Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC” mechanism. Theory for stationary 1D regime
Theoretical analysis of the system with coupled electrochemical and chemical steps has been carried out where bulk solution contains non-electroactive halogen oxoanions, XOn−, with a very small addition of halogen molecules, X2. The latter are electroreduced rapidly at the electrode surface, generat...
Saved in:
Published in | Electrochimica acta Vol. 173; pp. 779 - 795 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
10.08.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Theoretical analysis of the system with coupled electrochemical and chemical steps has been carried out where bulk solution contains non-electroactive halogen oxoanions, XOn−, with a very small addition of halogen molecules, X2. The latter are electroreduced rapidly at the electrode surface, generating halide anions, X−, which diffuse towards solution, wherein they comproportionate with the principal oxidant, XOn−, yielding electroactive halogen. Unlike the well-known catalytic EC’ mechanism where both the electrochemical reaction and the chemical step retain the total amount of the mediating redox couple, the passage of the electroreduction cycle in the system under our study results in an increase of the total content of its components, halogen and halide anion, via the consumption of halate anions. We propose to denote this new autocatalytic EC mechanism as EC”. Approximate analytical formulas have been derived for all characteristics of this system under steady state conditions at the uniformly accessible electrode surface. We found that the behavior of the system depends crucially on the relation between the diffusion layer thickness, zd, and the kinetic layer thickness, zk (determined by the rate of the homogeneous reaction). For a very thin diffusion layers: zd<zk, halide anions leave the diffusion layer and react with XOn− anions only in the bulk solution. Both the polarization curve and the maximal current correspond to the electrode reaction of halogen molecules from the bulk solution, without a significant contribution due to the comproportionation reaction. In the intermediate range of the diffusion layer thickness: zk<zd<2n zk, the halide anions generated at the electrode are consumed mostly by this homogeneous reaction within a thin kinetic layer (located deeply inside the diffusion layer) while the halogen molecules produced by this reaction diffuse partially to the electrode, generating again halide anions. This combination of the chemical and electrochemical steps results in an autocatalytic cycle, based on the X−/X2 mediating redox couple, which consumes a significant amount of XOn− anions. The maximal current becomes much higher than the mass-transport of halogen from the bulk can sustain, depending essentially on the kinetic layer thickness. In the third range of the diffusion layer thickness: 2n zk<zd, the amounts of the accumulated redox-couple components are so high that the principal (but non-electroactive) oxidant, XOn− is consumed within the external part of the kinetic layer with the maximal rate determined by the XOn− anion diffusion across the diffusion layer, which results in a very high maximal current proportional to the bulk concentration of XOn− anions. The theory predicts a complicated behavior of the maximal current as a function of the diffusion layer thickness (or the disk rotation rate for the RDE technique), with a maximum and a minimum separated by the range with an anomalous variation: increase of the maximal current with increase of the diffusion layer thickness (“autocatalytic interval”). |
---|---|
AbstractList | Theoretical analysis of the system with coupled electrochemical and chemical steps has been carried out where bulk solution contains non-electroactive halogen oxoanions, XOn−, with a very small addition of halogen molecules, X2. The latter are electroreduced rapidly at the electrode surface, generating halide anions, X−, which diffuse towards solution, wherein they comproportionate with the principal oxidant, XOn−, yielding electroactive halogen. Unlike the well-known catalytic EC’ mechanism where both the electrochemical reaction and the chemical step retain the total amount of the mediating redox couple, the passage of the electroreduction cycle in the system under our study results in an increase of the total content of its components, halogen and halide anion, via the consumption of halate anions. We propose to denote this new autocatalytic EC mechanism as EC”. Approximate analytical formulas have been derived for all characteristics of this system under steady state conditions at the uniformly accessible electrode surface. We found that the behavior of the system depends crucially on the relation between the diffusion layer thickness, zd, and the kinetic layer thickness, zk (determined by the rate of the homogeneous reaction). For a very thin diffusion layers: zd<zk, halide anions leave the diffusion layer and react with XOn− anions only in the bulk solution. Both the polarization curve and the maximal current correspond to the electrode reaction of halogen molecules from the bulk solution, without a significant contribution due to the comproportionation reaction. In the intermediate range of the diffusion layer thickness: zk<zd<2n zk, the halide anions generated at the electrode are consumed mostly by this homogeneous reaction within a thin kinetic layer (located deeply inside the diffusion layer) while the halogen molecules produced by this reaction diffuse partially to the electrode, generating again halide anions. This combination of the chemical and electrochemical steps results in an autocatalytic cycle, based on the X−/X2 mediating redox couple, which consumes a significant amount of XOn− anions. The maximal current becomes much higher than the mass-transport of halogen from the bulk can sustain, depending essentially on the kinetic layer thickness. In the third range of the diffusion layer thickness: 2n zk<zd, the amounts of the accumulated redox-couple components are so high that the principal (but non-electroactive) oxidant, XOn− is consumed within the external part of the kinetic layer with the maximal rate determined by the XOn− anion diffusion across the diffusion layer, which results in a very high maximal current proportional to the bulk concentration of XOn− anions. The theory predicts a complicated behavior of the maximal current as a function of the diffusion layer thickness (or the disk rotation rate for the RDE technique), with a maximum and a minimum separated by the range with an anomalous variation: increase of the maximal current with increase of the diffusion layer thickness (“autocatalytic interval”). |
Author | Tolmachev, Yuriy V. Vorotyntsev, Mikhail A. Konev, Dmitry V. |
Author_xml | – sequence: 1 givenname: Mikhail A. orcidid: 0000-0002-0720-4300 surname: Vorotyntsev fullname: Vorotyntsev, Mikhail A. email: mivo2010@yandex.com organization: Institute for Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia – sequence: 2 givenname: Dmitry V. surname: Konev fullname: Konev, Dmitry V. organization: Institute for Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia – sequence: 3 givenname: Yuriy V. surname: Tolmachev fullname: Tolmachev, Yuriy V. email: ruthenium2008@yahoo.com organization: Ftorion, Inc., Boston, MA 02120, USA |
BookMark | eNqFkE1OwzAQhS1UJNrCGfAFEuy4iRN2VSk_UiU2ZW05zqR1lcbITqt2xxG4AJfjJExaxBbpSfaM3vc0eiMyaF0LhNxyFnPGs7tNDA2YTqPihPE0ZqiiuCBDnksRiTwtBmTIGBfRJMuzKzIKYcMYk5lkQ_I572HvPFQ701nXUlfTtW7cCvB7cLrFXaB7q6nedc7oTjfHzhqKgDvQLVRWn7Dy2GO2AnpG7mnr9tDQ-ez74wt9Zo37sI3pcg3OH2ntPA3didU48gdMXNktXJPLWjcBbn7fMXl7nC9nz9Hi9ellNl1ERqRJF3FpQOhU5DJNM5ZlrAampSgrYWRialnpSVaznJelMYXMy4ILkyRQoTHF1moxJvKca7wLwUOt3r3d4imKM9UXqzbqr1jVF6sYqiiQnJ5JwPP2FrwKxkJrsAqPflU5-2_GD8VrjCc |
