 2018; 57 Yu (10.1016/j.apcata.2022.119013_bib42) 2018; 3 Zhang (10.1016/j.apcata.2022.119013_bib61) 2018; 14 Lewis (10.1016/j.apcata.2022.119013_bib1) 2006; 103 Kitchin (10.1016/j.apcata.2022.119013_bib48) 2004; 93 Seh (10.1016/j.apcata.2022.119013_bib2) 2017; 355 Gutić (10.1016/j.apcata.2022.119013_bib30) 2018; 43 Jaksic (10.1016/j.apcata.2022.119013_bib20) 2001; 26 Chen (10.1016/j.apcata.2022.119013_bib88) 2012; 51 Yao (10.1016/j.apcata.2022.119013_bib92) 2020 Li (10.1016/j.apcata.2022.119013_bib52) 2020 Wang (10.1016/j.apcata.2022.119013_bib87) 2016; 22 Parsons (10.1016/j.apcata.2022.119013_bib17) 1958; 54 Liberto (10.1016/j.apcata.2022.119013_bib102) 2022; 12 Lin (10.1016/j.apcata.2022.119013_bib95) 2012; 37 Tran (10.1016/j.apcata.2022.119013_bib67) 2016 Nørskov (10.1016/j.apcata.2022.119013_bib18) 2005; 152 Zhang (10.1016/j.apcata.2022.119013_bib70) 2017; 13 Mahmood (10.1016/j.apcata.2022.119013_bib82) 2018; 5 Pham (10.1016/j.apcata.2022.119013_bib66) 2021; 537 Manazoğlu (10.1016/j.apcata.2022.119013_bib27) 2016; 46 Zhang (10.1016/j.apcata.2022.119013_bib96) 2021; 31 He (10.1016/j.apcata.2022.119013_bib101) 2019; 46 Gong (10.1016/j.apcata.2022.119013_bib10) 2016; 9 Schalenbach (10.1016/j.apcata.2022.119013_bib58) 2018; 259 Jin (10.1016/j.apcata.2022.119013_bib74) 2017; 5 Dubouis (10.1016/j.apcata.2022.119013_bib33) 2019; 10 Danilovic (10.1016/j.apcata.2022.119013_bib44) 2012; 51 Huang (10.1016/j.apcata.2022.119013_bib83) 2020; 8 Chem (10.1016/j.apcata.2022.119013_bib7) 2019; 7 Hu (10.1016/j.apcata.2022.119013_bib39) 2019; 12 Patil (10.1016/j.apcata.2022.119013_bib69) 2019; 2 Zhang (10.1016/j.apcata.2022.119013_bib24) 2017; 8 Xia (10.1016/j.apcata.2022.119013_bib51) 2019; 48 Zhang (10.1016/j.apcata.2022.119013_bib93) 2020; 3 McKone (10.1016/j.apcata.2022.119013_bib68) 2013; 3 Tian (10.1016/j.apcata.2022.119013_bib100) 2021; 77 Yu (10.1016/j.apcata.2022.119013_bib84) 2021; 33 Soares (10.1016/j.apcata.2022.119013_bib14) 1992; 139 Cao (10.1016/j.apcata.2022.119013_bib31) 2019; 7 Chang (10.1016/j.apcata.2022.119013_bib97) 2021; 46 Liu (10.1016/j.apcata.2022.119013_bib76) 2022; 10 Duan (10.1016/j.apcata.2022.119013_bib41) 2020; 11 Barlocco (10.1016/j.apcata.2022.119013_bib103) 2022 Karolus (10.1016/j.apcata.2022.119013_bib56) 2004; 367 Subbaraman (10.1016/j.apcata.2022.119013_bib38) 2012; 11 Danilovic (10.1016/j.apcata.2022.119013_bib5) 2013; 78 Wang (10.1016/j.apcata.2022.119013_bib40) 2021; 133 Huang (10.1016/j.apcata.2022.119013_bib72) 2019; 11 Santos (10.1016/j.apcata.2022.119013_bib50) 2006; 7 Chen (10.1016/j.apcata.2022.119013_bib46) 2017 Yu (10.1016/j.apcata.2022.119013_bib81) 2018; 53 Huang (10.1016/j.apcata.2022.119013_bib90) 2020; 276 Xie (10.1016/j.apcata.2022.119013_bib78) 2020; 8 Zeng (10.1016/j.apcata.2022.119013_bib6) 2015; 3 Elias (10.1016/j.apcata.2022.119013_bib94) 2017; 8 Santos (10.1016/j.apcata.2022.119013_bib12) 2013; 36 Tian (10.1016/j.apcata.2022.119013_bib73) 2015; 3 Yang (10.1016/j.apcata.2022.119013_bib91) 2022; 606 Vij (10.1016/j.apcata.2022.119013_bib8) 2017; 7 Subbaraman (10.1016/j.apcata.2022.119013_bib35) 2011; 334 Yuan (10.1016/j.apcata.2022.119013_bib79) 2021; 365 Peng (10.1016/j.apcata.2022.119013_bib62) 2022; 14 Li (10.1016/j.apcata.2022.119013_bib43) 2020; 5 Jakšić (10.1016/j.apcata.2022.119013_bib29) 2000; 45 Zhai (10.1016/j.apcata.2022.119013_bib63) 2022; 4 Zhang (10.1016/j.apcata.2022.119013_bib64) 2019; 11 To (10.1016/j.apcata.2022.119013_bib45) 2022; 10 Wang (10.1016/j.apcata.2022.119013_bib49) 2018; 3 Luo (10.1016/j.apcata.2022.119013_bib54) 2017; 2 Mohammed-Ibrahim (10.1016/j.apcata.2022.119013_bib86) 2019; 34 Gao (10.1016/j.apcata.2022.119013_bib80) 2018; 10 Ledendecker (10.1016/j.apcata.2022.119013_bib22) 2017; 7 Norskov (10.1016/j.apcata.2022.119013_bib26) 1987; 130 Rommal (10.1016/j.apcata.2022.119013_bib13) 1988; 135 Yan (10.1016/j.apcata.2022.119013_bib57) 2016; 128 Zhou (10.1016/j.apcata.2022.119013_bib15) 2020; 388 An (10.1016/j.apcata.2022.119013_bib34) 2019 Zheng (10.1016/j.apcata.2022.119013_bib53) 2019; 123 |
References_xml | – volume: 388 start-page: 122 year: 2020 end-page: 129 ident: bib15 article-title: Mechanistic study on nickel-molybdenum based electrocatalysts for the hydrogen evolution reaction publication-title: J. Catal. – volume: 5 start-page: 2508 year: 2017 end-page: 2513 ident: bib74 article-title: Three-dimensional porous MoNi publication-title: J. Mater. Chem. A – volume: 14 start-page: 40822 year: 2022 end-page: 40833 ident: bib62 article-title: Stabilizing the unstable: Chromium coating on NiMo electrode for enhanced stability in intermittent water electrolysis publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 15437 year: 2017 ident: bib24 article-title: Efficient hydrogen production on MoNi publication-title: Nat. Commun. – volume: 29 start-page: 1539 year: 1984 end-page: 1550 ident: bib28 article-title: Electrocatalysis of hydrogen evolution in the light of brewer-engel theory for bonding in metals and intermetallic phases publication-title: Electrochim. Acta – volume: 130 start-page: 475 year: 1987 end-page: 490 ident: bib26 article-title: Theory of hydrogen interaction with metals publication-title: J. Less-Common Met. – volume: 12 start-page: 2620 year: 2019 end-page: 2645 ident: bib39 article-title: Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting publication-title: Energy Environ. Sci. – volume: 7 year: 2017 ident: bib22 article-title: Experimental and theoretical assessment of Ni-based binary compounds for the hydrogen evolution reaction publication-title: Adv. Energy Mater. – volume: 12 start-page: 11361 year: 2021 end-page: 11370 ident: bib98 article-title: Interface catalysis of nickel molybdenum (NiMo) alloys on two-dimensional (2D) MXene for enhanced hydrogen electrochemistry publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 12169 year: 2020 end-page: 12176 ident: bib78 article-title: Accelerating hydrogen evolution at neutral pH by destabilization of water with a conducting oxophilic metal oxide publication-title: J. Mater. Chem. A – volume: 5 start-page: 7778 year: 2022 end-page: 7786 ident: bib99 article-title: NiMo-based nanorod arrays supported on Ni foams for efficient hydrogen electrocatalysis publication-title: ACS Appl. Nano Mater. – volume: 33 year: 2021 ident: bib84 article-title: Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects publication-title: Adv. Mater. – volume: 37 start-page: 1311 year: 2012 end-page: 1320 ident: bib95 article-title: The effect of magnetic force on hydrogen production efficiency in water electrolysis publication-title: J. Hydrog. Energy – volume: 123 start-page: 9247 year: 2019 end-page: 9254 ident: bib53 article-title: Ni publication-title: J. Phys. Chem. C – volume: 3 start-page: 237 year: 2018 end-page: 244 ident: bib42 article-title: Hydrogen evolution reaction in alkaline media: alpha- or beta-nickel hydroxide on the surface of platinum? publication-title: ACS Energy Lett. – volume: 8 start-page: 375 year: 2017 ident: bib94 article-title: Effect of magnetic field on HER of water electrolysis on Ni–W alloy publication-title: Electrocatalysis – volume: 28 start-page: 4375 year: 1993 end-page: 4382 ident: bib16 article-title: Nickel-based, binary-composite electrocatalysts for the cathodes in the energy-efficient industrial production of hydrogen from alkaline-water electrolytic cells publication-title: J. Mater. Sci. – volume: 365 year: 2021 ident: bib79 article-title: Structure engineering of electrodeposited NiMo films for highly efficient and durable seawater splitting publication-title: Electrochim. Acta – volume: 110 start-page: 6446 year: 2010 end-page: 6473 ident: bib4 article-title: Solar water splitting cells publication-title: Chem. Rev. – volume: 7 start-page: 14971 year: 2019 end-page: 15005 ident: bib7 article-title: Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution publication-title: J. Mater. Chem. A – year: 2022 ident: bib103 article-title: Modeling hydrogen and oxygen evolution reactions on single atom catalysts with density functional theory: role of the functional publication-title: Adv. Theory Simul. – volume: 9 year: 2022 ident: bib77 article-title: Platinum clusters anchored amorphous NiMo hydroxide with collaborative electronic transfer for overall water splitting under high current density publication-title: Adv. Mater. Interfaces – volume: 51 start-page: 12495 year: 2012 end-page: 12498 ident: bib44 article-title: Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH) publication-title: Angew. Chem. Int. Ed. – volume: 4 year: 2022 ident: bib63 article-title: Recent progress on the long-term stability of hydrogen evolution reaction electrocatalysts publication-title: InfoMat – year: 2020 ident: bib92 article-title: Promoting electrocatalytic hydrogen evolution reaction and oxygen evolution reaction by fields: effects of electric field, magnetic field, strain, and light, all methods publication-title: Small Methods – volume: 103 start-page: 15729 year: 2006 end-page: 15735 ident: bib1 article-title: Powering the planet: chemical challenges in solar energy utilization publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 1728 year: 2018 end-page: 1733 ident: bib80 article-title: Amine-modulated/engineered interfaces of NiMo electrocatalysts for improved hydrogen evolution reaction in alkaline solutions publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 167 year: 2000 end-page: 182 ident: bib21 article-title: Volcano plots along the periodic table, their causes and consequences on electrocatalysis for hydrogen electrode reactions publication-title: J. New Mater. Electrochem. Syst. – volume: 22 start-page: 111 year: 2016 end-page: 119 ident: bib87 article-title: A highly efficient and stable biphasic nanocrystalline Ni–Mo–N catalyst for hydrogen evolution in both acidic and alkaline electrolytes publication-title: Nano Energy – volume: 9 start-page: 28 year: 2016 end-page: 46 ident: bib10 article-title: A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction publication-title: Nano Res. – volume: 7 start-page: 2255 year: 2014 end-page: 2260 ident: bib37 article-title: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism publication-title: Energy Environ. Sci. – volume: 133 start-page: 5835 year: 2021 end-page: 5841 ident: bib40 article-title: Alloying nickel with molybdenum significantly accelerates alkaline publication-title: Angew. Chem. – volume: 10 year: 2022 ident: bib45 article-title: Effects of NH publication-title: Front. Chem. – volume: 78 start-page: 2007 year: 2013 end-page: 2015 ident: bib5 article-title: Electrocatalysis of the HER in acid and alkaline media publication-title: J. Serb. Chem. Soc. – volume: 26 start-page: 559 year: 2001 end-page: 578 ident: bib20 article-title: Hypo–hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions publication-title: Int. J. Hydrog. Energy – volume: 10 start-page: 9165 year: 2019 end-page: 9181 ident: bib33 article-title: The hydrogen evolution reaction: from material to interfacial descriptors publication-title: Chem. Sci. – volume: 34 start-page: 111 year: 2019 end-page: 160 ident: bib86 article-title: Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction (HER) in alkaline medium to achieve efficient water splitting–a review publication-title: J. Energy Chem. – year: 2019 ident: bib34 article-title: One-step controllable synthesis of catalytic Ni publication-title: Adv. Energy Mater. – volume: 11 start-page: 9353 year: 2019 end-page: 9361 ident: bib64 article-title: Facile synthesis, characterization and DFT studies of a nanostructured nickel–molybdenum–phosphorous planar electrode as an active electrocatalyst for the hydrogen evolution reaction publication-title: Nanoscale – volume: 2 start-page: 2524 year: 2019 end-page: 2533 ident: bib69 article-title: Enhancing the performance of Ni-Mo alkaline hydrogen evolution electrocatalysts with carbon supports publication-title: ACS Appl. Energy Mater. – volume: 57 start-page: 39 year: 2004 end-page: 44 ident: bib3 article-title: The hydrogen economy publication-title: Phys. Today – year: 2016 ident: bib67 article-title: Data descriptor: surface energies of elemental crystals publication-title: Sci. Data – volume: 54 start-page: 52 year: 2015 end-page: 65 ident: bib11 article-title: Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1198 year: 2018 end-page: 1204 ident: bib49 article-title: Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction publication-title: ACS Energy Lett. – volume: 12 start-page: 3491 year: 2019 end-page: 3500 ident: bib59 article-title: Electrolyte effects on the stability of Ni-Mo cathodes for the hydrogen evolution reaction publication-title: ChemSusChem – volume: 12 start-page: 36259 year: 2020 end-page: 36267 ident: bib65 article-title: Single-crystalline Mo-nanowire-mediated directional growth of high-index-faceted MoNi electrocatalyst for ultralong-term alkaline hydrogen evolution publication-title: ACS Appl. Mater. Interfaces – volume: 5 year: 2018 ident: bib82 article-title: Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions publication-title: Adv. Sci. – volume: 355 year: 2017 ident: bib2 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science – volume: 46 start-page: 191 year: 2016 end-page: 204 ident: bib27 article-title: Effect of electrolysis parameters of Ni–Mo alloy on the electrocatalytic activity for hydrogen evaluation and their stability in alkali medium publication-title: J. Appl. Electrochem – volume: 11 start-page: 4789 year: 2020 ident: bib41 article-title: Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes publication-title: Nat. Commun. – volume: 26 start-page: 6423 year: 2020 end-page: 6436 ident: bib9 article-title: Earth-abundant transition-metal-based bifunctional rlectrocatalysts for overall water splitting in alkaline media publication-title: Chem. Eur. J. – volume: 12 start-page: 5846 year: 2022 end-page: 5856 ident: bib102 article-title: Universal principles for the rational design of single atom electrocatalysts? Handle with care publication-title: ACS Catal. – volume: 77 start-page: 108 year: 2021 end-page: 116 ident: bib100 article-title: Hierarchical NiMoP publication-title: J. Mater. Sci. Technol. – volume: 10 start-page: 15395 year: 2022 end-page: 15401 ident: bib76 article-title: Pt doping and strong metal–support interaction as a strategy for NiMo-based electrocatalysts to boost the hydrogen evolution reaction in alkaline solution publication-title: J. Mater. Chem. A – volume: 48 start-page: 3265 year: 2019 ident: bib51 article-title: Strain engineering of metal-based nanomaterials for energy electrocatalysis publication-title: Chem. Soc. Rev. – volume: 8 start-page: 25465 year: 2020 ident: bib83 article-title: Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting publication-title: J. Mater. Chem. A – volume: 128 start-page: 6283 year: 2016 end-page: 6289 ident: bib57 article-title: The influence of elastic strain on catalytic activity in the hydrogen evolution reaction publication-title: Angew. Chem. – volume: 3 start-page: 20056 year: 2015 end-page: 20059 ident: bib73 article-title: Self-supported NiMo hollow nanorod array: an efficient 3D bifunctional catalytic electrode for overall water splitting publication-title: J. Mater. Chem. A – volume: 1 start-page: 1138 year: 2014 end-page: 1144 ident: bib71 article-title: A 3D nanoporous Ni–Mo electrocatalyst with negligible overpotential for alkaline hydrogen evolution publication-title: ChemElectroChem – volume: 7 start-page: 10338 year: 2019 end-page: 10345 ident: bib31 article-title: Investigation of the correlation between the phase structure and activity of Ni–Mo–O derived electrocatalysts for the hydrogen evolution reaction publication-title: J. Mater. Chem. A – volume: 3 start-page: 14942 year: 2015 end-page: 14962 ident: bib6 article-title: Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction publication-title: J. Mater. Chem. A – volume: 57 start-page: 7568 year: 2018 end-page: 7579 ident: bib36 article-title: The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts publication-title: Angew. Chem. Int. Ed. – volume: 46 start-page: 23066 year: 2019 end-page: 23073 ident: bib101 article-title: High-performance alkaline hydrogen evolution of NiMoP publication-title: Int. J. Hydrog. Energy – volume: 54 start-page: 1053 year: 1958 end-page: 1063 ident: bib17 article-title: The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen publication-title: Trans. Faraday Soc. – volume: 78 year: 2020 ident: bib89 article-title: Underwater superaerophobic Ni nanoparticle-decorated nickel–molybdenum nitride nanowire arrays for hydrogen evolution in neutral media publication-title: Nano Energy – volume: 31 year: 2021 ident: bib96 article-title: Macroporous array induced multiscale modulation at the surface/interface of Co(OH) publication-title: Adv. Funct. Mater. – volume: 7 start-page: 7196 year: 2017 end-page: 7225 ident: bib8 article-title: Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions publication-title: ACS Catal. – volume: 537 year: 2021 ident: bib66 article-title: Catalytic activity of Ni publication-title: Appl. Surf. Sci. – volume: 376 start-page: 238 year: 1995 end-page: 240 ident: bib19 article-title: Why gold is the noblest of all the metals publication-title: Nature – year: 2017 ident: bib46 article-title: Self‐templated fabrication of MoNi publication-title: Adv. Energy – volume: 5 year: 2018 ident: bib32 article-title: Colloidal synthesis of Mo–Ni Alloy nanoparticles as bifunctional electrocatalysts for efficient overall water splitting publication-title: Adv. Mater. Interfaces – volume: 139 start-page: 98 year: 1992 end-page: 105 ident: bib14 article-title: Hydride effect on the kinetics of the hydrogen evolution reaction on nickel cathodes in alkaline media publication-title: J. Electrochem. Soc. – volume: 13 start-page: 23616 year: 2021 end-page: 23626 ident: bib47 article-title: Challenging the durability of intermetallic Mo−Ni compounds in the hydrogen evolution reaction publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 16846 year: 2018 end-page: 16858 ident: bib30 article-title: Simple routes for the improvement of hydrogen evolution activity of Ni-Mo catalysts: from sol-gel derived powder catalysts to graphene supported co-electrodeposits publication-title: Int. J. Hydrog. Energy – volume: 51 start-page: 1 year: 2012 end-page: 6 ident: bib88 article-title: Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets publication-title: Angew. Chem. Int – volume: 11 start-page: 550 year: 2012 end-page: 557 ident: bib38 article-title: Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts publication-title: Nat. Mater. – volume: 44 start-page: 2805 year: 1999 end-page: 2814 ident: bib25 article-title: Electrocatalytic synergism in Ni/Mo cathodes for hydrogen evolution in acid medium: a new model publication-title: Electrochim. Acta – volume: 7 start-page: 2282 year: 2006 end-page: 2285 ident: bib50 article-title: d-band catalysis in electrochemistry publication-title: ChemPhysChem – volume: 152 start-page: J23 year: 2005 end-page: J26 ident: bib18 article-title: Trends in the exchange current for hydrogen evolution publication-title: J. Electrochem. Soc. – volume: 493 year: 2021 ident: bib85 article-title: Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review publication-title: J. Power Sources – volume: 2 start-page: 17059 year: 2017 ident: bib54 article-title: Strain-controlled electrocatalysis on multimetallic nanomaterials publication-title: Nat. Rev. Mater. – volume: 3 start-page: 10303 year: 2020 end-page: 10316 ident: bib93 article-title: Recent advances in magnetic field-enhanced electrocatalysis publication-title: ACS Appl. Energy Mater. – volume: 27 start-page: 247 year: 2016 end-page: 254 ident: bib75 article-title: Hierarchical NiMo-based 3D electrocatalysts for highly-efficient Hydrogen evolution in alkaline conditions publication-title: Nano Energy – volume: 276 year: 2020 ident: bib90 article-title: N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction publication-title: Appl. Catal. B Environ. – volume: 13 start-page: 3172 year: 2020 end-page: 3179 ident: bib60 article-title: In situ study on Ni-Mo stability in a water-splitting device: effect of catalyst substrate and electric potential publication-title: ChemSusChem – volume: 93 year: 2004 ident: bib48 article-title: Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces publication-title: Phys. Rev. Lett. – volume: 367 start-page: 235 year: 2004 end-page: 238 ident: bib56 article-title: Crystallite size and lattice strain in nanocrystalline Ni–Mo alloys studied by Rietveld refinement publication-title: J. Alloy. Compd. – volume: 45 start-page: 4151 year: 2000 end-page: 4158 ident: bib29 article-title: Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes publication-title: Electrochim. Acta – volume: 259 start-page: 1154 year: 2018 end-page: 1161 ident: bib58 article-title: Nickel-molybdenum alloy catalysts for the hydrogen evolution reaction: activity and stability revised publication-title: Electrochim. Acta – reference: W.C. Conner Jr., in: Z. Paal, P.G. Menon (Eds.), Hydrogen Effects in Catalysis, Chapter 12, Marcel Dekker, 1988, p. 311. – volume: 3 start-page: 166 year: 2013 end-page: 169 ident: bib68 article-title: Ni−Mo nanopowders for efficient electrochemical hydrogen evolution publication-title: ACS Catal. – volume: 606 start-page: 1004 year: 2022 end-page: 1013 ident: bib91 article-title: Synergistic mechanism of Ni(OH) publication-title: J. Colloid Interface Sci. – volume: 334 start-page: 1256 year: 2011 end-page: 1260 ident: bib35 article-title: Enhancing hydrogen evolution activity in water splitting by tailoring Li publication-title: Science – volume: 5 year: 2020 ident: bib43 article-title: Enhancing hydrogen evolution reaction by synergistically coupling NiMo alloy with Ni(OH) publication-title: ChemistrySelect – volume: 14 year: 2018 ident: bib61 article-title: Prereduction of metal oxides via carbon plasma treatment for efficient and stable electrocatalytic hydrogen evolution publication-title: Small – volume: 36 start-page: 1176 year: 2013 end-page: 1193 ident: bib12 article-title: Hydrogen production by alkaline water electrolysis publication-title: Quim. Nova – volume: 53 start-page: 492 year: 2018 end-page: 500 ident: bib81 article-title: Ternary Ni publication-title: Nano Energy – volume: 11 start-page: 19429 year: 2019 end-page: 19436 ident: bib72 article-title: Self-templated construction of 1D NiMo nanowires via a Li electrochemical tuning method for the hydrogen evolution reaction publication-title: Nanoscale – volume: 13 year: 2017 ident: bib70 article-title: Superaerophobic ultrathin Ni–Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction publication-title: Small – volume: 136 start-page: 73 year: 1993 end-page: 80 ident: bib55 article-title: Construction of the Gibbs free energy diagram and interpretation of phase evolution in the Ni-Mo dystem publication-title: Phys. Status Solidi (a) – volume: 135 start-page: 343 year: 1988 end-page: 346 ident: bib13 article-title: The role of absorbed hydrogen on the voltage-time behavior of nickel cathodes in hydrogen evolution publication-title: J. Electrochem. Soc. – year: 2020 ident: bib52 article-title: Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials publication-title: Adv. Energy Mater. – volume: 46 start-page: 3493 year: 2021 end-page: 3503 ident: bib97 article-title: NiMo/Cu-nanosheets/Ni-foam composite as a high performance electrocatalyst for hydrogen evolution over a wide pH range publication-title: Int. J. Hydrog. Energy – volume: 7 start-page: 2282 year: 2006 ident: 10.1016/j.apcata.2022.119013_bib50 article-title: d-band catalysis in electrochemistry publication-title: ChemPhysChem doi: 10.1002/cphc.200600441 – volume: 7 start-page: 7196 year: 2017 ident: 10.1016/j.apcata.2022.119013_bib8 article-title: Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions publication-title: ACS Catal. doi: 10.1021/acscatal.7b01800 – volume: 123 start-page: 9247 year: 2019 ident: 10.1016/j.apcata.2022.119013_bib53 article-title: NimMon (m + n = 5) Clusters for hydrogen electric reduction: synergistic effect of Ni and Mo on the adsorption and OH breaking of H2O publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b01281 – volume: 44 start-page: 2805 year: 1999 ident: 10.1016/j.apcata.2022.119013_bib25 article-title: Electrocatalytic synergism in Ni/Mo cathodes for hydrogen evolution in acid medium: a new model publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(98)00403-4 – volume: 14 year: 2018 ident: 10.1016/j.apcata.2022.119013_bib61 article-title: Prereduction of metal oxides via carbon plasma treatment for efficient and stable electrocatalytic hydrogen evolution publication-title: Small – volume: 3 start-page: 237 issue: 1 year: 2018 ident: 10.1016/j.apcata.2022.119013_bib42 article-title: Hydrogen evolution reaction in alkaline media: alpha- or beta-nickel hydroxide on the surface of platinum? publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01103 – volume: 93 year: 2004 ident: 10.1016/j.apcata.2022.119013_bib48 article-title: Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.156801 – volume: 2 start-page: 2524 year: 2019 ident: 10.1016/j.apcata.2022.119013_bib69 article-title: Enhancing the performance of Ni-Mo alkaline hydrogen evolution electrocatalysts with carbon supports publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b02087 – volume: 9 year: 2022 ident: 10.1016/j.apcata.2022.119013_bib77 article-title: Platinum clusters anchored amorphous NiMo hydroxide with collaborative electronic transfer for overall water splitting under high current density publication-title: Adv. Mater. Interfaces – volume: 77 start-page: 108 year: 2021 ident: 10.1016/j.apcata.2022.119013_bib100 article-title: Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.09.046 – volume: 78 year: 2020 ident: 10.1016/j.apcata.2022.119013_bib89 article-title: Underwater superaerophobic Ni nanoparticle-decorated nickel–molybdenum nitride nanowire arrays for hydrogen evolution in neutral media publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105375 – volume: 78 start-page: 2007 year: 2013 ident: 10.1016/j.apcata.2022.119013_bib5 article-title: Electrocatalysis of the HER in acid and alkaline media publication-title: J. Serb. Chem. Soc. doi: 10.2298/JSC131118136D – volume: 8 start-page: 375 year: 2017 ident: 10.1016/j.apcata.2022.119013_bib94 article-title: Effect of magnetic field on HER of water electrolysis on Ni–W alloy publication-title: Electrocatalysis doi: 10.1007/s12678-017-0382-x – volume: 367 start-page: 235 year: 2004 ident: 10.1016/j.apcata.2022.119013_bib56 article-title: Crystallite size and lattice strain in nanocrystalline Ni–Mo alloys studied by Rietveld refinement publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2003.08.044 – volume: 11 start-page: 9353 year: 2019 ident: 10.1016/j.apcata.2022.119013_bib64 article-title: Facile synthesis, characterization and DFT studies of a nanostructured nickel–molybdenum–phosphorous planar electrode as an active electrocatalyst for the hydrogen evolution reaction publication-title: Nanoscale doi: 10.1039/C8NR08039A – volume: 46 start-page: 191 year: 2016 ident: 10.1016/j.apcata.2022.119013_bib27 article-title: Effect of electrolysis parameters of Ni–Mo alloy on the electrocatalytic activity for hydrogen evaluation and their stability in alkali medium publication-title: J. Appl. Electrochem doi: 10.1007/s10800-015-0908-y – volume: 7 start-page: 10338 year: 2019 ident: 10.1016/j.apcata.2022.119013_bib31 article-title: Investigation of the correlation between the phase structure and activity of Ni–Mo–O derived electrocatalysts for the hydrogen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00899C – volume: 8 start-page: 25465 year: 2020 ident: 10.1016/j.apcata.2022.119013_bib83 article-title: Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08802A – volume: 5 year: 2018 ident: 10.1016/j.apcata.2022.119013_bib32 article-title: Colloidal synthesis of Mo–Ni Alloy nanoparticles as bifunctional electrocatalysts for efficient overall water splitting publication-title: Adv. Mater. Interfaces – volume: 4 year: 2022 ident: 10.1016/j.apcata.2022.119013_bib63 article-title: Recent progress on the long-term stability of hydrogen evolution reaction electrocatalysts publication-title: InfoMat doi: 10.1002/inf2.12357 – volume: 57 start-page: 7568 year: 2018 ident: 10.1016/j.apcata.2022.119013_bib36 article-title: The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710556 – volume: 12 start-page: 3491 year: 2019 ident: 10.1016/j.apcata.2022.119013_bib59 article-title: Electrolyte effects on the stability of Ni-Mo cathodes for the hydrogen evolution reaction publication-title: ChemSusChem doi: 10.1002/cssc.201900617 – volume: 365 year: 2021 ident: 10.1016/j.apcata.2022.119013_bib79 article-title: Structure engineering of electrodeposited NiMo films for highly efficient and durable seawater splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137366 – volume: 11 start-page: 19429 year: 2019 ident: 10.1016/j.apcata.2022.119013_bib72 article-title: Self-templated construction of 1D NiMo nanowires via a Li electrochemical tuning method for the hydrogen evolution reaction publication-title: Nanoscale doi: 10.1039/C9NR05311E – volume: 128 start-page: 6283 year: 2016 ident: 10.1016/j.apcata.2022.119013_bib57 article-title: The influence of elastic strain on catalytic activity in the hydrogen evolution reaction publication-title: Angew. Chem. doi: 10.1002/ange.201508613 – volume: 22 start-page: 111 year: 2016 ident: 10.1016/j.apcata.2022.119013_bib87 article-title: A highly efficient and stable biphasic nanocrystalline Ni–Mo–N catalyst for hydrogen evolution in both acidic and alkaline electrolytes publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.02.023 – volume: 7 year: 2017 ident: 10.1016/j.apcata.2022.119013_bib22 article-title: Experimental and theoretical assessment of Ni-based binary compounds for the hydrogen evolution reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601735 – volume: 11 start-page: 4789 year: 2020 ident: 10.1016/j.apcata.2022.119013_bib41 article-title: Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes publication-title: Nat. Commun. doi: 10.1038/s41467-020-18585-4 – volume: 12 start-page: 11361 year: 2021 ident: 10.1016/j.apcata.2022.119013_bib98 article-title: Interface catalysis of nickel molybdenum (NiMo) alloys on two-dimensional (2D) MXene for enhanced hydrogen electrochemistry publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c02676 – volume: 13 start-page: 3172 year: 2020 ident: 10.1016/j.apcata.2022.119013_bib60 article-title: In situ study on Ni-Mo stability in a water-splitting device: effect of catalyst substrate and electric potential publication-title: ChemSusChem doi: 10.1002/cssc.202000678 – volume: 10 start-page: 9165 year: 2019 ident: 10.1016/j.apcata.2022.119013_bib33 article-title: The hydrogen evolution reaction: from material to interfacial descriptors publication-title: Chem. Sci. doi: 10.1039/C9SC03831K – year: 2017 ident: 10.1016/j.apcata.2022.119013_bib46 article-title: Self‐templated fabrication of MoNi4/MoO3–x nanorod arrays with dual active components for highly efficient hydrogen evolution publication-title: Adv. Energy – volume: 3 start-page: 14942 year: 2015 ident: 10.1016/j.apcata.2022.119013_bib6 article-title: Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02974K – volume: 334 start-page: 1256 year: 2011 ident: 10.1016/j.apcata.2022.119013_bib35 article-title: Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces publication-title: Science doi: 10.1126/science.1211934 – volume: 10 start-page: 1728 issue: 2 year: 2018 ident: 10.1016/j.apcata.2022.119013_bib80 article-title: Amine-modulated/engineered interfaces of NiMo electrocatalysts for improved hydrogen evolution reaction in alkaline solutions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16125 – volume: 27 start-page: 247 year: 2016 ident: 10.1016/j.apcata.2022.119013_bib75 article-title: Hierarchical NiMo-based 3D electrocatalysts for highly-efficient Hydrogen evolution in alkaline conditions publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.07.005 – volume: 5 start-page: 7778 year: 2022 ident: 10.1016/j.apcata.2022.119013_bib99 article-title: NiMo-based nanorod arrays supported on Ni foams for efficient hydrogen electrocatalysis publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c00774 – volume: 51 start-page: 1 year: 2012 ident: 10.1016/j.apcata.2022.119013_bib88 article-title: Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets publication-title: Angew. Chem. Int – ident: 10.1016/j.apcata.2022.119013_bib23 – volume: 51 start-page: 12495 year: 2012 ident: 10.1016/j.apcata.2022.119013_bib44 article-title: Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204842 – year: 2016 ident: 10.1016/j.apcata.2022.119013_bib67 article-title: Data descriptor: surface energies of elemental crystals publication-title: Sci. Data doi: 10.1038/sdata.2016.80 – volume: 26 start-page: 559 year: 2001 ident: 10.1016/j.apcata.2022.119013_bib20 article-title: Hypo–hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions publication-title: Int. J. Hydrog. Energy doi: 10.1016/S0360-3199(00)00120-8 – volume: 136 start-page: 73 year: 1993 ident: 10.1016/j.apcata.2022.119013_bib55 article-title: Construction of the Gibbs free energy diagram and interpretation of phase evolution in the Ni-Mo dystem publication-title: Phys. Status Solidi (a) doi: 10.1002/pssa.2211360108 – volume: 376 start-page: 238 year: 1995 ident: 10.1016/j.apcata.2022.119013_bib19 article-title: Why gold is the noblest of all the metals publication-title: Nature doi: 10.1038/376238a0 – volume: 13 start-page: 23616 year: 2021 ident: 10.1016/j.apcata.2022.119013_bib47 article-title: Challenging the durability of intermetallic Mo−Ni compounds in the hydrogen evolution reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c02169 – volume: 537 year: 2021 ident: 10.1016/j.apcata.2022.119013_bib66 article-title: Catalytic activity of Ni3Mo surfaces for hydrogen evolution reaction: a density functional theory approach publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147894 – volume: 12 start-page: 2620 year: 2019 ident: 10.1016/j.apcata.2022.119013_bib39 article-title: Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01202H – volume: 5 year: 2018 ident: 10.1016/j.apcata.2022.119013_bib82 article-title: Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions publication-title: Adv. Sci. doi: 10.1002/advs.201700464 – volume: 3 start-page: 1198 year: 2018 ident: 10.1016/j.apcata.2022.119013_bib49 article-title: Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00454 – volume: 57 start-page: 39 year: 2004 ident: 10.1016/j.apcata.2022.119013_bib3 article-title: The hydrogen economy publication-title: Phys. Today doi: 10.1063/1.1878333 – volume: 9 start-page: 28 issue: 1 year: 2016 ident: 10.1016/j.apcata.2022.119013_bib10 article-title: A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction publication-title: Nano Res. doi: 10.1007/s12274-015-0965-x – volume: 14 start-page: 40822 year: 2022 ident: 10.1016/j.apcata.2022.119013_bib62 article-title: Stabilizing the unstable: Chromium coating on NiMo electrode for enhanced stability in intermittent water electrolysis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c09004 – volume: 48 start-page: 3265 year: 2019 ident: 10.1016/j.apcata.2022.119013_bib51 article-title: Strain engineering of metal-based nanomaterials for energy electrocatalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00846A – volume: 135 start-page: 343 year: 1988 ident: 10.1016/j.apcata.2022.119013_bib13 article-title: The role of absorbed hydrogen on the voltage-time behavior of nickel cathodes in hydrogen evolution publication-title: J. Electrochem. Soc. doi: 10.1149/1.2095612 – volume: 29 start-page: 1539 year: 1984 ident: 10.1016/j.apcata.2022.119013_bib28 article-title: Electrocatalysis of hydrogen evolution in the light of brewer-engel theory for bonding in metals and intermetallic phases publication-title: Electrochim. Acta doi: 10.1016/0013-4686(84)85007-0 – volume: 276 year: 2020 ident: 10.1016/j.apcata.2022.119013_bib90 article-title: N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119137 – year: 2020 ident: 10.1016/j.apcata.2022.119013_bib92 article-title: Promoting electrocatalytic hydrogen evolution reaction and oxygen evolution reaction by fields: effects of electric field, magnetic field, strain, and light, all methods publication-title: Small Methods doi: 10.1002/smtd.202000494 – volume: 493 year: 2021 ident: 10.1016/j.apcata.2022.119013_bib85 article-title: Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229708 – volume: 259 start-page: 1154 year: 2018 ident: 10.1016/j.apcata.2022.119013_bib58 article-title: Nickel-molybdenum alloy catalysts for the hydrogen evolution reaction: activity and stability revised publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.11.069 – volume: 110 start-page: 6446 year: 2010 ident: 10.1016/j.apcata.2022.119013_bib4 article-title: Solar water splitting cells publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 388 start-page: 122 year: 2020 ident: 10.1016/j.apcata.2022.119013_bib15 article-title: Mechanistic study on nickel-molybdenum based electrocatalysts for the hydrogen evolution reaction publication-title: J. Catal. doi: 10.1016/j.jcat.2020.05.011 – year: 2020 ident: 10.1016/j.apcata.2022.119013_bib52 article-title: Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials publication-title: Adv. Energy Mater. – volume: 8 start-page: 15437 year: 2017 ident: 10.1016/j.apcata.2022.119013_bib24 article-title: Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics publication-title: Nat. Commun. doi: 10.1038/ncomms15437 – volume: 8 start-page: 12169 year: 2020 ident: 10.1016/j.apcata.2022.119013_bib78 article-title: Accelerating hydrogen evolution at neutral pH by destabilization of water with a conducting oxophilic metal oxide publication-title: J. Mater. Chem. A doi: 10.1039/D0TA04241B – volume: 3 start-page: 167 year: 2000 ident: 10.1016/j.apcata.2022.119013_bib21 article-title: Volcano plots along the periodic table, their causes and consequences on electrocatalysis for hydrogen electrode reactions publication-title: J. New Mater. Electrochem. Syst. – volume: 31 year: 2021 ident: 10.1016/j.apcata.2022.119013_bib96 article-title: Macroporous array induced multiscale modulation at the surface/interface of Co(OH)2/NiMo self-supporting electrode for effective overall water splitting publication-title: Adv. Funct. Mater. – volume: 130 start-page: 475 year: 1987 ident: 10.1016/j.apcata.2022.119013_bib26 article-title: Theory of hydrogen interaction with metals publication-title: J. Less-Common Met. doi: 10.1016/0022-5088(87)90145-7 – year: 2019 ident: 10.1016/j.apcata.2022.119013_bib34 article-title: One-step controllable synthesis of catalytic Ni4Mo/MoOx/Cu nanointerfaces for highly efficient water reduction publication-title: Adv. Energy Mater. – volume: 152 start-page: J23 issue: 3 year: 2005 ident: 10.1016/j.apcata.2022.119013_bib18 article-title: Trends in the exchange current for hydrogen evolution publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 – volume: 2 start-page: 17059 year: 2017 ident: 10.1016/j.apcata.2022.119013_bib54 article-title: Strain-controlled electrocatalysis on multimetallic nanomaterials publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.59 – volume: 3 start-page: 166 year: 2013 ident: 10.1016/j.apcata.2022.119013_bib68 article-title: Ni−Mo nanopowders for efficient electrochemical hydrogen evolution publication-title: ACS Catal. doi: 10.1021/cs300691m – volume: 355 year: 2017 ident: 10.1016/j.apcata.2022.119013_bib2 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – volume: 7 start-page: 14971 year: 2019 ident: 10.1016/j.apcata.2022.119013_bib7 article-title: Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03220G – volume: 26 start-page: 6423 year: 2020 ident: 10.1016/j.apcata.2022.119013_bib9 article-title: Earth-abundant transition-metal-based bifunctional rlectrocatalysts for overall water splitting in alkaline media publication-title: Chem. Eur. J. doi: 10.1002/chem.202000209 – volume: 11 start-page: 550 year: 2012 ident: 10.1016/j.apcata.2022.119013_bib38 article-title: Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts publication-title: Nat. Mater. doi: 10.1038/nmat3313 – volume: 45 start-page: 4151 year: 2000 ident: 10.1016/j.apcata.2022.119013_bib29 article-title: Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(00)00549-1 – volume: 34 start-page: 111 year: 2019 ident: 10.1016/j.apcata.2022.119013_bib86 article-title: Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction (HER) in alkaline medium to achieve efficient water splitting–a review publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.09.016 – volume: 12 start-page: 36259 year: 2020 ident: 10.1016/j.apcata.2022.119013_bib65 article-title: Single-crystalline Mo-nanowire-mediated directional growth of high-index-faceted MoNi electrocatalyst for ultralong-term alkaline hydrogen evolution publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c11716 – volume: 53 start-page: 492 year: 2018 ident: 10.1016/j.apcata.2022.119013_bib81 article-title: Ternary Ni2(1-x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.025 – volume: 7 start-page: 2255 year: 2014 ident: 10.1016/j.apcata.2022.119013_bib37 article-title: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00440J – volume: 3 start-page: 20056 year: 2015 ident: 10.1016/j.apcata.2022.119013_bib73 article-title: Self-supported NiMo hollow nanorod array: an efficient 3D bifunctional catalytic electrode for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04723D – volume: 10 start-page: 15395 year: 2022 ident: 10.1016/j.apcata.2022.119013_bib76 article-title: Pt doping and strong metal–support interaction as a strategy for NiMo-based electrocatalysts to boost the hydrogen evolution reaction in alkaline solution publication-title: J. Mater. Chem. A doi: 10.1039/D2TA03934F – year: 2022 ident: 10.1016/j.apcata.2022.119013_bib103 article-title: Modeling hydrogen and oxygen evolution reactions on single atom catalysts with density functional theory: role of the functional publication-title: Adv. Theory Simul. doi: 10.1002/adts.202200513 – volume: 13 year: 2017 ident: 10.1016/j.apcata.2022.119013_bib70 article-title: Superaerophobic ultrathin Ni–Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction publication-title: Small doi: 10.1002/smll.201701648 – volume: 54 start-page: 1053 year: 1958 ident: 10.1016/j.apcata.2022.119013_bib17 article-title: The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen publication-title: Trans. Faraday Soc. doi: 10.1039/tf9585401053 – volume: 54 start-page: 52 year: 2015 ident: 10.1016/j.apcata.2022.119013_bib11 article-title: Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201407031 – volume: 139 start-page: 98 year: 1992 ident: 10.1016/j.apcata.2022.119013_bib14 article-title: Hydride effect on the kinetics of the hydrogen evolution reaction on nickel cathodes in alkaline media publication-title: J. Electrochem. Soc. doi: 10.1149/1.2069207 – volume: 103 start-page: 15729 year: 2006 ident: 10.1016/j.apcata.2022.119013_bib1 article-title: Powering the planet: chemical challenges in solar energy utilization publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0603395103 – volume: 3 start-page: 10303 issue: 11 year: 2020 ident: 10.1016/j.apcata.2022.119013_bib93 article-title: Recent advances in magnetic field-enhanced electrocatalysis publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c02104 – volume: 28 start-page: 4375 year: 1993 ident: 10.1016/j.apcata.2022.119013_bib16 article-title: Nickel-based, binary-composite electrocatalysts for the cathodes in the energy-efficient industrial production of hydrogen from alkaline-water electrolytic cells publication-title: J. Mater. Sci. doi: 10.1007/BF01154945 – volume: 12 start-page: 5846 year: 2022 ident: 10.1016/j.apcata.2022.119013_bib102 article-title: Universal principles for the rational design of single atom electrocatalysts? Handle with care publication-title: ACS Catal. doi: 10.1021/acscatal.2c01011 – volume: 33 year: 2021 ident: 10.1016/j.apcata.2022.119013_bib84 article-title: Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects publication-title: Adv. Mater. doi: 10.1002/adma.202007100 – volume: 46 start-page: 23066 year: 2019 ident: 10.1016/j.apcata.2022.119013_bib101 article-title: High-performance alkaline hydrogen evolution of NiMoP2 nanowire boosted by bimetallic synergic effect publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.07.048 – volume: 46 start-page: 3493 year: 2021 ident: 10.1016/j.apcata.2022.119013_bib97 article-title: NiMo/Cu-nanosheets/Ni-foam composite as a high performance electrocatalyst for hydrogen evolution over a wide pH range publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.11.007 – volume: 1 start-page: 1138 year: 2014 ident: 10.1016/j.apcata.2022.119013_bib71 article-title: A 3D nanoporous Ni–Mo electrocatalyst with negligible overpotential for alkaline hydrogen evolution publication-title: ChemElectroChem doi: 10.1002/celc.201402089 – volume: 36 start-page: 1176 year: 2013 ident: 10.1016/j.apcata.2022.119013_bib12 article-title: Hydrogen production by alkaline water electrolysis publication-title: Quim. Nova doi: 10.1590/S0100-40422013000800017 – volume: 133 start-page: 5835 year: 2021 ident: 10.1016/j.apcata.2022.119013_bib40 article-title: Alloying nickel with molybdenum significantly accelerates alkaline publication-title: Angew. Chem. doi: 10.1002/ange.202013047 – volume: 10 year: 2022 ident: 10.1016/j.apcata.2022.119013_bib45 article-title: Effects of NH4+/citrate complexing agent ratio on Ni–Mo and Ni–Mo–O electrodeposits from ammonium citrate baths publication-title: Front. Chem. – volume: 606 start-page: 1004 year: 2022 ident: 10.1016/j.apcata.2022.119013_bib91 article-title: Synergistic mechanism of Ni(OH)2/NiMoS heterostructure electrocatalyst with crystalline/amorphous interfaces for efficient hydrogen evolution over all pH ranges publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.08.090 – volume: 43 start-page: 16846 year: 2018 ident: 10.1016/j.apcata.2022.119013_bib30 article-title: Simple routes for the improvement of hydrogen evolution activity of Ni-Mo catalysts: from sol-gel derived powder catalysts to graphene supported co-electrodeposits publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.11.131 – volume: 5 year: 2020 ident: 10.1016/j.apcata.2022.119013_bib43 article-title: Enhancing hydrogen evolution reaction by synergistically coupling NiMo alloy with Ni(OH)2 nanosheet on carbon cloth publication-title: ChemistrySelect – volume: 37 start-page: 1311 year: 2012 ident: 10.1016/j.apcata.2022.119013_bib95 article-title: The effect of magnetic force on hydrogen production efficiency in water electrolysis publication-title: J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.10.024 – volume: 5 start-page: 2508 year: 2017 ident: 10.1016/j.apcata.2022.119013_bib74 article-title: Three-dimensional porous MoNi4 networks constructed by nanosheets as bifunctional electrocatalysts for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10802D |
SSID | ssj0002495 |
Score | 2.6029637 |
SecondaryResourceType | review_article |
Snippet | Hydrogen evolution reaction (HER) from alkaline electrolytes is one of most promising methods for producing hydrogen. The remaining obstacles include the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 119013 |
SubjectTerms | Alkaline electrolyte Electrocatalysts Hydrogen evolution reaction Ni-Mo alloy Nickel |
Title | A review of nickel-molybdenum based hydrogen evolution electrocatalysts from theory to experiment |
URI | https://dx.doi.org/10.1016/j.apcata.2022.119013 |
Volume | 651 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jHtSD6FScHyMHr3H9SJP0OIZjKu6ig91K0qY4me3YqtCLf7t5baoTRMFrSaC89_q--t7vh9ClUpInWiuSitiB34yCSO2GRMRMyVglaZpCH_J-wsZTejsLZi00bHZhYKzS-v7ap1fe2j7pW2n2l_N5_8EJPSaYM_OgMeJXJRClHKz86v1rzAO4lSu8PY8RON2sz1UzXnIJTRJTJXqe8R0mNPo_h6eNkDPaR3s2V8SD-nUOUEtnHbQ9bCjaOmh3A03wEMkBrhdRcJ7ibG4-zwV5yRelSmDcHUO8SvBTmaxyYzRYv1mjw5YJp2rklOtijWHlBFcbjiUucvxFAnCEpqPrx-GYWAYFEpvEqiBu4lEutWKKixCw1bSgAEFvakDqU51y7iqHx8xoJdWu0ZYUXDpe7PNAUxoK_xi1szzTJwjzEKAGHa41RHVTpCkVqIBRoVPK_ER2kd8ILootvDiwXCyiZo7sOarFHYG4o1rcXUQ-by1reI0_zvNGJ9E3M4lMBPj15um_b56hHeCYr0a1g3PULlav-sJkIoXqVabWQ1uDm7vx5ANs3d9A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kHqoH8Ylv9-B1aZpsdjfHUpRqbS-20FvYTTZYqU2pUei_dyfZVAVR8BoyEGZn55WZ7wO41lqJ1BhNM5l4-JtRUmXaEZUJ1yrRaZZl2IccDHlvzO4n4WQDuvUuDI5VOt9f-fTSW7snLafN1mI6bT16kc8l9yY-NkYCLIE2EZ0qbMBm567fG64dMtIrl5B7PqcoUG_QlWNeaoF9Elso-r51HzY6Bj9HqC9R53YXdly6SDrVF-3BhpnvQ7Nbs7Ttw_YXQMEDUB1S7aKQPCPzqb2hM_qSz1Y6xYl3giErJU-rdJlbuyHm3dkdcWQ4ZS9n9Vq8Etw6IeWS44oUOfnkATiE8e3NqNujjkSBJja3Kmg79ZlQRnMtZITwakYyRKG3ZSALmMmEaGtPJNweTGba9sCUFMrzk0CEhrFIBkfQmOdzcwxERIg26AljMLDbOk3rUIecSZMxHqTqBIJacXHiEMaR6GIW16Nkz3Gl7hjVHVfqPgG6llpUCBt_vC_qM4m_WUpsg8Cvkqf_lryCZm80eIgf7ob9M9hCyvlycjs8h0axfDMXNjEp9KUzvA8eN-Hx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+nickel-molybdenum+based+hydrogen+evolution+electrocatalysts+from+theory+to+experiment&rft.jtitle=Applied+catalysis.+A%2C+General&rft.au=Park%2C+Sun+Hwa&rft.au=To%2C+Dung+T.&rft.au=Myung%2C+Nosang+V.&rft.date=2023-02-05&rft.pub=Elsevier+B.V&rft.issn=0926-860X&rft.eissn=1873-3875&rft.volume=651&rft_id=info:doi/10.1016%2Fj.apcata.2022.119013&rft.externalDocID=S0926860X22005361 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-860X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-860X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-860X&client=summon |