Blue light photobiomodulation induced osteosarcoma cell death by facilitating ferroptosis and eliciting an incomplete tumor cell stress response
To investigate the potential of blue light photobiomodulation (PBM) in inducing ferroptosis, a novel form of regulated cell death, in OS cells, considering its known effectiveness in various cancer models. In this investigation, we exposed human OS cell lines, HOS and MG63, to different wavelengths...
Saved in:
Published in | Journal of photochemistry and photobiology. B, Biology Vol. 258; p. 113003 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Elsevier B.V
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To investigate the potential of blue light photobiomodulation (PBM) in inducing ferroptosis, a novel form of regulated cell death, in OS cells, considering its known effectiveness in various cancer models. In this investigation, we exposed human OS cell lines, HOS and MG63, to different wavelengths (420, 460 and 480 nm) of blue light at varying irradiances, and examined cellular responses such as viability, apoptosis, levels of reactive oxygen species (ROS), and mitochondrial membrane potential (MMP). Transcriptome sequencing was employed to unravel the molecular mechanisms underlying blue light-induced effects, with validation via quantitative real-time PCR (qRT-PCR). Our findings revealed a wavelength- and time-dependent decrease in cell viability, accompanied by increased apoptosis and oxidative stress. Transcriptomic analysis identified differential expression of genes associated with ferroptosis, oxidative stress, and iron metabolism, further validated by qRT-PCR. These results implicated ferroptosis as a significant mechanism in the blue light-induced death of OS cells, potentially mediated by ROS generation and disruption of iron homeostasis. Also, An incomplete stress response was observed in MG63 cells induced by blue light exposure. Hence, blue light PBM holds promise as a therapeutic approach in OS clinical investigations; however, additional exploration of its underlying mechanisms remains imperative.
•420 and 460 nm blue light inhibited OS cells viability and promoted apoptosis.•Blue light initiated OS cells ferroptosis via PTGS2 upregulation and GPX4 suppression.•Blue light PBM induced G2/M arrest in OS cells, possibly via CDKN1A.•Blue light provoked an incomplete stress response in MG63 cells.•SLC7A11 expression is pivotal in blue light-induced cell death in OS. |
---|---|
AbstractList | To investigate the potential of blue light photobiomodulation (PBM) in inducing ferroptosis, a novel form of regulated cell death, in OS cells, considering its known effectiveness in various cancer models. In this investigation, we exposed human OS cell lines, HOS and MG63, to different wavelengths (420, 460 and 480 nm) of blue light at varying irradiances, and examined cellular responses such as viability, apoptosis, levels of reactive oxygen species (ROS), and mitochondrial membrane potential (MMP). Transcriptome sequencing was employed to unravel the molecular mechanisms underlying blue light-induced effects, with validation via quantitative real-time PCR (qRT-PCR). Our findings revealed a wavelength- and time-dependent decrease in cell viability, accompanied by increased apoptosis and oxidative stress. Transcriptomic analysis identified differential expression of genes associated with ferroptosis, oxidative stress, and iron metabolism, further validated by qRT-PCR. These results implicated ferroptosis as a significant mechanism in the blue light-induced death of OS cells, potentially mediated by ROS generation and disruption of iron homeostasis. Also, An incomplete stress response was observed in MG63 cells induced by blue light exposure. Hence, blue light PBM holds promise as a therapeutic approach in OS clinical investigations; however, additional exploration of its underlying mechanisms remains imperative. To investigate the potential of blue light photobiomodulation (PBM) in inducing ferroptosis, a novel form of regulated cell death, in OS cells, considering its known effectiveness in various cancer models. In this investigation, we exposed human OS cell lines, HOS and MG63, to different wavelengths (420, 460 and 480 nm) of blue light at varying irradiances, and examined cellular responses such as viability, apoptosis, levels of reactive oxygen species (ROS), and mitochondrial membrane potential (MMP). Transcriptome sequencing was employed to unravel the molecular mechanisms underlying blue light-induced effects, with validation via quantitative real-time PCR (qRT-PCR). Our findings revealed a wavelength- and time-dependent decrease in cell viability, accompanied by increased apoptosis and oxidative stress. Transcriptomic analysis identified differential expression of genes associated with ferroptosis, oxidative stress, and iron metabolism, further validated by qRT-PCR. These results implicated ferroptosis as a significant mechanism in the blue light-induced death of OS cells, potentially mediated by ROS generation and disruption of iron homeostasis. Also, An incomplete stress response was observed in MG63 cells induced by blue light exposure. Hence, blue light PBM holds promise as a therapeutic approach in OS clinical investigations; however, additional exploration of its underlying mechanisms remains imperative.To investigate the potential of blue light photobiomodulation (PBM) in inducing ferroptosis, a novel form of regulated cell death, in OS cells, considering its known effectiveness in various cancer models. In this investigation, we exposed human OS cell lines, HOS and MG63, to different wavelengths (420, 460 and 480 nm) of blue light at varying irradiances, and examined cellular responses such as viability, apoptosis, levels of reactive oxygen species (ROS), and mitochondrial membrane potential (MMP). Transcriptome sequencing was employed to unravel the molecular mechanisms underlying blue light-induced effects, with validation via quantitative real-time PCR (qRT-PCR). Our findings revealed a wavelength- and time-dependent decrease in cell viability, accompanied by increased apoptosis and oxidative stress. Transcriptomic analysis identified differential expression of genes associated with ferroptosis, oxidative stress, and iron metabolism, further validated by qRT-PCR. These results implicated ferroptosis as a significant mechanism in the blue light-induced death of OS cells, potentially mediated by ROS generation and disruption of iron homeostasis. Also, An incomplete stress response was observed in MG63 cells induced by blue light exposure. Hence, blue light PBM holds promise as a therapeutic approach in OS clinical investigations; however, additional exploration of its underlying mechanisms remains imperative. To investigate the potential of blue light photobiomodulation (PBM) in inducing ferroptosis, a novel form of regulated cell death, in OS cells, considering its known effectiveness in various cancer models. In this investigation, we exposed human OS cell lines, HOS and MG63, to different wavelengths (420, 460 and 480 nm) of blue light at varying irradiances, and examined cellular responses such as viability, apoptosis, levels of reactive oxygen species (ROS), and mitochondrial membrane potential (MMP). Transcriptome sequencing was employed to unravel the molecular mechanisms underlying blue light-induced effects, with validation via quantitative real-time PCR (qRT-PCR). Our findings revealed a wavelength- and time-dependent decrease in cell viability, accompanied by increased apoptosis and oxidative stress. Transcriptomic analysis identified differential expression of genes associated with ferroptosis, oxidative stress, and iron metabolism, further validated by qRT-PCR. These results implicated ferroptosis as a significant mechanism in the blue light-induced death of OS cells, potentially mediated by ROS generation and disruption of iron homeostasis. Also, An incomplete stress response was observed in MG63 cells induced by blue light exposure. Hence, blue light PBM holds promise as a therapeutic approach in OS clinical investigations; however, additional exploration of its underlying mechanisms remains imperative. To investigate the potential of blue light photobiomodulation (PBM) in inducing ferroptosis, a novel form of regulated cell death, in OS cells, considering its known effectiveness in various cancer models. In this investigation, we exposed human OS cell lines, HOS and MG63, to different wavelengths (420, 460 and 480 nm) of blue light at varying irradiances, and examined cellular responses such as viability, apoptosis, levels of reactive oxygen species (ROS), and mitochondrial membrane potential (MMP). Transcriptome sequencing was employed to unravel the molecular mechanisms underlying blue light-induced effects, with validation via quantitative real-time PCR (qRT-PCR). Our findings revealed a wavelength- and time-dependent decrease in cell viability, accompanied by increased apoptosis and oxidative stress. Transcriptomic analysis identified differential expression of genes associated with ferroptosis, oxidative stress, and iron metabolism, further validated by qRT-PCR. These results implicated ferroptosis as a significant mechanism in the blue light-induced death of OS cells, potentially mediated by ROS generation and disruption of iron homeostasis. Also, An incomplete stress response was observed in MG63 cells induced by blue light exposure. Hence, blue light PBM holds promise as a therapeutic approach in OS clinical investigations; however, additional exploration of its underlying mechanisms remains imperative. •420 and 460 nm blue light inhibited OS cells viability and promoted apoptosis.•Blue light initiated OS cells ferroptosis via PTGS2 upregulation and GPX4 suppression.•Blue light PBM induced G2/M arrest in OS cells, possibly via CDKN1A.•Blue light provoked an incomplete stress response in MG63 cells.•SLC7A11 expression is pivotal in blue light-induced cell death in OS. |
ArticleNumber | 113003 |
Author | Yang, Jiali Liu, Muqing Miao, Xiaojing Jiang, Hui Li, Yinghua Fu, Qiqi Yao, Jinghui Zhong, Hongyu Qin, Hao Kuan |
Author_xml | – sequence: 1 givenname: Jiali surname: Yang fullname: Yang, Jiali organization: School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China – sequence: 2 givenname: Qiqi surname: Fu fullname: Fu, Qiqi organization: School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China – sequence: 3 givenname: Hui surname: Jiang fullname: Jiang, Hui organization: Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China – sequence: 4 givenname: Hongyu surname: Zhong fullname: Zhong, Hongyu organization: Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third School of Clinical Medicine, The Third Affiliated Hospital of Southern Medical University, No.183, Zhongshan Avenue West, Guangzhou 510515, China – sequence: 5 givenname: Hao Kuan surname: Qin fullname: Qin, Hao Kuan organization: Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China – sequence: 6 givenname: Xiaojing surname: Miao fullname: Miao, Xiaojing organization: School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China – sequence: 7 givenname: Yinghua surname: Li fullname: Li, Yinghua email: zhulihan@fudan.edu.cn organization: Shanghai Fifth People's Hospital, Fudan University, 801th Heqing Road, Shanghai 200240, China – sequence: 8 givenname: Muqing surname: Liu fullname: Liu, Muqing email: mqliu@fudan.edu.cn organization: School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China – sequence: 9 givenname: Jinghui surname: Yao fullname: Yao, Jinghui email: yaojinghui@smu.edu.cn organization: Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third School of Clinical Medicine, The Third Affiliated Hospital of Southern Medical University, No.183, Zhongshan Avenue West, Guangzhou 510515, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39121719$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1O3TAUhK2KqsBtX6Hykk0u_kniZAmotEhI3bRry7FPuL5y7GA7SLxFHxmngXbJWdiWzjcja-YcnfjgASFMyZ4S2l4e98f5EHIYbHB7Rli9p5QTwj-gM9oJXrG2YyflTSitKK_rU3Se0pGUaVrxCZ3ynjIqaH-G_ly7BbCzD4eM3yynYBansg0eW28WDQaHlCEkFXWYFNbgHDag8gEPz3hU2jqbC-8f8AgxhjmHZBNW3mBwVtu_G7WaFfnsIAPOyxTiZpRyhJRwOebgE3xGH0flEnx5vXfo9-23Xzc_qvuf3-9uru4rzRuWK9pSIxpNlGBacDKwsWmMUcNQa0OI4mPf9h0AE0S1VLRkZLoXdaHKZtQD4Tt0sfnOMTwukLKcbFo_pDyEJUlOGy5YGf4-SkqcXU3qFf36ii7DBEbO0U4qPsu3wAvQbYCOIaUI4z-EErl2K4_yf7dy7VZu3Rbp9SaFEsuThSiTtuBLPTaCztIE-77JC9SdtRk |