CitedBy_id | crossref_primary_10_3390_molecules27175638 crossref_primary_10_1016_j_jelechem_2022_116916 crossref_primary_10_1134_S1023193517100020 crossref_primary_10_1016_j_padiff_2024_100688 crossref_primary_10_1134_S1023193516100037 crossref_primary_10_1134_S1023193522030077 crossref_primary_10_1016_j_electacta_2018_09_018 crossref_primary_10_1134_S1023193518020039 crossref_primary_10_1134_S1023193517090178 crossref_primary_10_1134_S1023193522110118 crossref_primary_10_1016_j_ijhydene_2021_02_149 crossref_primary_10_1016_j_ijoes_2023_100366 crossref_primary_10_1016_j_electacta_2017_10_199 crossref_primary_10_3390_membranes12121228 crossref_primary_10_1134_S0012500818110058 crossref_primary_10_1016_j_electacta_2016_11_138 crossref_primary_10_1016_j_jelechem_2016_06_004 crossref_primary_10_1016_j_jelechem_2023_117331 crossref_primary_10_1016_j_electacta_2016_06_010 crossref_primary_10_1134_S0012500816050025 crossref_primary_10_1016_j_electacta_2017_06_158 crossref_primary_10_1016_j_jelechem_2019_01_070 crossref_primary_10_1515_pac_2017_0306 crossref_primary_10_3390_ijms242015297 crossref_primary_10_1016_j_electacta_2017_11_097 crossref_primary_10_1134_S1023193519050033 crossref_primary_10_1149_2_0841902jes crossref_primary_10_1134_S1023193518010020 crossref_primary_10_1134_S0012500819010063 crossref_primary_10_3390_en15197397 crossref_primary_10_1134_S1023193518130335 crossref_primary_10_1134_S1023193522120084 crossref_primary_10_1007_s10008_019_04371_w crossref_primary_10_1016_j_electacta_2017_12_062 crossref_primary_10_1002_celc_201600422 crossref_primary_10_1002_ente_201700447 crossref_primary_10_1134_S001250161611004X crossref_primary_10_1134_S1023193522100123 crossref_primary_10_1134_S1023193522110088 crossref_primary_10_1016_j_elecom_2017_11_006 crossref_primary_10_1016_j_electacta_2021_138914 crossref_primary_10_1016_j_electacta_2022_139961 crossref_primary_10_1016_j_electacta_2019_134799 crossref_primary_10_1016_j_ijoes_2024_100536 |
Cites_doi | 10.1021/ac00144a021 10.1590/S0103-50532001000600014 10.1016/S0022-0728(69)80258-5 10.1021/jp2023204 10.1016/S0022-0728(81)80497-4 10.1016/j.electacta.2010.07.062 10.1021/ac00126a040 10.1039/c1cp22032b 10.1016/j.electacta.2011.12.013 10.1021/je60082a027 10.4152/pea.200904505 10.1021/es803144w 10.1007/s10008-015-2805-z 10.1002/1521-4109(200111)13:16<1326::AID-ELAN1326>3.0.CO;2-S 10.1016/S0022-0728(69)80248-2 10.1134/S1023193514020050 10.1021/ac60235a003 10.1016/S0022-0728(74)80263-9 10.1016/S0022-0728(97)00566-4 10.1016/S0022-0728(00)00115-7 10.2166/aqua.2012.078 10.1016/0013-4686(67)85031-X 10.1080/00359193209518863 10.1134/S1023193513120069 10.1016/0013-4686(65)80003-2 10.1021/ic0350786 10.1021/ja01356a013 10.1002/kin.20210 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.electacta.2015.05.099 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
EndPage | 795 |
ExternalDocumentID | 10_1016_j_electacta_2015_05_099 S0013468615012220 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE ADIYS AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AAXKI AAYXX ABEFU ABTAH ABXDB ACNNM ADMUD AFJKZ AI. AIDUJ AJQLL AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW T9H VH1 WUQ XOL ZY4 |
ID | FETCH-LOGICAL-c352t-17ce3a53875560660fe0a73bd3c72cf7da46f081bbcc978b913c22ed60f5016f3 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Thu Sep 26 18:20:58 EDT 2024 Fri Feb 23 02:21:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | autocatalytic cycle redox mediation kinetic layer comproportionation halogen oxoanions diffusion layer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-17ce3a53875560660fe0a73bd3c72cf7da46f081bbcc978b913c22ed60f5016f3 |
ORCID | 0000-0002-0720-4300 |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_1016_j_electacta_2015_05_099 elsevier_sciencedirect_doi_10_1016_j_electacta_2015_05_099 |
PublicationCentury | 2000 |
PublicationDate | 2015-08-10 |
PublicationDateYYYYMMDD | 2015-08-10 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-10 day: 10 |
PublicationDecade | 2010 |
