Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments
Recently, agriculture has gained much attention regarding automation by artificial intelligence techniques and robotic systems. Particularly, with the advancements in machine learning (ML) concepts, significant improvements have been observed in agricultural tasks. The ability of automatic feature e...
Saved in:
Published in | Precision agriculture Vol. 22; no. 6; pp. 2053 - 2091 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, agriculture has gained much attention regarding automation by artificial intelligence techniques and robotic systems. Particularly, with the advancements in machine learning (ML) concepts, significant improvements have been observed in agricultural tasks. The ability of automatic feature extraction creates an adaptive nature in deep learning (DL), specifically convolutional neural networks to achieve human-level accuracy in various agricultural applications, prominent among which are plant disease detection and classification, weed/crop discrimination, fruit counting, land cover classification, and crop/plant recognition. This review presents the performance of recent uses in agricultural robots by the implementation of ML and DL algorithms/architectures during the last decade. Performance plots are drawn to study the effectiveness of deep learning over traditional machine learning models for certain agricultural operations. The analysis of prominent studies highlighted that the DL-based models, like RCNN (Region-based Convolutional Neural Network), achieve a higher plant disease/pest detection rate (82.51%) than the well-known ML algorithms, including Multi-Layer Perceptron (64.9%) and K-nearest Neighbour (63.76%). The famous DL architecture named ResNet-18 attained more accurate Area Under the Curve (94.84%), and outperformed ML-based techniques, including Random Forest (RF) (70.16%) and Support Vector Machine (SVM) (60.6%), for crop/weed discrimination. Another DL model called FCN (Fully Convolutional Networks) recorded higher accuracy (83.9%) than SVM (67.6%) and RF (65.6%) algorithms for the classification of agricultural land covers. Finally, some important research gaps from the previous studies and innovative future directions are also noted to help propel automation in agriculture up to the next level. |
---|---|
AbstractList | Recently, agriculture has gained much attention regarding automation by artificial intelligence techniques and robotic systems. Particularly, with the advancements in machine learning (ML) concepts, significant improvements have been observed in agricultural tasks. The ability of automatic feature extraction creates an adaptive nature in deep learning (DL), specifically convolutional neural networks to achieve human-level accuracy in various agricultural applications, prominent among which are plant disease detection and classification, weed/crop discrimination, fruit counting, land cover classification, and crop/plant recognition. This review presents the performance of recent uses in agricultural robots by the implementation of ML and DL algorithms/architectures during the last decade. Performance plots are drawn to study the effectiveness of deep learning over traditional machine learning models for certain agricultural operations. The analysis of prominent studies highlighted that the DL-based models, like RCNN (Region-based Convolutional Neural Network), achieve a higher plant disease/pest detection rate (82.51%) than the well-known ML algorithms, including Multi-Layer Perceptron (64.9%) and K-nearest Neighbour (63.76%). The famous DL architecture named ResNet-18 attained more accurate Area Under the Curve (94.84%), and outperformed ML-based techniques, including Random Forest (RF) (70.16%) and Support Vector Machine (SVM) (60.6%), for crop/weed discrimination. Another DL model called FCN (Fully Convolutional Networks) recorded higher accuracy (83.9%) than SVM (67.6%) and RF (65.6%) algorithms for the classification of agricultural land covers. Finally, some important research gaps from the previous studies and innovative future directions are also noted to help propel automation in agriculture up to the next level. |
Author | Arif, Khalid Mahmood Potgieter, Johan Saleem, Muhammad Hammad |
Author_xml | – sequence: 1 givenname: Muhammad Hammad orcidid: 0000-0002-3625-3021 surname: Saleem fullname: Saleem, Muhammad Hammad organization: Department of Mechanical and Electrical Engineering, School of Food and Advanced Technology, Massey University – sequence: 2 givenname: Johan surname: Potgieter fullname: Potgieter, Johan organization: Massey Agritech Partnership Research Centre, School of Food and Advanced Technology, Massey University – sequence: 3 givenname: Khalid Mahmood orcidid: 0000-0001-9042-4509 surname: Arif fullname: Arif, Khalid Mahmood email: k.arif@massey.ac.nz organization: Department of Mechanical and Electrical Engineering, School of Food and Advanced Technology, Massey University |
BookMark | eNp9kM1qGzEYRUVxoYnbF-hK0E020-pn9OPsTJKmBYdAcddCkr9xFMaSI80k9ttHsQuFLPxtdBfniMs9R5OYIiD0lZLvlBD1o9B6s4Yw2pCZJrLZfUBnVCjeUEn1pGauRcOYkJ_QeSmPhFStZWfIzcchbewQUsQh4vk6Bz_2w5gBuz2-s_4hRMA2rvA1wBYvwOYY4hovwT_E8DRCucRz_AeeA7zg1NXkIQ4VfoY-bTc1l8_oY2f7Al_-vVP09-fN8upXs7i__X01XzSeCzY0tAWw3czaVee1ch2ZKek47zyH1oIU2jnhmOLMM6cF5dI7vrJMMdtqq6zmU3Rx_Heb01uxwWxC8dD3NkIai2GSS6nqtRX99g59TGOOtZ1hQqtWi7blldJHyudUSobO-DAcphqyDb2hxLyNb47jmzq-OYxvdlVl79RtDhub96clfpRKheMa8v9WJ6xXyQmaIg |
CitedBy_id | crossref_primary_10_1007_s10668_023_03588_0 crossref_primary_10_3390_agriculture13061163 crossref_primary_10_3389_fpls_2024_1383863 crossref_primary_10_1109_ACCESS_2022_3201104 crossref_primary_10_29130_dubited_1075572 crossref_primary_10_1002_rob_22377 crossref_primary_10_1016_j_aiia_2025_02_007 crossref_primary_10_1016_j_jag_2024_103922 crossref_primary_10_3390_agriculture14091624 crossref_primary_10_1016_j_atech_2024_100614 crossref_primary_10_3390_agriengineering5030088 crossref_primary_10_3390_horticulturae8090833 crossref_primary_10_1016_j_tifs_2024_104730 crossref_primary_10_3390_geomatics2010007 crossref_primary_10_3390_rs15204949 crossref_primary_10_1016_j_jafr_2023_100814 crossref_primary_10_1109_ACCESS_2024_3422422 crossref_primary_10_3390_rs14194837 crossref_primary_10_46842_ipn_cien_v29n1a01 crossref_primary_10_3390_agronomy14030618 crossref_primary_10_1038_s41598_023_28244_5 crossref_primary_10_1016_j_eja_2024_127191 crossref_primary_10_3390_agriculture14071052 crossref_primary_10_3390_agriculture15060647 crossref_primary_10_1016_j_inffus_2023_102221 crossref_primary_10_3390_pr13020353 crossref_primary_10_3390_rs15153792 crossref_primary_10_3390_agriculture14081378 crossref_primary_10_1007_s10343_022_00794_0 crossref_primary_10_1080_17499518_2023_2182891 crossref_primary_10_3390_app14209229 crossref_primary_10_3390_agriculture13081622 crossref_primary_10_1007_s42979_024_03449_1 crossref_primary_10_3390_agronomy13030639 crossref_primary_10_1016_j_compag_2025_110094 crossref_primary_10_1016_j_isprsjprs_2024_08_018 crossref_primary_10_3389_fpls_2022_1016470 crossref_primary_10_1007_s41976_024_00186_0 crossref_primary_10_1111_jfpe_14480 crossref_primary_10_3390_rs14225846 crossref_primary_10_3389_fnbot_2024_1518878 crossref_primary_10_1038_s41598_024_81322_0 crossref_primary_10_1109_TGRS_2023_3268232 crossref_primary_10_1109_ACCESS_2024_3455244 crossref_primary_10_3390_agriculture14010124 crossref_primary_10_3390_agriculture13020357 crossref_primary_10_1007_s13201_022_01851_9 crossref_primary_10_3390_rs17060958 crossref_primary_10_1186_s13007_024_01188_1 crossref_primary_10_1109_ACCESS_2022_3176643 crossref_primary_10_3390_ani13030546 crossref_primary_10_1016_j_compag_2024_109672 crossref_primary_10_3390_agriculture15030231 crossref_primary_10_1016_j_compag_2024_109708 crossref_primary_10_1038_s41598_024_65750_6 crossref_primary_10_3390_horticulturae9101134 crossref_primary_10_1016_j_scienta_2024_113688 crossref_primary_10_3389_fpls_2023_1143326 crossref_primary_10_3389_fpls_2022_1040923 crossref_primary_10_1007_s11540_024_09763_8 crossref_primary_10_1016_j_heliyon_2024_e37141 crossref_primary_10_32628_IJSRSET2411227 crossref_primary_10_1007_s12652_023_04674_x crossref_primary_10_1016_j_eja_2024_127477 crossref_primary_10_1038_s41598_024_75391_4 crossref_primary_10_1016_j_engappai_2024_109369 crossref_primary_10_3390_rs16183538 crossref_primary_10_3390_agronomy12030589 crossref_primary_10_3390_agronomy12102551 crossref_primary_10_3390_horticulturae11010015 crossref_primary_10_3390_rs14020394 crossref_primary_10_3390_agriculture14101760 crossref_primary_10_1007_s11119_022_09929_9 crossref_primary_10_3390_ijpb14040087 crossref_primary_10_3390_agriengineering6010028 crossref_primary_10_1007_s10462_023_10674_2 crossref_primary_10_1007_s11119_023_10034_8 crossref_primary_10_12791_KSBEC_2022_31_4_270 crossref_primary_10_3390_agriculture14111964 crossref_primary_10_3390_su15107834 crossref_primary_10_1007_s11119_022_09952_w crossref_primary_10_1016_j_compag_2023_107741 crossref_primary_10_1016_j_compag_2023_108557 crossref_primary_10_1016_j_compag_2025_109968 crossref_primary_10_1109_ACCESS_2023_3312191 crossref_primary_10_3390_agriculture13122182 crossref_primary_10_3390_s22207707 crossref_primary_10_1016_j_compag_2022_106984 crossref_primary_10_3390_agronomy13061625 crossref_primary_10_3390_agriengineering6020057 crossref_primary_10_1016_j_engappai_2023_106720 crossref_primary_10_1007_s10846_022_01793_z crossref_primary_10_1016_j_isprsjprs_2023_09_006 crossref_primary_10_3390_app13084876 crossref_primary_10_1109_ACCESS_2023_3341350 crossref_primary_10_3390_agriculture15010075 crossref_primary_10_1109_JSTARS_2024_3379522 crossref_primary_10_3390_agriculture13081496 crossref_primary_10_1007_s11119_022_09937_9 crossref_primary_10_31548_dopovidi_3_109__2024_022 crossref_primary_10_1016_j_compag_2025_110286 crossref_primary_10_3390_agriculture14071099 crossref_primary_10_1007_s13218_023_00826_5 crossref_primary_10_1190_geo2024_0282_1 crossref_primary_10_1007_s11119_024_10119_y crossref_primary_10_1016_j_measurement_2024_115484 crossref_primary_10_34133_plantphenomics_0132 crossref_primary_10_3390_rs13214486 crossref_primary_10_3390_agriculture12081271 crossref_primary_10_1007_s10614_024_10627_z crossref_primary_10_1016_j_eswa_2024_125426 crossref_primary_10_1007_s11042_024_18142_x crossref_primary_10_3390_agronomy13122952 crossref_primary_10_3389_fpls_2022_850666 crossref_primary_10_3390_agriculture12081207 crossref_primary_10_1007_s11119_021_09847_2 crossref_primary_10_1109_ACCESS_2024_3394617 crossref_primary_10_1080_01431161_2023_2205984 crossref_primary_10_3390_w14233941 crossref_primary_10_12677_airr_2024_134094 crossref_primary_10_1016_j_atech_2025_100893 crossref_primary_10_3390_agronomy12051174 crossref_primary_10_1016_j_rsase_2025_101525 crossref_primary_10_1186_s12870_024_05346_4 crossref_primary_10_3389_fpls_2022_1003243 crossref_primary_10_3390_agronomy13061477 crossref_primary_10_3390_agronomy13081988 crossref_primary_10_1007_s12596_023_01445_x crossref_primary_10_22517_23447214_24589 crossref_primary_10_3389_fpls_2022_898131 crossref_primary_10_1016_j_biosystemseng_2024_07_002 crossref_primary_10_1039_D4AY01346H crossref_primary_10_1109_ACCESS_2024_3522248 crossref_primary_10_1007_s11119_023_10093_x crossref_primary_10_1109_ACCESS_2024_3373548 crossref_primary_10_3390_agriculture13020392 crossref_primary_10_3390_app132212341 crossref_primary_10_3390_drones6110329 crossref_primary_10_35633_inmateh_73_50 crossref_primary_10_2139_ssrn_4770722 crossref_primary_10_1080_17686733_2023_2167459 crossref_primary_10_1007_s11042_023_16075_5 crossref_primary_10_1007_s11119_023_10086_w crossref_primary_10_35633_inmateh_74_12 crossref_primary_10_1016_j_atech_2024_100483 crossref_primary_10_1016_j_engappai_2023_106034 crossref_primary_10_3390_agronomy15030641 crossref_primary_10_1371_journal_pone_0315670 crossref_primary_10_1007_s11540_024_09728_x crossref_primary_10_1016_j_compag_2024_109514 crossref_primary_10_1007_s11760_024_03346_3 crossref_primary_10_3390_plants13070972 crossref_primary_10_1007_s11119_022_09881_8 crossref_primary_10_1016_j_measurement_2024_114117 crossref_primary_10_3390_agriculture14101846 crossref_primary_10_1016_j_crfs_2024_100723 crossref_primary_10_1371_journal_pone_0301174 crossref_primary_10_3390_agronomy12112836 crossref_primary_10_3390_agronomy13071851 crossref_primary_10_1515_opag_2022_0396 crossref_primary_10_3389_fpls_2023_1134932 crossref_primary_10_1007_s11119_023_09996_6 crossref_primary_10_3390_agronomy13102467 crossref_primary_10_3390_rs15133211 crossref_primary_10_1007_s42979_024_02959_2 crossref_primary_10_3390_electronics12010022 crossref_primary_10_1016_j_swevo_2023_101465 crossref_primary_10_3390_agriculture15060582 crossref_primary_10_1007_s41870_023_01345_0 crossref_primary_10_2478_amns_2024_2137 crossref_primary_10_3390_agronomy12071580 crossref_primary_10_1002_rob_22263 crossref_primary_10_1016_j_compag_2024_109745 crossref_primary_10_1109_JIOT_2024_3360715 |
Cites_doi | 10.1016/j.procs.2015.12.378 10.1007/s42452-019-0785-9 10.1080/15481603.2018.1426091 10.1016/j.ijleo.2014.07.001 10.3390/rs11040410 10.1109/LGRS.2015.2483680 10.1016/j.compag.2018.11.026 10.1016/j.compag.2010.10.010 10.1016/j.rse.2011.11.020 10.3389/fpls.2019.01404 10.3390/plants8110468 10.1016/j.biosystemseng.2011.07.005 10.1007/s11119-012-9274-5 10.1016/j.suscom.2018.05.010 10.1016/j.compag.2018.04.023 10.1016/j.proeng.2011.11.2514 10.1016/j.compag.2018.02.016 10.1016/j.compag.2019.06.001 10.1016/j.compag.2017.03.016 10.1017/S2040470017001248 10.3390/s17092007 10.1109/LGRS.2017.2728698 10.1016/j.biosystemseng.2018.06.017 10.1016/j.compag.2017.09.019 10.1038/s41598-019-40066-y 10.1002/rob.21888 10.1080/2150704X.2014.889863 10.1016/j.isprsjprs.2012.04.001 10.3390/s19092023 10.3390/s20010093 10.1016/j.geodrs.2018.e00198 10.1016/j.compag.2018.12.006 10.1109/JSTARS.2019.2918242 10.1016/j.compag.2016.06.022 10.3389/fpls.2019.00209 10.1016/j.compag.2019.105174 10.1109/ACCESS.2019.2899940 10.3390/app9040643 10.1016/j.compag.2015.05.021 10.1109/LGRS.2017.2681128 10.4236/ars.2014.33011 10.1016/j.compag.2011.07.001 10.1109/MIM.2017.7951684 10.1016/j.agsy.2017.01.023 10.1016/j.procs.2013.05.187 10.1016/j.compag.2018.08.001 10.1016/j.compag.2020.105254 10.5194/isprs-archives-XLII-2-1091-2018 10.1016/j.compag.2017.01.008 10.1016/j.envsoft.2019.07.013 10.1007/s11119-020-09711-9 10.3390/drones2040039 10.3389/fpls.2017.01190 10.3390/s19030612 10.1016/j.compag.2014.11.004 10.3390/rs10071119 10.3390/rs10111690 10.1002/rob.21726 10.1016/j.comnet.2019.107036 10.1109/TIP.2018.2836321 10.1016/j.compag.2018.12.048 10.1016/j.biosystemseng.2019.03.007 10.1007/s11119-014-9372-7 10.3390/rs9060629 10.1002/rob.21699 10.1109/ACCESS.2019.2936536 10.1155/2016/3289801 10.3390/rs10010075 10.1016/j.compag.2019.104963 10.1186/s40648-019-0141-2 10.3390/rs11101157 10.1109/ACCESS.2019.2907383 10.1016/j.biosystemseng.2018.03.006 10.1017/S2040470017000206 10.1080/01431161.2015.1054047 10.1007/s11119-018-9605-2 10.5721/EuJRS20124535 10.3390/sym10010011 10.1080/01431160902788636 10.1016/j.rse.2018.04.050 10.3390/s19102398 10.3390/su9061010 10.1016/j.compag.2019.105044 10.1006/bioe.2002.0117 10.1007/s11042-019-7648-7 10.1007/s11119-020-09736-0 10.3390/rs11131584 10.1016/j.rse.2019.111593 10.1016/j.biosystemseng.2016.08.024 10.1016/j.compag.2016.06.027 10.1016/j.isprsjprs.2011.11.002 10.1016/j.patcog.2017.05.015 10.3390/rs6065019 10.1016/j.compag.2017.12.032 10.1006/bioe.2002.0061 10.1109/LRA.2018.2846289 10.3390/s16081222 10.1016/j.biosystemseng.2017.06.025 10.1016/j.compag.2018.11.005 10.1109/ACCESS.2018.2879324 10.1002/rob.21734 10.1016/j.biosystemseng.2019.12.003 10.1016/j.biosystemseng.2016.05.001 10.3390/s140712191 10.1109/JSEN.2019.2954287 10.1016/j.compeleceng.2011.11.005 10.1109/JSTARS.2018.2793849 10.1109/LRA.2017.2774979 10.1016/j.compag.2019.02.005 10.1614/WT-07-104.1 10.1109/LRA.2019.2924125 10.1016/j.compag.2016.01.029 10.34133/2019/9209727 10.1016/j.biosystemseng.2013.07.007 10.1016/j.compag.2019.105162 10.1109/LRA.2017.2667039 10.1109/TMECH.2017.2760866 10.1109/ACCESS.2018.2844405 10.1016/j.aiia.2019.05.004 10.3390/rs10081217 10.1016/j.jksuci.2010.03.003 10.1109/LRA.2018.2849514 10.1016/j.asoc.2010.01.011 10.1016/j.biosystemseng.2015.12.010 10.1155/2019/5219471 10.3390/s110606270 10.1016/j.compag.2010.01.001 10.1007/s10661-015-4489-3 10.1002/rob.21525 10.34133/2019/1525874 10.1016/j.compag.2017.10.027 10.1117/1.JRS.11.042621 10.3389/fpls.2018.01102 10.1109/CVPR.2017.690 10.1109/ICIICII.2016.0037 10.1109/CVPR.2017.195 10.1109/ICRA.2018.8460962 10.1007/978-3-319-67361-5_18 10.1007/978-3-319-48036-7_9 10.1109/CAC.2018.8623610 10.1007/978-3-319-90403-0_6 10.20944/preprints201912.0237.v1 10.1109/ICRA.2016.7487720 10.1109/CVPR.2016.91 10.1007/978-3-030-35990-4_12 10.1007/978-3-319-24574-4_28 10.1038/s41598-018-38343-3 10.1007/978-3-319-46448-0_2 10.1109/ICRA.2017.7989347 10.1109/ICRA.2017.7989612 10.1109/LGRS.2019.2930549 10.1109/CVPR.2017.243 10.1109/CVPR.2016.90 10.1016/j.compag.2020.105446 10.20944/preprints201902.0111.v1 10.1109/ICRA.2016.7487719 10.1109/SBR-LARS-R.2017.8215283 10.1109/IROS.2011.6094548 10.1007/978-3-319-19324-3_46 10.1177/1729881419897473 10.1109/WACV.2014.6835733 10.1109/IPTA.2019.8936091 10.1109/IROS.2018.8593678 10.1109/IROS.2017.8206408 10.1109/CVPR.2018.00474 10.3390/s18010018 10.1109/ICCV.2015.169 10.1109/ICInfA.2015.7279423 10.1109/ICMLA.2010.57 10.1109/CVPR.2015.7298965 10.1109/ICRA.2017.7989417 10.1109/IROS.2016.7759121 10.1109/IJCNN.2017.7966067 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2021. |
DBID | AAYXX CITATION 3V. 7ST 7WY 7WZ 7X2 7XB 87Z 88I 8FE 8FH 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ K60 K6~ L.- M0C M0K M2P PATMY PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U SOI 7S9 L.6 |
DOI | 10.1007/s11119-021-09806-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global Agricultural Science Database Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest Central ABI/INFORM Professional Advanced ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Physics Computer Science |
EISSN | 1573-1618 |
EndPage | 2091 |
ExternalDocumentID | 10_1007_s11119_021_09806_x |
GrantInformation_xml | – fundername: Ministry of Business, Innovation and Employment funderid: http://dx.doi.org/10.13039/501100003524 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67M 67Z 6NX 78A 7WY 7X2 7XC 88I 8FE 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAK LLZTM M0C M0K M2P M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PYCSY Q2X QOR QOS R89 R9I RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 Y6R YLTOR Z45 Z7R Z7U Z7V Z7W Z7Y Z83 ZMTXR ZOVNA ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7XB 8FK ABRTQ C1K L.- PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c352t-14eeaf9aadfc87bf0976b33fc3e4ae658bb5b2732c2b85136cb3da272a48a7a83 |
IEDL.DBID | BENPR |
ISSN | 1385-2256 |
IngestDate | Fri Jul 11 03:12:44 EDT 2025 Fri Jul 25 19:46:21 EDT 2025 Tue Jul 01 00:46:49 EDT 2025 Thu Apr 24 23:09:43 EDT 2025 Fri Feb 21 02:47:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Deep learning Fruit harvesting Plant disease detection Agricultural robotics Convolutional neural network Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-14eeaf9aadfc87bf0976b33fc3e4ae658bb5b2732c2b85136cb3da272a48a7a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9042-4509 0000-0002-3625-3021 |
PQID | 2587485443 |
PQPubID | 54630 |
PageCount | 39 |
ParticipantIDs | proquest_miscellaneous_2636677774 proquest_journals_2587485443 crossref_citationtrail_10_1007_s11119_021_09806_x crossref_primary_10_1007_s11119_021_09806_x springer_journals_10_1007_s11119_021_09806_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211200 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal on Advances in Precision Agriculture |
PublicationTitle | Precision agriculture |
PublicationTitleAbbrev | Precision Agric |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Cho, Lee, Jeong (CR26) 2002; 83 Quiroz, Alférez (CR124) 2020; 168 Helber, Bischke, Dengel, Borth (CR57) 2019; 12 CR161 Williams, Jones, Nejati, Seabright, Bell, Penhall (CR162) 2019; 181 Patrício, Rieder (CR118) 2018; 153 Cho, Chang, Kim, An (CR25) 2002; 82 CR32 Heremans, Van Orshoven (CR58) 2015; 36 McCool, Perez, Upcroft (CR102) 2017; 2 Liu, Mao, Kim (CR88) 2019; 19 Bierman, LaPlumm, Cadle-Davidson, Gadoury, Martinez, Sapkota (CR18) 2019; 2019 dos Santos Ferreira, Freitas, da Silva, Pistori, Folhes (CR33) 2017; 143 Eisavi, Homayouni, Yazdi, Alimohammadi (CR40) 2015; 187 Chen, Lee, Gan, Peres, Fraisse, Zhang (CR23) 2019; 11 Jodas, Marranghello, Pereira, Guido (CR71) 2013; 18 Rehman, Mahmud, Chang, Jin, Shin (CR128) 2019; 156 Dyrmann, Karstoft, Midtiby (CR38) 2016; 151 Ndikumana, Ho Tong Minh, Baghdadi, Courault, Hossard (CR109) 2018; 10 da Costa, Figueroa, Fracarolli (CR29) 2020; 190 Peña, Gutiérrez, Hervás-Martínez, Six, Plant, López-Granados (CR120) 2014; 6 Zhang, Jia, Gui, Hao, Gao, Wang (CR177) 2018; 6 Gutierrez, Ansuategi, Susperregi, Tubío, Rankić, Lenža (CR50) 2019 Ji, Zhang, Xu, Shi, Duan (CR68) 2018; 10 Birrell, Hughes, Cai, Iida (CR19) 2019; 37 De-An, Jidong, Wei, Ying, Yu (CR31) 2011; 110 Sladojevic, Arsenovic, Anderla, Culibrk, Stefanovic (CR145) 2016 CR172 Bakhshipour, Jafari (CR12) 2018; 145 CR47 Singh, Chouhan, Jain, Jain (CR144) 2019; 7 CR43 Fuentes-Pacheco, Torres-Olivares, Roman-Rangel, Cervantes, Juarez-Lopez, Hermosillo-Valadez (CR44) 2019; 11 Liu, Zhang, He, Li (CR87) 2018; 10 Wang, Vinson, Holmes, Seibel, Bechar, Nof (CR159) 2019; 9 CR168 CR169 Ubbens, Stavness (CR155) 2017; 8 Lee, Chan, Mayo, Remagnino (CR83) 2017; 71 Wan, Goudos (CR157) 2020; 168 Mahlein, Kuska, Thomas, Bohnenkamp, Alisaac, Behmann (CR99) 2017; 8 Milella, Marani, Petitti, Reina (CR103) 2019; 156 Mao, Li, Ma, Zhang, Zhou, Wang (CR100) 2020; 170 Zhang, Huang, You, Lin, Tang, Huang (CR178) 2020; 20 Ebrahimi, Khoshtaghaza, Minaei, Jamshidi (CR39) 2017; 137 Ienco, Gaetano, Dupaquier, Maurel (CR64) 2017; 14 Mahdianpari, Salehi, Rezaee, Mohammadimanesh, Zhang (CR98) 2018; 10 Partel, Kakarla, Ampatzidis (CR117) 2019; 157 Yamamoto, Guo, Yoshioka, Ninomiya (CR170) 2014; 14 Horng, Liu, Chen (CR59) 2019; 20 dos Santos Ferreira, Freitas, da Silva, Pistori, Folhes (CR34) 2019; 165 Bac, van Henten, Hemming, Edan (CR9) 2014; 31 Luus, Salmon, Van den Bergh, Maharaj (CR97) 2015; 12 CR56 CR55 CR137 CR138 Virnodkar, Pachghare, Patil, Jha (CR156) 2020; 21 CR53 Wei, Jia, Lan, Li, Zeng, Wang (CR160) 2014; 125 Dyrmann, Christiansen, Midtiby (CR36) 2018; 35 Pal (CR115) 2009; 30 CR133 Liu, Pi, Xia (CR89) 2019; 79 CR131 Wspanialy, Moussa (CR164) 2016; 127 Song, Kim (CR147) 2017; 33 Alexandridis, Tamouridou, Pantazi, Lagopodi, Kashefi, Ovakoglou (CR3) 2017; 17 Ok, Akar, Gungor (CR111) 2012; 45 CR139 Huang, Zhao, Song (CR60) 2018; 214 Wu, Zhang, Zhou, Xiong, Gu, Yang (CR166) 2019; 19 Yu, Zhang, Yang, Zhang (CR173) 2019; 163 Patrick, Pelham, Culbreath, Holbrook, De Godoy, Li (CR119) 2017; 20 Csillik, Cherbini, Johnson, Lyons, Kelly (CR28) 2018; 2 Wu, Zeng, Pan, Wang, Liu (CR165) 2019; 4 Zhao, Gong, Zhou, Huang, Liu (CR181) 2016; 148 Fan, Lu, Gong, Xie, Goodman (CR42) 2018; 11 Ishimwe, Abutaleb, Ahmed (CR65) 2014; 3 CR61 Azouz, Esmonde, Corcoran, O’Callaghan (CR8) 2015; 110 CR143 Reina, Milella, Galati (CR129) 2017; 162 Kazerouni, Saeed, Kuhnert (CR74) 2019; 1 Sengupta, Lee (CR140) 2014; 117 Bah, Hafiane, Canals (CR10) 2018; 10 Ampatzidis, Partel (CR6) 2019; 11 Behmann, Mahlein, Rumpf, Römer, Plümer (CR17) 2015; 16 Kurtulmus, Lee, Vardar (CR78) 2011; 78 Bargoti, Underwood (CR14) 2017; 34 Thanh Noi, Kappas (CR154) 2018; 18 Kussul, Lavreniuk, Skakun, Shelestov (CR79) 2017; 14 CR77 CR76 CR75 Nashat, Abdullah, Aramvith, Abdullah (CR108) 2011; 75 Joffe, Ahlin, Hu, McMurray (CR72) 2018; 250 Kwak, Park (CR82) 2019; 9 CR110 Huang, Lan, Thomson, Fang, Hoffmann, Lacey (CR63) 2010; 71 Olsen, Konovalov, Philippa, Ridd, Wood, Johns (CR112) 2019; 9 Suzuki, Rin, Maeda, Takeda (CR151) 2018; 42 Gao, Nuyttens, Lootens, He, Pieters (CR45) 2018; 170 Jha, Doshi, Patel, Shah (CR67) 2019; 2 Altaheri, Alsulaiman, Muhammad (CR4) 2019; 7 Zhang, Gui, Khattak, Wang, Gao, Jia (CR176) 2019; 7 Esgario, Krohling, Ventura (CR41) 2020; 169 Dang, Hassan, Suhyeon, Kumar Sangaiah, Mehmood, Rho (CR30) 2018 Sujaritha, Annadurai, Satheeshkumar, Sharan, Mahesh (CR150) 2017; 134 Lottes, Behley, Milioto, Stachniss (CR94) 2018; 3 Ye, Gao, Marcos-Martinez, Mallants, Bryan (CR171) 2019; 119 Adhikari, Yang, Kim (CR1) 2019; 10 Ji, Zhao, Cheng, Xu, Zhang, Wang (CR69) 2012; 38 Kusumam, Krajník, Pearson, Duckett, Cielniak (CR81) 2017; 34 Duro, Franklin, Dubé (CR35) 2012; 118 Tao, Zhou (CR152) 2017; 142 Li, Wang, Dang, Sadeghi-Niaraki, Moon (CR86) 2020; 169 Onishi, Yoshida, Kurita, Fukao, Arihara, Iwai (CR113) 2019; 6 CR126 CR127 Zhang, Qiao, Meng, Fan, Zhang (CR179) 2018; 6 CR125 Sa, Chen, Popović, Khanna, Liebisch, Nieto (CR134) 2017; 3 Ha, Moon, Kwak, Hassan, Dang, Lee (CR52) 2017; 11 CR122 CR123 Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, Rigol-Sanchez (CR132) 2012; 67 Tellaeche, Pajares, Burgos-Artizzu, Ribeiro (CR153) 2011; 11 Gongal, Amatya, Karkee, Zhang, Lewis (CR48) 2015; 116 Marani, Milella, Petitti, Reina (CR101) 2020; 22 CR80 Suh, Ijsselmuiden, Hofstee, van Henten (CR149) 2018; 174 Li, Lee, Hsu (CR85) 2011; 23 Zhang, Kovacs (CR175) 2012; 13 Wolfert, Ge, Verdouw, Bogaardt (CR163) 2017; 153 Kamilaris, Prenafeta-Boldú (CR73) 2018; 147 Al Ohali (CR2) 2011; 23 Jia, Mou, Wang, Liu, Zheng, Lian (CR70) 2020; 17 Zhang, Harrison, Pan, Li, Sargent, Atkinson (CR174) 2020; 237 Guidici, Clark (CR49) 2017; 9 Gutiérrez, Fernández-Novales, Diago, Tardaguila (CR51) 2018; 9 Sharif, Khan, Iqbal, Azam, Lali, Javed (CR142) 2018; 150 CR182 CR16 CR15 Sa, Ge, Dayoub, Upcroft, Perez, McCool (CR135) 2016; 16 CR13 Pantazi, Moshou, Tamouridou (CR116) 2019; 156 CR11 Halstead, McCool, Denman, Perez, Fookes (CR54) 2018; 3 Liu, Abd-Elrahman, Morton, Wilhelm (CR90) 2018; 55 CR96 CR95 Polder, Blok, de Villiers, van der Wolf, Kamp (CR121) 2019; 10 CR93 Padarian, Minasny, McBratney (CR114) 2019; 16 CR92 CR91 Milella, Reina, Nielsen (CR104) 2019; 20 Xie, Zhang, Xue (CR167) 2019; 19 Narvaez, Reina, Torres-Torriti, Kantor, Cheein (CR107) 2017; 22 Slaughter, Giles, Fennimore, Smith (CR146) 2008; 22 Ampatzidis, De Bellis, Luvisi (CR5) 2017; 9 Sonobe, Tani, Wang, Kobayashi, Shimamura (CR148) 2014; 5 Wang, Zhang, Wei (CR158) 2019; 158 Dyrmann, Jørgensen, Midtiby (CR37) 2017; 8 Zhao, Gong, Huang, Liu (CR180) 2016; 127 Ghosal, Zheng, Chapman, Potgieter, Jordan, Wang (CR46) 2019; 2019 CR27 Shao, Lunetta (CR141) 2012; 70 CR24 CR22 CR21 CR105 CR20 Lee, Chan, Remagnino (CR84) 2018; 27 Reina, Milella, Rouveure, Nielsen, Worst, Blas (CR130) 2016; 146 Zujevs, Osadcuks, Ahrendt (CR183) 2015; 77 Jeon, Tian, Zhu (CR66) 2011; 11 Saleem, Potgieter, Arif (CR136) 2019; 8 CR106 Arefi, Motlagh (CR7) 2013; 7 Huang, Tang, Yang, Zhu (CR62) 2016; 122 9806_CR77 9806_CR127 9806_CR76 9806_CR126 MD Bah (9806_CR10) 2018; 10 M Sujaritha (9806_CR150) 2017; 134 L Zhang (9806_CR177) 2018; 6 T Liu (9806_CR90) 2018; 55 9806_CR123 9806_CR122 9806_CR125 B Xie (9806_CR167) 2019; 19 D Guidici (9806_CR49) 2017; 9 S Ji (9806_CR68) 2018; 10 S Nashat (9806_CR108) 2011; 75 R Marani (9806_CR101) 2020; 22 XE Pantazi (9806_CR116) 2019; 156 9806_CR75 Y Li (9806_CR86) 2020; 169 M Sharif (9806_CR142) 2018; 150 VF Rodriguez-Galiano (9806_CR132) 2012; 67 B Liu (9806_CR87) 2018; 10 A Mahlein (9806_CR99) 2017; 8 A Milella (9806_CR104) 2019; 20 D Ienco (9806_CR64) 2017; 14 P Wspanialy (9806_CR164) 2016; 127 A Olsen (9806_CR112) 2019; 9 G Reina (9806_CR130) 2016; 146 9806_CR138 B Joffe (9806_CR72) 2018; 250 9806_CR137 JG Ha (9806_CR52) 2017; 11 9806_CR139 Y Shao (9806_CR141) 2012; 70 9806_CR133 FY Narvaez (9806_CR107) 2017; 22 V Partel (9806_CR117) 2019; 157 Z De-An (9806_CR31) 2011; 110 9806_CR131 9806_CR61 G-J Horng (9806_CR59) 2019; 20 SS Virnodkar (9806_CR156) 2020; 21 R Sonobe (9806_CR148) 2014; 5 P Thanh Noi (9806_CR154) 2018; 18 F Kurtulmus (9806_CR78) 2011; 78 SH Lee (9806_CR83) 2017; 71 M Pal (9806_CR115) 2009; 30 Y Al Ohali (9806_CR2) 2011; 23 A Arefi (9806_CR7) 2013; 7 A Tellaeche (9806_CR153) 2011; 11 9806_CR11 Y Onishi (9806_CR113) 2019; 6 G Polder (9806_CR121) 2019; 10 9806_CR13 S Wan (9806_CR157) 2020; 168 9806_CR15 9806_CR16 M Dyrmann (9806_CR36) 2018; 35 HA Williams (9806_CR162) 2019; 181 9806_CR91 B Huang (9806_CR60) 2018; 214 9806_CR93 9806_CR143 9806_CR92 9806_CR95 9806_CR96 DC Slaughter (9806_CR146) 2008; 22 SP Adhikari (9806_CR1) 2019; 10 M Ebrahimi (9806_CR39) 2017; 137 DC Duro (9806_CR35) 2012; 118 T Zhang (9806_CR178) 2020; 20 IA Quiroz (9806_CR124) 2020; 168 Y Yu (9806_CR173) 2019; 163 CW Bac (9806_CR9) 2014; 31 S Ghosal (9806_CR46) 2019; 2019 MF Kazerouni (9806_CR74) 2019; 1 JG Esgario (9806_CR41) 2020; 169 Y Chen (9806_CR23) 2019; 11 A dos Santos Ferreira (9806_CR34) 2019; 165 S Bargoti (9806_CR14) 2017; 34 9806_CR80 TK Alexandridis (9806_CR3) 2017; 17 Y Huang (9806_CR63) 2010; 71 A Bakhshipour (9806_CR12) 2018; 145 W Ji (9806_CR69) 2012; 38 P Helber (9806_CR57) 2019; 12 E Ndikumana (9806_CR109) 2018; 10 A Wang (9806_CR158) 2019; 158 C Wu (9806_CR165) 2019; 4 M Halstead (9806_CR54) 2018; 3 S Birrell (9806_CR19) 2019; 37 N Kussul (9806_CR79) 2017; 14 J Liu (9806_CR89) 2019; 79 S Cho (9806_CR26) 2002; 83 JR Ubbens (9806_CR155) 2017; 8 D Wang (9806_CR159) 2019; 9 M Dyrmann (9806_CR38) 2016; 151 JM Peña (9806_CR120) 2014; 6 A dos Santos Ferreira (9806_CR33) 2017; 143 9806_CR32 C McCool (9806_CR102) 2017; 2 J Gao (9806_CR45) 2018; 170 S Sladojevic (9806_CR145) 2016 Y Tao (9806_CR152) 2017; 142 9806_CR169 P Lottes (9806_CR94) 2018; 3 9806_CR168 AB Azouz (9806_CR8) 2015; 110 Y Ampatzidis (9806_CR5) 2017; 9 L Zhang (9806_CR176) 2019; 7 V Eisavi (9806_CR40) 2015; 187 A Zujevs (9806_CR183) 2015; 77 S Sengupta (9806_CR140) 2014; 117 9806_CR161 X Wei (9806_CR160) 2014; 125 J Wu (9806_CR166) 2019; 19 A Gutierrez (9806_CR50) 2019 A Patrick (9806_CR119) 2017; 20 K Suzuki (9806_CR151) 2018; 42 M Mahdianpari (9806_CR98) 2018; 10 S Cho (9806_CR25) 2002; 82 K Kusumam (9806_CR81) 2017; 34 W Jia (9806_CR70) 2020; 17 9806_CR22 9806_CR21 9806_CR24 DS Jodas (9806_CR71) 2013; 18 S Wolfert (9806_CR163) 2017; 153 9806_CR27 R Ishimwe (9806_CR65) 2014; 3 H Altaheri (9806_CR4) 2019; 7 9806_CR20 G Liu (9806_CR88) 2019; 19 9806_CR172 A Gongal (9806_CR48) 2015; 116 G-H Kwak (9806_CR82) 2019; 9 9806_CR55 9806_CR105 Y Ampatzidis (9806_CR6) 2019; 11 9806_CR56 9806_CR106 HY Jeon (9806_CR66) 2011; 11 A Milella (9806_CR103) 2019; 156 M Huang (9806_CR62) 2016; 122 C Zhang (9806_CR175) 2012; 13 I Sa (9806_CR135) 2016; 16 K Yamamoto (9806_CR170) 2014; 14 J Fuentes-Pacheco (9806_CR44) 2019; 11 Y Zhao (9806_CR180) 2016; 127 J Behmann (9806_CR17) 2015; 16 FP Luus (9806_CR97) 2015; 12 9806_CR53 9806_CR182 J Padarian (9806_CR114) 2019; 16 X Zhang (9806_CR179) 2018; 6 DI Patrício (9806_CR118) 2018; 153 A Song (9806_CR147) 2017; 33 A Kamilaris (9806_CR73) 2018; 147 I Sa (9806_CR134) 2017; 3 LM Dang (9806_CR30) 2018 S Gutiérrez (9806_CR51) 2018; 9 Y Zhao (9806_CR181) 2016; 148 TU Rehman (9806_CR128) 2019; 156 M Dyrmann (9806_CR37) 2017; 8 S Mao (9806_CR100) 2020; 170 AZ da Costa (9806_CR29) 2020; 190 9806_CR43 G Reina (9806_CR129) 2017; 162 SH Lee (9806_CR84) 2018; 27 O Csillik (9806_CR28) 2018; 2 9806_CR47 L Ye (9806_CR171) 2019; 119 Z Fan (9806_CR42) 2018; 11 P Li (9806_CR85) 2011; 23 9806_CR110 HK Suh (9806_CR149) 2018; 174 S Heremans (9806_CR58) 2015; 36 A Bierman (9806_CR18) 2019; 2019 K Jha (9806_CR67) 2019; 2 C Zhang (9806_CR174) 2020; 237 UP Singh (9806_CR144) 2019; 7 AO Ok (9806_CR111) 2012; 45 MH Saleem (9806_CR136) 2019; 8 |
References_xml | – ident: CR22 – volume: 77 start-page: 227 year: 2015 end-page: 233 ident: CR183 article-title: Trends in robotic sensor technologies for fruit harvesting: 2010–2015 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.12.378 – volume: 1 start-page: 756 issue: 7 year: 2019 ident: CR74 article-title: Fully-automatic natural plant recognition system using deep neural network for dynamic outdoor environments publication-title: SN Applied Sciences doi: 10.1007/s42452-019-0785-9 – volume: 55 start-page: 243 issue: 2 year: 2018 end-page: 264 ident: CR90 article-title: Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system publication-title: GIScience & Remote Sensing doi: 10.1080/15481603.2018.1426091 – volume: 125 start-page: 5684 issue: 19 year: 2014 end-page: 5689 ident: CR160 article-title: Automatic method of fruit object extraction under complex agricultural background for vision system of fruit picking robot publication-title: Optik-International Journal for Light and Electron Optics doi: 10.1016/j.ijleo.2014.07.001 – volume: 11 start-page: 410 issue: 4 year: 2019 ident: CR6 article-title: UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence publication-title: Remote Sensing doi: 10.3390/rs11040410 – volume: 12 start-page: 2448 issue: 12 year: 2015 end-page: 2452 ident: CR97 article-title: Multiview deep learning for land-use classification publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2015.2483680 – volume: 156 start-page: 293 year: 2019 end-page: 306 ident: CR103 article-title: In-field high throughput grapevine phenotyping with a consumer-grade depth camera publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.11.026 – volume: 75 start-page: 147 issue: 1 year: 2011 end-page: 158 ident: CR108 article-title: Support vector machine approach to real-time inspection of biscuits on moving conveyor belt publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2010.10.010 – volume: 118 start-page: 259 year: 2012 end-page: 272 ident: CR35 article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.11.020 – volume: 10 start-page: 1404 year: 2019 ident: CR1 article-title: Learning semantic graphics using convolutional encoder-decoder network for autonomous weeding in paddy field publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2019.01404 – ident: CR16 – volume: 8 start-page: 468 issue: 11 year: 2019 ident: CR136 article-title: Plant disease detection and classification by deep learning publication-title: Plants doi: 10.3390/plants8110468 – volume: 110 start-page: 112 issue: 2 year: 2011 end-page: 122 ident: CR31 article-title: Design and control of an apple harvesting robot publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2011.07.005 – volume: 13 start-page: 693 issue: 6 year: 2012 end-page: 712 ident: CR175 article-title: The application of small unmanned aerial systems for precision agriculture: A review publication-title: Precision Agriculture doi: 10.1007/s11119-012-9274-5 – ident: CR138 – year: 2018 ident: CR30 article-title: UAV based wilt detection system via convolutional neural networks publication-title: Sustainable Computing: Informatics and Systems doi: 10.1016/j.suscom.2018.05.010 – volume: 150 start-page: 220 year: 2018 end-page: 234 ident: CR142 article-title: Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.04.023 – volume: 23 start-page: 351 year: 2011 end-page: 366 ident: CR85 article-title: Review on fruit harvesting method for potential use of automatic fruit harvesting systems publication-title: Procedia Engineering doi: 10.1016/j.proeng.2011.11.2514 – volume: 147 start-page: 70 year: 2018 end-page: 90 ident: CR73 article-title: Deep learning in agriculture: A survey publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.02.016 – ident: CR80 – volume: 163 start-page: 104846 year: 2019 ident: CR173 article-title: Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.06.001 – ident: CR77 – volume: 137 start-page: 52 year: 2017 end-page: 58 ident: CR39 article-title: Vision-based pest detection based on SVM classification method publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2017.03.016 – volume: 8 start-page: 238 issue: 2 year: 2017 end-page: 243 ident: CR99 article-title: Plant disease detection by hyperspectral imaging: From the lab to the field publication-title: Advances in Animal Biosciences doi: 10.1017/S2040470017001248 – ident: CR106 – ident: CR182 – volume: 17 start-page: 2007 issue: 9 year: 2017 ident: CR3 article-title: Novelty detection classifiers in weed mapping: Silybum marianum detection on UAV multispectral images publication-title: Sensors doi: 10.3390/s17092007 – volume: 14 start-page: 1685 issue: 10 year: 2017 end-page: 1689 ident: CR64 article-title: Land cover classification via multitemporal spatial data by deep recurrent neural networks publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2017.2728698 – volume: 174 start-page: 50 year: 2018 end-page: 65 ident: CR149 article-title: Transfer learning for the classification of sugar beet and volunteer potato under field conditions publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2018.06.017 – volume: 142 start-page: 388 year: 2017 end-page: 396 ident: CR152 article-title: Automatic apple recognition based on the fusion of color and 3D feature for robotic fruit picking publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2017.09.019 – volume: 9 start-page: 4377 issue: 1 year: 2019 ident: CR159 article-title: Early detection of tomato spotted wilt virus by hyperspectral imaging and outlier removal auxiliary classifier generative adversarial nets (OR-AC-GAN) publication-title: Scientific Reports doi: 10.1038/s41598-019-40066-y – volume: 37 start-page: 225 year: 2019 end-page: 245 ident: CR19 article-title: A field-tested robotic harvesting system for iceberg lettuce publication-title: Journal of Field Robotics doi: 10.1002/rob.21888 – volume: 5 start-page: 157 issue: 2 year: 2014 end-page: 164 ident: CR148 article-title: Random forest classification of crop type using multi-temporal TerraSAR-X dual-polarimetric data publication-title: Remote Sensing Letters doi: 10.1080/2150704X.2014.889863 – volume: 70 start-page: 78 year: 2012 end-page: 87 ident: CR141 article-title: Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2012.04.001 – ident: CR92 – volume: 19 start-page: 2023 issue: 9 year: 2019 ident: CR88 article-title: A mature-tomato detection algorithm using machine learning and color analysis publication-title: Sensors doi: 10.3390/s19092023 – volume: 20 start-page: 93 issue: 1 year: 2020 ident: CR178 article-title: An autonomous fruit and vegetable harvester with a low-cost gripper using a 3D sesnsor publication-title: Sensors doi: 10.3390/s20010093 – volume: 16 start-page: e00198 year: 2019 ident: CR114 article-title: Using deep learning to predict soil properties from regional spectral data publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2018.e00198 – volume: 156 start-page: 585 year: 2019 end-page: 605 ident: CR128 article-title: Current and future applications of statistical machine learning algorithms for agricultural machine vision systems publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.12.006 – volume: 12 start-page: 2217 issue: 7 year: 2019 end-page: 2226 ident: CR57 article-title: Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2019.2918242 – ident: CR11 – volume: 127 start-page: 311 year: 2016 end-page: 323 ident: CR180 article-title: A review of key techniques of vision-based control for harvesting robot publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2016.06.022 – volume: 10 start-page: 209 year: 2019 ident: CR121 article-title: Potato virus y detection in seed potatoes using deep learning on hyperspectral images publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2019.00209 – volume: 169 start-page: 105174 year: 2020 ident: CR86 article-title: Crop pest recognition in natural scenes using convolutional neural networks publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.105174 – volume: 7 start-page: 56028 year: 2019 end-page: 56038 ident: CR176 article-title: Multi-task cascaded convolutional networks based intelligent fruit detection for designing automated robot publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2899940 – volume: 9 start-page: 643 issue: 4 year: 2019 ident: CR82 article-title: Impact of texture information on crop classification with machine learning and UAV images publication-title: Applied Sciences doi: 10.3390/app9040643 – volume: 250 start-page: 1 year: 2018 end-page: 6 ident: CR72 article-title: Vision-guided robotic leaf picking publication-title: EasyChair Preprint – volume: 116 start-page: 8 year: 2015 end-page: 19 ident: CR48 article-title: Sensors and systems for fruit detection and localization: A review publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2015.05.021 – volume: 14 start-page: 778 issue: 5 year: 2017 end-page: 782 ident: CR79 article-title: Deep learning classification of land cover and crop types using remote sensing data publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2017.2681128 – volume: 3 start-page: 128 issue: 03 year: 2014 ident: CR65 article-title: Applications of thermal imaging in agriculture: A review publication-title: Advances in Remote Sensing doi: 10.4236/ars.2014.33011 – volume: 78 start-page: 140 issue: 2 year: 2011 end-page: 149 ident: CR78 article-title: Green citrus detection using ‘eigenfruit’, color and circular Gabor texture features under natural outdoor conditions publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2011.07.001 – volume: 20 start-page: 4 issue: 3 year: 2017 end-page: 12 ident: CR119 article-title: High throughput phenotyping of tomato spot wilt disease in peanuts using unmanned aerial systems and multispectral imaging publication-title: IEEE Instrumentation & Measurement Magazine doi: 10.1109/MIM.2017.7951684 – volume: 153 start-page: 69 year: 2017 end-page: 80 ident: CR163 article-title: Big data in smart farming: A review publication-title: Agricultural Systems doi: 10.1016/j.agsy.2017.01.023 – ident: CR126 – volume: 18 start-page: 240 year: 2013 end-page: 249 ident: CR71 article-title: Comparing support vector machines and artificial neural networks in the recognition of steering angle for driving of mobile robots through paths in plantations publication-title: Procedia Computer Science doi: 10.1016/j.procs.2013.05.187 – volume: 153 start-page: 69 year: 2018 end-page: 81 ident: CR118 article-title: Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.08.001 – volume: 170 start-page: 105254 year: 2020 ident: CR100 article-title: Automatic cucumber recognition algorithm for harvesting robots in the natural environment using deep learning and multi-feature fusion publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105254 – volume: 42 start-page: 1091 issue: 2 year: 2018 end-page: 1096 ident: CR151 article-title: Forest cover classification using geospatial multimodal DaTA publication-title: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences doi: 10.5194/isprs-archives-XLII-2-1091-2018 – volume: 134 start-page: 160 year: 2017 end-page: 171 ident: CR150 article-title: Weed detecting robot in sugarcane fields using fuzzy real time classifier publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2017.01.008 – volume: 119 start-page: 407 year: 2019 end-page: 417 ident: CR171 article-title: Projecting Australia's forest cover dynamics and exploring influential factors using deep learning publication-title: Environmental Modelling & Software doi: 10.1016/j.envsoft.2019.07.013 – ident: CR91 – ident: CR47 – volume: 21 start-page: 1121 year: 2020 end-page: 1155 ident: CR156 article-title: Remote sensing and machine learning for crop water stress determination in various crops: A critical review publication-title: Precision Agriculture doi: 10.1007/s11119-020-09711-9 – volume: 2 start-page: 39 issue: 4 year: 2018 ident: CR28 article-title: Identification of citrus trees from unmanned aerial vehicle imagery using convolutional neural networks publication-title: Drones doi: 10.3390/drones2040039 – volume: 8 start-page: 1190 year: 2017 ident: CR155 article-title: Deep plant phenomics: a deep learning platform for complex plant phenotyping tasks publication-title: Frontiers in plant science doi: 10.3389/fpls.2017.01190 – volume: 19 start-page: 612 issue: 3 year: 2019 ident: CR166 article-title: Automatic recognition of ripening tomatoes by combining multi-feature fusion with a bi-layer classification strategy for harvesting robots publication-title: Sensors doi: 10.3390/s19030612 – volume: 110 start-page: 162 year: 2015 end-page: 170 ident: CR8 article-title: Development of a teat sensing system for robotic milking by combining thermal imaging and stereovision technique publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2014.11.004 – volume: 10 start-page: 1119 issue: 7 year: 2018 ident: CR98 article-title: Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery publication-title: Remote Sensing doi: 10.3390/rs10071119 – volume: 10 start-page: 1690 issue: 11 year: 2018 ident: CR10 article-title: Deep learning with unsupervised data labeling for weed detection in line crops in UAV images publication-title: Remote Sensing doi: 10.3390/rs10111690 – ident: CR137 – volume: 34 start-page: 1505 issue: 8 year: 2017 end-page: 1518 ident: CR81 article-title: 3D-vision based detection, localization, and sizing of broccoli heads in the field publication-title: Journal of Field Robotics doi: 10.1002/rob.21726 – volume: 168 start-page: 107036 year: 2020 ident: CR157 article-title: Faster R-CNN for multi-class fruit detection using a robotic vision system publication-title: Computer Networks doi: 10.1016/j.comnet.2019.107036 – volume: 27 start-page: 4287 issue: 9 year: 2018 end-page: 4301 ident: CR84 article-title: Multi-organ plant classification based on convolutional and recurrent neural networks publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2018.2836321 – volume: 157 start-page: 339 year: 2019 end-page: 350 ident: CR117 article-title: Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.12.048 – ident: CR27 – volume: 181 start-page: 140 year: 2019 end-page: 156 ident: CR162 article-title: Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2019.03.007 – volume: 16 start-page: 239 issue: 3 year: 2015 end-page: 260 ident: CR17 article-title: A review of advanced machine learning methods for the detection of biotic stress in precision crop protection publication-title: Precision Agriculture doi: 10.1007/s11119-014-9372-7 – volume: 9 start-page: 629 issue: 6 year: 2017 ident: CR49 article-title: One-Dimensional convolutional neural network land-cover classification of multi-seasonal hyperspectral imagery in the San Francisco Bay Area, California publication-title: Remote Sensing doi: 10.3390/rs9060629 – ident: CR123 – volume: 34 start-page: 1039 issue: 6 year: 2017 end-page: 1060 ident: CR14 article-title: Image segmentation for fruit detection and yield estimation in apple orchards publication-title: Journal of Field Robotics doi: 10.1002/rob.21699 – volume: 7 start-page: 117115 year: 2019 end-page: 117133 ident: CR4 article-title: Date fruit classification for robotic harvesting in a natural environment using deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936536 – year: 2016 ident: CR145 article-title: Deep neural networks based recognition of plant diseases by leaf image classification publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2016/3289801 – ident: CR139 – ident: CR13 – volume: 10 start-page: 75 issue: 1 year: 2018 ident: CR68 article-title: 3D convolutional neural networks for crop classification with multi-temporal remote sensing images publication-title: Remote Sensing doi: 10.3390/rs10010075 – volume: 165 start-page: 104963 year: 2019 ident: CR34 article-title: Unsupervised deep learning and semi-automatic data labeling in weed discrimination publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.104963 – ident: CR55 – volume: 6 start-page: 13 issue: 1 year: 2019 ident: CR113 article-title: An automated fruit harvesting robot by using deep learning publication-title: ROBOMECH Journal doi: 10.1186/s40648-019-0141-2 – volume: 11 start-page: 1157 issue: 10 year: 2019 ident: CR44 article-title: Fig plant segmentation from aerial images using a deep convolutional encoder-decoder network publication-title: Remote Sensing doi: 10.3390/rs11101157 – volume: 7 start-page: 43721 year: 2019 end-page: 43729 ident: CR144 article-title: Multilayer convolution neural network for the classification of mango leaves infected by anthracnose disease publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2907383 – ident: CR24 – volume: 170 start-page: 39 year: 2018 end-page: 50 ident: CR45 article-title: Recognising weeds in a maize crop using a random forest machine-learning algorithm and near-infrared snapshot mosaic hyperspectral imagery publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2018.03.006 – volume: 8 start-page: 842 issue: 2 year: 2017 end-page: 847 ident: CR37 article-title: RoboWeedSupport-Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network publication-title: Advances in Animal Biosciences doi: 10.1017/S2040470017000206 – ident: CR125 – volume: 36 start-page: 2934 issue: 11 year: 2015 end-page: 2962 ident: CR58 article-title: Machine learning methods for sub-pixel land-cover classification in the spatially heterogeneous region of Flanders (Belgium): A multi-criteria comparison publication-title: International Journal of Remote Sensing doi: 10.1080/01431161.2015.1054047 – ident: CR93 – volume: 20 start-page: 423 issue: 2 year: 2019 end-page: 444 ident: CR104 article-title: A multi-sensor robotic platform for ground mapping and estimation beyond the visible spectrum publication-title: Precision Agriculture doi: 10.1007/s11119-018-9605-2 – volume: 45 start-page: 421 issue: 1 year: 2012 end-page: 432 ident: CR111 article-title: Evaluation of random forest method for agricultural crop classification publication-title: European Journal of Remote Sensing doi: 10.5721/EuJRS20124535 – ident: CR131 – volume: 10 start-page: 11 issue: 1 year: 2018 ident: CR87 article-title: Identification of apple leaf diseases based on deep convolutional neural networks publication-title: Symmetry doi: 10.3390/sym10010011 – volume: 30 start-page: 3835 issue: 14 year: 2009 end-page: 3841 ident: CR115 article-title: Extreme-learning-machine-based land cover classification publication-title: International Journal of Remote Sensing doi: 10.1080/01431160902788636 – volume: 214 start-page: 73 year: 2018 end-page: 86 ident: CR60 article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2018.04.050 – volume: 19 start-page: 2398 issue: 10 year: 2019 ident: CR167 article-title: Deep convolutional neural network for mapping smallholder agriculture using high spatial resolution satellite image publication-title: Sensors doi: 10.3390/s19102398 – volume: 9 start-page: 1010 issue: 6 year: 2017 ident: CR5 article-title: iPathology: robotic applications and management of plants and plant diseases publication-title: Sustainability doi: 10.3390/su9061010 – volume: 168 start-page: 105044 year: 2020 ident: CR124 article-title: Image recognition of Legacy blueberries in a Chilean smart farm through deep learning publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.105044 – volume: 83 start-page: 275 issue: 3 year: 2002 end-page: 280 ident: CR26 article-title: AE—automation and emerging technologies: Weed–plant discrimination by machine vision and artificial neural network publication-title: Biosystems Engineering doi: 10.1006/bioe.2002.0117 – volume: 79 start-page: 9403 year: 2019 end-page: 9417 ident: CR89 article-title: A novel and high precision tomato maturity recognition algorithm based on multi-level deep residual network publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-019-7648-7 – ident: CR61 – volume: 22 start-page: 387 year: 2020 end-page: 413 ident: CR101 article-title: Deep neural networks for grape bunch segmentation in natural images from a consumer-grade camera publication-title: Precision Agriculture doi: 10.1007/s11119-020-09736-0 – volume: 11 start-page: 1584 issue: 13 year: 2019 ident: CR23 article-title: Strawberry Yield Prediction Based on a Deep Neural Network Using High-Resolution Aerial Orthoimages publication-title: Remote Sensing doi: 10.3390/rs11131584 – volume: 18 start-page: 18 issue: 1 year: 2018 ident: CR154 article-title: Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery publication-title: Sensors – volume: 237 start-page: 111593 year: 2020 ident: CR174 article-title: Scale Sequence Joint Deep Learning (SS-JDL) for land use and land cover classification publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2019.111593 – volume: 151 start-page: 72 year: 2016 end-page: 80 ident: CR38 article-title: Plant species classification using deep convolutional neural network publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2016.08.024 – volume: 127 start-page: 487 year: 2016 end-page: 494 ident: CR164 article-title: Early powdery mildew detection system for application in greenhouse automation publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2016.06.027 – volume: 67 start-page: 93 year: 2012 end-page: 104 ident: CR132 article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2011.11.002 – volume: 71 start-page: 1 year: 2017 end-page: 13 ident: CR83 article-title: How deep learning extracts and learns leaf features for plant classification publication-title: Pattern Recognition doi: 10.1016/j.patcog.2017.05.015 – volume: 6 start-page: 5019 issue: 6 year: 2014 end-page: 5041 ident: CR120 article-title: Object-based image classification of summer crops with machine learning methods publication-title: Remote Sensing doi: 10.3390/rs6065019 – volume: 145 start-page: 153 year: 2018 end-page: 160 ident: CR12 article-title: Evaluation of support vector machine and artificial neural networks in weed detection using shape features publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2017.12.032 – ident: CR21 – volume: 82 start-page: 143 issue: 2 year: 2002 end-page: 149 ident: CR25 article-title: Development of a three-degrees-of-freedom robot for harvesting lettuce using machine vision and fuzzy logic control publication-title: Biosystems Engineering doi: 10.1006/bioe.2002.0061 – volume: 3 start-page: 2870 issue: 4 year: 2018 end-page: 2877 ident: CR94 article-title: Fully convolutional networks with sequential information for robust crop and weed detection in precision farming publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2018.2846289 – volume: 16 start-page: 1222 issue: 8 year: 2016 ident: CR135 article-title: Deepfruits: A fruit detection system using deep neural networks publication-title: Sensors doi: 10.3390/s16081222 – volume: 162 start-page: 124 year: 2017 end-page: 139 ident: CR129 article-title: Terrain assessment for precision agriculture using vehicle dynamic modelling publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2017.06.025 – ident: CR96 – volume: 156 start-page: 96 year: 2019 end-page: 104 ident: CR116 article-title: Automated leaf disease detection in different crop species through image features analysis and One Class Classifiers publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.11.005 – ident: CR75 – ident: CR15 – volume: 6 start-page: 67940 year: 2018 end-page: 67950 ident: CR177 article-title: Deep learning based improved classification system for designing tomato harvesting robot publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879324 – volume: 35 start-page: 202 issue: 2 year: 2018 end-page: 212 ident: CR36 article-title: Estimation of plant species by classifying plants and leaves in combination publication-title: Journal of Field Robotics doi: 10.1002/rob.21734 – volume: 190 start-page: 131 year: 2020 end-page: 144 ident: CR29 article-title: Computer vision based detection of external defects on tomatoes using deep learning publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2019.12.003 – ident: CR32 – volume: 148 start-page: 127 year: 2016 end-page: 137 ident: CR181 article-title: Detecting tomatoes in greenhouse scenes by combining AdaBoost classifier and colour analysis publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2016.05.001 – volume: 14 start-page: 12191 issue: 7 year: 2014 end-page: 12206 ident: CR170 article-title: On plant detection of intact tomato fruits using image analysis and machine learning methods publication-title: Sensors doi: 10.3390/s140712191 – ident: CR105 – ident: CR168 – volume: 20 start-page: 2766 year: 2019 end-page: 2781 ident: CR59 article-title: The smart image recognition mechanism for crop harvesting system in intelligent agriculture publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2019.2954287 – volume: 38 start-page: 1186 issue: 5 year: 2012 end-page: 1195 ident: CR69 article-title: Automatic recognition vision system guided for apple harvesting robot publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2011.11.005 – ident: CR122 – ident: CR143 – volume: 11 start-page: 876 issue: 3 year: 2018 end-page: 887 ident: CR42 article-title: Automatic tobacco plant detection in UAV images via deep neural networks publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2018.2793849 – volume: 3 start-page: 588 issue: 1 year: 2017 end-page: 595 ident: CR134 article-title: weednet: Dense semantic weed classification using multispectral images and mav for smart farming publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2017.2774979 – ident: CR95 – volume: 158 start-page: 226 year: 2019 end-page: 240 ident: CR158 article-title: A review on weed detection using ground-based machine vision and image processing techniques publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.02.005 – volume: 22 start-page: 378 issue: 2 year: 2008 end-page: 384 ident: CR146 article-title: Multispectral machine vision identification of lettuce and weed seedlings for automated weed control publication-title: Weed Technology doi: 10.1614/WT-07-104.1 – ident: CR43 – volume: 4 start-page: 3113 issue: 4 year: 2019 end-page: 3120 ident: CR165 article-title: Plant phenotyping by deep-learning-based planner for multi-robots publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2019.2924125 – volume: 122 start-page: 139 year: 2016 end-page: 145 ident: CR62 article-title: Classification of maize seeds of different years based on hyperspectral imaging and model updating publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2016.01.029 – ident: CR53 – volume: 9 start-page: 1 issue: 1 year: 2019 end-page: 12 ident: CR112 article-title: DeepWeeds: A multiclass weed species image dataset for deep learning publication-title: Scientific Reports – volume: 2019 start-page: 9209727 year: 2019 ident: CR18 article-title: A high-throughput phenotyping system using machine vision to quantify severity of grapevine powdery mildew publication-title: Plant Phenomics doi: 10.34133/2019/9209727 – ident: CR133 – volume: 117 start-page: 51 year: 2014 end-page: 61 ident: CR140 article-title: Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2013.07.007 – volume: 169 start-page: 105162 year: 2020 ident: CR41 article-title: Deep learning for classification and severity estimation of coffee leaf biotic stress publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.105162 – volume: 2 start-page: 1344 issue: 3 year: 2017 end-page: 1351 ident: CR102 article-title: Mixtures of lightweight deep convolutional neural networks: Applied to agricultural robotics publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2017.2667039 – volume: 22 start-page: 2428 issue: 6 year: 2017 end-page: 2439 ident: CR107 article-title: A survey of ranging and imaging techniques for precision agriculture phenotyping publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2017.2760866 – volume: 17 start-page: 1729881419897473 issue: 1 year: 2020 ident: CR70 article-title: Fruit recognition based on pulse coupled neural network and genetic Elman algorithm application in apple harvesting robot publication-title: International Journal of Advanced Robotic Systems – volume: 6 start-page: 30370 year: 2018 end-page: 30377 ident: CR179 article-title: Identification of maize leaf diseases using improved deep convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2844405 – ident: CR56 – ident: CR169 – volume: 2 start-page: 1 year: 2019 end-page: 12 ident: CR67 article-title: A comprehensive review on automation in agriculture using artificial intelligence publication-title: Artificial Intelligence in Agriculture doi: 10.1016/j.aiia.2019.05.004 – volume: 10 start-page: 1217 issue: 8 year: 2018 ident: CR109 article-title: Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue publication-title: France. Remote Sensing doi: 10.3390/rs10081217 – volume: 23 start-page: 29 issue: 1 year: 2011 end-page: 36 ident: CR2 article-title: Computer vision based date fruit grading system: Design and implementation publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2010.03.003 – volume: 3 start-page: 2995 issue: 4 year: 2018 end-page: 3002 ident: CR54 article-title: Fruit quantity and ripeness estimation using a robotic vision system publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2018.2849514 – ident: CR127 – volume: 11 start-page: 908 issue: 1 year: 2011 end-page: 915 ident: CR153 article-title: A computer vision approach for weeds identification through Support Vector Machines publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2010.01.011 – ident: CR161 – volume: 146 start-page: 114 year: 2016 end-page: 132 ident: CR130 article-title: Ambient awareness for agricultural robotic vehicles publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2015.12.010 – year: 2019 ident: CR50 article-title: A benchmarking of learning strategies for pest detection and identification on tomato plants for autonomous scouting robots using internal databases publication-title: Journal of Sensors doi: 10.1155/2019/5219471 – volume: 11 start-page: 6270 issue: 6 year: 2011 end-page: 6283 ident: CR66 article-title: Robust crop and weed segmentation under uncontrolled outdoor illumination publication-title: Sensors doi: 10.3390/s110606270 – volume: 7 start-page: 699 issue: 5 year: 2013 ident: CR7 article-title: Development of an expert system based on wavelet transform and artificial neural networks for the ripe tomato harvesting robot publication-title: Australian Journal of Crop Science – volume: 33 start-page: 1061 year: 2017 end-page: 1073 ident: CR147 article-title: Deep learning-based hyperspectral image classification with application to environmental geographic information systems publication-title: Korean Journal of Remote Sensing – ident: CR172 – volume: 71 start-page: 107 issue: 2 year: 2010 end-page: 127 ident: CR63 article-title: Development of soft computing and applications in agricultural and biological engineering publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2010.01.001 – volume: 187 start-page: 291 issue: 5 year: 2015 ident: CR40 article-title: Land cover mapping based on random forest classification of multitemporal spectral and thermal images publication-title: Environmental Monitoring and Assessment doi: 10.1007/s10661-015-4489-3 – ident: CR110 – volume: 31 start-page: 888 issue: 6 year: 2014 end-page: 911 ident: CR9 article-title: Harvesting robots for high-value crops: State-of-the-art review and challenges ahead publication-title: Journal of Field Robotics doi: 10.1002/rob.21525 – volume: 2019 start-page: 1525874 year: 2019 ident: CR46 article-title: A weakly supervised deep learning framework for sorghum head detection and counting publication-title: Plant Phenomics doi: 10.34133/2019/1525874 – ident: CR76 – volume: 143 start-page: 314 year: 2017 end-page: 324 ident: CR33 article-title: Weed detection in soybean crops using ConvNets publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2017.10.027 – volume: 11 start-page: 042621 issue: 4 year: 2017 ident: CR52 article-title: Deep convolutional neural network for classifying Fusarium wilt of radish from unmanned aerial vehicles publication-title: Journal of Applied Remote Sensing doi: 10.1117/1.JRS.11.042621 – ident: CR20 – volume: 9 start-page: 1102 year: 2018 ident: CR51 article-title: On-the-go hyperspectral imaging under field conditions and machine learning for the classification of grapevine varieties publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2018.01102 – volume: 35 start-page: 202 issue: 2 year: 2018 ident: 9806_CR36 publication-title: Journal of Field Robotics doi: 10.1002/rob.21734 – ident: 9806_CR126 doi: 10.1109/CVPR.2017.690 – volume: 117 start-page: 51 year: 2014 ident: 9806_CR140 publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2013.07.007 – volume: 137 start-page: 52 year: 2017 ident: 9806_CR39 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2017.03.016 – volume: 13 start-page: 693 issue: 6 year: 2012 ident: 9806_CR175 publication-title: Precision Agriculture doi: 10.1007/s11119-012-9274-5 – volume: 10 start-page: 1404 year: 2019 ident: 9806_CR1 publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2019.01404 – volume: 71 start-page: 1 year: 2017 ident: 9806_CR83 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2017.05.015 – volume: 7 start-page: 117115 year: 2019 ident: 9806_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936536 – ident: 9806_CR168 doi: 10.1109/ICIICII.2016.0037 – volume: 116 start-page: 8 year: 2015 ident: 9806_CR48 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2015.05.021 – ident: 9806_CR127 – ident: 9806_CR27 doi: 10.1109/CVPR.2017.195 – ident: 9806_CR106 doi: 10.1109/ICRA.2018.8460962 – ident: 9806_CR16 doi: 10.1007/978-3-319-67361-5_18 – volume: 14 start-page: 1685 issue: 10 year: 2017 ident: 9806_CR64 publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2017.2728698 – ident: 9806_CR110 – volume: 19 start-page: 2398 issue: 10 year: 2019 ident: 9806_CR167 publication-title: Sensors doi: 10.3390/s19102398 – volume: 110 start-page: 112 issue: 2 year: 2011 ident: 9806_CR31 publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2011.07.005 – volume: 23 start-page: 351 year: 2011 ident: 9806_CR85 publication-title: Procedia Engineering doi: 10.1016/j.proeng.2011.11.2514 – volume: 7 start-page: 699 issue: 5 year: 2013 ident: 9806_CR7 publication-title: Australian Journal of Crop Science – ident: 9806_CR122 doi: 10.1007/978-3-319-48036-7_9 – ident: 9806_CR182 doi: 10.1109/CAC.2018.8623610 – volume: 110 start-page: 162 year: 2015 ident: 9806_CR8 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2014.11.004 – volume: 2 start-page: 1 year: 2019 ident: 9806_CR67 publication-title: Artificial Intelligence in Agriculture doi: 10.1016/j.aiia.2019.05.004 – volume: 20 start-page: 93 issue: 1 year: 2020 ident: 9806_CR178 publication-title: Sensors doi: 10.3390/s20010093 – volume: 163 start-page: 104846 year: 2019 ident: 9806_CR173 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.06.001 – ident: 9806_CR20 doi: 10.1007/978-3-319-90403-0_6 – volume: 82 start-page: 143 issue: 2 year: 2002 ident: 9806_CR25 publication-title: Biosystems Engineering doi: 10.1006/bioe.2002.0061 – ident: 9806_CR172 doi: 10.20944/preprints201912.0237.v1 – volume: 20 start-page: 2766 year: 2019 ident: 9806_CR59 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2019.2954287 – volume: 7 start-page: 56028 year: 2019 ident: 9806_CR176 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2899940 – ident: 9806_CR95 doi: 10.1109/ICRA.2016.7487720 – volume: 16 start-page: e00198 year: 2019 ident: 9806_CR114 publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2018.e00198 – volume: 148 start-page: 127 year: 2016 ident: 9806_CR181 publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2016.05.001 – volume: 2 start-page: 1344 issue: 3 year: 2017 ident: 9806_CR102 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2017.2667039 – volume: 168 start-page: 107036 year: 2020 ident: 9806_CR157 publication-title: Computer Networks doi: 10.1016/j.comnet.2019.107036 – ident: 9806_CR125 doi: 10.1109/CVPR.2016.91 – ident: 9806_CR15 – volume: 79 start-page: 9403 year: 2019 ident: 9806_CR89 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-019-7648-7 – volume: 22 start-page: 378 issue: 2 year: 2008 ident: 9806_CR146 publication-title: Weed Technology doi: 10.1614/WT-07-104.1 – volume: 157 start-page: 339 year: 2019 ident: 9806_CR117 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.12.048 – volume: 11 start-page: 410 issue: 4 year: 2019 ident: 9806_CR6 publication-title: Remote Sensing doi: 10.3390/rs11040410 – volume: 30 start-page: 3835 issue: 14 year: 2009 ident: 9806_CR115 publication-title: International Journal of Remote Sensing doi: 10.1080/01431160902788636 – volume: 16 start-page: 239 issue: 3 year: 2015 ident: 9806_CR17 publication-title: Precision Agriculture doi: 10.1007/s11119-014-9372-7 – volume: 11 start-page: 876 issue: 3 year: 2018 ident: 9806_CR42 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2018.2793849 – volume: 214 start-page: 73 year: 2018 ident: 9806_CR60 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2018.04.050 – volume: 10 start-page: 75 issue: 1 year: 2018 ident: 9806_CR68 publication-title: Remote Sensing doi: 10.3390/rs10010075 – volume: 14 start-page: 778 issue: 5 year: 2017 ident: 9806_CR79 publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2017.2681128 – volume: 162 start-page: 124 year: 2017 ident: 9806_CR129 publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2017.06.025 – volume: 127 start-page: 311 year: 2016 ident: 9806_CR180 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2016.06.022 – volume: 119 start-page: 407 year: 2019 ident: 9806_CR171 publication-title: Environmental Modelling & Software doi: 10.1016/j.envsoft.2019.07.013 – volume: 67 start-page: 93 year: 2012 ident: 9806_CR132 publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2011.11.002 – volume: 9 start-page: 4377 issue: 1 year: 2019 ident: 9806_CR159 publication-title: Scientific Reports doi: 10.1038/s41598-019-40066-y – volume: 169 start-page: 105162 year: 2020 ident: 9806_CR41 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.105162 – volume: 122 start-page: 139 year: 2016 ident: 9806_CR62 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2016.01.029 – ident: 9806_CR138 doi: 10.1007/978-3-030-35990-4_12 – volume: 170 start-page: 105254 year: 2020 ident: 9806_CR100 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105254 – volume: 3 start-page: 588 issue: 1 year: 2017 ident: 9806_CR134 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2017.2774979 – volume: 1 start-page: 756 issue: 7 year: 2019 ident: 9806_CR74 publication-title: SN Applied Sciences doi: 10.1007/s42452-019-0785-9 – volume: 19 start-page: 2023 issue: 9 year: 2019 ident: 9806_CR88 publication-title: Sensors doi: 10.3390/s19092023 – volume: 6 start-page: 13 issue: 1 year: 2019 ident: 9806_CR113 publication-title: ROBOMECH Journal doi: 10.1186/s40648-019-0141-2 – ident: 9806_CR131 – ident: 9806_CR133 doi: 10.1007/978-3-319-24574-4_28 – volume: 145 start-page: 153 year: 2018 ident: 9806_CR12 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2017.12.032 – volume: 10 start-page: 209 year: 2019 ident: 9806_CR121 publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2019.00209 – volume: 134 start-page: 160 year: 2017 ident: 9806_CR150 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2017.01.008 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 9806_CR112 publication-title: Scientific Reports doi: 10.1038/s41598-018-38343-3 – volume: 10 start-page: 1217 issue: 8 year: 2018 ident: 9806_CR109 publication-title: France. Remote Sensing doi: 10.3390/rs10081217 – volume: 5 start-page: 157 issue: 2 year: 2014 ident: 9806_CR148 publication-title: Remote Sensing Letters doi: 10.1080/2150704X.2014.889863 – volume: 8 start-page: 1190 year: 2017 ident: 9806_CR155 publication-title: Frontiers in plant science doi: 10.3389/fpls.2017.01190 – volume: 11 start-page: 042621 issue: 4 year: 2017 ident: 9806_CR52 publication-title: Journal of Applied Remote Sensing doi: 10.1117/1.JRS.11.042621 – volume: 16 start-page: 1222 issue: 8 year: 2016 ident: 9806_CR135 publication-title: Sensors doi: 10.3390/s16081222 – volume: 127 start-page: 487 year: 2016 ident: 9806_CR164 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2016.06.027 – volume: 6 start-page: 30370 year: 2018 ident: 9806_CR179 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2844405 – ident: 9806_CR91 doi: 10.1007/978-3-319-46448-0_2 – ident: 9806_CR96 doi: 10.1109/ICRA.2017.7989347 – volume: 165 start-page: 104963 year: 2019 ident: 9806_CR34 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.104963 – volume: 153 start-page: 69 year: 2017 ident: 9806_CR163 publication-title: Agricultural Systems doi: 10.1016/j.agsy.2017.01.023 – volume: 156 start-page: 96 year: 2019 ident: 9806_CR116 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.11.005 – volume: 9 start-page: 1102 year: 2018 ident: 9806_CR51 publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2018.01102 – volume: 169 start-page: 105174 year: 2020 ident: 9806_CR86 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.105174 – volume: 77 start-page: 227 year: 2015 ident: 9806_CR183 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.12.378 – year: 2018 ident: 9806_CR30 publication-title: Sustainable Computing: Informatics and Systems doi: 10.1016/j.suscom.2018.05.010 – ident: 9806_CR53 doi: 10.1109/ICRA.2017.7989612 – volume: 168 start-page: 105044 year: 2020 ident: 9806_CR124 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.105044 – ident: 9806_CR77 – volume: 37 start-page: 225 year: 2019 ident: 9806_CR19 publication-title: Journal of Field Robotics doi: 10.1002/rob.21888 – volume: 8 start-page: 842 issue: 2 year: 2017 ident: 9806_CR37 publication-title: Advances in Animal Biosciences doi: 10.1017/S2040470017000206 – volume: 153 start-page: 69 year: 2018 ident: 9806_CR118 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.08.001 – volume: 9 start-page: 629 issue: 6 year: 2017 ident: 9806_CR49 publication-title: Remote Sensing doi: 10.3390/rs9060629 – volume: 36 start-page: 2934 issue: 11 year: 2015 ident: 9806_CR58 publication-title: International Journal of Remote Sensing doi: 10.1080/01431161.2015.1054047 – ident: 9806_CR76 doi: 10.1109/LGRS.2019.2930549 – volume: 10 start-page: 1690 issue: 11 year: 2018 ident: 9806_CR10 publication-title: Remote Sensing doi: 10.3390/rs10111690 – volume: 118 start-page: 259 year: 2012 ident: 9806_CR35 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.11.020 – volume: 2 start-page: 39 issue: 4 year: 2018 ident: 9806_CR28 publication-title: Drones doi: 10.3390/drones2040039 – ident: 9806_CR61 doi: 10.1109/CVPR.2017.243 – volume: 75 start-page: 147 issue: 1 year: 2011 ident: 9806_CR108 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2010.10.010 – volume: 143 start-page: 314 year: 2017 ident: 9806_CR33 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2017.10.027 – volume: 3 start-page: 2870 issue: 4 year: 2018 ident: 9806_CR94 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2018.2846289 – volume: 156 start-page: 585 year: 2019 ident: 9806_CR128 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.12.006 – volume: 34 start-page: 1039 issue: 6 year: 2017 ident: 9806_CR14 publication-title: Journal of Field Robotics doi: 10.1002/rob.21699 – ident: 9806_CR56 doi: 10.1109/CVPR.2016.90 – volume: 83 start-page: 275 issue: 3 year: 2002 ident: 9806_CR26 publication-title: Biosystems Engineering doi: 10.1006/bioe.2002.0117 – ident: 9806_CR75 doi: 10.1016/j.compag.2020.105446 – volume: 6 start-page: 5019 issue: 6 year: 2014 ident: 9806_CR120 publication-title: Remote Sensing doi: 10.3390/rs6065019 – volume: 156 start-page: 293 year: 2019 ident: 9806_CR103 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.11.026 – ident: 9806_CR123 doi: 10.20944/preprints201902.0111.v1 – volume: 70 start-page: 78 year: 2012 ident: 9806_CR141 publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2012.04.001 – volume: 8 start-page: 238 issue: 2 year: 2017 ident: 9806_CR99 publication-title: Advances in Animal Biosciences doi: 10.1017/S2040470017001248 – volume: 22 start-page: 387 year: 2020 ident: 9806_CR101 publication-title: Precision Agriculture doi: 10.1007/s11119-020-09736-0 – ident: 9806_CR139 doi: 10.1109/ICRA.2016.7487719 – volume: 125 start-page: 5684 issue: 19 year: 2014 ident: 9806_CR160 publication-title: Optik-International Journal for Light and Electron Optics doi: 10.1016/j.ijleo.2014.07.001 – volume: 4 start-page: 3113 issue: 4 year: 2019 ident: 9806_CR165 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2019.2924125 – volume: 237 start-page: 111593 year: 2020 ident: 9806_CR174 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2019.111593 – volume: 38 start-page: 1186 issue: 5 year: 2012 ident: 9806_CR69 publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2011.11.005 – volume: 18 start-page: 240 year: 2013 ident: 9806_CR71 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2013.05.187 – volume: 20 start-page: 4 issue: 3 year: 2017 ident: 9806_CR119 publication-title: IEEE Instrumentation & Measurement Magazine doi: 10.1109/MIM.2017.7951684 – volume: 23 start-page: 29 issue: 1 year: 2011 ident: 9806_CR2 publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2010.03.003 – volume: 78 start-page: 140 issue: 2 year: 2011 ident: 9806_CR78 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2011.07.001 – ident: 9806_CR22 – volume: 22 start-page: 2428 issue: 6 year: 2017 ident: 9806_CR107 publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2017.2760866 – ident: 9806_CR143 – volume: 34 start-page: 1505 issue: 8 year: 2017 ident: 9806_CR81 publication-title: Journal of Field Robotics doi: 10.1002/rob.21726 – volume: 19 start-page: 612 issue: 3 year: 2019 ident: 9806_CR166 publication-title: Sensors doi: 10.3390/s19030612 – volume: 55 start-page: 243 issue: 2 year: 2018 ident: 9806_CR90 publication-title: GIScience & Remote Sensing doi: 10.1080/15481603.2018.1426091 – volume: 10 start-page: 11 issue: 1 year: 2018 ident: 9806_CR87 publication-title: Symmetry doi: 10.3390/sym10010011 – volume: 11 start-page: 1157 issue: 10 year: 2019 ident: 9806_CR44 publication-title: Remote Sensing doi: 10.3390/rs11101157 – year: 2019 ident: 9806_CR50 publication-title: Journal of Sensors doi: 10.1155/2019/5219471 – year: 2016 ident: 9806_CR145 publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2016/3289801 – volume: 187 start-page: 291 issue: 5 year: 2015 ident: 9806_CR40 publication-title: Environmental Monitoring and Assessment doi: 10.1007/s10661-015-4489-3 – ident: 9806_CR21 doi: 10.1109/SBR-LARS-R.2017.8215283 – ident: 9806_CR105 doi: 10.1109/IROS.2011.6094548 – volume: 8 start-page: 468 issue: 11 year: 2019 ident: 9806_CR136 publication-title: Plants doi: 10.3390/plants8110468 – volume: 42 start-page: 1091 issue: 2 year: 2018 ident: 9806_CR151 publication-title: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences doi: 10.5194/isprs-archives-XLII-2-1091-2018 – volume: 21 start-page: 1121 year: 2020 ident: 9806_CR156 publication-title: Precision Agriculture doi: 10.1007/s11119-020-09711-9 – volume: 7 start-page: 43721 year: 2019 ident: 9806_CR144 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2907383 – volume: 33 start-page: 1061 year: 2017 ident: 9806_CR147 publication-title: Korean Journal of Remote Sensing – ident: 9806_CR24 doi: 10.1007/978-3-319-19324-3_46 – volume: 2019 start-page: 9209727 year: 2019 ident: 9806_CR18 publication-title: Plant Phenomics doi: 10.34133/2019/9209727 – volume: 9 start-page: 1010 issue: 6 year: 2017 ident: 9806_CR5 publication-title: Sustainability doi: 10.3390/su9061010 – volume: 250 start-page: 1 year: 2018 ident: 9806_CR72 publication-title: EasyChair Preprint – volume: 17 start-page: 172988141989747 issue: 1 year: 2020 ident: 9806_CR70 publication-title: International Journal of Advanced Robotic Systems doi: 10.1177/1729881419897473 – volume: 151 start-page: 72 year: 2016 ident: 9806_CR38 publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2016.08.024 – volume: 11 start-page: 1584 issue: 13 year: 2019 ident: 9806_CR23 publication-title: Remote Sensing doi: 10.3390/rs11131584 – volume: 158 start-page: 226 year: 2019 ident: 9806_CR158 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.02.005 – ident: 9806_CR55 doi: 10.1109/WACV.2014.6835733 – volume: 174 start-page: 50 year: 2018 ident: 9806_CR149 publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2018.06.017 – ident: 9806_CR11 doi: 10.1109/IPTA.2019.8936091 – volume: 2019 start-page: 1525874 year: 2019 ident: 9806_CR46 publication-title: Plant Phenomics doi: 10.34133/2019/1525874 – volume: 181 start-page: 140 year: 2019 ident: 9806_CR162 publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2019.03.007 – ident: 9806_CR93 doi: 10.1109/IROS.2018.8593678 – volume: 17 start-page: 2007 issue: 9 year: 2017 ident: 9806_CR3 publication-title: Sensors doi: 10.3390/s17092007 – volume: 45 start-page: 421 issue: 1 year: 2012 ident: 9806_CR111 publication-title: European Journal of Remote Sensing doi: 10.5721/EuJRS20124535 – ident: 9806_CR32 doi: 10.1109/IROS.2017.8206408 – ident: 9806_CR137 doi: 10.1109/CVPR.2018.00474 – volume: 14 start-page: 12191 issue: 7 year: 2014 ident: 9806_CR170 publication-title: Sensors doi: 10.3390/s140712191 – volume: 31 start-page: 888 issue: 6 year: 2014 ident: 9806_CR9 publication-title: Journal of Field Robotics doi: 10.1002/rob.21525 – volume: 142 start-page: 388 year: 2017 ident: 9806_CR152 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2017.09.019 – volume: 20 start-page: 423 issue: 2 year: 2019 ident: 9806_CR104 publication-title: Precision Agriculture doi: 10.1007/s11119-018-9605-2 – volume: 18 start-page: 18 issue: 1 year: 2018 ident: 9806_CR154 publication-title: Sensors doi: 10.3390/s18010018 – volume: 11 start-page: 6270 issue: 6 year: 2011 ident: 9806_CR66 publication-title: Sensors doi: 10.3390/s110606270 – volume: 11 start-page: 908 issue: 1 year: 2011 ident: 9806_CR153 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2010.01.011 – ident: 9806_CR47 doi: 10.1109/ICCV.2015.169 – volume: 190 start-page: 131 year: 2020 ident: 9806_CR29 publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2019.12.003 – volume: 6 start-page: 67940 year: 2018 ident: 9806_CR177 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879324 – ident: 9806_CR43 doi: 10.1109/ICInfA.2015.7279423 – ident: 9806_CR161 doi: 10.1109/ICMLA.2010.57 – volume: 3 start-page: 2995 issue: 4 year: 2018 ident: 9806_CR54 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2018.2849514 – ident: 9806_CR92 doi: 10.1109/CVPR.2015.7298965 – volume: 147 start-page: 70 year: 2018 ident: 9806_CR73 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.02.016 – ident: 9806_CR13 doi: 10.1109/ICRA.2017.7989417 – volume: 170 start-page: 39 year: 2018 ident: 9806_CR45 publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2018.03.006 – volume: 146 start-page: 114 year: 2016 ident: 9806_CR130 publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2015.12.010 – volume: 12 start-page: 2217 issue: 7 year: 2019 ident: 9806_CR57 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2019.2918242 – volume: 10 start-page: 1119 issue: 7 year: 2018 ident: 9806_CR98 publication-title: Remote Sensing doi: 10.3390/rs10071119 – volume: 150 start-page: 220 year: 2018 ident: 9806_CR142 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.04.023 – ident: 9806_CR80 doi: 10.1109/IROS.2016.7759121 – volume: 12 start-page: 2448 issue: 12 year: 2015 ident: 9806_CR97 publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2015.2483680 – volume: 9 start-page: 643 issue: 4 year: 2019 ident: 9806_CR82 publication-title: Applied Sciences doi: 10.3390/app9040643 – volume: 3 start-page: 128 issue: 03 year: 2014 ident: 9806_CR65 publication-title: Advances in Remote Sensing doi: 10.4236/ars.2014.33011 – volume: 27 start-page: 4287 issue: 9 year: 2018 ident: 9806_CR84 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2018.2836321 – ident: 9806_CR169 doi: 10.1109/IJCNN.2017.7966067 – volume: 71 start-page: 107 issue: 2 year: 2010 ident: 9806_CR63 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2010.01.001 |
SSID | ssj0010042 |
Score | 2.6590183 |
SecondaryResourceType | review_article |
Snippet | Recently, agriculture has gained much attention regarding automation by artificial intelligence techniques and robotic systems. Particularly, with the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2053 |
SubjectTerms | Agricultural equipment Agricultural land Agriculture Algorithms Artificial intelligence Artificial neural networks Atmospheric Sciences Automation Biomedical and Life Sciences Chemistry and Earth Sciences Classification Computer Science Crop diseases Crops Deep learning Discrimination Disease detection Feature extraction fruits Land cover Learning algorithms Life Sciences Machine learning Multilayers Neural networks Physics Plant diseases precision agriculture Remote Sensing/Photogrammetry Review robots Soil Science & Conservation Statistics for Engineering Support vector machines weeds |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iCPrgx1ScX0TwTQtdkrapb8UPhjCfHPhWkvQignTDbqD_vZcs3VRUME-FXtLSu2t-x_3uQsgZBxUrzhkar8kjoeI4yqtKRNJasJUx1vpamMF92h-Ku8fkMRSFNS3bvU1J-j_1otgNRx45SkGcS4yDETmuJC52RysesmKeO3B26MMsmURorWkolfl5ja_b0QJjfkuL-t3mdotsBJhIi5let8kS1B2yXjy9hlYZ0CGb7YEMNPhnh6x6PqdpdoguppPRrCqRPtf000Sq3-nAMyiBqrqi1wBjGrqsPtGHtqVrc0kLOksc0JHFK8fipJ8oRs0uGd7ePFz1o3CcQmQQZU2ingBQNleqskZm2saIRDTn1nAQChCJaJ1oRDPMMI04jKdG80qxjCkhVaYk3yPL9aiGfVfoXXEDPOVaYHjXE0oDQ09OTQK9LNayS3rtVy1N6DXujrx4KRddkp0mStRE6TVRvnXJ-XzOeNZp40_po1ZZZfC6pmSJzIR0Hf265HR-G_3FJUFUDaMpyuBrphkO0SUXrZIXS_z-xIP_iR-SNebszDNfjsjy5HUKx4hfJvrEm-sHwwbnYA priority: 102 providerName: Springer Nature |
Title | Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments |
URI | https://link.springer.com/article/10.1007/s11119-021-09806-x https://www.proquest.com/docview/2587485443 https://www.proquest.com/docview/2636677774 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9swFBdrc9kOZVs3ln4EDXbbxBxJtuVehtMlKxsNZTTQnYwkP5VCsdMmgfa_75MtJ12h1cUGyZZ4epJ-T--LkC8CdKSF4Mi8NmNSRxHLylIy5Ry40lrnGl-Y02lyMpO_L-KLcOG2CGaV3Z7YbNRlbf0d-Xceq1QqH63tx_yG-axRXrsaUmhskR5uwQqFr95oPD37u9YjeJ5sRC4VM-TcJLjNtM5zWDLmTRSiTKFcfff_0bTBm09UpM3JM3lLdgJkpHk7x-_IK6jekzf55W0ImwG7xOSrZd06IdKrij6qo-aenjYGk0B1VdKfAHMagqpe0vMuguviiOa01RPQ2uGbN9qkjyyKFh_IbDI-Pz5hIXsCswiqlmwoAbTLtC6dValxEQIPI4SzAqQGBB7GxAbBC7fcIOwSiTWi1DzlWiqdaiU-ku2qruCT9-suhQWRCCNRmhtKbYDjwk1sDMM0MqpPhh3hChtCi_sMF9fFJiiyJ3aBxC4aYhd3ffJ1_c28DazxYuuDbj6KsMgWxYYl-uTzuhqXh9d56ArqFbbBYSYpFtkn37p53Pzi-R73Xu5xn7zmnnUaw5YDsr28XcEhwpOlGZBePhmNpv7569-f8SDw5IBszXj-ADKH5hc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DS6B-AB8Sk6BhgJnsAitZ3EQUKosE0dWyuEOmlvme2cJySUdGsrtj_Fb-Scj3Ygsbf5KZIdO7oP313uC-C1RBMZKQURr8u4MlHEs6JQXHuPvnDO-zoXZjxJRkfq63F8vAG_u1yYEFbZ3Yn1RV1ULvwjfy9inSodqrV9mp3x0DUqeFe7FhoNWRzg5S8y2eYf93cIv2-E2NudfhnxtqsAd6RsLPhAIRqfGVN4p1PrIxLIVkrvJCqDJJCtjS0JdeGEJXVEJs7KwohUGKVNarSkfW_BppJkyvRg8_Pu5Nv3ld8i8EBt4umYE6ckbZpOk6xHI-MhJCLKNNnxF3-LwrV--49LtpZ0e_fhXquismFDUw9gA8uHcHd4et6W6cBHYIfLRdUkPbIfJbsyx-wlG9cBmshMWbAdxBlri7iesmlXMXb-gQ1Z45dglaenECTKrkQwzR_D0Y3A9Qn0yqrEpyGPvJAOZSKtIutxoIxFQRdF4mIcpJHVfRh0gMtdW8o8dNT4ma-LMAdg5wTsvAZ2ftGHt6t3Zk0hj2tXb3f4yFumnudrEuzDq9U0sWPwsZgSqyWtoc9MUhqqD-86PK63-P-JW9ef-BJuj6bjw_xwf3LwDO6IQEZ1UM029BbnS3xOqtHCvmjpkcHJTbPAH1skIJ4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6CcEDGl-isIGR4AmipbaTOEgIdeuqjbFqQpu0t2A75wkJJWVtxfbX-HWcE6cdSOxtfopkx47uw3eX-wJ4I1DHWghOxGvzSOo4jvKylJFyDl1prXNNLszRJN0_lZ_PkrM1-N3lwviwyu5ObC7qsrb-H_k2T1Qmla_Wtu1CWMTxaPxp-jPyHaS8p7Vrp9GSyCFe_SLzbfbxYES4fsv5eO9kdz8KHQYiS4rHPBpIRO1yrUtnVWZcTMLZCOGsQKmRhLMxiSEBzy03pJqI1BpRap5xLZXOtBK07x1Yz8gqinuwvrM3Of669GF4fmjMPZVExDVpSNlpE_do5JEPj4hzRTb95d9icaXr_uOebaTeeAMeBHWVDVv6eghrWD2C-8Pzi1CyAx-DGS7mdZsAyb5X7NocM1fsqAnWRKarko0QpywUdD1nJ1312NkHNmStj4LVjp58wCi7Fs00ewKntwLXp9Cr6gqf-ZzyUlgUqTCSLMmB1AY5XRqpTXCQxUb1YdABrrChrLnvrvGjWBVk9sAuCNhFA-zisg_vlu9M26IeN67e7PBRBAafFSty7MPr5TSxpve36ArrBa2hz0wzGrIP7zs8rrb4_4nPbz7xFdwl0i--HEwOX8A97qmoia_ZhN78YoFbpCXNzctAjgy-3TYH_AG0oSTT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automation+in+Agriculture+by+Machine+and+Deep+Learning+Techniques%3A+A+Review+of+Recent+Developments&rft.jtitle=Precision+agriculture&rft.au=Saleem%2C+Muhammad+Hammad&rft.au=Potgieter%2C+Johan&rft.au=Arif%2C+Khalid+Mahmood&rft.date=2021-12-01&rft.issn=1385-2256&rft.eissn=1573-1618&rft.volume=22&rft.issue=6&rft.spage=2053&rft.epage=2091&rft_id=info:doi/10.1007%2Fs11119-021-09806-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11119_021_09806_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-2256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-2256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-2256&client=summon |