Cites_doi | 10.1007/s10495-023-01909-2 10.1016/j.immuni.2016.02.016 10.1016/j.freeradbiomed.2021.09.024 10.1016/j.freeradbiomed.2018.09.014 10.1186/s13045-019-0720-y 10.1007/s10495-020-01627-z 10.1016/j.biocel.2015.11.004 10.1111/phpp.12715 10.3390/ijms22115791 10.1038/s41420-023-01613-9 10.1080/15548627.2016.1187366 10.1111/jcmm.16412 10.1002/jcp.29943 10.1016/j.semcancer.2019.03.002 10.1364/BOE.450456 10.1111/j.1349-7006.2002.tb01290.x 10.1016/j.cell.2012.03.042 10.3389/fnins.2019.01195 10.3390/cells10092401 10.1016/j.bbagen.2012.09.018 10.1038/s41556-018-0210-4 10.1021/acsnano.1c05891 10.1002/med.21933 10.3390/ijms20010039 10.3390/toxics12020161 10.2174/0929867324666170727112206 10.1016/j.molmed.2017.03.004 10.1159/000488842 10.1038/s41556-023-01091-2 10.1016/j.bbagen.2012.11.020 10.1007/s10495-023-01882-w 10.1007/s10103-022-03554-8 10.1016/j.jphotobiol.2014.12.006 10.1002/cam4.5664 10.3389/fonc.2021.780264 10.1016/j.canlet.2023.216152 10.1007/s13238-020-00789-5 10.1007/s10495-020-01638-w 10.1016/j.biomaterials.2023.122186 10.1016/j.freeradbiomed.2018.05.074 10.3390/ijms24065698 10.3390/antiox10050642 10.1002/cncr.24121 10.1038/cdd.2015.158 10.1016/j.biocel.2018.08.006 10.1080/15548627.2020.1810918 10.1016/j.redox.2014.04.008 10.1016/j.biomaterials.2021.120739 10.3390/biomedicines9070829 10.1016/j.jphotobiol.2021.112127 10.1016/j.jphotobiol.2023.112814 10.1007/s10495-023-01850-4 10.1016/j.cell.2022.06.003 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jphotobiol.2024.113003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1873-2682 |
ExternalDocumentID | 39121719 10_1016_j_jphotobiol_2024_113003 S1011134424001635 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARLI AATLK AAXUO ABBQC ABFNM ABGRD ABGSF ABMAC ABMZM ABNUV ABUDA ABXDB ACDAQ ACGFS ACIUM ACNNM ACPRK ACRLP ADBBV ADECG ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AEQOU AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJQLL AJRQY AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLW HMU HVGLF HZ~ IHE J1W KOM LX3 M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBG SCB SCH SDF SDG SDP SES SEW SPC SPD SSA SSG SSH SSK SSU SSZ T5K WUQ YK3 ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACRPL ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c352t-161d75c0a72c730b2f55ddabb4cd00a3f9698ee270a61760f2c9742f53f9fcb03 |
IEDL.DBID | .~1 |
ISSN | 1011-1344 1873-2682 |
IngestDate | Fri Aug 22 20:25:05 EDT 2025 Fri Jul 11 11:30:21 EDT 2025 Wed Feb 19 02:09:28 EST 2025 Tue Jul 01 02:50:44 EDT 2025 Sat Aug 24 15:41:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ferroptosis Osteosarcoma ROS Blue light PBM Apoptosis |
Language | English |
License | Copyright © 2024 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-161d75c0a72c730b2f55ddabb4cd00a3f9698ee270a61760f2c9742f53f9fcb03 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 39121719 |
PQID | 3091284043 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153722223 proquest_miscellaneous_3091284043 pubmed_primary_39121719 crossref_primary_10_1016_j_jphotobiol_2024_113003 elsevier_sciencedirect_doi_10_1016_j_jphotobiol_2024_113003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Journal of photochemistry and photobiology. B, Biology |
PublicationTitleAlternate | J Photochem Photobiol B |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Shu, Zhao (bb0060) 2023; 28 Fontana, Limonta (bb0160) 2021; 176 Kang, Kroemer, Tang (bb0250) 2019; 133 Chio, Tuveson (bb0270) 2017; 23 Koeberle, Kipp, Stuppner (bb0095) 2023; 43 Xie, Hou, Song (bb0105) 2016; 23 Zhang, Hou, Guo (bb0245) 2023; 9 Wegierek-Ciuk, Arabski, Ciepluch (bb0115) 2021; 22 Zhang, Li, Zhang (bb0065) 2024; 29 Wu, Park, Chow (bb0140) 2022; 13 Yan, Zhang, Feng (bb0170) 2018; 103 Chen, Huang, Liu (bb0155) 2022; 38 Lee, Kalimuthu, Park (bb0190) 2020; 25 Zhou, Liu, Kang (bb0220) 2020; 66 Koppula, Zhuang, Gan (bb0280) 2021; 12 Ren, Huang, Sun (bb0120) 2022; 13 Yang, Jiang, Fu (bb0040) 2023; 249 Liu, Nie, Zhang (bb0150) 2023; 25 Flanagan, Hodder, Sansom (bb0130) 2018; 20 Seibt, Proneth, Conrad (bb0255) 2019; 133 Chen, Qin, Lin (bb0035) 2021; 216 Arfin, Jha, Jha (bb0085) 2021; 10 Garza, Born, Hilbers (bb0020) 2018; 25 Muhoberac, Vidal (bb0215) 2019; 13 Stockwell (bb0275) 2022; 185 Takeuchi, Nishisho, Toki (bb0090) 2023; 12 Yang, Deng, Yang (bb0070) 2023; 299 Dixon, Lemberg, Lamprecht (bb0055) 2012; 149 Ahn, Yim, Yoo (bb0240) 2024; 12 Deponte (bb0135) 2013; 1830 Ohara, Kawashima, Katoh (bb0110) 2002; 93 Chiang, Chen, Chang (bb0235) 2021; 10 Zheng, Guan (bb0210) 2023; 561 Oh, Na, Hwang (bb0030) 2015; 142 Wang, Wei, Pan (bb0180) 2020; 25 Barati Shoorche, Mohammadkarim, Jadidi (bb0145) 2022; 37 Liu, Jiang, He (bb0200) 2022; 13 Ohara, Fujikura, Fujiwara (bb0100) 2003; 22 Xu, Zhang, Shu (bb0195) 2021; 15 Chen, Li, Kang (bb0260) 2021; 17 Sheng, Gao, Yang (bb0010) 2021; 11 Yang, Fu, Jiang (bb0015) 2022; 12 Cappelli, Giovannini, Vilardo (bb0285) 2023; 24 Mirabello, Troisi, Savage (bb0005) 2009; 115 Oh, Hwang, Jeong (bb0025) 2016; 70 Zhang, Zhou, Jing (bb0185) 2023; 28 Brigelius-Flohe, Maiorino (bb0265) 2013; 1830 Yang, Tian, Wu (bb0075) 2021; 271 Kim, Ko, Shin (bb0175) 2021; 236 Dai, Zheng, Guo (bb0165) 2018; 46 Soares, Hamza (bb0205) 2016; 44 He, Yan, Wang (bb0045) 2021; 25 Kan, Mu, Bouschbacher (bb0080) 2021; 9 Chiang, Chen, Chang (bb0230) 2018; 20 Mou, Wang, Wu (bb0050) 2019; 12 Hou, Xie, Song (bb0225) 2016; 12 Ishii, Mann (bb0125) 2014; 2 Chen (10.1016/j.jphotobiol.2024.113003_bb0035) 2021; 216 Cappelli (10.1016/j.jphotobiol.2024.113003_bb0285) 2023; 24 Sheng (10.1016/j.jphotobiol.2024.113003_bb0010) 2021; 11 Dai (10.1016/j.jphotobiol.2024.113003_bb0165) 2018; 46 Wang (10.1016/j.jphotobiol.2024.113003_bb0060) 2023; 28 Liu (10.1016/j.jphotobiol.2024.113003_bb0150) 2023; 25 Ahn (10.1016/j.jphotobiol.2024.113003_bb0240) 2024; 12 Chen (10.1016/j.jphotobiol.2024.113003_bb0155) 2022; 38 Liu (10.1016/j.jphotobiol.2024.113003_bb0200) 2022; 13 Yang (10.1016/j.jphotobiol.2024.113003_bb0040) 2023; 249 Garza (10.1016/j.jphotobiol.2024.113003_bb0020) 2018; 25 Koeberle (10.1016/j.jphotobiol.2024.113003_bb0095) 2023; 43 Kang (10.1016/j.jphotobiol.2024.113003_bb0250) 2019; 133 Ishii (10.1016/j.jphotobiol.2024.113003_bb0125) 2014; 2 Chiang (10.1016/j.jphotobiol.2024.113003_bb0235) 2021; 10 Yang (10.1016/j.jphotobiol.2024.113003_bb0015) 2022; 12 Dixon (10.1016/j.jphotobiol.2024.113003_bb0055) 2012; 149 Barati Shoorche (10.1016/j.jphotobiol.2024.113003_bb0145) 2022; 37 Yan (10.1016/j.jphotobiol.2024.113003_bb0170) 2018; 103 Zheng (10.1016/j.jphotobiol.2024.113003_bb0210) 2023; 561 Chio (10.1016/j.jphotobiol.2024.113003_bb0270) 2017; 23 Oh (10.1016/j.jphotobiol.2024.113003_bb0025) 2016; 70 Wegierek-Ciuk (10.1016/j.jphotobiol.2024.113003_bb0115) 2021; 22 Ohara (10.1016/j.jphotobiol.2024.113003_bb0110) 2002; 93 Mirabello (10.1016/j.jphotobiol.2024.113003_bb0005) 2009; 115 Wang (10.1016/j.jphotobiol.2024.113003_bb0180) 2020; 25 Wu (10.1016/j.jphotobiol.2024.113003_bb0140) 2022; 13 Oh (10.1016/j.jphotobiol.2024.113003_bb0030) 2015; 142 Lee (10.1016/j.jphotobiol.2024.113003_bb0190) 2020; 25 Chiang (10.1016/j.jphotobiol.2024.113003_bb0230) 2018; 20 Deponte (10.1016/j.jphotobiol.2024.113003_bb0135) 2013; 1830 Zhang (10.1016/j.jphotobiol.2024.113003_bb0065) 2024; 29 He (10.1016/j.jphotobiol.2024.113003_bb0045) 2021; 25 Chen (10.1016/j.jphotobiol.2024.113003_bb0260) 2021; 17 Arfin (10.1016/j.jphotobiol.2024.113003_bb0085) 2021; 10 Brigelius-Flohe (10.1016/j.jphotobiol.2024.113003_bb0265) 2013; 1830 Hou (10.1016/j.jphotobiol.2024.113003_bb0225) 2016; 12 Seibt (10.1016/j.jphotobiol.2024.113003_bb0255) 2019; 133 Ren (10.1016/j.jphotobiol.2024.113003_bb0120) 2022; 13 Stockwell (10.1016/j.jphotobiol.2024.113003_bb0275) 2022; 185 Takeuchi (10.1016/j.jphotobiol.2024.113003_bb0090) 2023; 12 Ohara (10.1016/j.jphotobiol.2024.113003_bb0100) 2003; 22 Kan (10.1016/j.jphotobiol.2024.113003_bb0080) 2021; 9 Soares (10.1016/j.jphotobiol.2024.113003_bb0205) 2016; 44 Yang (10.1016/j.jphotobiol.2024.113003_bb0070) 2023; 299 Zhang (10.1016/j.jphotobiol.2024.113003_bb0185) 2023; 28 Koppula (10.1016/j.jphotobiol.2024.113003_bb0280) 2021; 12 Xie (10.1016/j.jphotobiol.2024.113003_bb0105) 2016; 23 Mou (10.1016/j.jphotobiol.2024.113003_bb0050) 2019; 12 Yang (10.1016/j.jphotobiol.2024.113003_bb0075) 2021; 271 Xu (10.1016/j.jphotobiol.2024.113003_bb0195) 2021; 15 Flanagan (10.1016/j.jphotobiol.2024.113003_bb0130) 2018; 20 Fontana (10.1016/j.jphotobiol.2024.113003_bb0160) 2021; 176 Kim (10.1016/j.jphotobiol.2024.113003_bb0175) 2021; 236 Muhoberac (10.1016/j.jphotobiol.2024.113003_bb0215) 2019; 13 Zhou (10.1016/j.jphotobiol.2024.113003_bb0220) 2020; 66 Zhang (10.1016/j.jphotobiol.2024.113003_bb0245) 2023; 9 |
References_xml | – volume: 9 start-page: 829 year: 2021 ident: bb0080 article-title: Biphasic effects of blue light irradiation on human umbilical vein endothelial cells [J] publication-title: Biomedicines – volume: 13 year: 2022 ident: bb0200 article-title: Mechanism of ferroptosis in traditional chinese medicine for clinical treatment: a review [J] publication-title: Front. Pharmacol. – volume: 25 start-page: 5564 year: 2018 end-page: 5577 ident: bb0020 article-title: Visible blue Light’ therapy: molecular Mechanisms’and therapeutic opportunities [J] publication-title: Curr. Med. Chem. – volume: 66 start-page: 89 year: 2020 end-page: 100 ident: bb0220 article-title: Ferroptosis is a type of autophagy-dependent cell death [J] publication-title: Semin. Cancer Biol. – volume: 103 start-page: 81 year: 2018 end-page: 88 ident: bb0170 article-title: Blue light emitting diodes irradiation causes cell death in colorectal cancer by inducing ROS production and DNA damage [J] publication-title: Int. J. Biochem. Cell Biol. – volume: 2 start-page: 786 year: 2014 end-page: 794 ident: bb0125 article-title: Redox status in mammalian cells and stem cells during culture in vitro: critical roles of Nrf2 and cystine transporter activity in the maintenance of redox balance [J] publication-title: Redox Biol. – volume: 28 start-page: 1520 year: 2023 end-page: 1533 ident: bb0185 article-title: Role of APR3 in cancer: apoptosis, autophagy, oxidative stress, and cancer therapy [J] publication-title: Apoptosis – volume: 22 start-page: 1291 year: 2003 end-page: 1295 ident: bb0100 article-title: Augmentation of the inhibitory effect of blue light on the growth of B16 melanoma cells by riboflavin [J] publication-title: Int. J. Oncol. – volume: 24 start-page: 5698 year: 2023 ident: bb0285 article-title: Cinnamomum zeylanicum Blume essential oil inhibits metastatic melanoma cell proliferation by triggering an incomplete tumour cell stress response [J] publication-title: Int. J. Mol. Sci. – volume: 29 start-page: 412 year: 2024 end-page: 423 ident: bb0065 article-title: Multiple myeloma with high expression of SLC7A11 is sensitive to erastin-induced ferroptosis [J] publication-title: Apoptosis – volume: 133 start-page: 162 year: 2019 end-page: 168 ident: bb0250 article-title: The tumor suppressor protein p53 and the ferroptosis network [J] publication-title: Free Radic. Biol. Med. – volume: 15 start-page: 19394 year: 2021 end-page: 19408 ident: bb0195 article-title: A Luminol-based self-illuminating Nanocage as a reactive oxygen species amplifier to enhance deep tumor penetration and synergistic therapy [J] publication-title: ACS Nano – volume: 20 start-page: 1102 year: 2018 end-page: 1104 ident: bb0130 article-title: Microenvironmental cues in cancer stemness [J] publication-title: Nat. Cell Biol. – volume: 28 start-page: 1168 year: 2023 end-page: 1183 ident: bb0060 article-title: Sodium butyrate induces ferroptosis in endometrial cancer cells via the RBM3/SLC7A11 axis [J] publication-title: Apoptosis – volume: 23 start-page: 369 year: 2016 end-page: 379 ident: bb0105 article-title: Ferroptosis: process and function [J] publication-title: Cell Death Differ. – volume: 13 start-page: 1195 year: 2019 ident: bb0215 article-title: Iron, ferritin, hereditary Ferritinopathy, and neurodegeneration [J] publication-title: Front. Neurosci. – volume: 25 start-page: 4962 year: 2021 end-page: 4973 ident: bb0045 article-title: Blue LED causes autophagic cell death in human osteosarcoma by increasing ROS generation and dephosphorylating EGFR [J] publication-title: J. Cell. Mol. Med. – volume: 236 start-page: 1362 year: 2021 end-page: 1374 ident: bb0175 article-title: Light-emitting diode irradiation induces AKT/mTOR-mediated apoptosis in human pancreatic cancer cells and xenograft mouse model [J] publication-title: J. Cell. Physiol. – volume: 9 start-page: 320 year: 2023 ident: bb0245 article-title: Lipid peroxidation in osteoarthritis: focusing on 4-hydroxynonenal, malondialdehyde, and ferroptosis [J] publication-title: Cell Death Dis. – volume: 10 start-page: 642 year: 2021 ident: bb0085 article-title: Oxidative stress in cancer cell metabolism [J] publication-title: Antioxidants (Basel) – volume: 70 start-page: 13 year: 2016 end-page: 22 ident: bb0025 article-title: Blue light emitting diode induces apoptosis in lymphoid cells by stimulating autophagy [J] publication-title: Int. J. Biochem. Cell Biol. – volume: 20 start-page: 39 year: 2018 ident: bb0230 article-title: A dual role of Heme Oxygenase-1 in Cancer cells [J] publication-title: Int. J. Mol. Sci. – volume: 1830 start-page: 3217 year: 2013 end-page: 3266 ident: bb0135 article-title: Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes [J] publication-title: Biochim. Biophys. Acta – volume: 37 start-page: 2855 year: 2022 end-page: 2863 ident: bb0145 article-title: Photobiomodulation therapy affects the elastic Modulus, cytoskeletal rearrangement and migration capability of human osteosarcoma cells [J] publication-title: Lasers Med. Sci. – volume: 185 start-page: 2401 year: 2022 end-page: 2421 ident: bb0275 article-title: Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications [J] publication-title: Cell – volume: 11 year: 2021 ident: bb0010 article-title: Osteosarcoma and metastasis [J] publication-title: Front. Oncol. – volume: 115 start-page: 1531 year: 2009 end-page: 1543 ident: bb0005 article-title: Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program [J] publication-title: Cancer – volume: 561 year: 2023 ident: bb0210 article-title: Ferroptosis: promising approach for cancer and cancer immunotherapy [J] publication-title: Cancer Lett. – volume: 43 start-page: 614 year: 2023 end-page: 682 ident: bb0095 article-title: Ferroptosis-modulating small molecules for targeting drug-resistant cancer: challenges and opportunities in manipulating redox signaling [J] publication-title: Med. Res. Rev. – volume: 249 year: 2023 ident: bb0040 article-title: Blue light photobiomodulation induced apoptosis by increasing ROS level and regulating SOCS3 and PTEN/PI3K/AKT pathway in osteosarcoma cells [J] publication-title: J. Photochem. Photobiol. B – volume: 93 start-page: 551 year: 2002 end-page: 558 ident: bb0110 article-title: Blue light inhibits the growth of B16 melanoma cells [J] publication-title: Jap J. Cancer Res. – volume: 13 start-page: 1045 year: 2022 end-page: 1060 ident: bb0140 article-title: Localised light delivery on melanoma cells using optical microneedles [J] publication-title: Biomed. Opt. Express – volume: 133 start-page: 144 year: 2019 end-page: 152 ident: bb0255 article-title: Role of GPX4 in ferroptosis and its pharmacological implication [J] publication-title: Free Radic. Biol. Med. – volume: 1830 start-page: 3289 year: 2013 end-page: 3303 ident: bb0265 article-title: Glutathione peroxidases [J] publication-title: Biochim. Biophys. Acta – volume: 25 start-page: 786 year: 2020 end-page: 798 ident: bb0180 article-title: The function and mechanism of ferroptosis in cancer [J] publication-title: Apoptosis – volume: 17 start-page: 2054 year: 2021 end-page: 2081 ident: bb0260 article-title: Ferroptosis: machinery and regulation [J] publication-title: Autophagy – volume: 13 year: 2022 ident: bb0120 article-title: Zoledronic acid induces ferroptosis by reducing ubiquinone and promoting HMOX1 expression in osteosarcoma cells [J] publication-title: Front. Pharmacol. – volume: 25 start-page: 404 year: 2023 end-page: 414 ident: bb0150 article-title: Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis [J] publication-title: Nat. Cell Biol. – volume: 142 start-page: 197 year: 2015 end-page: 203 ident: bb0030 article-title: Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling [J] publication-title: J. Photochem. Photobiol. B – volume: 12 start-page: 161 year: 2024 ident: bb0240 article-title: Particulate matter induces oxidative stress and Ferroptosis in human lung epithelial cells [J] publication-title: Toxics – volume: 12 start-page: 34 year: 2019 ident: bb0050 article-title: Ferroptosis, a new form of cell death: opportunities and challenges in cancer [J] publication-title: J. Hematol. Oncol. – volume: 12 start-page: 1425 year: 2016 end-page: 1428 ident: bb0225 article-title: Autophagy promotes ferroptosis by degradation of ferritin [J] publication-title: Autophagy – volume: 46 start-page: 1134 year: 2018 end-page: 1147 ident: bb0165 article-title: Cinobufagin induces apoptosis in osteosarcoma cells via the mitochondria-mediated apoptotic pathway [J] publication-title: Cell. Physiol. Biochem. – volume: 149 start-page: 1060 year: 2012 end-page: 1072 ident: bb0055 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death [J] publication-title: Cell – volume: 12 start-page: 599 year: 2021 end-page: 620 ident: bb0280 article-title: Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy [J] publication-title: Protein Cell – volume: 22 start-page: 5791 year: 2021 ident: bb0115 article-title: Coralyne radiosensitizes A549 cells by upregulation of CDKN1A expression to attenuate radiation induced G2/M block of the cell cycle [J] publication-title: Int. J. Mol. Sci. – volume: 44 start-page: 492 year: 2016 end-page: 504 ident: bb0205 article-title: Macrophages and iron metabolism [J] publication-title: Immunity – volume: 38 start-page: 3 year: 2022 end-page: 11 ident: bb0155 article-title: The review of the light parameters and mechanisms of Photobiomodulation on melanoma cells [J] publication-title: Photodermatol. Photoimmunol. Photomed. – volume: 271 year: 2021 ident: bb0075 article-title: Blue light-triggered Fe( publication-title: Biomaterials – volume: 23 start-page: 411 year: 2017 end-page: 429 ident: bb0270 article-title: ROS in Cancer: the burning question [J] publication-title: Trends Mol. Med. – volume: 216 year: 2021 ident: bb0035 article-title: Comparative transcriptome analysis of gene expression patterns on B16F10 melanoma cells under photobiomodulation of different light modes [J] publication-title: J. Photochem. Photobiol. B – volume: 299 year: 2023 ident: bb0070 article-title: Blue light promotes vitamin C-mediated ferroptosis of melanoma through specifically upregulating transporter SVCT2 and generating Fe(2) [J] publication-title: Biomaterials – volume: 12 year: 2022 ident: bb0015 article-title: Progress of phototherapy for osteosarcoma and application prospect of blue light photobiomodulation therapy [J] publication-title: Front. Oncol. – volume: 176 start-page: 203 year: 2021 end-page: 221 ident: bb0160 article-title: The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer [J] publication-title: Free Radic. Biol. Med. – volume: 12 start-page: 9668 year: 2023 end-page: 9683 ident: bb0090 article-title: Blue light induces apoptosis and autophagy by promoting ROS-mediated mitochondrial dysfunction in synovial sarcoma [J] publication-title: Cancer Med. – volume: 10 start-page: 2401 year: 2021 ident: bb0235 article-title: The role of HO-1 and its crosstalk with oxidative stress in Cancer cell survival [J] publication-title: Cells-Basel – volume: 25 start-page: 625 year: 2020 end-page: 631 ident: bb0190 article-title: BAX-dependent mitochondrial pathway mediates the crosstalk between ferroptosis and apoptosis [J] publication-title: Apoptosis – volume: 29 start-page: 412 issue: 3–4 year: 2024 ident: 10.1016/j.jphotobiol.2024.113003_bb0065 article-title: Multiple myeloma with high expression of SLC7A11 is sensitive to erastin-induced ferroptosis [J] publication-title: Apoptosis doi: 10.1007/s10495-023-01909-2 – volume: 44 start-page: 492 issue: 3 year: 2016 ident: 10.1016/j.jphotobiol.2024.113003_bb0205 article-title: Macrophages and iron metabolism [J] publication-title: Immunity doi: 10.1016/j.immuni.2016.02.016 – volume: 176 start-page: 203 year: 2021 ident: 10.1016/j.jphotobiol.2024.113003_bb0160 article-title: The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer [J] publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2021.09.024 – volume: 133 start-page: 144 year: 2019 ident: 10.1016/j.jphotobiol.2024.113003_bb0255 article-title: Role of GPX4 in ferroptosis and its pharmacological implication [J] publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.09.014 – volume: 12 start-page: 34 issue: 1 year: 2019 ident: 10.1016/j.jphotobiol.2024.113003_bb0050 article-title: Ferroptosis, a new form of cell death: opportunities and challenges in cancer [J] publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-019-0720-y – volume: 25 start-page: 625 issue: 9–10 year: 2020 ident: 10.1016/j.jphotobiol.2024.113003_bb0190 article-title: BAX-dependent mitochondrial pathway mediates the crosstalk between ferroptosis and apoptosis [J] publication-title: Apoptosis doi: 10.1007/s10495-020-01627-z – volume: 70 start-page: 13 year: 2016 ident: 10.1016/j.jphotobiol.2024.113003_bb0025 article-title: Blue light emitting diode induces apoptosis in lymphoid cells by stimulating autophagy [J] publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2015.11.004 – volume: 38 start-page: 3 issue: 1 year: 2022 ident: 10.1016/j.jphotobiol.2024.113003_bb0155 article-title: The review of the light parameters and mechanisms of Photobiomodulation on melanoma cells [J] publication-title: Photodermatol. Photoimmunol. Photomed. doi: 10.1111/phpp.12715 – volume: 22 start-page: 5791 issue: 11 year: 2021 ident: 10.1016/j.jphotobiol.2024.113003_bb0115 article-title: Coralyne radiosensitizes A549 cells by upregulation of CDKN1A expression to attenuate radiation induced G2/M block of the cell cycle [J] publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22115791 – volume: 9 start-page: 320 issue: 1 year: 2023 ident: 10.1016/j.jphotobiol.2024.113003_bb0245 article-title: Lipid peroxidation in osteoarthritis: focusing on 4-hydroxynonenal, malondialdehyde, and ferroptosis [J] publication-title: Cell Death Dis. doi: 10.1038/s41420-023-01613-9 – volume: 12 start-page: 1425 issue: 8 year: 2016 ident: 10.1016/j.jphotobiol.2024.113003_bb0225 article-title: Autophagy promotes ferroptosis by degradation of ferritin [J] publication-title: Autophagy doi: 10.1080/15548627.2016.1187366 – volume: 25 start-page: 4962 issue: 11 year: 2021 ident: 10.1016/j.jphotobiol.2024.113003_bb0045 article-title: Blue LED causes autophagic cell death in human osteosarcoma by increasing ROS generation and dephosphorylating EGFR [J] publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.16412 – volume: 236 start-page: 1362 issue: 2 year: 2021 ident: 10.1016/j.jphotobiol.2024.113003_bb0175 article-title: Light-emitting diode irradiation induces AKT/mTOR-mediated apoptosis in human pancreatic cancer cells and xenograft mouse model [J] publication-title: J. Cell. Physiol. doi: 10.1002/jcp.29943 – volume: 66 start-page: 89 year: 2020 ident: 10.1016/j.jphotobiol.2024.113003_bb0220 article-title: Ferroptosis is a type of autophagy-dependent cell death [J] publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2019.03.002 – volume: 13 start-page: 1045 issue: 2 year: 2022 ident: 10.1016/j.jphotobiol.2024.113003_bb0140 article-title: Localised light delivery on melanoma cells using optical microneedles [J] publication-title: Biomed. Opt. Express doi: 10.1364/BOE.450456 – volume: 22 start-page: 1291 issue: 6 year: 2003 ident: 10.1016/j.jphotobiol.2024.113003_bb0100 article-title: Augmentation of the inhibitory effect of blue light on the growth of B16 melanoma cells by riboflavin [J] publication-title: Int. J. Oncol. – volume: 93 start-page: 551 issue: 5 year: 2002 ident: 10.1016/j.jphotobiol.2024.113003_bb0110 article-title: Blue light inhibits the growth of B16 melanoma cells [J] publication-title: Jap J. Cancer Res. doi: 10.1111/j.1349-7006.2002.tb01290.x – volume: 149 start-page: 1060 issue: 5 year: 2012 ident: 10.1016/j.jphotobiol.2024.113003_bb0055 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death [J] publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 13 start-page: 1195 year: 2019 ident: 10.1016/j.jphotobiol.2024.113003_bb0215 article-title: Iron, ferritin, hereditary Ferritinopathy, and neurodegeneration [J] publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.01195 – volume: 10 start-page: 2401 issue: 9 year: 2021 ident: 10.1016/j.jphotobiol.2024.113003_bb0235 article-title: The role of HO-1 and its crosstalk with oxidative stress in Cancer cell survival [J] publication-title: Cells-Basel doi: 10.3390/cells10092401 – volume: 1830 start-page: 3217 issue: 5 year: 2013 ident: 10.1016/j.jphotobiol.2024.113003_bb0135 article-title: Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes [J] publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2012.09.018 – volume: 12 year: 2022 ident: 10.1016/j.jphotobiol.2024.113003_bb0015 article-title: Progress of phototherapy for osteosarcoma and application prospect of blue light photobiomodulation therapy [J] publication-title: Front. Oncol. – volume: 20 start-page: 1102 issue: 10 year: 2018 ident: 10.1016/j.jphotobiol.2024.113003_bb0130 article-title: Microenvironmental cues in cancer stemness [J] publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0210-4 – volume: 15 start-page: 19394 issue: 12 year: 2021 ident: 10.1016/j.jphotobiol.2024.113003_bb0195 article-title: A Luminol-based self-illuminating Nanocage as a reactive oxygen species amplifier to enhance deep tumor penetration and synergistic therapy [J] publication-title: ACS Nano doi: 10.1021/acsnano.1c05891 – volume: 43 start-page: 614 issue: 3 year: 2023 ident: 10.1016/j.jphotobiol.2024.113003_bb0095 article-title: Ferroptosis-modulating small molecules for targeting drug-resistant cancer: challenges and opportunities in manipulating redox signaling [J] publication-title: Med. Res. Rev. doi: 10.1002/med.21933 – volume: 20 start-page: 39 issue: 1 year: 2018 ident: 10.1016/j.jphotobiol.2024.113003_bb0230 article-title: A dual role of Heme Oxygenase-1 in Cancer cells [J] publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20010039 – volume: 12 start-page: 161 issue: 2 year: 2024 ident: 10.1016/j.jphotobiol.2024.113003_bb0240 article-title: Particulate matter induces oxidative stress and Ferroptosis in human lung epithelial cells [J] publication-title: Toxics doi: 10.3390/toxics12020161 – volume: 25 start-page: 5564 issue: 40 year: 2018 ident: 10.1016/j.jphotobiol.2024.113003_bb0020 article-title: Visible blue Light’ therapy: molecular Mechanisms’and therapeutic opportunities [J] publication-title: Curr. Med. Chem. doi: 10.2174/0929867324666170727112206 – volume: 23 start-page: 411 issue: 5 year: 2017 ident: 10.1016/j.jphotobiol.2024.113003_bb0270 article-title: ROS in Cancer: the burning question [J] publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2017.03.004 – volume: 46 start-page: 1134 issue: 3 year: 2018 ident: 10.1016/j.jphotobiol.2024.113003_bb0165 article-title: Cinobufagin induces apoptosis in osteosarcoma cells via the mitochondria-mediated apoptotic pathway [J] publication-title: Cell. Physiol. Biochem. doi: 10.1159/000488842 – volume: 13 year: 2022 ident: 10.1016/j.jphotobiol.2024.113003_bb0200 article-title: Mechanism of ferroptosis in traditional chinese medicine for clinical treatment: a review [J] publication-title: Front. Pharmacol. – volume: 25 start-page: 404 issue: 3 year: 2023 ident: 10.1016/j.jphotobiol.2024.113003_bb0150 article-title: Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis [J] publication-title: Nat. Cell Biol. doi: 10.1038/s41556-023-01091-2 – volume: 1830 start-page: 3289 issue: 5 year: 2013 ident: 10.1016/j.jphotobiol.2024.113003_bb0265 article-title: Glutathione peroxidases [J] publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2012.11.020 – volume: 28 start-page: 1520 issue: 11–12 year: 2023 ident: 10.1016/j.jphotobiol.2024.113003_bb0185 article-title: Role of APR3 in cancer: apoptosis, autophagy, oxidative stress, and cancer therapy [J] publication-title: Apoptosis doi: 10.1007/s10495-023-01882-w – volume: 37 start-page: 2855 issue: 7 year: 2022 ident: 10.1016/j.jphotobiol.2024.113003_bb0145 article-title: Photobiomodulation therapy affects the elastic Modulus, cytoskeletal rearrangement and migration capability of human osteosarcoma cells [J] publication-title: Lasers Med. Sci. doi: 10.1007/s10103-022-03554-8 – volume: 142 start-page: 197 year: 2015 ident: 10.1016/j.jphotobiol.2024.113003_bb0030 article-title: Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling [J] publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2014.12.006 – volume: 12 start-page: 9668 issue: 8 year: 2023 ident: 10.1016/j.jphotobiol.2024.113003_bb0090 article-title: Blue light induces apoptosis and autophagy by promoting ROS-mediated mitochondrial dysfunction in synovial sarcoma [J] publication-title: Cancer Med. doi: 10.1002/cam4.5664 – volume: 11 year: 2021 ident: 10.1016/j.jphotobiol.2024.113003_bb0010 article-title: Osteosarcoma and metastasis [J] publication-title: Front. Oncol. doi: 10.3389/fonc.2021.780264 – volume: 13 year: 2022 ident: 10.1016/j.jphotobiol.2024.113003_bb0120 article-title: Zoledronic acid induces ferroptosis by reducing ubiquinone and promoting HMOX1 expression in osteosarcoma cells [J] publication-title: Front. Pharmacol. – volume: 561 year: 2023 ident: 10.1016/j.jphotobiol.2024.113003_bb0210 article-title: Ferroptosis: promising approach for cancer and cancer immunotherapy [J] publication-title: Cancer Lett. doi: 10.1016/j.canlet.2023.216152 – volume: 12 start-page: 599 issue: 8 year: 2021 ident: 10.1016/j.jphotobiol.2024.113003_bb0280 article-title: Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy [J] publication-title: Protein Cell doi: 10.1007/s13238-020-00789-5 – volume: 25 start-page: 786 issue: 11−12 year: 2020 ident: 10.1016/j.jphotobiol.2024.113003_bb0180 article-title: The function and mechanism of ferroptosis in cancer [J] publication-title: Apoptosis doi: 10.1007/s10495-020-01638-w – volume: 299 year: 2023 ident: 10.1016/j.jphotobiol.2024.113003_bb0070 article-title: Blue light promotes vitamin C-mediated ferroptosis of melanoma through specifically upregulating transporter SVCT2 and generating Fe(2) [J] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2023.122186 – volume: 133 start-page: 162 year: 2019 ident: 10.1016/j.jphotobiol.2024.113003_bb0250 article-title: The tumor suppressor protein p53 and the ferroptosis network [J] publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.05.074 – volume: 24 start-page: 5698 issue: 6 year: 2023 ident: 10.1016/j.jphotobiol.2024.113003_bb0285 article-title: Cinnamomum zeylanicum Blume essential oil inhibits metastatic melanoma cell proliferation by triggering an incomplete tumour cell stress response [J] publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms24065698 – volume: 10 start-page: 642 issue: 5 year: 2021 ident: 10.1016/j.jphotobiol.2024.113003_bb0085 article-title: Oxidative stress in cancer cell metabolism [J] publication-title: Antioxidants (Basel) doi: 10.3390/antiox10050642 – volume: 115 start-page: 1531 issue: 7 year: 2009 ident: 10.1016/j.jphotobiol.2024.113003_bb0005 article-title: Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program [J] publication-title: Cancer doi: 10.1002/cncr.24121 – volume: 23 start-page: 369 issue: 3 year: 2016 ident: 10.1016/j.jphotobiol.2024.113003_bb0105 article-title: Ferroptosis: process and function [J] publication-title: Cell Death Differ. doi: 10.1038/cdd.2015.158 – volume: 103 start-page: 81 year: 2018 ident: 10.1016/j.jphotobiol.2024.113003_bb0170 article-title: Blue light emitting diodes irradiation causes cell death in colorectal cancer by inducing ROS production and DNA damage [J] publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2018.08.006 – volume: 17 start-page: 2054 issue: 9 year: 2021 ident: 10.1016/j.jphotobiol.2024.113003_bb0260 article-title: Ferroptosis: machinery and regulation [J] publication-title: Autophagy doi: 10.1080/15548627.2020.1810918 – volume: 2 start-page: 786 year: 2014 ident: 10.1016/j.jphotobiol.2024.113003_bb0125 article-title: Redox status in mammalian cells and stem cells during culture in vitro: critical roles of Nrf2 and cystine transporter activity in the maintenance of redox balance [J] publication-title: Redox Biol. doi: 10.1016/j.redox.2014.04.008 – volume: 271 year: 2021 ident: 10.1016/j.jphotobiol.2024.113003_bb0075 article-title: Blue light-triggered Fe(2+)-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy [J] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120739 – volume: 9 start-page: 829 issue: 7 year: 2021 ident: 10.1016/j.jphotobiol.2024.113003_bb0080 article-title: Biphasic effects of blue light irradiation on human umbilical vein endothelial cells [J] publication-title: Biomedicines doi: 10.3390/biomedicines9070829 – volume: 216 year: 2021 ident: 10.1016/j.jphotobiol.2024.113003_bb0035 article-title: Comparative transcriptome analysis of gene expression patterns on B16F10 melanoma cells under photobiomodulation of different light modes [J] publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2021.112127 – volume: 249 year: 2023 ident: 10.1016/j.jphotobiol.2024.113003_bb0040 article-title: Blue light photobiomodulation induced apoptosis by increasing ROS level and regulating SOCS3 and PTEN/PI3K/AKT pathway in osteosarcoma cells [J] publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2023.112814 – volume: 28 start-page: 1168 issue: 7–8 year: 2023 ident: 10.1016/j.jphotobiol.2024.113003_bb0060 article-title: Sodium butyrate induces ferroptosis in endometrial cancer cells via the RBM3/SLC7A11 axis [J] publication-title: Apoptosis doi: 10.1007/s10495-023-01850-4 – volume: 185 start-page: 2401 issue: 14 year: 2022 ident: 10.1016/j.jphotobiol.2024.113003_bb0275 article-title: Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications [J] publication-title: Cell doi: 10.1016/j.cell.2022.06.003 |
SSID | ssj0000567 |
Score | 2.4238124 |
Snippet | To investigate the potential of blue light photobiomodulation (PBM) in inducing ferroptosis, a novel form of regulated cell death, in OS cells, considering its... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 113003 |
SubjectTerms | Apoptosis Apoptosis - radiation effects Blue Light Blue light PBM Cell Death - radiation effects Cell Line, Tumor Cell Survival - radiation effects cell viability death Ferroptosis Ferroptosis - radiation effects gene expression regulation homeostasis Humans Iron - metabolism iron absorption Light Low-Level Light Therapy membrane potential Membrane Potential, Mitochondrial - radiation effects mitochondrial membrane neoplasm cells Osteosarcoma Osteosarcoma - metabolism Osteosarcoma - pathology Osteosarcoma - radiotherapy oxidative stress Oxidative Stress - radiation effects photobiology photochemistry quantitative polymerase chain reaction reactive oxygen species Reactive Oxygen Species - metabolism ROS stress response therapeutics transcriptome transcriptomics |
Title | Blue light photobiomodulation induced osteosarcoma cell death by facilitating ferroptosis and eliciting an incomplete tumor cell stress response |
URI | https://dx.doi.org/10.1016/j.jphotobiol.2024.113003 https://www.ncbi.nlm.nih.gov/pubmed/39121719 https://www.proquest.com/docview/3091284043 https://www.proquest.com/docview/3153722223 |
Volume | 258 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhpbSX0iZ9bB9BhV7dlSXtak1P6ZKwbWkubSA3oWfrsGstXu8hl_6G_uSOJDshlIRAjrYeDJrxzDfmGw1CH5gDmGpJVXhHdcE5E_BJGV9oxRQgaDPjLhYnfz-ZLk7517PJ2Q6aD7UwkVbZ-_7s05O37t-M-9Mcr-t6_KNMbdI5jyxIQBWx0JxzEa38458rmgcE-NRgJVG3YHbP5skcr_P179Cl644gU6Q8NjghQ_us_0PUTRA0haLjp-hJjyHxYRbzGdpxzR56mLtKXuyhR_Ohids--vt5uXV4GTNwPEixCrbv2YUhIQfVWhwrPcIGbD6sFI7_8rGN0BDrC-yV6S_ybn5h79o2rLuwqTdYNRa7ZW3qNKLiZomfDigcd9tVaPNGuRgFt5mL656j0-Ojn_NF0TdhKAxgs64ARGjFxBAlqAFvoKmfTKxVWnNjCVHMV9Nq5hwVRAEYmhJPDaQoMAtGvNGEvUC7TWjcK4TdVHBLvSt1BahHzSpfCc-04qqijlEyQuVw7nKd79qQAwntXF7pSkZdyayrEfo0KEhesxsJIeEOq98POpWgmHgsqnFhu5EMcBREbsJvmwPRQtAIsEboZTaIS7kZLC9FWb2-l3xv0OP4lDltb9Fu127dOwBBnT5IVn6AHhx--bY4-QeXJAsY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrVC5ICiv5WkkrtE6jrPZiFNZUW1puxdaqTfLz5JqN15ls4f-C34y4zihQgiExDWOrZFnMvNN9M0MwIfMIkw1tEycZSrhPCvwk9IuUTKTiKD1jNtQnHy-nC4u-Zer_GoP5kMtTKBV9r4_-vTOW_dPJv1tTjZVNfmadmPSOQ8sSEQV-T3YD92p8hHsH52cLpZ3DjnvBsmmHXsLN_SEnkjzutl8823X8QiTRcbDjBM6TND6PUr9CYV20ej4ETzsYSQ5ipI-hj1bH8L9OFjy9hAO5sMctyfw_dNqZ8kqJOFkkGLtTT-2i2BOjto1JBR7-C2avV9LEn7nExPQIVG3xEnd9_Kur4mzTeM3rd9WWyJrQ-yq0lW3IsNhHUUdgThpd2vfxINiPQppIh3XPoXL488X80XSz2FINMKzNkFQaIpcU1kwjQ5BMZfnxkiluDaUysyV03JmLSuoRDw0pY5pzFLwLVxxWtHsGYxqX9sXQOy04IY5m6oSgY-cla4sXKYklyWzGaNjSId7F5vYbkMMPLQbcacrEXQloq7G8HFQkPjFdARGhX_Y_X7QqUDFhGuRtfW7rcgQSmHwpvxv72DAKFjAWGN4Hg3ip9wZbk-LtHz5X_K9g4PFxfmZODtZnr6CB2ElUtxew6htdvYNYqJWve1t_gepLg3J |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blue+light+photobiomodulation+induced+osteosarcoma+cell+death+by+facilitating+ferroptosis+and+eliciting+an+incomplete+tumor+cell+stress+response&rft.jtitle=Journal+of+photochemistry+and+photobiology.+B%2C+Biology&rft.au=Yang%2C+Jiali&rft.au=Fu%2C+Qiqi&rft.au=Jiang%2C+Hui&rft.au=Zhong%2C+Hongyu&rft.date=2024-09-01&rft.issn=1011-1344&rft.volume=258&rft.spage=113003&rft_id=info:doi/10.1016%2Fj.jphotobiol.2024.113003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jphotobiol_2024_113003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-1344&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-1344&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-1344&client=summon |