PublicationTitle | Electrochimica acta |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Saveant, Vianello (bib0125) 1965; 10 Cortes, Faria (bib0045) 2001; 12 Y.V. Tolmachev, High specific energy aqueous flow battery (2014) USA Pat. Appl. 61/986,830. Ward, Lawrence, Hartshorne, Compton (bib0140) 2011; 115 Y.V. Tolmachev, Flow battery and regeneration system with improved safety (2014) USA Pat. Appl. 14/184,702. Pergola (bib0065) 1974; 51 Molina, Serna, Martinez-Ortiz (bib0150) 2000; 486 Bonner (bib0035) 1979; 24 Molina, Gonzalez, Laborda, Wang, Compton (bib0155) 2011; 13 Desideri, Lepri (bib0060) 1969; 22 Polcyn, Shain (bib0130) 1966; 38 Zeng, Osteryoung (bib0145) 1986; 58 Tolmachev (bib0010) 2014; 50 Kishimoto, Matsuda (bib0075) 2009; 43 Tolmachev, Vorotyntsev (bib0005) 2014; 50 Schmitz (bib0055) 2007; 39 Pugh (bib0160) 1932; 20 Kishimoto, Kishimoto, Nakayama (bib0085) 2012; 61 Andrieux, Dumas-Bouchiat, Saveant (bib0105) 1981; 123 Molina (bib0120) 1998; 443 Saveant, Vianello (bib0135) 1967; 12 Varco Shea, Bard (bib0100) 1987; 59 Y.V. Tolmachev, Flow battery and regeneration system (2012) USA Pat. Appl. 13/969,597. Table 12.2.1 in book: A.J. Bard, L.R., Faulkner, Electrochemical Methods, 2nd edition, J. Wiley & Sons, Inc. New York, 2001. Simmons, Waldeck (bib0040) 1931; 53 Mirčeski, Gulaboski (bib0115) 2001; 13 Zhao, Liu, Li, Shen, Qu (bib0090) 2012; 62 Cortes, Faria (bib0050) 2004; 43 Lovrić (bib0110) 2009; 27 Ding, Li, Cui, Tang, Xu, Xie, Zhai (bib0080) 2010; 55 Tolmachev, Piatkivskyi, Ryzhov, Konev, Vorotyntsev (bib0030) 2015 Pergola, Raspi, Massagli (bib0070) 1969; 22 Tolmachev (10.1016/j.electacta.2015.05.099_bib0030) 2015 Saveant (10.1016/j.electacta.2015.05.099_bib0135) 1967; 12 Ding (10.1016/j.electacta.2015.05.099_bib0080) 2010; 55 Simmons (10.1016/j.electacta.2015.05.099_bib0040) 1931; 53 Cortes (10.1016/j.electacta.2015.05.099_bib0045) 2001; 12 Pugh (10.1016/j.electacta.2015.05.099_bib0160) 1932; 20 Andrieux (10.1016/j.electacta.2015.05.099_bib0105) 1981; 123 10.1016/j.electacta.2015.05.099_bib0015 Lovrić (10.1016/j.electacta.2015.05.099_bib0110) 2009; 27 Tolmachev (10.1016/j.electacta.2015.05.099_bib0010) 2014; 50 10.1016/j.electacta.2015.05.099_bib0020 Bonner (10.1016/j.electacta.2015.05.099_bib0035) 1979; 24 Molina (10.1016/j.electacta.2015.05.099_bib0155) 2011; 13 Ward (10.1016/j.electacta.2015.05.099_bib0140) 2011; 115 Tolmachev (10.1016/j.electacta.2015.05.099_bib0005) 2014; 50 Pergola (10.1016/j.electacta.2015.05.099_bib0065) 1974; 51 Mirčeski (10.1016/j.electacta.2015.05.099_bib0115) 2001; 13 Kishimoto (10.1016/j.electacta.2015.05.099_bib0085) 2012; 61 Schmitz (10.1016/j.electacta.2015.05.099_bib0055) 2007; 39 Kishimoto (10.1016/j.electacta.2015.05.099_bib0075) 2009; 43 Zhao (10.1016/j.electacta.2015.05.099_bib0090) 2012; 62 Cortes (10.1016/j.electacta.2015.05.099_bib0050) 2004; 43 Polcyn (10.1016/j.electacta.2015.05.099_bib0130) 1966; 38 Zeng (10.1016/j.electacta.2015.05.099_bib0145) 1986; 58 Molina (10.1016/j.electacta.2015.05.099_bib0150) 2000; 486 10.1016/j.electacta.2015.05.099_bib0025 Pergola (10.1016/j.electacta.2015.05.099_bib0070) 1969; 22 Varco Shea (10.1016/j.electacta.2015.05.099_bib0100) 1987; 59 10.1016/j.electacta.2015.05.099_bib0095 Desideri (10.1016/j.electacta.2015.05.099_bib0060) 1969; 22 Molina (10.1016/j.electacta.2015.05.099_bib0120) 1998; 443 Saveant (10.1016/j.electacta.2015.05.099_bib0125) 1965; 10 |
References_xml | – volume: 43 start-page: 1395 year: 2004 end-page: 1402 ident: bib0050 article-title: Kinetics and mechanism of bromate-bromide reaction catalyzed by acetate publication-title: Inorg. Chem. contributor: fullname: Faria – volume: 50 start-page: 451 year: 2014 end-page: 461 ident: bib0005 article-title: Fuel cells with Chemically Regenerative Redox Cathodes publication-title: Russ. J. Electrochem. contributor: fullname: Vorotyntsev – volume: 58 start-page: 2766 year: 1986 end-page: 2771 ident: bib0145 article-title: Square wave voltammetry for a pseudo-first-order catalytic process publication-title: Anal. Chem. contributor: fullname: Osteryoung – volume: 62 start-page: 181 year: 2012 end-page: 184 ident: bib0090 article-title: Bromate removal by electrochemical reduction at boron-doped diamond electrode publication-title: Electrochim. Acta contributor: fullname: Qu – volume: 12 start-page: 629 year: 1967 end-page: 646 ident: bib0135 article-title: Potential-sweep voltammetry: general theory of chemical polarization publication-title: Electrochim. Acta contributor: fullname: Vianello – volume: 123 start-page: 171 year: 1981 end-page: 187 ident: bib0105 article-title: Catalysis of electrochemical reactions at derivatized electrodes. Kinetic model for stationary voltammetric techniques and preparative scale electrolysis publication-title: J. Electroanal. Chem. contributor: fullname: Saveant – volume: 20 start-page: 327 year: 1932 ident: bib0160 article-title: The stability of bromic acid and its use for the determination of bromide in bromates and in chlorides publication-title: Trans. Royal Soc. South Africa contributor: fullname: Pugh – volume: 13 start-page: 16748 year: 2011 end-page: 16755 ident: bib0155 article-title: Analytical theory of the catalytic mechanism in square wave voltammetry at disc electrodes publication-title: Phys. Chem. Chem. Phys. contributor: fullname: Compton – volume: 50 start-page: 339 year: 2014 end-page: 356 ident: bib0010 article-title: Hydrogen-halogen electrochemical cells publication-title: Russ. J. Electrochem. contributor: fullname: Tolmachev – volume: 59 start-page: 2101 year: 1987 end-page: 2111 ident: bib0100 article-title: Digital simulation of homogeneous chemical reactions coupled to heterogeneous electron transfer and applications at platinum/mica/platinum ultramicroband electrodes publication-title: Anal. Chem. contributor: fullname: Bard – volume: 38 start-page: 376 year: 1966 end-page: 382 ident: bib0130 article-title: Theory of stationary electrode polarography for a multistep charge transfer with catalytic (cyclic) regeneration of the reactant publication-title: Anal. Chem. contributor: fullname: Shain – volume: 486 start-page: 9 year: 2000 end-page: 15 ident: bib0150 article-title: Square wave voltammetry for a pseudo-first-order catalytic process at spherical electrodes publication-title: J. Electroanal. Chem. contributor: fullname: Martinez-Ortiz – volume: 51 start-page: 461 year: 1974 end-page: 464 ident: bib0065 article-title: Voltammetric behavior of perbromate ion on platinum publication-title: J. Electroanal. Chem. contributor: fullname: Pergola – volume: 10 start-page: 905 year: 1965 end-page: 920 ident: bib0125 article-title: Potential-sweep chronoamperometry: kinetic currents for first-order chemical reaction parallel to electron-transfer process (catalytic currents) publication-title: Electrochim. Acta contributor: fullname: Vianello – volume: 24 start-page: 210 year: 1979 end-page: 211 ident: bib0035 article-title: Osmotic and activity coefficients of lithium chlorate and lithium bromate publication-title: J. Chem. Eng. Data contributor: fullname: Bonner – volume: 22 start-page: 175 year: 1969 end-page: 183 ident: bib0070 article-title: Voltammetric determination of bromite with a platinized platinum microelectrode with periodical renewal of diffusion layer publication-title: J. Electroanal. Chem. contributor: fullname: Massagli – volume: 55 start-page: 8471 year: 2010 end-page: 8475 ident: bib0080 article-title: Electrocatalytic reduction of bromate ion using a polyaniline-modified electrode An efficient and green technology for the removal of BrO3- in aqueous solutions publication-title: Electrochim. Acta contributor: fullname: Zhai – volume: 22 start-page: 265 year: 1969 end-page: 274 ident: bib0060 article-title: Electrochemical behaviour of bromate in perchloric acid solutions publication-title: J. Electroanal. Chem. contributor: fullname: Lepri – volume: 115 start-page: 11204 year: 2011 end-page: 11215 ident: bib0140 article-title: Cyclic voltammetry of the EC' mechanism at hemispherical particles and their arrays: the split wave publication-title: J. Phys. Chem. C contributor: fullname: Compton – volume: 53 start-page: 1725 year: 1931 end-page: 1727 ident: bib0040 article-title: The system lithium bromate-water publication-title: J. Amer. Chem. Soc. contributor: fullname: Waldeck – volume: 13 start-page: 1326 year: 2001 end-page: 1334 ident: bib0115 article-title: Surface catalytic mechanism in square-wave voltammetry publication-title: Electroanalysis contributor: fullname: Gulaboski – year: 2015 ident: bib0030 article-title: Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion publication-title: J. Solid State Electrochem. contributor: fullname: Vorotyntsev – volume: 12 start-page: 775 year: 2001 end-page: 779 ident: bib0045 article-title: Revisiting the kinetics and mechanism of bromate-bromide reaction publication-title: J. Brazilian Chem. Soc. contributor: fullname: Faria – volume: 61 start-page: 103 year: 2012 end-page: 110 ident: bib0085 article-title: Rapid removal of bromate ion from water streams with an electrolytic flow cell publication-title: J. Water Supply Res. Techn. - Aqua contributor: fullname: Nakayama – volume: 27 start-page: 505 year: 2009 end-page: 515 ident: bib0110 article-title: Modeling of catalytic reaction in protein-film linear scan voltammetry at rotating disk electrode publication-title: Port. Electrochim. Acta contributor: fullname: Lovrić – volume: 43 start-page: 2054 year: 2009 end-page: 2059 ident: bib0075 article-title: Bromate ion removal by electrochemical reduction using an activated carbon felt electrode publication-title: Environmental Sci. Techn. contributor: fullname: Matsuda – volume: 39 start-page: 17 year: 2007 end-page: 21 ident: bib0055 article-title: Kinetics of the bromate-bromide reaction at high bromide concentrations publication-title: Intern. J. Chem. Kinetics contributor: fullname: Schmitz – volume: 443 start-page: 163 year: 1998 end-page: 167 ident: bib0120 article-title: Analytical solution corresponding to the i/t response to a multipotential step for a catalytic mechanism publication-title: J. Electroanal. Chem. contributor: fullname: Molina – volume: 59 start-page: 2101 year: 1987 ident: 10.1016/j.electacta.2015.05.099_bib0100 article-title: Digital simulation of homogeneous chemical reactions coupled to heterogeneous electron transfer and applications at platinum/mica/platinum ultramicroband electrodes publication-title: Anal. Chem. doi: 10.1021/ac00144a021 contributor: fullname: Varco Shea – volume: 12 start-page: 775 year: 2001 ident: 10.1016/j.electacta.2015.05.099_bib0045 article-title: Revisiting the kinetics and mechanism of bromate-bromide reaction publication-title: J. Brazilian Chem. Soc. doi: 10.1590/S0103-50532001000600014 contributor: fullname: Cortes – volume: 22 start-page: 265 year: 1969 ident: 10.1016/j.electacta.2015.05.099_bib0060 article-title: Electrochemical behaviour of bromate in perchloric acid solutions publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(69)80258-5 contributor: fullname: Desideri – volume: 115 start-page: 11204 year: 2011 ident: 10.1016/j.electacta.2015.05.099_bib0140 article-title: Cyclic voltammetry of the EC' mechanism at hemispherical particles and their arrays: the split wave publication-title: J. Phys. Chem. C doi: 10.1021/jp2023204 contributor: fullname: Ward – volume: 123 start-page: 171 year: 1981 ident: 10.1016/j.electacta.2015.05.099_bib0105 article-title: Catalysis of electrochemical reactions at derivatized electrodes. Kinetic model for stationary voltammetric techniques and preparative scale electrolysis publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(81)80497-4 contributor: fullname: Andrieux – ident: 10.1016/j.electacta.2015.05.099_bib0015 – volume: 55 start-page: 8471 year: 2010 ident: 10.1016/j.electacta.2015.05.099_bib0080 article-title: Electrocatalytic reduction of bromate ion using a polyaniline-modified electrode An efficient and green technology for the removal of BrO3- in aqueous solutions publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.07.062 contributor: fullname: Ding – volume: 58 start-page: 2766 year: 1986 ident: 10.1016/j.electacta.2015.05.099_bib0145 article-title: Square wave voltammetry for a pseudo-first-order catalytic process publication-title: Anal. Chem. doi: 10.1021/ac00126a040 contributor: fullname: Zeng – volume: 13 start-page: 16748 year: 2011 ident: 10.1016/j.electacta.2015.05.099_bib0155 article-title: Analytical theory of the catalytic mechanism in square wave voltammetry at disc electrodes publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp22032b contributor: fullname: Molina – volume: 62 start-page: 181 year: 2012 ident: 10.1016/j.electacta.2015.05.099_bib0090 article-title: Bromate removal by electrochemical reduction at boron-doped diamond electrode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.12.013 contributor: fullname: Zhao – ident: 10.1016/j.electacta.2015.05.099_bib0095 – volume: 24 start-page: 210 year: 1979 ident: 10.1016/j.electacta.2015.05.099_bib0035 article-title: Osmotic and activity coefficients of lithium chlorate and lithium bromate publication-title: J. Chem. Eng. Data doi: 10.1021/je60082a027 contributor: fullname: Bonner – volume: 27 start-page: 505 year: 2009 ident: 10.1016/j.electacta.2015.05.099_bib0110 article-title: Modeling of catalytic reaction in protein-film linear scan voltammetry at rotating disk electrode publication-title: Port. Electrochim. Acta doi: 10.4152/pea.200904505 contributor: fullname: Lovrić – volume: 43 start-page: 2054 year: 2009 ident: 10.1016/j.electacta.2015.05.099_bib0075 article-title: Bromate ion removal by electrochemical reduction using an activated carbon felt electrode publication-title: Environmental Sci. Techn. doi: 10.1021/es803144w contributor: fullname: Kishimoto – ident: 10.1016/j.electacta.2015.05.099_bib0020 – year: 2015 ident: 10.1016/j.electacta.2015.05.099_bib0030 article-title: Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-015-2805-z contributor: fullname: Tolmachev – volume: 13 start-page: 1326 year: 2001 ident: 10.1016/j.electacta.2015.05.099_bib0115 article-title: Surface catalytic mechanism in square-wave voltammetry publication-title: Electroanalysis doi: 10.1002/1521-4109(200111)13:16<1326::AID-ELAN1326>3.0.CO;2-S contributor: fullname: Mirčeski – volume: 22 start-page: 175 year: 1969 ident: 10.1016/j.electacta.2015.05.099_bib0070 article-title: Voltammetric determination of bromite with a platinized platinum microelectrode with periodical renewal of diffusion layer publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(69)80248-2 contributor: fullname: Pergola – volume: 50 start-page: 451 year: 2014 ident: 10.1016/j.electacta.2015.05.099_bib0005 article-title: Fuel cells with Chemically Regenerative Redox Cathodes publication-title: Russ. J. Electrochem. doi: 10.1134/S1023193514020050 contributor: fullname: Tolmachev – volume: 38 start-page: 376 year: 1966 ident: 10.1016/j.electacta.2015.05.099_bib0130 article-title: Theory of stationary electrode polarography for a multistep charge transfer with catalytic (cyclic) regeneration of the reactant publication-title: Anal. Chem. doi: 10.1021/ac60235a003 contributor: fullname: Polcyn – volume: 51 start-page: 461 year: 1974 ident: 10.1016/j.electacta.2015.05.099_bib0065 article-title: Voltammetric behavior of perbromate ion on platinum publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(74)80263-9 contributor: fullname: Pergola – volume: 443 start-page: 163 year: 1998 ident: 10.1016/j.electacta.2015.05.099_bib0120 article-title: Analytical solution corresponding to the i/t response to a multipotential step for a catalytic mechanism publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(97)00566-4 contributor: fullname: Molina – volume: 486 start-page: 9 year: 2000 ident: 10.1016/j.electacta.2015.05.099_bib0150 article-title: Square wave voltammetry for a pseudo-first-order catalytic process at spherical electrodes publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(00)00115-7 contributor: fullname: Molina – volume: 61 start-page: 103 year: 2012 ident: 10.1016/j.electacta.2015.05.099_bib0085 article-title: Rapid removal of bromate ion from water streams with an electrolytic flow cell publication-title: J. Water Supply Res. Techn. - Aqua doi: 10.2166/aqua.2012.078 contributor: fullname: Kishimoto – volume: 12 start-page: 629 year: 1967 ident: 10.1016/j.electacta.2015.05.099_bib0135 article-title: Potential-sweep voltammetry: general theory of chemical polarization publication-title: Electrochim. Acta doi: 10.1016/0013-4686(67)85031-X contributor: fullname: Saveant – volume: 20 start-page: 327 year: 1932 ident: 10.1016/j.electacta.2015.05.099_bib0160 article-title: The stability of bromic acid and its use for the determination of bromide in bromates and in chlorides publication-title: Trans. Royal Soc. South Africa doi: 10.1080/00359193209518863 contributor: fullname: Pugh – volume: 50 start-page: 339 year: 2014 ident: 10.1016/j.electacta.2015.05.099_bib0010 article-title: Hydrogen-halogen electrochemical cells publication-title: Russ. J. Electrochem. doi: 10.1134/S1023193513120069 contributor: fullname: Tolmachev – volume: 10 start-page: 905 year: 1965 ident: 10.1016/j.electacta.2015.05.099_bib0125 article-title: Potential-sweep chronoamperometry: kinetic currents for first-order chemical reaction parallel to electron-transfer process (catalytic currents) publication-title: Electrochim. Acta doi: 10.1016/0013-4686(65)80003-2 contributor: fullname: Saveant – volume: 43 start-page: 1395 year: 2004 ident: 10.1016/j.electacta.2015.05.099_bib0050 article-title: Kinetics and mechanism of bromate-bromide reaction catalyzed by acetate publication-title: Inorg. Chem. doi: 10.1021/ic0350786 contributor: fullname: Cortes – volume: 53 start-page: 1725 year: 1931 ident: 10.1016/j.electacta.2015.05.099_bib0040 article-title: The system lithium bromate-water publication-title: J. Amer. Chem. Soc. doi: 10.1021/ja01356a013 contributor: fullname: Simmons – ident: 10.1016/j.electacta.2015.05.099_bib0025 – volume: 39 start-page: 17 year: 2007 ident: 10.1016/j.electacta.2015.05.099_bib0055 article-title: Kinetics of the bromate-bromide reaction at high bromide concentrations publication-title: Intern. J. Chem. Kinetics doi: 10.1002/kin.20210 contributor: fullname: Schmitz |
SSID | ssj0007670 |
Score | 2.4126103 |
Snippet | Theoretical analysis of the system with coupled electrochemical and chemical steps has been carried out where bulk solution contains non-electroactive halogen... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 779 |
SubjectTerms | autocatalytic cycle comproportionation diffusion layer halogen oxoanions kinetic layer redox mediation |
Title | Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC” mechanism. Theory for stationary 1D regime |
URI | https://dx.doi.org/10.1016/j.electacta.2015.05.099 |
Volume | 173 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsMwDI4mOAAHBAPE-Jly4FrWvzXdbtPYNEDsxKTdqiRNxBC009im7YJ4BF6Al-NJsNMWNgmJA1IOTRVXVWzZjmN_JuQiFBIkJZZW7HJm-Vz7lpChYzEF1kaGWgiJ8Y67ftAb-DfD-rBE2kUtDKZV5ro_0-lGW-dvavlu1sajEdb4Op4fhIho7oCVw3O7D-YPZPry9SfNgwXMLroY4Oq1HC_TaobDwByvuoHwNCCwv1ioFavT3SO7ubtIW9kf7ZOSSspkq110aSuTnRVAwQPy3sm62kwQkBW3nKaaPmB8RsHjIuUJShmdjzjls2lqYjdL-DRF2NAFNWUkhkwskWwUK5qRNGmSztUT7bQ_3z5gHdYLI34izWr7Kbi-9CW71ecwda4odnx4Vodk0O3ct3tW3nPBkuCKTS2HSeVx0IKsXsezja2VzZknYk8yV2oWcz_Q4EYADyUcQEXD8aTrqhgWAhsC7R2RjSRN1DGhjtA-QnwFDRFiFiuPQ7yDlcwWUmnlVohd7HM0zqA1oiLn7DH6Zk2ErIlsGI1GhTQLfkRrUhKBAfiL-OQ_xKdkG2eWAcM9IxvTyUydgzsyFVUjb1Wy2bq-7fW_AM9p5G0 |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4mOAwOCAaI8cyBa0XfabmhMjTY2IlJ3KIkTUQRtAjKBDd-An-AP8cvwe5jAgmJA1IOfcRRFbu2k9ifCTmMpAJJSZWVuoJZvjC-JVXkWEyDtVGRkVLhfsflJBxO_Yvr4LpDkjYXBsMqG91f6_RKWzdPjprZPHrIMszxdTw_jBDR3AErB-v2RfAGYvg7F0_OR8PJXCGzkNltIQMk-BHmVVWbEdAwzCuoUDwrHNhfjNQ3w3O2SlYaj5Ge1B-1Rjo675Fu0hZq65Hlb5iC6-R9UBe2eURMVpx1Whh6g1s0Gi5fCpGjoNFZJqh4Lotq--YVhqaIHPpCq0ySiky-IlmWalqTHNO8mOk7Okg-3z6gH6YMI4QirdP7KXi_9Kk-2Bdw65xSLPpwrzfI9GxwlQytpuyCpcAbKy2HKe0JUIQsCHB5YxttC-bJ1FPMVYalwg8NeBLARgVrUBk7nnJdnUJH4ERovE2ykBe53iLUkcZHlK8wlhEGsoo0wmNYxWyptNFun9jtPPOHGl2Dt2Fnt3zOGo6s4Ta0OO6T45Yf_IegcLABfxFv_4f4gHSHV5djPj6fjHbIEr6xKmzcXbJQPj7rPfBOSrnfSN8XqCbnIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electroreduction+of+halogen+oxoanions+via+autocatalytic+redox+mediation+by+halide+anions%3A+novel+EC%E2%80%9D+mechanism.+Theory+for+stationary+1D+regime&rft.jtitle=Electrochimica+acta&rft.au=Vorotyntsev%2C+Mikhail+A.&rft.au=Konev%2C+Dmitry+V.&rft.au=Tolmachev%2C+Yuriy+V.&rft.date=2015-08-10&rft.issn=0013-4686&rft.volume=173&rft.spage=779&rft.epage=795&rft_id=info:doi/10.1016%2Fj.electacta.2015.05.099&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2015_05_099 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |