Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC” mechanism. Theory for stationary 1D regime

Theoretical analysis of the system with coupled electrochemical and chemical steps has been carried out where bulk solution contains non-electroactive halogen oxoanions, XOn−, with a very small addition of halogen molecules, X2. The latter are electroreduced rapidly at the electrode surface, generat...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 173; pp. 779 - 795
Main Authors Vorotyntsev, Mikhail A., Konev, Dmitry V., Tolmachev, Yuriy V.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 10.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Theoretical analysis of the system with coupled electrochemical and chemical steps has been carried out where bulk solution contains non-electroactive halogen oxoanions, XOn−, with a very small addition of halogen molecules, X2. The latter are electroreduced rapidly at the electrode surface, generating halide anions, X−, which diffuse towards solution, wherein they comproportionate with the principal oxidant, XOn−, yielding electroactive halogen. Unlike the well-known catalytic EC’ mechanism where both the electrochemical reaction and the chemical step retain the total amount of the mediating redox couple, the passage of the electroreduction cycle in the system under our study results in an increase of the total content of its components, halogen and halide anion, via the consumption of halate anions. We propose to denote this new autocatalytic EC mechanism as EC”. Approximate analytical formulas have been derived for all characteristics of this system under steady state conditions at the uniformly accessible electrode surface. We found that the behavior of the system depends crucially on the relation between the diffusion layer thickness, zd, and the kinetic layer thickness, zk (determined by the rate of the homogeneous reaction). For a very thin diffusion layers: zd<zk, halide anions leave the diffusion layer and react with XOn− anions only in the bulk solution. Both the polarization curve and the maximal current correspond to the electrode reaction of halogen molecules from the bulk solution, without a significant contribution due to the comproportionation reaction. In the intermediate range of the diffusion layer thickness: zk<zd<2n zk, the halide anions generated at the electrode are consumed mostly by this homogeneous reaction within a thin kinetic layer (located deeply inside the diffusion layer) while the halogen molecules produced by this reaction diffuse partially to the electrode, generating again halide anions. This combination of the chemical and electrochemical steps results in an autocatalytic cycle, based on the X−/X2 mediating redox couple, which consumes a significant amount of XOn− anions. The maximal current becomes much higher than the mass-transport of halogen from the bulk can sustain, depending essentially on the kinetic layer thickness. In the third range of the diffusion layer thickness: 2n zk<zd, the amounts of the accumulated redox-couple components are so high that the principal (but non-electroactive) oxidant, XOn− is consumed within the external part of the kinetic layer with the maximal rate determined by the XOn− anion diffusion across the diffusion layer, which results in a very high maximal current proportional to the bulk concentration of XOn− anions. The theory predicts a complicated behavior of the maximal current as a function of the diffusion layer thickness (or the disk rotation rate for the RDE technique), with a maximum and a minimum separated by the range with an anomalous variation: increase of the maximal current with increase of the diffusion layer thickness (“autocatalytic interval”).
AbstractList Theoretical analysis of the system with coupled electrochemical and chemical steps has been carried out where bulk solution contains non-electroactive halogen oxoanions, XOn−, with a very small addition of halogen molecules, X2. The latter are electroreduced rapidly at the electrode surface, generating halide anions, X−, which diffuse towards solution, wherein they comproportionate with the principal oxidant, XOn−, yielding electroactive halogen. Unlike the well-known catalytic EC’ mechanism where both the electrochemical reaction and the chemical step retain the total amount of the mediating redox couple, the passage of the electroreduction cycle in the system under our study results in an increase of the total content of its components, halogen and halide anion, via the consumption of halate anions. We propose to denote this new autocatalytic EC mechanism as EC”. Approximate analytical formulas have been derived for all characteristics of this system under steady state conditions at the uniformly accessible electrode surface. We found that the behavior of the system depends crucially on the relation between the diffusion layer thickness, zd, and the kinetic layer thickness, zk (determined by the rate of the homogeneous reaction). For a very thin diffusion layers: zd<zk, halide anions leave the diffusion layer and react with XOn− anions only in the bulk solution. Both the polarization curve and the maximal current correspond to the electrode reaction of halogen molecules from the bulk solution, without a significant contribution due to the comproportionation reaction. In the intermediate range of the diffusion layer thickness: zk<zd<2n zk, the halide anions generated at the electrode are consumed mostly by this homogeneous reaction within a thin kinetic layer (located deeply inside the diffusion layer) while the halogen molecules produced by this reaction diffuse partially to the electrode, generating again halide anions. This combination of the chemical and electrochemical steps results in an autocatalytic cycle, based on the X−/X2 mediating redox couple, which consumes a significant amount of XOn− anions. The maximal current becomes much higher than the mass-transport of halogen from the bulk can sustain, depending essentially on the kinetic layer thickness. In the third range of the diffusion layer thickness: 2n zk<zd, the amounts of the accumulated redox-couple components are so high that the principal (but non-electroactive) oxidant, XOn− is consumed within the external part of the kinetic layer with the maximal rate determined by the XOn− anion diffusion across the diffusion layer, which results in a very high maximal current proportional to the bulk concentration of XOn− anions. The theory predicts a complicated behavior of the maximal current as a function of the diffusion layer thickness (or the disk rotation rate for the RDE technique), with a maximum and a minimum separated by the range with an anomalous variation: increase of the maximal current with increase of the diffusion layer thickness (“autocatalytic interval”).
Author Tolmachev, Yuriy V.
Vorotyntsev, Mikhail A.
Konev, Dmitry V.
Author_xml – sequence: 1
  givenname: Mikhail A.
  orcidid: 0000-0002-0720-4300
  surname: Vorotyntsev
  fullname: Vorotyntsev, Mikhail A.
  email: mivo2010@yandex.com
  organization: Institute for Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
– sequence: 2
  givenname: Dmitry V.
  surname: Konev
  fullname: Konev, Dmitry V.
  organization: Institute for Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
– sequence: 3
  givenname: Yuriy V.
  surname: Tolmachev
  fullname: Tolmachev, Yuriy V.
  email: ruthenium2008@yahoo.com
  organization: Ftorion, Inc., Boston, MA 02120, USA
BookMark eNqFkE1OwzAQhS1UJNrCGfAFEuy4iRN2VSk_UiU2ZW05zqR1lcbITqt2xxG4AJfjJExaxBbpSfaM3vc0eiMyaF0LhNxyFnPGs7tNDA2YTqPihPE0ZqiiuCBDnksRiTwtBmTIGBfRJMuzKzIKYcMYk5lkQ_I572HvPFQ701nXUlfTtW7cCvB7cLrFXaB7q6nedc7oTjfHzhqKgDvQLVRWn7Dy2GO2AnpG7mnr9tDQ-ez74wt9Zo37sI3pcg3OH2ntPA3didU48gdMXNktXJPLWjcBbn7fMXl7nC9nz9Hi9ellNl1ERqRJF3FpQOhU5DJNM5ZlrAampSgrYWRialnpSVaznJelMYXMy4ILkyRQoTHF1moxJvKca7wLwUOt3r3d4imKM9UXqzbqr1jVF6sYqiiQnJ5JwPP2FrwKxkJrsAqPflU5-2_GD8VrjCc
CitedBy_id crossref_primary_10_3390_molecules27175638
crossref_primary_10_1016_j_jelechem_2022_116916
crossref_primary_10_1134_S1023193517100020
crossref_primary_10_1016_j_padiff_2024_100688
crossref_primary_10_1134_S1023193516100037
crossref_primary_10_1134_S1023193522030077
crossref_primary_10_1016_j_electacta_2018_09_018
crossref_primary_10_1134_S1023193518020039
crossref_primary_10_1134_S1023193517090178
crossref_primary_10_1134_S1023193522110118
crossref_primary_10_1016_j_ijhydene_2021_02_149
crossref_primary_10_1016_j_ijoes_2023_100366
crossref_primary_10_1016_j_electacta_2017_10_199
crossref_primary_10_3390_membranes12121228
crossref_primary_10_1134_S0012500818110058
crossref_primary_10_1016_j_electacta_2016_11_138
crossref_primary_10_1016_j_jelechem_2016_06_004
crossref_primary_10_1016_j_jelechem_2023_117331
crossref_primary_10_1016_j_electacta_2016_06_010
crossref_primary_10_1134_S0012500816050025
crossref_primary_10_1016_j_electacta_2017_06_158
crossref_primary_10_1016_j_jelechem_2019_01_070
crossref_primary_10_1515_pac_2017_0306
crossref_primary_10_3390_ijms242015297
crossref_primary_10_1016_j_electacta_2017_11_097
crossref_primary_10_1134_S1023193519050033
crossref_primary_10_1149_2_0841902jes
crossref_primary_10_1134_S1023193518010020
crossref_primary_10_1134_S0012500819010063
crossref_primary_10_3390_en15197397
crossref_primary_10_1134_S1023193518130335
crossref_primary_10_1134_S1023193522120084
crossref_primary_10_1007_s10008_019_04371_w
crossref_primary_10_1016_j_electacta_2017_12_062
crossref_primary_10_1002_celc_201600422
crossref_primary_10_1002_ente_201700447
crossref_primary_10_1134_S001250161611004X
crossref_primary_10_1134_S1023193522100123
crossref_primary_10_1134_S1023193522110088
crossref_primary_10_1016_j_elecom_2017_11_006
crossref_primary_10_1016_j_electacta_2021_138914
crossref_primary_10_1016_j_electacta_2022_139961
crossref_primary_10_1016_j_electacta_2019_134799
crossref_primary_10_1016_j_ijoes_2024_100536
Cites_doi 10.1021/ac00144a021
10.1590/S0103-50532001000600014
10.1016/S0022-0728(69)80258-5
10.1021/jp2023204
10.1016/S0022-0728(81)80497-4
10.1016/j.electacta.2010.07.062
10.1021/ac00126a040
10.1039/c1cp22032b
10.1016/j.electacta.2011.12.013
10.1021/je60082a027
10.4152/pea.200904505
10.1021/es803144w
10.1007/s10008-015-2805-z
10.1002/1521-4109(200111)13:16<1326::AID-ELAN1326>3.0.CO;2-S
10.1016/S0022-0728(69)80248-2
10.1134/S1023193514020050
10.1021/ac60235a003
10.1016/S0022-0728(74)80263-9
10.1016/S0022-0728(97)00566-4
10.1016/S0022-0728(00)00115-7
10.2166/aqua.2012.078
10.1016/0013-4686(67)85031-X
10.1080/00359193209518863
10.1134/S1023193513120069
10.1016/0013-4686(65)80003-2
10.1021/ic0350786
10.1021/ja01356a013
10.1002/kin.20210
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.electacta.2015.05.099
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
EndPage 795
ExternalDocumentID 10_1016_j_electacta_2015_05_099
S0013468615012220
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADIYS
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AAXKI
AAYXX
ABEFU
ABTAH
ABXDB
ACNNM
ADMUD
AFJKZ
AI.
AIDUJ
AJQLL
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
T9H
VH1
WUQ
XOL
ZY4
ID FETCH-LOGICAL-c352t-17ce3a53875560660fe0a73bd3c72cf7da46f081bbcc978b913c22ed60f5016f3
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Thu Sep 26 18:20:58 EDT 2024
Fri Feb 23 02:21:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords autocatalytic cycle
redox mediation
kinetic layer
comproportionation
halogen oxoanions
diffusion layer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-17ce3a53875560660fe0a73bd3c72cf7da46f081bbcc978b913c22ed60f5016f3
ORCID 0000-0002-0720-4300
PageCount 17
ParticipantIDs crossref_primary_10_1016_j_electacta_2015_05_099
elsevier_sciencedirect_doi_10_1016_j_electacta_2015_05_099
PublicationCentury 2000
PublicationDate 2015-08-10
PublicationDateYYYYMMDD 2015-08-10
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-10
  day: 10
PublicationDecade 2010
PublicationTitle Electrochimica acta
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Saveant, Vianello (bib0125) 1965; 10
Cortes, Faria (bib0045) 2001; 12
Y.V. Tolmachev, High specific energy aqueous flow battery (2014) USA Pat. Appl. 61/986,830.
Ward, Lawrence, Hartshorne, Compton (bib0140) 2011; 115
Y.V. Tolmachev, Flow battery and regeneration system with improved safety (2014) USA Pat. Appl. 14/184,702.
Pergola (bib0065) 1974; 51
Molina, Serna, Martinez-Ortiz (bib0150) 2000; 486
Bonner (bib0035) 1979; 24
Molina, Gonzalez, Laborda, Wang, Compton (bib0155) 2011; 13
Desideri, Lepri (bib0060) 1969; 22
Polcyn, Shain (bib0130) 1966; 38
Zeng, Osteryoung (bib0145) 1986; 58
Tolmachev (bib0010) 2014; 50
Kishimoto, Matsuda (bib0075) 2009; 43
Tolmachev, Vorotyntsev (bib0005) 2014; 50
Schmitz (bib0055) 2007; 39
Pugh (bib0160) 1932; 20
Kishimoto, Kishimoto, Nakayama (bib0085) 2012; 61
Andrieux, Dumas-Bouchiat, Saveant (bib0105) 1981; 123
Molina (bib0120) 1998; 443
Saveant, Vianello (bib0135) 1967; 12
Varco Shea, Bard (bib0100) 1987; 59
Y.V. Tolmachev, Flow battery and regeneration system (2012) USA Pat. Appl. 13/969,597.
Table 12.2.1 in book: A.J. Bard, L.R., Faulkner, Electrochemical Methods, 2nd edition, J. Wiley & Sons, Inc. New York, 2001.
Simmons, Waldeck (bib0040) 1931; 53
Mirčeski, Gulaboski (bib0115) 2001; 13
Zhao, Liu, Li, Shen, Qu (bib0090) 2012; 62
Cortes, Faria (bib0050) 2004; 43
Lovrić (bib0110) 2009; 27
Ding, Li, Cui, Tang, Xu, Xie, Zhai (bib0080) 2010; 55
Tolmachev, Piatkivskyi, Ryzhov, Konev, Vorotyntsev (bib0030) 2015
Pergola, Raspi, Massagli (bib0070) 1969; 22
Tolmachev (10.1016/j.electacta.2015.05.099_bib0030) 2015
Saveant (10.1016/j.electacta.2015.05.099_bib0135) 1967; 12
Ding (10.1016/j.electacta.2015.05.099_bib0080) 2010; 55
Simmons (10.1016/j.electacta.2015.05.099_bib0040) 1931; 53
Cortes (10.1016/j.electacta.2015.05.099_bib0045) 2001; 12
Pugh (10.1016/j.electacta.2015.05.099_bib0160) 1932; 20
Andrieux (10.1016/j.electacta.2015.05.099_bib0105) 1981; 123
10.1016/j.electacta.2015.05.099_bib0015
Lovrić (10.1016/j.electacta.2015.05.099_bib0110) 2009; 27
Tolmachev (10.1016/j.electacta.2015.05.099_bib0010) 2014; 50
10.1016/j.electacta.2015.05.099_bib0020
Bonner (10.1016/j.electacta.2015.05.099_bib0035) 1979; 24
Molina (10.1016/j.electacta.2015.05.099_bib0155) 2011; 13
Ward (10.1016/j.electacta.2015.05.099_bib0140) 2011; 115
Tolmachev (10.1016/j.electacta.2015.05.099_bib0005) 2014; 50
Pergola (10.1016/j.electacta.2015.05.099_bib0065) 1974; 51
Mirčeski (10.1016/j.electacta.2015.05.099_bib0115) 2001; 13
Kishimoto (10.1016/j.electacta.2015.05.099_bib0085) 2012; 61
Schmitz (10.1016/j.electacta.2015.05.099_bib0055) 2007; 39
Kishimoto (10.1016/j.electacta.2015.05.099_bib0075) 2009; 43
Zhao (10.1016/j.electacta.2015.05.099_bib0090) 2012; 62
Cortes (10.1016/j.electacta.2015.05.099_bib0050) 2004; 43
Polcyn (10.1016/j.electacta.2015.05.099_bib0130) 1966; 38
Zeng (10.1016/j.electacta.2015.05.099_bib0145) 1986; 58
Molina (10.1016/j.electacta.2015.05.099_bib0150) 2000; 486
10.1016/j.electacta.2015.05.099_bib0025
Pergola (10.1016/j.electacta.2015.05.099_bib0070) 1969; 22
Varco Shea (10.1016/j.electacta.2015.05.099_bib0100) 1987; 59
10.1016/j.electacta.2015.05.099_bib0095
Desideri (10.1016/j.electacta.2015.05.099_bib0060) 1969; 22
Molina (10.1016/j.electacta.2015.05.099_bib0120) 1998; 443
Saveant (10.1016/j.electacta.2015.05.099_bib0125) 1965; 10
References_xml – volume: 43
  start-page: 1395
  year: 2004
  end-page: 1402
  ident: bib0050
  article-title: Kinetics and mechanism of bromate-bromide reaction catalyzed by acetate
  publication-title: Inorg. Chem.
  contributor:
    fullname: Faria
– volume: 50
  start-page: 451
  year: 2014
  end-page: 461
  ident: bib0005
  article-title: Fuel cells with Chemically Regenerative Redox Cathodes
  publication-title: Russ. J. Electrochem.
  contributor:
    fullname: Vorotyntsev
– volume: 58
  start-page: 2766
  year: 1986
  end-page: 2771
  ident: bib0145
  article-title: Square wave voltammetry for a pseudo-first-order catalytic process
  publication-title: Anal. Chem.
  contributor:
    fullname: Osteryoung
– volume: 62
  start-page: 181
  year: 2012
  end-page: 184
  ident: bib0090
  article-title: Bromate removal by electrochemical reduction at boron-doped diamond electrode
  publication-title: Electrochim. Acta
  contributor:
    fullname: Qu
– volume: 12
  start-page: 629
  year: 1967
  end-page: 646
  ident: bib0135
  article-title: Potential-sweep voltammetry: general theory of chemical polarization
  publication-title: Electrochim. Acta
  contributor:
    fullname: Vianello
– volume: 123
  start-page: 171
  year: 1981
  end-page: 187
  ident: bib0105
  article-title: Catalysis of electrochemical reactions at derivatized electrodes. Kinetic model for stationary voltammetric techniques and preparative scale electrolysis
  publication-title: J. Electroanal. Chem.
  contributor:
    fullname: Saveant
– volume: 20
  start-page: 327
  year: 1932
  ident: bib0160
  article-title: The stability of bromic acid and its use for the determination of bromide in bromates and in chlorides
  publication-title: Trans. Royal Soc. South Africa
  contributor:
    fullname: Pugh
– volume: 13
  start-page: 16748
  year: 2011
  end-page: 16755
  ident: bib0155
  article-title: Analytical theory of the catalytic mechanism in square wave voltammetry at disc electrodes
  publication-title: Phys. Chem. Chem. Phys.
  contributor:
    fullname: Compton
– volume: 50
  start-page: 339
  year: 2014
  end-page: 356
  ident: bib0010
  article-title: Hydrogen-halogen electrochemical cells
  publication-title: Russ. J. Electrochem.
  contributor:
    fullname: Tolmachev
– volume: 59
  start-page: 2101
  year: 1987
  end-page: 2111
  ident: bib0100
  article-title: Digital simulation of homogeneous chemical reactions coupled to heterogeneous electron transfer and applications at platinum/mica/platinum ultramicroband electrodes
  publication-title: Anal. Chem.
  contributor:
    fullname: Bard
– volume: 38
  start-page: 376
  year: 1966
  end-page: 382
  ident: bib0130
  article-title: Theory of stationary electrode polarography for a multistep charge transfer with catalytic (cyclic) regeneration of the reactant
  publication-title: Anal. Chem.
  contributor:
    fullname: Shain
– volume: 486
  start-page: 9
  year: 2000
  end-page: 15
  ident: bib0150
  article-title: Square wave voltammetry for a pseudo-first-order catalytic process at spherical electrodes
  publication-title: J. Electroanal. Chem.
  contributor:
    fullname: Martinez-Ortiz
– volume: 51
  start-page: 461
  year: 1974
  end-page: 464
  ident: bib0065
  article-title: Voltammetric behavior of perbromate ion on platinum
  publication-title: J. Electroanal. Chem.
  contributor:
    fullname: Pergola
– volume: 10
  start-page: 905
  year: 1965
  end-page: 920
  ident: bib0125
  article-title: Potential-sweep chronoamperometry: kinetic currents for first-order chemical reaction parallel to electron-transfer process (catalytic currents)
  publication-title: Electrochim. Acta
  contributor:
    fullname: Vianello
– volume: 24
  start-page: 210
  year: 1979
  end-page: 211
  ident: bib0035
  article-title: Osmotic and activity coefficients of lithium chlorate and lithium bromate
  publication-title: J. Chem. Eng. Data
  contributor:
    fullname: Bonner
– volume: 22
  start-page: 175
  year: 1969
  end-page: 183
  ident: bib0070
  article-title: Voltammetric determination of bromite with a platinized platinum microelectrode with periodical renewal of diffusion layer
  publication-title: J. Electroanal. Chem.
  contributor:
    fullname: Massagli
– volume: 55
  start-page: 8471
  year: 2010
  end-page: 8475
  ident: bib0080
  article-title: Electrocatalytic reduction of bromate ion using a polyaniline-modified electrode An efficient and green technology for the removal of BrO3- in aqueous solutions
  publication-title: Electrochim. Acta
  contributor:
    fullname: Zhai
– volume: 22
  start-page: 265
  year: 1969
  end-page: 274
  ident: bib0060
  article-title: Electrochemical behaviour of bromate in perchloric acid solutions
  publication-title: J. Electroanal. Chem.
  contributor:
    fullname: Lepri
– volume: 115
  start-page: 11204
  year: 2011
  end-page: 11215
  ident: bib0140
  article-title: Cyclic voltammetry of the EC' mechanism at hemispherical particles and their arrays: the split wave
  publication-title: J. Phys. Chem. C
  contributor:
    fullname: Compton
– volume: 53
  start-page: 1725
  year: 1931
  end-page: 1727
  ident: bib0040
  article-title: The system lithium bromate-water
  publication-title: J. Amer. Chem. Soc.
  contributor:
    fullname: Waldeck
– volume: 13
  start-page: 1326
  year: 2001
  end-page: 1334
  ident: bib0115
  article-title: Surface catalytic mechanism in square-wave voltammetry
  publication-title: Electroanalysis
  contributor:
    fullname: Gulaboski
– year: 2015
  ident: bib0030
  article-title: Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion
  publication-title: J. Solid State Electrochem.
  contributor:
    fullname: Vorotyntsev
– volume: 12
  start-page: 775
  year: 2001
  end-page: 779
  ident: bib0045
  article-title: Revisiting the kinetics and mechanism of bromate-bromide reaction
  publication-title: J. Brazilian Chem. Soc.
  contributor:
    fullname: Faria
– volume: 61
  start-page: 103
  year: 2012
  end-page: 110
  ident: bib0085
  article-title: Rapid removal of bromate ion from water streams with an electrolytic flow cell
  publication-title: J. Water Supply Res. Techn. - Aqua
  contributor:
    fullname: Nakayama
– volume: 27
  start-page: 505
  year: 2009
  end-page: 515
  ident: bib0110
  article-title: Modeling of catalytic reaction in protein-film linear scan voltammetry at rotating disk electrode
  publication-title: Port. Electrochim. Acta
  contributor:
    fullname: Lovrić
– volume: 43
  start-page: 2054
  year: 2009
  end-page: 2059
  ident: bib0075
  article-title: Bromate ion removal by electrochemical reduction using an activated carbon felt electrode
  publication-title: Environmental Sci. Techn.
  contributor:
    fullname: Matsuda
– volume: 39
  start-page: 17
  year: 2007
  end-page: 21
  ident: bib0055
  article-title: Kinetics of the bromate-bromide reaction at high bromide concentrations
  publication-title: Intern. J. Chem. Kinetics
  contributor:
    fullname: Schmitz
– volume: 443
  start-page: 163
  year: 1998
  end-page: 167
  ident: bib0120
  article-title: Analytical solution corresponding to the i/t response to a multipotential step for a catalytic mechanism
  publication-title: J. Electroanal. Chem.
  contributor:
    fullname: Molina
– volume: 59
  start-page: 2101
  year: 1987
  ident: 10.1016/j.electacta.2015.05.099_bib0100
  article-title: Digital simulation of homogeneous chemical reactions coupled to heterogeneous electron transfer and applications at platinum/mica/platinum ultramicroband electrodes
  publication-title: Anal. Chem.
  doi: 10.1021/ac00144a021
  contributor:
    fullname: Varco Shea
– volume: 12
  start-page: 775
  year: 2001
  ident: 10.1016/j.electacta.2015.05.099_bib0045
  article-title: Revisiting the kinetics and mechanism of bromate-bromide reaction
  publication-title: J. Brazilian Chem. Soc.
  doi: 10.1590/S0103-50532001000600014
  contributor:
    fullname: Cortes
– volume: 22
  start-page: 265
  year: 1969
  ident: 10.1016/j.electacta.2015.05.099_bib0060
  article-title: Electrochemical behaviour of bromate in perchloric acid solutions
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(69)80258-5
  contributor:
    fullname: Desideri
– volume: 115
  start-page: 11204
  year: 2011
  ident: 10.1016/j.electacta.2015.05.099_bib0140
  article-title: Cyclic voltammetry of the EC' mechanism at hemispherical particles and their arrays: the split wave
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2023204
  contributor:
    fullname: Ward
– volume: 123
  start-page: 171
  year: 1981
  ident: 10.1016/j.electacta.2015.05.099_bib0105
  article-title: Catalysis of electrochemical reactions at derivatized electrodes. Kinetic model for stationary voltammetric techniques and preparative scale electrolysis
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(81)80497-4
  contributor:
    fullname: Andrieux
– ident: 10.1016/j.electacta.2015.05.099_bib0015
– volume: 55
  start-page: 8471
  year: 2010
  ident: 10.1016/j.electacta.2015.05.099_bib0080
  article-title: Electrocatalytic reduction of bromate ion using a polyaniline-modified electrode An efficient and green technology for the removal of BrO3- in aqueous solutions
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.07.062
  contributor:
    fullname: Ding
– volume: 58
  start-page: 2766
  year: 1986
  ident: 10.1016/j.electacta.2015.05.099_bib0145
  article-title: Square wave voltammetry for a pseudo-first-order catalytic process
  publication-title: Anal. Chem.
  doi: 10.1021/ac00126a040
  contributor:
    fullname: Zeng
– volume: 13
  start-page: 16748
  year: 2011
  ident: 10.1016/j.electacta.2015.05.099_bib0155
  article-title: Analytical theory of the catalytic mechanism in square wave voltammetry at disc electrodes
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp22032b
  contributor:
    fullname: Molina
– volume: 62
  start-page: 181
  year: 2012
  ident: 10.1016/j.electacta.2015.05.099_bib0090
  article-title: Bromate removal by electrochemical reduction at boron-doped diamond electrode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.12.013
  contributor:
    fullname: Zhao
– ident: 10.1016/j.electacta.2015.05.099_bib0095
– volume: 24
  start-page: 210
  year: 1979
  ident: 10.1016/j.electacta.2015.05.099_bib0035
  article-title: Osmotic and activity coefficients of lithium chlorate and lithium bromate
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je60082a027
  contributor:
    fullname: Bonner
– volume: 27
  start-page: 505
  year: 2009
  ident: 10.1016/j.electacta.2015.05.099_bib0110
  article-title: Modeling of catalytic reaction in protein-film linear scan voltammetry at rotating disk electrode
  publication-title: Port. Electrochim. Acta
  doi: 10.4152/pea.200904505
  contributor:
    fullname: Lovrić
– volume: 43
  start-page: 2054
  year: 2009
  ident: 10.1016/j.electacta.2015.05.099_bib0075
  article-title: Bromate ion removal by electrochemical reduction using an activated carbon felt electrode
  publication-title: Environmental Sci. Techn.
  doi: 10.1021/es803144w
  contributor:
    fullname: Kishimoto
– ident: 10.1016/j.electacta.2015.05.099_bib0020
– year: 2015
  ident: 10.1016/j.electacta.2015.05.099_bib0030
  article-title: Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-015-2805-z
  contributor:
    fullname: Tolmachev
– volume: 13
  start-page: 1326
  year: 2001
  ident: 10.1016/j.electacta.2015.05.099_bib0115
  article-title: Surface catalytic mechanism in square-wave voltammetry
  publication-title: Electroanalysis
  doi: 10.1002/1521-4109(200111)13:16<1326::AID-ELAN1326>3.0.CO;2-S
  contributor:
    fullname: Mirčeski
– volume: 22
  start-page: 175
  year: 1969
  ident: 10.1016/j.electacta.2015.05.099_bib0070
  article-title: Voltammetric determination of bromite with a platinized platinum microelectrode with periodical renewal of diffusion layer
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(69)80248-2
  contributor:
    fullname: Pergola
– volume: 50
  start-page: 451
  year: 2014
  ident: 10.1016/j.electacta.2015.05.099_bib0005
  article-title: Fuel cells with Chemically Regenerative Redox Cathodes
  publication-title: Russ. J. Electrochem.
  doi: 10.1134/S1023193514020050
  contributor:
    fullname: Tolmachev
– volume: 38
  start-page: 376
  year: 1966
  ident: 10.1016/j.electacta.2015.05.099_bib0130
  article-title: Theory of stationary electrode polarography for a multistep charge transfer with catalytic (cyclic) regeneration of the reactant
  publication-title: Anal. Chem.
  doi: 10.1021/ac60235a003
  contributor:
    fullname: Polcyn
– volume: 51
  start-page: 461
  year: 1974
  ident: 10.1016/j.electacta.2015.05.099_bib0065
  article-title: Voltammetric behavior of perbromate ion on platinum
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(74)80263-9
  contributor:
    fullname: Pergola
– volume: 443
  start-page: 163
  year: 1998
  ident: 10.1016/j.electacta.2015.05.099_bib0120
  article-title: Analytical solution corresponding to the i/t response to a multipotential step for a catalytic mechanism
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(97)00566-4
  contributor:
    fullname: Molina
– volume: 486
  start-page: 9
  year: 2000
  ident: 10.1016/j.electacta.2015.05.099_bib0150
  article-title: Square wave voltammetry for a pseudo-first-order catalytic process at spherical electrodes
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(00)00115-7
  contributor:
    fullname: Molina
– volume: 61
  start-page: 103
  year: 2012
  ident: 10.1016/j.electacta.2015.05.099_bib0085
  article-title: Rapid removal of bromate ion from water streams with an electrolytic flow cell
  publication-title: J. Water Supply Res. Techn. - Aqua
  doi: 10.2166/aqua.2012.078
  contributor:
    fullname: Kishimoto
– volume: 12
  start-page: 629
  year: 1967
  ident: 10.1016/j.electacta.2015.05.099_bib0135
  article-title: Potential-sweep voltammetry: general theory of chemical polarization
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(67)85031-X
  contributor:
    fullname: Saveant
– volume: 20
  start-page: 327
  year: 1932
  ident: 10.1016/j.electacta.2015.05.099_bib0160
  article-title: The stability of bromic acid and its use for the determination of bromide in bromates and in chlorides
  publication-title: Trans. Royal Soc. South Africa
  doi: 10.1080/00359193209518863
  contributor:
    fullname: Pugh
– volume: 50
  start-page: 339
  year: 2014
  ident: 10.1016/j.electacta.2015.05.099_bib0010
  article-title: Hydrogen-halogen electrochemical cells
  publication-title: Russ. J. Electrochem.
  doi: 10.1134/S1023193513120069
  contributor:
    fullname: Tolmachev
– volume: 10
  start-page: 905
  year: 1965
  ident: 10.1016/j.electacta.2015.05.099_bib0125
  article-title: Potential-sweep chronoamperometry: kinetic currents for first-order chemical reaction parallel to electron-transfer process (catalytic currents)
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(65)80003-2
  contributor:
    fullname: Saveant
– volume: 43
  start-page: 1395
  year: 2004
  ident: 10.1016/j.electacta.2015.05.099_bib0050
  article-title: Kinetics and mechanism of bromate-bromide reaction catalyzed by acetate
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0350786
  contributor:
    fullname: Cortes
– volume: 53
  start-page: 1725
  year: 1931
  ident: 10.1016/j.electacta.2015.05.099_bib0040
  article-title: The system lithium bromate-water
  publication-title: J. Amer. Chem. Soc.
  doi: 10.1021/ja01356a013
  contributor:
    fullname: Simmons
– ident: 10.1016/j.electacta.2015.05.099_bib0025
– volume: 39
  start-page: 17
  year: 2007
  ident: 10.1016/j.electacta.2015.05.099_bib0055
  article-title: Kinetics of the bromate-bromide reaction at high bromide concentrations
  publication-title: Intern. J. Chem. Kinetics
  doi: 10.1002/kin.20210
  contributor:
    fullname: Schmitz
SSID ssj0007670
Score 2.4126103
Snippet Theoretical analysis of the system with coupled electrochemical and chemical steps has been carried out where bulk solution contains non-electroactive halogen...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 779
SubjectTerms autocatalytic cycle
comproportionation
diffusion layer
halogen oxoanions
kinetic layer
redox mediation
Title Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC” mechanism. Theory for stationary 1D regime
URI https://dx.doi.org/10.1016/j.electacta.2015.05.099
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsMwDI4mOAAHBAPE-Jly4FrWvzXdbtPYNEDsxKTdqiRNxBC009im7YJ4BF6Al-NJsNMWNgmJA1IOTRVXVWzZjmN_JuQiFBIkJZZW7HJm-Vz7lpChYzEF1kaGWgiJ8Y67ftAb-DfD-rBE2kUtDKZV5ro_0-lGW-dvavlu1sajEdb4Op4fhIho7oCVw3O7D-YPZPry9SfNgwXMLroY4Oq1HC_TaobDwByvuoHwNCCwv1ioFavT3SO7ubtIW9kf7ZOSSspkq110aSuTnRVAwQPy3sm62kwQkBW3nKaaPmB8RsHjIuUJShmdjzjls2lqYjdL-DRF2NAFNWUkhkwskWwUK5qRNGmSztUT7bQ_3z5gHdYLI34izWr7Kbi-9CW71ecwda4odnx4Vodk0O3ct3tW3nPBkuCKTS2HSeVx0IKsXsezja2VzZknYk8yV2oWcz_Q4EYADyUcQEXD8aTrqhgWAhsC7R2RjSRN1DGhjtA-QnwFDRFiFiuPQ7yDlcwWUmnlVohd7HM0zqA1oiLn7DH6Zk2ErIlsGI1GhTQLfkRrUhKBAfiL-OQ_xKdkG2eWAcM9IxvTyUydgzsyFVUjb1Wy2bq-7fW_AM9p5G0
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4mOAwOCAaI8cyBa0XfabmhMjTY2IlJ3KIkTUQRtAjKBDd-An-AP8cvwe5jAgmJA1IOfcRRFbu2k9ifCTmMpAJJSZWVuoJZvjC-JVXkWEyDtVGRkVLhfsflJBxO_Yvr4LpDkjYXBsMqG91f6_RKWzdPjprZPHrIMszxdTw_jBDR3AErB-v2RfAGYvg7F0_OR8PJXCGzkNltIQMk-BHmVVWbEdAwzCuoUDwrHNhfjNQ3w3O2SlYaj5Ge1B-1Rjo675Fu0hZq65Hlb5iC6-R9UBe2eURMVpx1Whh6g1s0Gi5fCpGjoNFZJqh4Lotq--YVhqaIHPpCq0ySiky-IlmWalqTHNO8mOk7Okg-3z6gH6YMI4QirdP7KXi_9Kk-2Bdw65xSLPpwrzfI9GxwlQytpuyCpcAbKy2HKe0JUIQsCHB5YxttC-bJ1FPMVYalwg8NeBLARgVrUBk7nnJdnUJH4ERovE2ykBe53iLUkcZHlK8wlhEGsoo0wmNYxWyptNFun9jtPPOHGl2Dt2Fnt3zOGo6s4Ta0OO6T45Yf_IegcLABfxFv_4f4gHSHV5djPj6fjHbIEr6xKmzcXbJQPj7rPfBOSrnfSN8XqCbnIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electroreduction+of+halogen+oxoanions+via+autocatalytic+redox+mediation+by+halide+anions%3A+novel+EC%E2%80%9D+mechanism.+Theory+for+stationary+1D+regime&rft.jtitle=Electrochimica+acta&rft.au=Vorotyntsev%2C+Mikhail+A.&rft.au=Konev%2C+Dmitry+V.&rft.au=Tolmachev%2C+Yuriy+V.&rft.date=2015-08-10&rft.issn=0013-4686&rft.volume=173&rft.spage=779&rft.epage=795&rft_id=info:doi/10.1016%2Fj.electacta.2015.05.099&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2015_05_099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon