Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments

Recently, agriculture has gained much attention regarding automation by artificial intelligence techniques and robotic systems. Particularly, with the advancements in machine learning (ML) concepts, significant improvements have been observed in agricultural tasks. The ability of automatic feature e...

Full description

Saved in:
Bibliographic Details
Published inPrecision agriculture Vol. 22; no. 6; pp. 2053 - 2091
Main Authors Saleem, Muhammad Hammad, Potgieter, Johan, Arif, Khalid Mahmood
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, agriculture has gained much attention regarding automation by artificial intelligence techniques and robotic systems. Particularly, with the advancements in machine learning (ML) concepts, significant improvements have been observed in agricultural tasks. The ability of automatic feature extraction creates an adaptive nature in deep learning (DL), specifically convolutional neural networks to achieve human-level accuracy in various agricultural applications, prominent among which are plant disease detection and classification, weed/crop discrimination, fruit counting, land cover classification, and crop/plant recognition. This review presents the performance of recent uses in agricultural robots by the implementation of ML and DL algorithms/architectures during the last decade. Performance plots are drawn to study the effectiveness of deep learning over traditional machine learning models for certain agricultural operations. The analysis of prominent studies highlighted that the DL-based models, like RCNN (Region-based Convolutional Neural Network), achieve a higher plant disease/pest detection rate (82.51%) than the well-known ML algorithms, including Multi-Layer Perceptron (64.9%) and K-nearest Neighbour (63.76%). The famous DL architecture named ResNet-18 attained more accurate Area Under the Curve (94.84%), and outperformed ML-based techniques, including Random Forest (RF) (70.16%) and Support Vector Machine (SVM) (60.6%), for crop/weed discrimination. Another DL model called FCN (Fully Convolutional Networks) recorded higher accuracy (83.9%) than SVM (67.6%) and RF (65.6%) algorithms for the classification of agricultural land covers. Finally, some important research gaps from the previous studies and innovative future directions are also noted to help propel automation in agriculture up to the next level.
AbstractList Recently, agriculture has gained much attention regarding automation by artificial intelligence techniques and robotic systems. Particularly, with the advancements in machine learning (ML) concepts, significant improvements have been observed in agricultural tasks. The ability of automatic feature extraction creates an adaptive nature in deep learning (DL), specifically convolutional neural networks to achieve human-level accuracy in various agricultural applications, prominent among which are plant disease detection and classification, weed/crop discrimination, fruit counting, land cover classification, and crop/plant recognition. This review presents the performance of recent uses in agricultural robots by the implementation of ML and DL algorithms/architectures during the last decade. Performance plots are drawn to study the effectiveness of deep learning over traditional machine learning models for certain agricultural operations. The analysis of prominent studies highlighted that the DL-based models, like RCNN (Region-based Convolutional Neural Network), achieve a higher plant disease/pest detection rate (82.51%) than the well-known ML algorithms, including Multi-Layer Perceptron (64.9%) and K-nearest Neighbour (63.76%). The famous DL architecture named ResNet-18 attained more accurate Area Under the Curve (94.84%), and outperformed ML-based techniques, including Random Forest (RF) (70.16%) and Support Vector Machine (SVM) (60.6%), for crop/weed discrimination. Another DL model called FCN (Fully Convolutional Networks) recorded higher accuracy (83.9%) than SVM (67.6%) and RF (65.6%) algorithms for the classification of agricultural land covers. Finally, some important research gaps from the previous studies and innovative future directions are also noted to help propel automation in agriculture up to the next level.
Author Arif, Khalid Mahmood
Potgieter, Johan
Saleem, Muhammad Hammad
Author_xml – sequence: 1
  givenname: Muhammad Hammad
  orcidid: 0000-0002-3625-3021
  surname: Saleem
  fullname: Saleem, Muhammad Hammad
  organization: Department of Mechanical and Electrical Engineering, School of Food and Advanced Technology, Massey University
– sequence: 2
  givenname: Johan
  surname: Potgieter
  fullname: Potgieter, Johan
  organization: Massey Agritech Partnership Research Centre, School of Food and Advanced Technology, Massey University
– sequence: 3
  givenname: Khalid Mahmood
  orcidid: 0000-0001-9042-4509
  surname: Arif
  fullname: Arif, Khalid Mahmood
  email: k.arif@massey.ac.nz
  organization: Department of Mechanical and Electrical Engineering, School of Food and Advanced Technology, Massey University
BookMark eNp9kM1qGzEYRUVxoYnbF-hK0E020-pn9OPsTJKmBYdAcddCkr9xFMaSI80k9ttHsQuFLPxtdBfniMs9R5OYIiD0lZLvlBD1o9B6s4Yw2pCZJrLZfUBnVCjeUEn1pGauRcOYkJ_QeSmPhFStZWfIzcchbewQUsQh4vk6Bz_2w5gBuz2-s_4hRMA2rvA1wBYvwOYY4hovwT_E8DRCucRz_AeeA7zg1NXkIQ4VfoY-bTc1l8_oY2f7Al_-vVP09-fN8upXs7i__X01XzSeCzY0tAWw3czaVee1ch2ZKek47zyH1oIU2jnhmOLMM6cF5dI7vrJMMdtqq6zmU3Rx_Heb01uxwWxC8dD3NkIai2GSS6nqtRX99g59TGOOtZ1hQqtWi7blldJHyudUSobO-DAcphqyDb2hxLyNb47jmzq-OYxvdlVl79RtDhub96clfpRKheMa8v9WJ6xXyQmaIg
CitedBy_id crossref_primary_10_1007_s10668_023_03588_0
crossref_primary_10_3390_agriculture13061163
crossref_primary_10_3389_fpls_2024_1383863
crossref_primary_10_1109_ACCESS_2022_3201104
crossref_primary_10_29130_dubited_1075572
crossref_primary_10_1002_rob_22377
crossref_primary_10_1016_j_aiia_2025_02_007
crossref_primary_10_1016_j_jag_2024_103922
crossref_primary_10_3390_agriculture14091624
crossref_primary_10_1016_j_atech_2024_100614
crossref_primary_10_3390_agriengineering5030088
crossref_primary_10_3390_horticulturae8090833
crossref_primary_10_1016_j_tifs_2024_104730
crossref_primary_10_3390_geomatics2010007
crossref_primary_10_3390_rs15204949
crossref_primary_10_1016_j_jafr_2023_100814
crossref_primary_10_1109_ACCESS_2024_3422422
crossref_primary_10_3390_rs14194837
crossref_primary_10_46842_ipn_cien_v29n1a01
crossref_primary_10_3390_agronomy14030618
crossref_primary_10_1038_s41598_023_28244_5
crossref_primary_10_1016_j_eja_2024_127191
crossref_primary_10_3390_agriculture14071052
crossref_primary_10_3390_agriculture15060647
crossref_primary_10_1016_j_inffus_2023_102221
crossref_primary_10_3390_pr13020353
crossref_primary_10_3390_rs15153792
crossref_primary_10_3390_agriculture14081378
crossref_primary_10_1007_s10343_022_00794_0
crossref_primary_10_1080_17499518_2023_2182891
crossref_primary_10_3390_app14209229
crossref_primary_10_3390_agriculture13081622
crossref_primary_10_1007_s42979_024_03449_1
crossref_primary_10_3390_agronomy13030639
crossref_primary_10_1016_j_compag_2025_110094
crossref_primary_10_1016_j_isprsjprs_2024_08_018
crossref_primary_10_3389_fpls_2022_1016470
crossref_primary_10_1007_s41976_024_00186_0
crossref_primary_10_1111_jfpe_14480
crossref_primary_10_3390_rs14225846
crossref_primary_10_3389_fnbot_2024_1518878
crossref_primary_10_1038_s41598_024_81322_0
crossref_primary_10_1109_TGRS_2023_3268232
crossref_primary_10_1109_ACCESS_2024_3455244
crossref_primary_10_3390_agriculture14010124
crossref_primary_10_3390_agriculture13020357
crossref_primary_10_1007_s13201_022_01851_9
crossref_primary_10_3390_rs17060958
crossref_primary_10_1186_s13007_024_01188_1
crossref_primary_10_1109_ACCESS_2022_3176643
crossref_primary_10_3390_ani13030546
crossref_primary_10_1016_j_compag_2024_109672
crossref_primary_10_3390_agriculture15030231
crossref_primary_10_1016_j_compag_2024_109708
crossref_primary_10_1038_s41598_024_65750_6
crossref_primary_10_3390_horticulturae9101134
crossref_primary_10_1016_j_scienta_2024_113688
crossref_primary_10_3389_fpls_2023_1143326
crossref_primary_10_3389_fpls_2022_1040923
crossref_primary_10_1007_s11540_024_09763_8
crossref_primary_10_1016_j_heliyon_2024_e37141
crossref_primary_10_32628_IJSRSET2411227
crossref_primary_10_1007_s12652_023_04674_x
crossref_primary_10_1016_j_eja_2024_127477
crossref_primary_10_1038_s41598_024_75391_4
crossref_primary_10_1016_j_engappai_2024_109369
crossref_primary_10_3390_rs16183538
crossref_primary_10_3390_agronomy12030589
crossref_primary_10_3390_agronomy12102551
crossref_primary_10_3390_horticulturae11010015
crossref_primary_10_3390_rs14020394
crossref_primary_10_3390_agriculture14101760
crossref_primary_10_1007_s11119_022_09929_9
crossref_primary_10_3390_ijpb14040087
crossref_primary_10_3390_agriengineering6010028
crossref_primary_10_1007_s10462_023_10674_2
crossref_primary_10_1007_s11119_023_10034_8
crossref_primary_10_12791_KSBEC_2022_31_4_270
crossref_primary_10_3390_agriculture14111964
crossref_primary_10_3390_su15107834
crossref_primary_10_1007_s11119_022_09952_w
crossref_primary_10_1016_j_compag_2023_107741
crossref_primary_10_1016_j_compag_2023_108557
crossref_primary_10_1016_j_compag_2025_109968
crossref_primary_10_1109_ACCESS_2023_3312191
crossref_primary_10_3390_agriculture13122182
crossref_primary_10_3390_s22207707
crossref_primary_10_1016_j_compag_2022_106984
crossref_primary_10_3390_agronomy13061625
crossref_primary_10_3390_agriengineering6020057
crossref_primary_10_1016_j_engappai_2023_106720
crossref_primary_10_1007_s10846_022_01793_z
crossref_primary_10_1016_j_isprsjprs_2023_09_006
crossref_primary_10_3390_app13084876
crossref_primary_10_1109_ACCESS_2023_3341350
crossref_primary_10_3390_agriculture15010075
crossref_primary_10_1109_JSTARS_2024_3379522
crossref_primary_10_3390_agriculture13081496
crossref_primary_10_1007_s11119_022_09937_9
crossref_primary_10_31548_dopovidi_3_109__2024_022
crossref_primary_10_1016_j_compag_2025_110286
crossref_primary_10_3390_agriculture14071099
crossref_primary_10_1007_s13218_023_00826_5
crossref_primary_10_1190_geo2024_0282_1
crossref_primary_10_1007_s11119_024_10119_y
crossref_primary_10_1016_j_measurement_2024_115484
crossref_primary_10_34133_plantphenomics_0132
crossref_primary_10_3390_rs13214486
crossref_primary_10_3390_agriculture12081271
crossref_primary_10_1007_s10614_024_10627_z
crossref_primary_10_1016_j_eswa_2024_125426
crossref_primary_10_1007_s11042_024_18142_x
crossref_primary_10_3390_agronomy13122952
crossref_primary_10_3389_fpls_2022_850666
crossref_primary_10_3390_agriculture12081207
crossref_primary_10_1007_s11119_021_09847_2
crossref_primary_10_1109_ACCESS_2024_3394617
crossref_primary_10_1080_01431161_2023_2205984
crossref_primary_10_3390_w14233941
crossref_primary_10_12677_airr_2024_134094
crossref_primary_10_1016_j_atech_2025_100893
crossref_primary_10_3390_agronomy12051174
crossref_primary_10_1016_j_rsase_2025_101525
crossref_primary_10_1186_s12870_024_05346_4
crossref_primary_10_3389_fpls_2022_1003243
crossref_primary_10_3390_agronomy13061477
crossref_primary_10_3390_agronomy13081988
crossref_primary_10_1007_s12596_023_01445_x
crossref_primary_10_22517_23447214_24589
crossref_primary_10_3389_fpls_2022_898131
crossref_primary_10_1016_j_biosystemseng_2024_07_002
crossref_primary_10_1039_D4AY01346H
crossref_primary_10_1109_ACCESS_2024_3522248
crossref_primary_10_1007_s11119_023_10093_x
crossref_primary_10_1109_ACCESS_2024_3373548
crossref_primary_10_3390_agriculture13020392
crossref_primary_10_3390_app132212341
crossref_primary_10_3390_drones6110329
crossref_primary_10_35633_inmateh_73_50
crossref_primary_10_2139_ssrn_4770722
crossref_primary_10_1080_17686733_2023_2167459
crossref_primary_10_1007_s11042_023_16075_5
crossref_primary_10_1007_s11119_023_10086_w
crossref_primary_10_35633_inmateh_74_12
crossref_primary_10_1016_j_atech_2024_100483
crossref_primary_10_1016_j_engappai_2023_106034
crossref_primary_10_3390_agronomy15030641
crossref_primary_10_1371_journal_pone_0315670
crossref_primary_10_1007_s11540_024_09728_x
crossref_primary_10_1016_j_compag_2024_109514
crossref_primary_10_1007_s11760_024_03346_3
crossref_primary_10_3390_plants13070972
crossref_primary_10_1007_s11119_022_09881_8
crossref_primary_10_1016_j_measurement_2024_114117
crossref_primary_10_3390_agriculture14101846
crossref_primary_10_1016_j_crfs_2024_100723
crossref_primary_10_1371_journal_pone_0301174
crossref_primary_10_3390_agronomy12112836
crossref_primary_10_3390_agronomy13071851
crossref_primary_10_1515_opag_2022_0396
crossref_primary_10_3389_fpls_2023_1134932
crossref_primary_10_1007_s11119_023_09996_6
crossref_primary_10_3390_agronomy13102467
crossref_primary_10_3390_rs15133211
crossref_primary_10_1007_s42979_024_02959_2
crossref_primary_10_3390_electronics12010022
crossref_primary_10_1016_j_swevo_2023_101465
crossref_primary_10_3390_agriculture15060582
crossref_primary_10_1007_s41870_023_01345_0
crossref_primary_10_2478_amns_2024_2137
crossref_primary_10_3390_agronomy12071580
crossref_primary_10_1002_rob_22263
crossref_primary_10_1016_j_compag_2024_109745
crossref_primary_10_1109_JIOT_2024_3360715
Cites_doi 10.1016/j.procs.2015.12.378
10.1007/s42452-019-0785-9
10.1080/15481603.2018.1426091
10.1016/j.ijleo.2014.07.001
10.3390/rs11040410
10.1109/LGRS.2015.2483680
10.1016/j.compag.2018.11.026
10.1016/j.compag.2010.10.010
10.1016/j.rse.2011.11.020
10.3389/fpls.2019.01404
10.3390/plants8110468
10.1016/j.biosystemseng.2011.07.005
10.1007/s11119-012-9274-5
10.1016/j.suscom.2018.05.010
10.1016/j.compag.2018.04.023
10.1016/j.proeng.2011.11.2514
10.1016/j.compag.2018.02.016
10.1016/j.compag.2019.06.001
10.1016/j.compag.2017.03.016
10.1017/S2040470017001248
10.3390/s17092007
10.1109/LGRS.2017.2728698
10.1016/j.biosystemseng.2018.06.017
10.1016/j.compag.2017.09.019
10.1038/s41598-019-40066-y
10.1002/rob.21888
10.1080/2150704X.2014.889863
10.1016/j.isprsjprs.2012.04.001
10.3390/s19092023
10.3390/s20010093
10.1016/j.geodrs.2018.e00198
10.1016/j.compag.2018.12.006
10.1109/JSTARS.2019.2918242
10.1016/j.compag.2016.06.022
10.3389/fpls.2019.00209
10.1016/j.compag.2019.105174
10.1109/ACCESS.2019.2899940
10.3390/app9040643
10.1016/j.compag.2015.05.021
10.1109/LGRS.2017.2681128
10.4236/ars.2014.33011
10.1016/j.compag.2011.07.001
10.1109/MIM.2017.7951684
10.1016/j.agsy.2017.01.023
10.1016/j.procs.2013.05.187
10.1016/j.compag.2018.08.001
10.1016/j.compag.2020.105254
10.5194/isprs-archives-XLII-2-1091-2018
10.1016/j.compag.2017.01.008
10.1016/j.envsoft.2019.07.013
10.1007/s11119-020-09711-9
10.3390/drones2040039
10.3389/fpls.2017.01190
10.3390/s19030612
10.1016/j.compag.2014.11.004
10.3390/rs10071119
10.3390/rs10111690
10.1002/rob.21726
10.1016/j.comnet.2019.107036
10.1109/TIP.2018.2836321
10.1016/j.compag.2018.12.048
10.1016/j.biosystemseng.2019.03.007
10.1007/s11119-014-9372-7
10.3390/rs9060629
10.1002/rob.21699
10.1109/ACCESS.2019.2936536
10.1155/2016/3289801
10.3390/rs10010075
10.1016/j.compag.2019.104963
10.1186/s40648-019-0141-2
10.3390/rs11101157
10.1109/ACCESS.2019.2907383
10.1016/j.biosystemseng.2018.03.006
10.1017/S2040470017000206
10.1080/01431161.2015.1054047
10.1007/s11119-018-9605-2
10.5721/EuJRS20124535
10.3390/sym10010011
10.1080/01431160902788636
10.1016/j.rse.2018.04.050
10.3390/s19102398
10.3390/su9061010
10.1016/j.compag.2019.105044
10.1006/bioe.2002.0117
10.1007/s11042-019-7648-7
10.1007/s11119-020-09736-0
10.3390/rs11131584
10.1016/j.rse.2019.111593
10.1016/j.biosystemseng.2016.08.024
10.1016/j.compag.2016.06.027
10.1016/j.isprsjprs.2011.11.002
10.1016/j.patcog.2017.05.015
10.3390/rs6065019
10.1016/j.compag.2017.12.032
10.1006/bioe.2002.0061
10.1109/LRA.2018.2846289
10.3390/s16081222
10.1016/j.biosystemseng.2017.06.025
10.1016/j.compag.2018.11.005
10.1109/ACCESS.2018.2879324
10.1002/rob.21734
10.1016/j.biosystemseng.2019.12.003
10.1016/j.biosystemseng.2016.05.001
10.3390/s140712191
10.1109/JSEN.2019.2954287
10.1016/j.compeleceng.2011.11.005
10.1109/JSTARS.2018.2793849
10.1109/LRA.2017.2774979
10.1016/j.compag.2019.02.005
10.1614/WT-07-104.1
10.1109/LRA.2019.2924125
10.1016/j.compag.2016.01.029
10.34133/2019/9209727
10.1016/j.biosystemseng.2013.07.007
10.1016/j.compag.2019.105162
10.1109/LRA.2017.2667039
10.1109/TMECH.2017.2760866
10.1109/ACCESS.2018.2844405
10.1016/j.aiia.2019.05.004
10.3390/rs10081217
10.1016/j.jksuci.2010.03.003
10.1109/LRA.2018.2849514
10.1016/j.asoc.2010.01.011
10.1016/j.biosystemseng.2015.12.010
10.1155/2019/5219471
10.3390/s110606270
10.1016/j.compag.2010.01.001
10.1007/s10661-015-4489-3
10.1002/rob.21525
10.34133/2019/1525874
10.1016/j.compag.2017.10.027
10.1117/1.JRS.11.042621
10.3389/fpls.2018.01102
10.1109/CVPR.2017.690
10.1109/ICIICII.2016.0037
10.1109/CVPR.2017.195
10.1109/ICRA.2018.8460962
10.1007/978-3-319-67361-5_18
10.1007/978-3-319-48036-7_9
10.1109/CAC.2018.8623610
10.1007/978-3-319-90403-0_6
10.20944/preprints201912.0237.v1
10.1109/ICRA.2016.7487720
10.1109/CVPR.2016.91
10.1007/978-3-030-35990-4_12
10.1007/978-3-319-24574-4_28
10.1038/s41598-018-38343-3
10.1007/978-3-319-46448-0_2
10.1109/ICRA.2017.7989347
10.1109/ICRA.2017.7989612
10.1109/LGRS.2019.2930549
10.1109/CVPR.2017.243
10.1109/CVPR.2016.90
10.1016/j.compag.2020.105446
10.20944/preprints201902.0111.v1
10.1109/ICRA.2016.7487719
10.1109/SBR-LARS-R.2017.8215283
10.1109/IROS.2011.6094548
10.1007/978-3-319-19324-3_46
10.1177/1729881419897473
10.1109/WACV.2014.6835733
10.1109/IPTA.2019.8936091
10.1109/IROS.2018.8593678
10.1109/IROS.2017.8206408
10.1109/CVPR.2018.00474
10.3390/s18010018
10.1109/ICCV.2015.169
10.1109/ICInfA.2015.7279423
10.1109/ICMLA.2010.57
10.1109/CVPR.2015.7298965
10.1109/ICRA.2017.7989417
10.1109/IROS.2016.7759121
10.1109/IJCNN.2017.7966067
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2021.
DBID AAYXX
CITATION
3V.
7ST
7WY
7WZ
7X2
7XB
87Z
88I
8FE
8FH
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
K60
K6~
L.-
M0C
M0K
M2P
PATMY
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11119-021-09806-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global
Agricultural Science Database
Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Physics
Computer Science
EISSN 1573-1618
EndPage 2091
ExternalDocumentID 10_1007_s11119_021_09806_x
GrantInformation_xml – fundername: Ministry of Business, Innovation and Employment
  funderid: http://dx.doi.org/10.13039/501100003524
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67M
67Z
6NX
78A
7WY
7X2
7XC
88I
8FE
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAK
LLZTM
M0C
M0K
M2P
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOR
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
Y6R
YLTOR
Z45
Z7R
Z7U
Z7V
Z7W
Z7Y
Z83
ZMTXR
ZOVNA
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7ST
7XB
8FK
ABRTQ
C1K
L.-
PKEHL
PQEST
PQUKI
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-14eeaf9aadfc87bf0976b33fc3e4ae658bb5b2732c2b85136cb3da272a48a7a83
IEDL.DBID BENPR
ISSN 1385-2256
IngestDate Fri Jul 11 03:12:44 EDT 2025
Fri Jul 25 19:46:21 EDT 2025
Tue Jul 01 00:46:49 EDT 2025
Thu Apr 24 23:09:43 EDT 2025
Fri Feb 21 02:47:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Deep learning
Fruit harvesting
Plant disease detection
Agricultural robotics
Convolutional neural network
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-14eeaf9aadfc87bf0976b33fc3e4ae658bb5b2732c2b85136cb3da272a48a7a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9042-4509
0000-0002-3625-3021
PQID 2587485443
PQPubID 54630
PageCount 39
ParticipantIDs proquest_miscellaneous_2636677774
proquest_journals_2587485443
crossref_citationtrail_10_1007_s11119_021_09806_x
crossref_primary_10_1007_s11119_021_09806_x
springer_journals_10_1007_s11119_021_09806_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211200
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal on Advances in Precision Agriculture
PublicationTitle Precision agriculture
PublicationTitleAbbrev Precision Agric
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Cho, Lee, Jeong (CR26) 2002; 83
Quiroz, Alférez (CR124) 2020; 168
Helber, Bischke, Dengel, Borth (CR57) 2019; 12
CR161
Williams, Jones, Nejati, Seabright, Bell, Penhall (CR162) 2019; 181
Patrício, Rieder (CR118) 2018; 153
Cho, Chang, Kim, An (CR25) 2002; 82
CR32
Heremans, Van Orshoven (CR58) 2015; 36
McCool, Perez, Upcroft (CR102) 2017; 2
Liu, Mao, Kim (CR88) 2019; 19
Bierman, LaPlumm, Cadle-Davidson, Gadoury, Martinez, Sapkota (CR18) 2019; 2019
dos Santos Ferreira, Freitas, da Silva, Pistori, Folhes (CR33) 2017; 143
Eisavi, Homayouni, Yazdi, Alimohammadi (CR40) 2015; 187
Chen, Lee, Gan, Peres, Fraisse, Zhang (CR23) 2019; 11
Jodas, Marranghello, Pereira, Guido (CR71) 2013; 18
Rehman, Mahmud, Chang, Jin, Shin (CR128) 2019; 156
Dyrmann, Karstoft, Midtiby (CR38) 2016; 151
Ndikumana, Ho Tong Minh, Baghdadi, Courault, Hossard (CR109) 2018; 10
da Costa, Figueroa, Fracarolli (CR29) 2020; 190
Peña, Gutiérrez, Hervás-Martínez, Six, Plant, López-Granados (CR120) 2014; 6
Zhang, Jia, Gui, Hao, Gao, Wang (CR177) 2018; 6
Gutierrez, Ansuategi, Susperregi, Tubío, Rankić, Lenža (CR50) 2019
Ji, Zhang, Xu, Shi, Duan (CR68) 2018; 10
Birrell, Hughes, Cai, Iida (CR19) 2019; 37
De-An, Jidong, Wei, Ying, Yu (CR31) 2011; 110
Sladojevic, Arsenovic, Anderla, Culibrk, Stefanovic (CR145) 2016
CR172
Bakhshipour, Jafari (CR12) 2018; 145
CR47
Singh, Chouhan, Jain, Jain (CR144) 2019; 7
CR43
Fuentes-Pacheco, Torres-Olivares, Roman-Rangel, Cervantes, Juarez-Lopez, Hermosillo-Valadez (CR44) 2019; 11
Liu, Zhang, He, Li (CR87) 2018; 10
Wang, Vinson, Holmes, Seibel, Bechar, Nof (CR159) 2019; 9
CR168
CR169
Ubbens, Stavness (CR155) 2017; 8
Lee, Chan, Mayo, Remagnino (CR83) 2017; 71
Wan, Goudos (CR157) 2020; 168
Mahlein, Kuska, Thomas, Bohnenkamp, Alisaac, Behmann (CR99) 2017; 8
Milella, Marani, Petitti, Reina (CR103) 2019; 156
Mao, Li, Ma, Zhang, Zhou, Wang (CR100) 2020; 170
Zhang, Huang, You, Lin, Tang, Huang (CR178) 2020; 20
Ebrahimi, Khoshtaghaza, Minaei, Jamshidi (CR39) 2017; 137
Ienco, Gaetano, Dupaquier, Maurel (CR64) 2017; 14
Mahdianpari, Salehi, Rezaee, Mohammadimanesh, Zhang (CR98) 2018; 10
Partel, Kakarla, Ampatzidis (CR117) 2019; 157
Yamamoto, Guo, Yoshioka, Ninomiya (CR170) 2014; 14
Horng, Liu, Chen (CR59) 2019; 20
dos Santos Ferreira, Freitas, da Silva, Pistori, Folhes (CR34) 2019; 165
Bac, van Henten, Hemming, Edan (CR9) 2014; 31
Luus, Salmon, Van den Bergh, Maharaj (CR97) 2015; 12
CR56
CR55
CR137
CR138
Virnodkar, Pachghare, Patil, Jha (CR156) 2020; 21
CR53
Wei, Jia, Lan, Li, Zeng, Wang (CR160) 2014; 125
Dyrmann, Christiansen, Midtiby (CR36) 2018; 35
Pal (CR115) 2009; 30
CR133
Liu, Pi, Xia (CR89) 2019; 79
CR131
Wspanialy, Moussa (CR164) 2016; 127
Song, Kim (CR147) 2017; 33
Alexandridis, Tamouridou, Pantazi, Lagopodi, Kashefi, Ovakoglou (CR3) 2017; 17
Ok, Akar, Gungor (CR111) 2012; 45
CR139
Huang, Zhao, Song (CR60) 2018; 214
Wu, Zhang, Zhou, Xiong, Gu, Yang (CR166) 2019; 19
Yu, Zhang, Yang, Zhang (CR173) 2019; 163
Patrick, Pelham, Culbreath, Holbrook, De Godoy, Li (CR119) 2017; 20
Csillik, Cherbini, Johnson, Lyons, Kelly (CR28) 2018; 2
Wu, Zeng, Pan, Wang, Liu (CR165) 2019; 4
Zhao, Gong, Zhou, Huang, Liu (CR181) 2016; 148
Fan, Lu, Gong, Xie, Goodman (CR42) 2018; 11
Ishimwe, Abutaleb, Ahmed (CR65) 2014; 3
CR61
Azouz, Esmonde, Corcoran, O’Callaghan (CR8) 2015; 110
CR143
Reina, Milella, Galati (CR129) 2017; 162
Kazerouni, Saeed, Kuhnert (CR74) 2019; 1
Sengupta, Lee (CR140) 2014; 117
Bah, Hafiane, Canals (CR10) 2018; 10
Ampatzidis, Partel (CR6) 2019; 11
Behmann, Mahlein, Rumpf, Römer, Plümer (CR17) 2015; 16
Kurtulmus, Lee, Vardar (CR78) 2011; 78
Bargoti, Underwood (CR14) 2017; 34
Thanh Noi, Kappas (CR154) 2018; 18
Kussul, Lavreniuk, Skakun, Shelestov (CR79) 2017; 14
CR77
CR76
CR75
Nashat, Abdullah, Aramvith, Abdullah (CR108) 2011; 75
Joffe, Ahlin, Hu, McMurray (CR72) 2018; 250
Kwak, Park (CR82) 2019; 9
CR110
Huang, Lan, Thomson, Fang, Hoffmann, Lacey (CR63) 2010; 71
Olsen, Konovalov, Philippa, Ridd, Wood, Johns (CR112) 2019; 9
Suzuki, Rin, Maeda, Takeda (CR151) 2018; 42
Gao, Nuyttens, Lootens, He, Pieters (CR45) 2018; 170
Jha, Doshi, Patel, Shah (CR67) 2019; 2
Altaheri, Alsulaiman, Muhammad (CR4) 2019; 7
Zhang, Gui, Khattak, Wang, Gao, Jia (CR176) 2019; 7
Esgario, Krohling, Ventura (CR41) 2020; 169
Dang, Hassan, Suhyeon, Kumar Sangaiah, Mehmood, Rho (CR30) 2018
Sujaritha, Annadurai, Satheeshkumar, Sharan, Mahesh (CR150) 2017; 134
Lottes, Behley, Milioto, Stachniss (CR94) 2018; 3
Ye, Gao, Marcos-Martinez, Mallants, Bryan (CR171) 2019; 119
Adhikari, Yang, Kim (CR1) 2019; 10
Ji, Zhao, Cheng, Xu, Zhang, Wang (CR69) 2012; 38
Kusumam, Krajník, Pearson, Duckett, Cielniak (CR81) 2017; 34
Duro, Franklin, Dubé (CR35) 2012; 118
Tao, Zhou (CR152) 2017; 142
Li, Wang, Dang, Sadeghi-Niaraki, Moon (CR86) 2020; 169
Onishi, Yoshida, Kurita, Fukao, Arihara, Iwai (CR113) 2019; 6
CR126
CR127
Zhang, Qiao, Meng, Fan, Zhang (CR179) 2018; 6
CR125
Sa, Chen, Popović, Khanna, Liebisch, Nieto (CR134) 2017; 3
Ha, Moon, Kwak, Hassan, Dang, Lee (CR52) 2017; 11
CR122
CR123
Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, Rigol-Sanchez (CR132) 2012; 67
Tellaeche, Pajares, Burgos-Artizzu, Ribeiro (CR153) 2011; 11
Gongal, Amatya, Karkee, Zhang, Lewis (CR48) 2015; 116
Marani, Milella, Petitti, Reina (CR101) 2020; 22
CR80
Suh, Ijsselmuiden, Hofstee, van Henten (CR149) 2018; 174
Li, Lee, Hsu (CR85) 2011; 23
Zhang, Kovacs (CR175) 2012; 13
Wolfert, Ge, Verdouw, Bogaardt (CR163) 2017; 153
Kamilaris, Prenafeta-Boldú (CR73) 2018; 147
Al Ohali (CR2) 2011; 23
Jia, Mou, Wang, Liu, Zheng, Lian (CR70) 2020; 17
Zhang, Harrison, Pan, Li, Sargent, Atkinson (CR174) 2020; 237
Guidici, Clark (CR49) 2017; 9
Gutiérrez, Fernández-Novales, Diago, Tardaguila (CR51) 2018; 9
Sharif, Khan, Iqbal, Azam, Lali, Javed (CR142) 2018; 150
CR182
CR16
CR15
Sa, Ge, Dayoub, Upcroft, Perez, McCool (CR135) 2016; 16
CR13
Pantazi, Moshou, Tamouridou (CR116) 2019; 156
CR11
Halstead, McCool, Denman, Perez, Fookes (CR54) 2018; 3
Liu, Abd-Elrahman, Morton, Wilhelm (CR90) 2018; 55
CR96
CR95
Polder, Blok, de Villiers, van der Wolf, Kamp (CR121) 2019; 10
CR93
Padarian, Minasny, McBratney (CR114) 2019; 16
CR92
CR91
Milella, Reina, Nielsen (CR104) 2019; 20
Xie, Zhang, Xue (CR167) 2019; 19
Narvaez, Reina, Torres-Torriti, Kantor, Cheein (CR107) 2017; 22
Slaughter, Giles, Fennimore, Smith (CR146) 2008; 22
Ampatzidis, De Bellis, Luvisi (CR5) 2017; 9
Sonobe, Tani, Wang, Kobayashi, Shimamura (CR148) 2014; 5
Wang, Zhang, Wei (CR158) 2019; 158
Dyrmann, Jørgensen, Midtiby (CR37) 2017; 8
Zhao, Gong, Huang, Liu (CR180) 2016; 127
Ghosal, Zheng, Chapman, Potgieter, Jordan, Wang (CR46) 2019; 2019
CR27
Shao, Lunetta (CR141) 2012; 70
CR24
CR22
CR21
CR105
CR20
Lee, Chan, Remagnino (CR84) 2018; 27
Reina, Milella, Rouveure, Nielsen, Worst, Blas (CR130) 2016; 146
Zujevs, Osadcuks, Ahrendt (CR183) 2015; 77
Jeon, Tian, Zhu (CR66) 2011; 11
Saleem, Potgieter, Arif (CR136) 2019; 8
CR106
Arefi, Motlagh (CR7) 2013; 7
Huang, Tang, Yang, Zhu (CR62) 2016; 122
9806_CR77
9806_CR127
9806_CR76
9806_CR126
MD Bah (9806_CR10) 2018; 10
M Sujaritha (9806_CR150) 2017; 134
L Zhang (9806_CR177) 2018; 6
T Liu (9806_CR90) 2018; 55
9806_CR123
9806_CR122
9806_CR125
B Xie (9806_CR167) 2019; 19
D Guidici (9806_CR49) 2017; 9
S Ji (9806_CR68) 2018; 10
S Nashat (9806_CR108) 2011; 75
R Marani (9806_CR101) 2020; 22
XE Pantazi (9806_CR116) 2019; 156
9806_CR75
Y Li (9806_CR86) 2020; 169
M Sharif (9806_CR142) 2018; 150
VF Rodriguez-Galiano (9806_CR132) 2012; 67
B Liu (9806_CR87) 2018; 10
A Mahlein (9806_CR99) 2017; 8
A Milella (9806_CR104) 2019; 20
D Ienco (9806_CR64) 2017; 14
P Wspanialy (9806_CR164) 2016; 127
A Olsen (9806_CR112) 2019; 9
G Reina (9806_CR130) 2016; 146
9806_CR138
B Joffe (9806_CR72) 2018; 250
9806_CR137
JG Ha (9806_CR52) 2017; 11
9806_CR139
Y Shao (9806_CR141) 2012; 70
9806_CR133
FY Narvaez (9806_CR107) 2017; 22
V Partel (9806_CR117) 2019; 157
Z De-An (9806_CR31) 2011; 110
9806_CR131
9806_CR61
G-J Horng (9806_CR59) 2019; 20
SS Virnodkar (9806_CR156) 2020; 21
R Sonobe (9806_CR148) 2014; 5
P Thanh Noi (9806_CR154) 2018; 18
F Kurtulmus (9806_CR78) 2011; 78
SH Lee (9806_CR83) 2017; 71
M Pal (9806_CR115) 2009; 30
Y Al Ohali (9806_CR2) 2011; 23
A Arefi (9806_CR7) 2013; 7
A Tellaeche (9806_CR153) 2011; 11
9806_CR11
Y Onishi (9806_CR113) 2019; 6
G Polder (9806_CR121) 2019; 10
9806_CR13
S Wan (9806_CR157) 2020; 168
9806_CR15
9806_CR16
M Dyrmann (9806_CR36) 2018; 35
HA Williams (9806_CR162) 2019; 181
9806_CR91
B Huang (9806_CR60) 2018; 214
9806_CR93
9806_CR143
9806_CR92
9806_CR95
9806_CR96
DC Slaughter (9806_CR146) 2008; 22
SP Adhikari (9806_CR1) 2019; 10
M Ebrahimi (9806_CR39) 2017; 137
DC Duro (9806_CR35) 2012; 118
T Zhang (9806_CR178) 2020; 20
IA Quiroz (9806_CR124) 2020; 168
Y Yu (9806_CR173) 2019; 163
CW Bac (9806_CR9) 2014; 31
S Ghosal (9806_CR46) 2019; 2019
MF Kazerouni (9806_CR74) 2019; 1
JG Esgario (9806_CR41) 2020; 169
Y Chen (9806_CR23) 2019; 11
A dos Santos Ferreira (9806_CR34) 2019; 165
S Bargoti (9806_CR14) 2017; 34
9806_CR80
TK Alexandridis (9806_CR3) 2017; 17
Y Huang (9806_CR63) 2010; 71
A Bakhshipour (9806_CR12) 2018; 145
W Ji (9806_CR69) 2012; 38
P Helber (9806_CR57) 2019; 12
E Ndikumana (9806_CR109) 2018; 10
A Wang (9806_CR158) 2019; 158
C Wu (9806_CR165) 2019; 4
M Halstead (9806_CR54) 2018; 3
S Birrell (9806_CR19) 2019; 37
N Kussul (9806_CR79) 2017; 14
J Liu (9806_CR89) 2019; 79
S Cho (9806_CR26) 2002; 83
JR Ubbens (9806_CR155) 2017; 8
D Wang (9806_CR159) 2019; 9
M Dyrmann (9806_CR38) 2016; 151
JM Peña (9806_CR120) 2014; 6
A dos Santos Ferreira (9806_CR33) 2017; 143
9806_CR32
C McCool (9806_CR102) 2017; 2
J Gao (9806_CR45) 2018; 170
S Sladojevic (9806_CR145) 2016
Y Tao (9806_CR152) 2017; 142
9806_CR169
P Lottes (9806_CR94) 2018; 3
9806_CR168
AB Azouz (9806_CR8) 2015; 110
Y Ampatzidis (9806_CR5) 2017; 9
L Zhang (9806_CR176) 2019; 7
V Eisavi (9806_CR40) 2015; 187
A Zujevs (9806_CR183) 2015; 77
S Sengupta (9806_CR140) 2014; 117
9806_CR161
X Wei (9806_CR160) 2014; 125
J Wu (9806_CR166) 2019; 19
A Gutierrez (9806_CR50) 2019
A Patrick (9806_CR119) 2017; 20
K Suzuki (9806_CR151) 2018; 42
M Mahdianpari (9806_CR98) 2018; 10
S Cho (9806_CR25) 2002; 82
K Kusumam (9806_CR81) 2017; 34
W Jia (9806_CR70) 2020; 17
9806_CR22
9806_CR21
9806_CR24
DS Jodas (9806_CR71) 2013; 18
S Wolfert (9806_CR163) 2017; 153
9806_CR27
R Ishimwe (9806_CR65) 2014; 3
H Altaheri (9806_CR4) 2019; 7
9806_CR20
G Liu (9806_CR88) 2019; 19
9806_CR172
A Gongal (9806_CR48) 2015; 116
G-H Kwak (9806_CR82) 2019; 9
9806_CR55
9806_CR105
Y Ampatzidis (9806_CR6) 2019; 11
9806_CR56
9806_CR106
HY Jeon (9806_CR66) 2011; 11
A Milella (9806_CR103) 2019; 156
M Huang (9806_CR62) 2016; 122
C Zhang (9806_CR175) 2012; 13
I Sa (9806_CR135) 2016; 16
K Yamamoto (9806_CR170) 2014; 14
J Fuentes-Pacheco (9806_CR44) 2019; 11
Y Zhao (9806_CR180) 2016; 127
J Behmann (9806_CR17) 2015; 16
FP Luus (9806_CR97) 2015; 12
9806_CR53
9806_CR182
J Padarian (9806_CR114) 2019; 16
X Zhang (9806_CR179) 2018; 6
DI Patrício (9806_CR118) 2018; 153
A Song (9806_CR147) 2017; 33
A Kamilaris (9806_CR73) 2018; 147
I Sa (9806_CR134) 2017; 3
LM Dang (9806_CR30) 2018
S Gutiérrez (9806_CR51) 2018; 9
Y Zhao (9806_CR181) 2016; 148
TU Rehman (9806_CR128) 2019; 156
M Dyrmann (9806_CR37) 2017; 8
S Mao (9806_CR100) 2020; 170
AZ da Costa (9806_CR29) 2020; 190
9806_CR43
G Reina (9806_CR129) 2017; 162
SH Lee (9806_CR84) 2018; 27
O Csillik (9806_CR28) 2018; 2
9806_CR47
L Ye (9806_CR171) 2019; 119
Z Fan (9806_CR42) 2018; 11
P Li (9806_CR85) 2011; 23
9806_CR110
HK Suh (9806_CR149) 2018; 174
S Heremans (9806_CR58) 2015; 36
A Bierman (9806_CR18) 2019; 2019
K Jha (9806_CR67) 2019; 2
C Zhang (9806_CR174) 2020; 237
UP Singh (9806_CR144) 2019; 7
AO Ok (9806_CR111) 2012; 45
MH Saleem (9806_CR136) 2019; 8
References_xml – ident: CR22
– volume: 77
  start-page: 227
  year: 2015
  end-page: 233
  ident: CR183
  article-title: Trends in robotic sensor technologies for fruit harvesting: 2010–2015
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.12.378
– volume: 1
  start-page: 756
  issue: 7
  year: 2019
  ident: CR74
  article-title: Fully-automatic natural plant recognition system using deep neural network for dynamic outdoor environments
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-019-0785-9
– volume: 55
  start-page: 243
  issue: 2
  year: 2018
  end-page: 264
  ident: CR90
  article-title: Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system
  publication-title: GIScience & Remote Sensing
  doi: 10.1080/15481603.2018.1426091
– volume: 125
  start-page: 5684
  issue: 19
  year: 2014
  end-page: 5689
  ident: CR160
  article-title: Automatic method of fruit object extraction under complex agricultural background for vision system of fruit picking robot
  publication-title: Optik-International Journal for Light and Electron Optics
  doi: 10.1016/j.ijleo.2014.07.001
– volume: 11
  start-page: 410
  issue: 4
  year: 2019
  ident: CR6
  article-title: UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence
  publication-title: Remote Sensing
  doi: 10.3390/rs11040410
– volume: 12
  start-page: 2448
  issue: 12
  year: 2015
  end-page: 2452
  ident: CR97
  article-title: Multiview deep learning for land-use classification
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2015.2483680
– volume: 156
  start-page: 293
  year: 2019
  end-page: 306
  ident: CR103
  article-title: In-field high throughput grapevine phenotyping with a consumer-grade depth camera
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.11.026
– volume: 75
  start-page: 147
  issue: 1
  year: 2011
  end-page: 158
  ident: CR108
  article-title: Support vector machine approach to real-time inspection of biscuits on moving conveyor belt
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2010.10.010
– volume: 118
  start-page: 259
  year: 2012
  end-page: 272
  ident: CR35
  article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.11.020
– volume: 10
  start-page: 1404
  year: 2019
  ident: CR1
  article-title: Learning semantic graphics using convolutional encoder-decoder network for autonomous weeding in paddy field
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2019.01404
– ident: CR16
– volume: 8
  start-page: 468
  issue: 11
  year: 2019
  ident: CR136
  article-title: Plant disease detection and classification by deep learning
  publication-title: Plants
  doi: 10.3390/plants8110468
– volume: 110
  start-page: 112
  issue: 2
  year: 2011
  end-page: 122
  ident: CR31
  article-title: Design and control of an apple harvesting robot
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2011.07.005
– volume: 13
  start-page: 693
  issue: 6
  year: 2012
  end-page: 712
  ident: CR175
  article-title: The application of small unmanned aerial systems for precision agriculture: A review
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-012-9274-5
– ident: CR138
– year: 2018
  ident: CR30
  article-title: UAV based wilt detection system via convolutional neural networks
  publication-title: Sustainable Computing: Informatics and Systems
  doi: 10.1016/j.suscom.2018.05.010
– volume: 150
  start-page: 220
  year: 2018
  end-page: 234
  ident: CR142
  article-title: Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.04.023
– volume: 23
  start-page: 351
  year: 2011
  end-page: 366
  ident: CR85
  article-title: Review on fruit harvesting method for potential use of automatic fruit harvesting systems
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2011.11.2514
– volume: 147
  start-page: 70
  year: 2018
  end-page: 90
  ident: CR73
  article-title: Deep learning in agriculture: A survey
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.02.016
– ident: CR80
– volume: 163
  start-page: 104846
  year: 2019
  ident: CR173
  article-title: Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.06.001
– ident: CR77
– volume: 137
  start-page: 52
  year: 2017
  end-page: 58
  ident: CR39
  article-title: Vision-based pest detection based on SVM classification method
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2017.03.016
– volume: 8
  start-page: 238
  issue: 2
  year: 2017
  end-page: 243
  ident: CR99
  article-title: Plant disease detection by hyperspectral imaging: From the lab to the field
  publication-title: Advances in Animal Biosciences
  doi: 10.1017/S2040470017001248
– ident: CR106
– ident: CR182
– volume: 17
  start-page: 2007
  issue: 9
  year: 2017
  ident: CR3
  article-title: Novelty detection classifiers in weed mapping: Silybum marianum detection on UAV multispectral images
  publication-title: Sensors
  doi: 10.3390/s17092007
– volume: 14
  start-page: 1685
  issue: 10
  year: 2017
  end-page: 1689
  ident: CR64
  article-title: Land cover classification via multitemporal spatial data by deep recurrent neural networks
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2017.2728698
– volume: 174
  start-page: 50
  year: 2018
  end-page: 65
  ident: CR149
  article-title: Transfer learning for the classification of sugar beet and volunteer potato under field conditions
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2018.06.017
– volume: 142
  start-page: 388
  year: 2017
  end-page: 396
  ident: CR152
  article-title: Automatic apple recognition based on the fusion of color and 3D feature for robotic fruit picking
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2017.09.019
– volume: 9
  start-page: 4377
  issue: 1
  year: 2019
  ident: CR159
  article-title: Early detection of tomato spotted wilt virus by hyperspectral imaging and outlier removal auxiliary classifier generative adversarial nets (OR-AC-GAN)
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-40066-y
– volume: 37
  start-page: 225
  year: 2019
  end-page: 245
  ident: CR19
  article-title: A field-tested robotic harvesting system for iceberg lettuce
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.21888
– volume: 5
  start-page: 157
  issue: 2
  year: 2014
  end-page: 164
  ident: CR148
  article-title: Random forest classification of crop type using multi-temporal TerraSAR-X dual-polarimetric data
  publication-title: Remote Sensing Letters
  doi: 10.1080/2150704X.2014.889863
– volume: 70
  start-page: 78
  year: 2012
  end-page: 87
  ident: CR141
  article-title: Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2012.04.001
– ident: CR92
– volume: 19
  start-page: 2023
  issue: 9
  year: 2019
  ident: CR88
  article-title: A mature-tomato detection algorithm using machine learning and color analysis
  publication-title: Sensors
  doi: 10.3390/s19092023
– volume: 20
  start-page: 93
  issue: 1
  year: 2020
  ident: CR178
  article-title: An autonomous fruit and vegetable harvester with a low-cost gripper using a 3D sesnsor
  publication-title: Sensors
  doi: 10.3390/s20010093
– volume: 16
  start-page: e00198
  year: 2019
  ident: CR114
  article-title: Using deep learning to predict soil properties from regional spectral data
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2018.e00198
– volume: 156
  start-page: 585
  year: 2019
  end-page: 605
  ident: CR128
  article-title: Current and future applications of statistical machine learning algorithms for agricultural machine vision systems
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.12.006
– volume: 12
  start-page: 2217
  issue: 7
  year: 2019
  end-page: 2226
  ident: CR57
  article-title: Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2019.2918242
– ident: CR11
– volume: 127
  start-page: 311
  year: 2016
  end-page: 323
  ident: CR180
  article-title: A review of key techniques of vision-based control for harvesting robot
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2016.06.022
– volume: 10
  start-page: 209
  year: 2019
  ident: CR121
  article-title: Potato virus y detection in seed potatoes using deep learning on hyperspectral images
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2019.00209
– volume: 169
  start-page: 105174
  year: 2020
  ident: CR86
  article-title: Crop pest recognition in natural scenes using convolutional neural networks
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.105174
– volume: 7
  start-page: 56028
  year: 2019
  end-page: 56038
  ident: CR176
  article-title: Multi-task cascaded convolutional networks based intelligent fruit detection for designing automated robot
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2899940
– volume: 9
  start-page: 643
  issue: 4
  year: 2019
  ident: CR82
  article-title: Impact of texture information on crop classification with machine learning and UAV images
  publication-title: Applied Sciences
  doi: 10.3390/app9040643
– volume: 250
  start-page: 1
  year: 2018
  end-page: 6
  ident: CR72
  article-title: Vision-guided robotic leaf picking
  publication-title: EasyChair Preprint
– volume: 116
  start-page: 8
  year: 2015
  end-page: 19
  ident: CR48
  article-title: Sensors and systems for fruit detection and localization: A review
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2015.05.021
– volume: 14
  start-page: 778
  issue: 5
  year: 2017
  end-page: 782
  ident: CR79
  article-title: Deep learning classification of land cover and crop types using remote sensing data
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2017.2681128
– volume: 3
  start-page: 128
  issue: 03
  year: 2014
  ident: CR65
  article-title: Applications of thermal imaging in agriculture: A review
  publication-title: Advances in Remote Sensing
  doi: 10.4236/ars.2014.33011
– volume: 78
  start-page: 140
  issue: 2
  year: 2011
  end-page: 149
  ident: CR78
  article-title: Green citrus detection using ‘eigenfruit’, color and circular Gabor texture features under natural outdoor conditions
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2011.07.001
– volume: 20
  start-page: 4
  issue: 3
  year: 2017
  end-page: 12
  ident: CR119
  article-title: High throughput phenotyping of tomato spot wilt disease in peanuts using unmanned aerial systems and multispectral imaging
  publication-title: IEEE Instrumentation & Measurement Magazine
  doi: 10.1109/MIM.2017.7951684
– volume: 153
  start-page: 69
  year: 2017
  end-page: 80
  ident: CR163
  article-title: Big data in smart farming: A review
  publication-title: Agricultural Systems
  doi: 10.1016/j.agsy.2017.01.023
– ident: CR126
– volume: 18
  start-page: 240
  year: 2013
  end-page: 249
  ident: CR71
  article-title: Comparing support vector machines and artificial neural networks in the recognition of steering angle for driving of mobile robots through paths in plantations
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2013.05.187
– volume: 153
  start-page: 69
  year: 2018
  end-page: 81
  ident: CR118
  article-title: Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.08.001
– volume: 170
  start-page: 105254
  year: 2020
  ident: CR100
  article-title: Automatic cucumber recognition algorithm for harvesting robots in the natural environment using deep learning and multi-feature fusion
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105254
– volume: 42
  start-page: 1091
  issue: 2
  year: 2018
  end-page: 1096
  ident: CR151
  article-title: Forest cover classification using geospatial multimodal DaTA
  publication-title: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences
  doi: 10.5194/isprs-archives-XLII-2-1091-2018
– volume: 134
  start-page: 160
  year: 2017
  end-page: 171
  ident: CR150
  article-title: Weed detecting robot in sugarcane fields using fuzzy real time classifier
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2017.01.008
– volume: 119
  start-page: 407
  year: 2019
  end-page: 417
  ident: CR171
  article-title: Projecting Australia's forest cover dynamics and exploring influential factors using deep learning
  publication-title: Environmental Modelling & Software
  doi: 10.1016/j.envsoft.2019.07.013
– ident: CR91
– ident: CR47
– volume: 21
  start-page: 1121
  year: 2020
  end-page: 1155
  ident: CR156
  article-title: Remote sensing and machine learning for crop water stress determination in various crops: A critical review
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-020-09711-9
– volume: 2
  start-page: 39
  issue: 4
  year: 2018
  ident: CR28
  article-title: Identification of citrus trees from unmanned aerial vehicle imagery using convolutional neural networks
  publication-title: Drones
  doi: 10.3390/drones2040039
– volume: 8
  start-page: 1190
  year: 2017
  ident: CR155
  article-title: Deep plant phenomics: a deep learning platform for complex plant phenotyping tasks
  publication-title: Frontiers in plant science
  doi: 10.3389/fpls.2017.01190
– volume: 19
  start-page: 612
  issue: 3
  year: 2019
  ident: CR166
  article-title: Automatic recognition of ripening tomatoes by combining multi-feature fusion with a bi-layer classification strategy for harvesting robots
  publication-title: Sensors
  doi: 10.3390/s19030612
– volume: 110
  start-page: 162
  year: 2015
  end-page: 170
  ident: CR8
  article-title: Development of a teat sensing system for robotic milking by combining thermal imaging and stereovision technique
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2014.11.004
– volume: 10
  start-page: 1119
  issue: 7
  year: 2018
  ident: CR98
  article-title: Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery
  publication-title: Remote Sensing
  doi: 10.3390/rs10071119
– volume: 10
  start-page: 1690
  issue: 11
  year: 2018
  ident: CR10
  article-title: Deep learning with unsupervised data labeling for weed detection in line crops in UAV images
  publication-title: Remote Sensing
  doi: 10.3390/rs10111690
– ident: CR137
– volume: 34
  start-page: 1505
  issue: 8
  year: 2017
  end-page: 1518
  ident: CR81
  article-title: 3D-vision based detection, localization, and sizing of broccoli heads in the field
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.21726
– volume: 168
  start-page: 107036
  year: 2020
  ident: CR157
  article-title: Faster R-CNN for multi-class fruit detection using a robotic vision system
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2019.107036
– volume: 27
  start-page: 4287
  issue: 9
  year: 2018
  end-page: 4301
  ident: CR84
  article-title: Multi-organ plant classification based on convolutional and recurrent neural networks
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2018.2836321
– volume: 157
  start-page: 339
  year: 2019
  end-page: 350
  ident: CR117
  article-title: Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.12.048
– ident: CR27
– volume: 181
  start-page: 140
  year: 2019
  end-page: 156
  ident: CR162
  article-title: Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2019.03.007
– volume: 16
  start-page: 239
  issue: 3
  year: 2015
  end-page: 260
  ident: CR17
  article-title: A review of advanced machine learning methods for the detection of biotic stress in precision crop protection
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-014-9372-7
– volume: 9
  start-page: 629
  issue: 6
  year: 2017
  ident: CR49
  article-title: One-Dimensional convolutional neural network land-cover classification of multi-seasonal hyperspectral imagery in the San Francisco Bay Area, California
  publication-title: Remote Sensing
  doi: 10.3390/rs9060629
– ident: CR123
– volume: 34
  start-page: 1039
  issue: 6
  year: 2017
  end-page: 1060
  ident: CR14
  article-title: Image segmentation for fruit detection and yield estimation in apple orchards
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.21699
– volume: 7
  start-page: 117115
  year: 2019
  end-page: 117133
  ident: CR4
  article-title: Date fruit classification for robotic harvesting in a natural environment using deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936536
– year: 2016
  ident: CR145
  article-title: Deep neural networks based recognition of plant diseases by leaf image classification
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2016/3289801
– ident: CR139
– ident: CR13
– volume: 10
  start-page: 75
  issue: 1
  year: 2018
  ident: CR68
  article-title: 3D convolutional neural networks for crop classification with multi-temporal remote sensing images
  publication-title: Remote Sensing
  doi: 10.3390/rs10010075
– volume: 165
  start-page: 104963
  year: 2019
  ident: CR34
  article-title: Unsupervised deep learning and semi-automatic data labeling in weed discrimination
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.104963
– ident: CR55
– volume: 6
  start-page: 13
  issue: 1
  year: 2019
  ident: CR113
  article-title: An automated fruit harvesting robot by using deep learning
  publication-title: ROBOMECH Journal
  doi: 10.1186/s40648-019-0141-2
– volume: 11
  start-page: 1157
  issue: 10
  year: 2019
  ident: CR44
  article-title: Fig plant segmentation from aerial images using a deep convolutional encoder-decoder network
  publication-title: Remote Sensing
  doi: 10.3390/rs11101157
– volume: 7
  start-page: 43721
  year: 2019
  end-page: 43729
  ident: CR144
  article-title: Multilayer convolution neural network for the classification of mango leaves infected by anthracnose disease
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907383
– ident: CR24
– volume: 170
  start-page: 39
  year: 2018
  end-page: 50
  ident: CR45
  article-title: Recognising weeds in a maize crop using a random forest machine-learning algorithm and near-infrared snapshot mosaic hyperspectral imagery
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2018.03.006
– volume: 8
  start-page: 842
  issue: 2
  year: 2017
  end-page: 847
  ident: CR37
  article-title: RoboWeedSupport-Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network
  publication-title: Advances in Animal Biosciences
  doi: 10.1017/S2040470017000206
– ident: CR125
– volume: 36
  start-page: 2934
  issue: 11
  year: 2015
  end-page: 2962
  ident: CR58
  article-title: Machine learning methods for sub-pixel land-cover classification in the spatially heterogeneous region of Flanders (Belgium): A multi-criteria comparison
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161.2015.1054047
– ident: CR93
– volume: 20
  start-page: 423
  issue: 2
  year: 2019
  end-page: 444
  ident: CR104
  article-title: A multi-sensor robotic platform for ground mapping and estimation beyond the visible spectrum
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-018-9605-2
– volume: 45
  start-page: 421
  issue: 1
  year: 2012
  end-page: 432
  ident: CR111
  article-title: Evaluation of random forest method for agricultural crop classification
  publication-title: European Journal of Remote Sensing
  doi: 10.5721/EuJRS20124535
– ident: CR131
– volume: 10
  start-page: 11
  issue: 1
  year: 2018
  ident: CR87
  article-title: Identification of apple leaf diseases based on deep convolutional neural networks
  publication-title: Symmetry
  doi: 10.3390/sym10010011
– volume: 30
  start-page: 3835
  issue: 14
  year: 2009
  end-page: 3841
  ident: CR115
  article-title: Extreme-learning-machine-based land cover classification
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160902788636
– volume: 214
  start-page: 73
  year: 2018
  end-page: 86
  ident: CR60
  article-title: Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2018.04.050
– volume: 19
  start-page: 2398
  issue: 10
  year: 2019
  ident: CR167
  article-title: Deep convolutional neural network for mapping smallholder agriculture using high spatial resolution satellite image
  publication-title: Sensors
  doi: 10.3390/s19102398
– volume: 9
  start-page: 1010
  issue: 6
  year: 2017
  ident: CR5
  article-title: iPathology: robotic applications and management of plants and plant diseases
  publication-title: Sustainability
  doi: 10.3390/su9061010
– volume: 168
  start-page: 105044
  year: 2020
  ident: CR124
  article-title: Image recognition of Legacy blueberries in a Chilean smart farm through deep learning
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.105044
– volume: 83
  start-page: 275
  issue: 3
  year: 2002
  end-page: 280
  ident: CR26
  article-title: AE—automation and emerging technologies: Weed–plant discrimination by machine vision and artificial neural network
  publication-title: Biosystems Engineering
  doi: 10.1006/bioe.2002.0117
– volume: 79
  start-page: 9403
  year: 2019
  end-page: 9417
  ident: CR89
  article-title: A novel and high precision tomato maturity recognition algorithm based on multi-level deep residual network
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-019-7648-7
– ident: CR61
– volume: 22
  start-page: 387
  year: 2020
  end-page: 413
  ident: CR101
  article-title: Deep neural networks for grape bunch segmentation in natural images from a consumer-grade camera
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-020-09736-0
– volume: 11
  start-page: 1584
  issue: 13
  year: 2019
  ident: CR23
  article-title: Strawberry Yield Prediction Based on a Deep Neural Network Using High-Resolution Aerial Orthoimages
  publication-title: Remote Sensing
  doi: 10.3390/rs11131584
– volume: 18
  start-page: 18
  issue: 1
  year: 2018
  ident: CR154
  article-title: Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery
  publication-title: Sensors
– volume: 237
  start-page: 111593
  year: 2020
  ident: CR174
  article-title: Scale Sequence Joint Deep Learning (SS-JDL) for land use and land cover classification
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2019.111593
– volume: 151
  start-page: 72
  year: 2016
  end-page: 80
  ident: CR38
  article-title: Plant species classification using deep convolutional neural network
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2016.08.024
– volume: 127
  start-page: 487
  year: 2016
  end-page: 494
  ident: CR164
  article-title: Early powdery mildew detection system for application in greenhouse automation
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2016.06.027
– volume: 67
  start-page: 93
  year: 2012
  end-page: 104
  ident: CR132
  article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2011.11.002
– volume: 71
  start-page: 1
  year: 2017
  end-page: 13
  ident: CR83
  article-title: How deep learning extracts and learns leaf features for plant classification
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.05.015
– volume: 6
  start-page: 5019
  issue: 6
  year: 2014
  end-page: 5041
  ident: CR120
  article-title: Object-based image classification of summer crops with machine learning methods
  publication-title: Remote Sensing
  doi: 10.3390/rs6065019
– volume: 145
  start-page: 153
  year: 2018
  end-page: 160
  ident: CR12
  article-title: Evaluation of support vector machine and artificial neural networks in weed detection using shape features
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2017.12.032
– ident: CR21
– volume: 82
  start-page: 143
  issue: 2
  year: 2002
  end-page: 149
  ident: CR25
  article-title: Development of a three-degrees-of-freedom robot for harvesting lettuce using machine vision and fuzzy logic control
  publication-title: Biosystems Engineering
  doi: 10.1006/bioe.2002.0061
– volume: 3
  start-page: 2870
  issue: 4
  year: 2018
  end-page: 2877
  ident: CR94
  article-title: Fully convolutional networks with sequential information for robust crop and weed detection in precision farming
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2018.2846289
– volume: 16
  start-page: 1222
  issue: 8
  year: 2016
  ident: CR135
  article-title: Deepfruits: A fruit detection system using deep neural networks
  publication-title: Sensors
  doi: 10.3390/s16081222
– volume: 162
  start-page: 124
  year: 2017
  end-page: 139
  ident: CR129
  article-title: Terrain assessment for precision agriculture using vehicle dynamic modelling
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2017.06.025
– ident: CR96
– volume: 156
  start-page: 96
  year: 2019
  end-page: 104
  ident: CR116
  article-title: Automated leaf disease detection in different crop species through image features analysis and One Class Classifiers
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.11.005
– ident: CR75
– ident: CR15
– volume: 6
  start-page: 67940
  year: 2018
  end-page: 67950
  ident: CR177
  article-title: Deep learning based improved classification system for designing tomato harvesting robot
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2879324
– volume: 35
  start-page: 202
  issue: 2
  year: 2018
  end-page: 212
  ident: CR36
  article-title: Estimation of plant species by classifying plants and leaves in combination
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.21734
– volume: 190
  start-page: 131
  year: 2020
  end-page: 144
  ident: CR29
  article-title: Computer vision based detection of external defects on tomatoes using deep learning
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2019.12.003
– ident: CR32
– volume: 148
  start-page: 127
  year: 2016
  end-page: 137
  ident: CR181
  article-title: Detecting tomatoes in greenhouse scenes by combining AdaBoost classifier and colour analysis
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2016.05.001
– volume: 14
  start-page: 12191
  issue: 7
  year: 2014
  end-page: 12206
  ident: CR170
  article-title: On plant detection of intact tomato fruits using image analysis and machine learning methods
  publication-title: Sensors
  doi: 10.3390/s140712191
– ident: CR105
– ident: CR168
– volume: 20
  start-page: 2766
  year: 2019
  end-page: 2781
  ident: CR59
  article-title: The smart image recognition mechanism for crop harvesting system in intelligent agriculture
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2019.2954287
– volume: 38
  start-page: 1186
  issue: 5
  year: 2012
  end-page: 1195
  ident: CR69
  article-title: Automatic recognition vision system guided for apple harvesting robot
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2011.11.005
– ident: CR122
– ident: CR143
– volume: 11
  start-page: 876
  issue: 3
  year: 2018
  end-page: 887
  ident: CR42
  article-title: Automatic tobacco plant detection in UAV images via deep neural networks
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2018.2793849
– volume: 3
  start-page: 588
  issue: 1
  year: 2017
  end-page: 595
  ident: CR134
  article-title: weednet: Dense semantic weed classification using multispectral images and mav for smart farming
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2017.2774979
– ident: CR95
– volume: 158
  start-page: 226
  year: 2019
  end-page: 240
  ident: CR158
  article-title: A review on weed detection using ground-based machine vision and image processing techniques
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.02.005
– volume: 22
  start-page: 378
  issue: 2
  year: 2008
  end-page: 384
  ident: CR146
  article-title: Multispectral machine vision identification of lettuce and weed seedlings for automated weed control
  publication-title: Weed Technology
  doi: 10.1614/WT-07-104.1
– ident: CR43
– volume: 4
  start-page: 3113
  issue: 4
  year: 2019
  end-page: 3120
  ident: CR165
  article-title: Plant phenotyping by deep-learning-based planner for multi-robots
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2019.2924125
– volume: 122
  start-page: 139
  year: 2016
  end-page: 145
  ident: CR62
  article-title: Classification of maize seeds of different years based on hyperspectral imaging and model updating
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2016.01.029
– ident: CR53
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 12
  ident: CR112
  article-title: DeepWeeds: A multiclass weed species image dataset for deep learning
  publication-title: Scientific Reports
– volume: 2019
  start-page: 9209727
  year: 2019
  ident: CR18
  article-title: A high-throughput phenotyping system using machine vision to quantify severity of grapevine powdery mildew
  publication-title: Plant Phenomics
  doi: 10.34133/2019/9209727
– ident: CR133
– volume: 117
  start-page: 51
  year: 2014
  end-page: 61
  ident: CR140
  article-title: Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2013.07.007
– volume: 169
  start-page: 105162
  year: 2020
  ident: CR41
  article-title: Deep learning for classification and severity estimation of coffee leaf biotic stress
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.105162
– volume: 2
  start-page: 1344
  issue: 3
  year: 2017
  end-page: 1351
  ident: CR102
  article-title: Mixtures of lightweight deep convolutional neural networks: Applied to agricultural robotics
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2017.2667039
– volume: 22
  start-page: 2428
  issue: 6
  year: 2017
  end-page: 2439
  ident: CR107
  article-title: A survey of ranging and imaging techniques for precision agriculture phenotyping
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2017.2760866
– volume: 17
  start-page: 1729881419897473
  issue: 1
  year: 2020
  ident: CR70
  article-title: Fruit recognition based on pulse coupled neural network and genetic Elman algorithm application in apple harvesting robot
  publication-title: International Journal of Advanced Robotic Systems
– volume: 6
  start-page: 30370
  year: 2018
  end-page: 30377
  ident: CR179
  article-title: Identification of maize leaf diseases using improved deep convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2844405
– ident: CR56
– ident: CR169
– volume: 2
  start-page: 1
  year: 2019
  end-page: 12
  ident: CR67
  article-title: A comprehensive review on automation in agriculture using artificial intelligence
  publication-title: Artificial Intelligence in Agriculture
  doi: 10.1016/j.aiia.2019.05.004
– volume: 10
  start-page: 1217
  issue: 8
  year: 2018
  ident: CR109
  article-title: Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue
  publication-title: France. Remote Sensing
  doi: 10.3390/rs10081217
– volume: 23
  start-page: 29
  issue: 1
  year: 2011
  end-page: 36
  ident: CR2
  article-title: Computer vision based date fruit grading system: Design and implementation
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2010.03.003
– volume: 3
  start-page: 2995
  issue: 4
  year: 2018
  end-page: 3002
  ident: CR54
  article-title: Fruit quantity and ripeness estimation using a robotic vision system
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2018.2849514
– ident: CR127
– volume: 11
  start-page: 908
  issue: 1
  year: 2011
  end-page: 915
  ident: CR153
  article-title: A computer vision approach for weeds identification through Support Vector Machines
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.01.011
– ident: CR161
– volume: 146
  start-page: 114
  year: 2016
  end-page: 132
  ident: CR130
  article-title: Ambient awareness for agricultural robotic vehicles
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2015.12.010
– year: 2019
  ident: CR50
  article-title: A benchmarking of learning strategies for pest detection and identification on tomato plants for autonomous scouting robots using internal databases
  publication-title: Journal of Sensors
  doi: 10.1155/2019/5219471
– volume: 11
  start-page: 6270
  issue: 6
  year: 2011
  end-page: 6283
  ident: CR66
  article-title: Robust crop and weed segmentation under uncontrolled outdoor illumination
  publication-title: Sensors
  doi: 10.3390/s110606270
– volume: 7
  start-page: 699
  issue: 5
  year: 2013
  ident: CR7
  article-title: Development of an expert system based on wavelet transform and artificial neural networks for the ripe tomato harvesting robot
  publication-title: Australian Journal of Crop Science
– volume: 33
  start-page: 1061
  year: 2017
  end-page: 1073
  ident: CR147
  article-title: Deep learning-based hyperspectral image classification with application to environmental geographic information systems
  publication-title: Korean Journal of Remote Sensing
– ident: CR172
– volume: 71
  start-page: 107
  issue: 2
  year: 2010
  end-page: 127
  ident: CR63
  article-title: Development of soft computing and applications in agricultural and biological engineering
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2010.01.001
– volume: 187
  start-page: 291
  issue: 5
  year: 2015
  ident: CR40
  article-title: Land cover mapping based on random forest classification of multitemporal spectral and thermal images
  publication-title: Environmental Monitoring and Assessment
  doi: 10.1007/s10661-015-4489-3
– ident: CR110
– volume: 31
  start-page: 888
  issue: 6
  year: 2014
  end-page: 911
  ident: CR9
  article-title: Harvesting robots for high-value crops: State-of-the-art review and challenges ahead
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.21525
– volume: 2019
  start-page: 1525874
  year: 2019
  ident: CR46
  article-title: A weakly supervised deep learning framework for sorghum head detection and counting
  publication-title: Plant Phenomics
  doi: 10.34133/2019/1525874
– ident: CR76
– volume: 143
  start-page: 314
  year: 2017
  end-page: 324
  ident: CR33
  article-title: Weed detection in soybean crops using ConvNets
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2017.10.027
– volume: 11
  start-page: 042621
  issue: 4
  year: 2017
  ident: CR52
  article-title: Deep convolutional neural network for classifying Fusarium wilt of radish from unmanned aerial vehicles
  publication-title: Journal of Applied Remote Sensing
  doi: 10.1117/1.JRS.11.042621
– ident: CR20
– volume: 9
  start-page: 1102
  year: 2018
  ident: CR51
  article-title: On-the-go hyperspectral imaging under field conditions and machine learning for the classification of grapevine varieties
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2018.01102
– volume: 35
  start-page: 202
  issue: 2
  year: 2018
  ident: 9806_CR36
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.21734
– ident: 9806_CR126
  doi: 10.1109/CVPR.2017.690
– volume: 117
  start-page: 51
  year: 2014
  ident: 9806_CR140
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2013.07.007
– volume: 137
  start-page: 52
  year: 2017
  ident: 9806_CR39
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2017.03.016
– volume: 13
  start-page: 693
  issue: 6
  year: 2012
  ident: 9806_CR175
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-012-9274-5
– volume: 10
  start-page: 1404
  year: 2019
  ident: 9806_CR1
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2019.01404
– volume: 71
  start-page: 1
  year: 2017
  ident: 9806_CR83
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.05.015
– volume: 7
  start-page: 117115
  year: 2019
  ident: 9806_CR4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936536
– ident: 9806_CR168
  doi: 10.1109/ICIICII.2016.0037
– volume: 116
  start-page: 8
  year: 2015
  ident: 9806_CR48
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2015.05.021
– ident: 9806_CR127
– ident: 9806_CR27
  doi: 10.1109/CVPR.2017.195
– ident: 9806_CR106
  doi: 10.1109/ICRA.2018.8460962
– ident: 9806_CR16
  doi: 10.1007/978-3-319-67361-5_18
– volume: 14
  start-page: 1685
  issue: 10
  year: 2017
  ident: 9806_CR64
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2017.2728698
– ident: 9806_CR110
– volume: 19
  start-page: 2398
  issue: 10
  year: 2019
  ident: 9806_CR167
  publication-title: Sensors
  doi: 10.3390/s19102398
– volume: 110
  start-page: 112
  issue: 2
  year: 2011
  ident: 9806_CR31
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2011.07.005
– volume: 23
  start-page: 351
  year: 2011
  ident: 9806_CR85
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2011.11.2514
– volume: 7
  start-page: 699
  issue: 5
  year: 2013
  ident: 9806_CR7
  publication-title: Australian Journal of Crop Science
– ident: 9806_CR122
  doi: 10.1007/978-3-319-48036-7_9
– ident: 9806_CR182
  doi: 10.1109/CAC.2018.8623610
– volume: 110
  start-page: 162
  year: 2015
  ident: 9806_CR8
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2014.11.004
– volume: 2
  start-page: 1
  year: 2019
  ident: 9806_CR67
  publication-title: Artificial Intelligence in Agriculture
  doi: 10.1016/j.aiia.2019.05.004
– volume: 20
  start-page: 93
  issue: 1
  year: 2020
  ident: 9806_CR178
  publication-title: Sensors
  doi: 10.3390/s20010093
– volume: 163
  start-page: 104846
  year: 2019
  ident: 9806_CR173
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.06.001
– ident: 9806_CR20
  doi: 10.1007/978-3-319-90403-0_6
– volume: 82
  start-page: 143
  issue: 2
  year: 2002
  ident: 9806_CR25
  publication-title: Biosystems Engineering
  doi: 10.1006/bioe.2002.0061
– ident: 9806_CR172
  doi: 10.20944/preprints201912.0237.v1
– volume: 20
  start-page: 2766
  year: 2019
  ident: 9806_CR59
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2019.2954287
– volume: 7
  start-page: 56028
  year: 2019
  ident: 9806_CR176
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2899940
– ident: 9806_CR95
  doi: 10.1109/ICRA.2016.7487720
– volume: 16
  start-page: e00198
  year: 2019
  ident: 9806_CR114
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2018.e00198
– volume: 148
  start-page: 127
  year: 2016
  ident: 9806_CR181
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2016.05.001
– volume: 2
  start-page: 1344
  issue: 3
  year: 2017
  ident: 9806_CR102
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2017.2667039
– volume: 168
  start-page: 107036
  year: 2020
  ident: 9806_CR157
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2019.107036
– ident: 9806_CR125
  doi: 10.1109/CVPR.2016.91
– ident: 9806_CR15
– volume: 79
  start-page: 9403
  year: 2019
  ident: 9806_CR89
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-019-7648-7
– volume: 22
  start-page: 378
  issue: 2
  year: 2008
  ident: 9806_CR146
  publication-title: Weed Technology
  doi: 10.1614/WT-07-104.1
– volume: 157
  start-page: 339
  year: 2019
  ident: 9806_CR117
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.12.048
– volume: 11
  start-page: 410
  issue: 4
  year: 2019
  ident: 9806_CR6
  publication-title: Remote Sensing
  doi: 10.3390/rs11040410
– volume: 30
  start-page: 3835
  issue: 14
  year: 2009
  ident: 9806_CR115
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160902788636
– volume: 16
  start-page: 239
  issue: 3
  year: 2015
  ident: 9806_CR17
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-014-9372-7
– volume: 11
  start-page: 876
  issue: 3
  year: 2018
  ident: 9806_CR42
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2018.2793849
– volume: 214
  start-page: 73
  year: 2018
  ident: 9806_CR60
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2018.04.050
– volume: 10
  start-page: 75
  issue: 1
  year: 2018
  ident: 9806_CR68
  publication-title: Remote Sensing
  doi: 10.3390/rs10010075
– volume: 14
  start-page: 778
  issue: 5
  year: 2017
  ident: 9806_CR79
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2017.2681128
– volume: 162
  start-page: 124
  year: 2017
  ident: 9806_CR129
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2017.06.025
– volume: 127
  start-page: 311
  year: 2016
  ident: 9806_CR180
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2016.06.022
– volume: 119
  start-page: 407
  year: 2019
  ident: 9806_CR171
  publication-title: Environmental Modelling & Software
  doi: 10.1016/j.envsoft.2019.07.013
– volume: 67
  start-page: 93
  year: 2012
  ident: 9806_CR132
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2011.11.002
– volume: 9
  start-page: 4377
  issue: 1
  year: 2019
  ident: 9806_CR159
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-40066-y
– volume: 169
  start-page: 105162
  year: 2020
  ident: 9806_CR41
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.105162
– volume: 122
  start-page: 139
  year: 2016
  ident: 9806_CR62
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2016.01.029
– ident: 9806_CR138
  doi: 10.1007/978-3-030-35990-4_12
– volume: 170
  start-page: 105254
  year: 2020
  ident: 9806_CR100
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105254
– volume: 3
  start-page: 588
  issue: 1
  year: 2017
  ident: 9806_CR134
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2017.2774979
– volume: 1
  start-page: 756
  issue: 7
  year: 2019
  ident: 9806_CR74
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-019-0785-9
– volume: 19
  start-page: 2023
  issue: 9
  year: 2019
  ident: 9806_CR88
  publication-title: Sensors
  doi: 10.3390/s19092023
– volume: 6
  start-page: 13
  issue: 1
  year: 2019
  ident: 9806_CR113
  publication-title: ROBOMECH Journal
  doi: 10.1186/s40648-019-0141-2
– ident: 9806_CR131
– ident: 9806_CR133
  doi: 10.1007/978-3-319-24574-4_28
– volume: 145
  start-page: 153
  year: 2018
  ident: 9806_CR12
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2017.12.032
– volume: 10
  start-page: 209
  year: 2019
  ident: 9806_CR121
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2019.00209
– volume: 134
  start-page: 160
  year: 2017
  ident: 9806_CR150
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2017.01.008
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 9806_CR112
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-38343-3
– volume: 10
  start-page: 1217
  issue: 8
  year: 2018
  ident: 9806_CR109
  publication-title: France. Remote Sensing
  doi: 10.3390/rs10081217
– volume: 5
  start-page: 157
  issue: 2
  year: 2014
  ident: 9806_CR148
  publication-title: Remote Sensing Letters
  doi: 10.1080/2150704X.2014.889863
– volume: 8
  start-page: 1190
  year: 2017
  ident: 9806_CR155
  publication-title: Frontiers in plant science
  doi: 10.3389/fpls.2017.01190
– volume: 11
  start-page: 042621
  issue: 4
  year: 2017
  ident: 9806_CR52
  publication-title: Journal of Applied Remote Sensing
  doi: 10.1117/1.JRS.11.042621
– volume: 16
  start-page: 1222
  issue: 8
  year: 2016
  ident: 9806_CR135
  publication-title: Sensors
  doi: 10.3390/s16081222
– volume: 127
  start-page: 487
  year: 2016
  ident: 9806_CR164
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2016.06.027
– volume: 6
  start-page: 30370
  year: 2018
  ident: 9806_CR179
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2844405
– ident: 9806_CR91
  doi: 10.1007/978-3-319-46448-0_2
– ident: 9806_CR96
  doi: 10.1109/ICRA.2017.7989347
– volume: 165
  start-page: 104963
  year: 2019
  ident: 9806_CR34
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.104963
– volume: 153
  start-page: 69
  year: 2017
  ident: 9806_CR163
  publication-title: Agricultural Systems
  doi: 10.1016/j.agsy.2017.01.023
– volume: 156
  start-page: 96
  year: 2019
  ident: 9806_CR116
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.11.005
– volume: 9
  start-page: 1102
  year: 2018
  ident: 9806_CR51
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2018.01102
– volume: 169
  start-page: 105174
  year: 2020
  ident: 9806_CR86
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.105174
– volume: 77
  start-page: 227
  year: 2015
  ident: 9806_CR183
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.12.378
– year: 2018
  ident: 9806_CR30
  publication-title: Sustainable Computing: Informatics and Systems
  doi: 10.1016/j.suscom.2018.05.010
– ident: 9806_CR53
  doi: 10.1109/ICRA.2017.7989612
– volume: 168
  start-page: 105044
  year: 2020
  ident: 9806_CR124
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.105044
– ident: 9806_CR77
– volume: 37
  start-page: 225
  year: 2019
  ident: 9806_CR19
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.21888
– volume: 8
  start-page: 842
  issue: 2
  year: 2017
  ident: 9806_CR37
  publication-title: Advances in Animal Biosciences
  doi: 10.1017/S2040470017000206
– volume: 153
  start-page: 69
  year: 2018
  ident: 9806_CR118
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.08.001
– volume: 9
  start-page: 629
  issue: 6
  year: 2017
  ident: 9806_CR49
  publication-title: Remote Sensing
  doi: 10.3390/rs9060629
– volume: 36
  start-page: 2934
  issue: 11
  year: 2015
  ident: 9806_CR58
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161.2015.1054047
– ident: 9806_CR76
  doi: 10.1109/LGRS.2019.2930549
– volume: 10
  start-page: 1690
  issue: 11
  year: 2018
  ident: 9806_CR10
  publication-title: Remote Sensing
  doi: 10.3390/rs10111690
– volume: 118
  start-page: 259
  year: 2012
  ident: 9806_CR35
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.11.020
– volume: 2
  start-page: 39
  issue: 4
  year: 2018
  ident: 9806_CR28
  publication-title: Drones
  doi: 10.3390/drones2040039
– ident: 9806_CR61
  doi: 10.1109/CVPR.2017.243
– volume: 75
  start-page: 147
  issue: 1
  year: 2011
  ident: 9806_CR108
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2010.10.010
– volume: 143
  start-page: 314
  year: 2017
  ident: 9806_CR33
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2017.10.027
– volume: 3
  start-page: 2870
  issue: 4
  year: 2018
  ident: 9806_CR94
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2018.2846289
– volume: 156
  start-page: 585
  year: 2019
  ident: 9806_CR128
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.12.006
– volume: 34
  start-page: 1039
  issue: 6
  year: 2017
  ident: 9806_CR14
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.21699
– ident: 9806_CR56
  doi: 10.1109/CVPR.2016.90
– volume: 83
  start-page: 275
  issue: 3
  year: 2002
  ident: 9806_CR26
  publication-title: Biosystems Engineering
  doi: 10.1006/bioe.2002.0117
– ident: 9806_CR75
  doi: 10.1016/j.compag.2020.105446
– volume: 6
  start-page: 5019
  issue: 6
  year: 2014
  ident: 9806_CR120
  publication-title: Remote Sensing
  doi: 10.3390/rs6065019
– volume: 156
  start-page: 293
  year: 2019
  ident: 9806_CR103
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.11.026
– ident: 9806_CR123
  doi: 10.20944/preprints201902.0111.v1
– volume: 70
  start-page: 78
  year: 2012
  ident: 9806_CR141
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2012.04.001
– volume: 8
  start-page: 238
  issue: 2
  year: 2017
  ident: 9806_CR99
  publication-title: Advances in Animal Biosciences
  doi: 10.1017/S2040470017001248
– volume: 22
  start-page: 387
  year: 2020
  ident: 9806_CR101
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-020-09736-0
– ident: 9806_CR139
  doi: 10.1109/ICRA.2016.7487719
– volume: 125
  start-page: 5684
  issue: 19
  year: 2014
  ident: 9806_CR160
  publication-title: Optik-International Journal for Light and Electron Optics
  doi: 10.1016/j.ijleo.2014.07.001
– volume: 4
  start-page: 3113
  issue: 4
  year: 2019
  ident: 9806_CR165
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2019.2924125
– volume: 237
  start-page: 111593
  year: 2020
  ident: 9806_CR174
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2019.111593
– volume: 38
  start-page: 1186
  issue: 5
  year: 2012
  ident: 9806_CR69
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2011.11.005
– volume: 18
  start-page: 240
  year: 2013
  ident: 9806_CR71
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2013.05.187
– volume: 20
  start-page: 4
  issue: 3
  year: 2017
  ident: 9806_CR119
  publication-title: IEEE Instrumentation & Measurement Magazine
  doi: 10.1109/MIM.2017.7951684
– volume: 23
  start-page: 29
  issue: 1
  year: 2011
  ident: 9806_CR2
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2010.03.003
– volume: 78
  start-page: 140
  issue: 2
  year: 2011
  ident: 9806_CR78
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2011.07.001
– ident: 9806_CR22
– volume: 22
  start-page: 2428
  issue: 6
  year: 2017
  ident: 9806_CR107
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2017.2760866
– ident: 9806_CR143
– volume: 34
  start-page: 1505
  issue: 8
  year: 2017
  ident: 9806_CR81
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.21726
– volume: 19
  start-page: 612
  issue: 3
  year: 2019
  ident: 9806_CR166
  publication-title: Sensors
  doi: 10.3390/s19030612
– volume: 55
  start-page: 243
  issue: 2
  year: 2018
  ident: 9806_CR90
  publication-title: GIScience & Remote Sensing
  doi: 10.1080/15481603.2018.1426091
– volume: 10
  start-page: 11
  issue: 1
  year: 2018
  ident: 9806_CR87
  publication-title: Symmetry
  doi: 10.3390/sym10010011
– volume: 11
  start-page: 1157
  issue: 10
  year: 2019
  ident: 9806_CR44
  publication-title: Remote Sensing
  doi: 10.3390/rs11101157
– year: 2019
  ident: 9806_CR50
  publication-title: Journal of Sensors
  doi: 10.1155/2019/5219471
– year: 2016
  ident: 9806_CR145
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2016/3289801
– volume: 187
  start-page: 291
  issue: 5
  year: 2015
  ident: 9806_CR40
  publication-title: Environmental Monitoring and Assessment
  doi: 10.1007/s10661-015-4489-3
– ident: 9806_CR21
  doi: 10.1109/SBR-LARS-R.2017.8215283
– ident: 9806_CR105
  doi: 10.1109/IROS.2011.6094548
– volume: 8
  start-page: 468
  issue: 11
  year: 2019
  ident: 9806_CR136
  publication-title: Plants
  doi: 10.3390/plants8110468
– volume: 42
  start-page: 1091
  issue: 2
  year: 2018
  ident: 9806_CR151
  publication-title: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences
  doi: 10.5194/isprs-archives-XLII-2-1091-2018
– volume: 21
  start-page: 1121
  year: 2020
  ident: 9806_CR156
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-020-09711-9
– volume: 7
  start-page: 43721
  year: 2019
  ident: 9806_CR144
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907383
– volume: 33
  start-page: 1061
  year: 2017
  ident: 9806_CR147
  publication-title: Korean Journal of Remote Sensing
– ident: 9806_CR24
  doi: 10.1007/978-3-319-19324-3_46
– volume: 2019
  start-page: 9209727
  year: 2019
  ident: 9806_CR18
  publication-title: Plant Phenomics
  doi: 10.34133/2019/9209727
– volume: 9
  start-page: 1010
  issue: 6
  year: 2017
  ident: 9806_CR5
  publication-title: Sustainability
  doi: 10.3390/su9061010
– volume: 250
  start-page: 1
  year: 2018
  ident: 9806_CR72
  publication-title: EasyChair Preprint
– volume: 17
  start-page: 172988141989747
  issue: 1
  year: 2020
  ident: 9806_CR70
  publication-title: International Journal of Advanced Robotic Systems
  doi: 10.1177/1729881419897473
– volume: 151
  start-page: 72
  year: 2016
  ident: 9806_CR38
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2016.08.024
– volume: 11
  start-page: 1584
  issue: 13
  year: 2019
  ident: 9806_CR23
  publication-title: Remote Sensing
  doi: 10.3390/rs11131584
– volume: 158
  start-page: 226
  year: 2019
  ident: 9806_CR158
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2019.02.005
– ident: 9806_CR55
  doi: 10.1109/WACV.2014.6835733
– volume: 174
  start-page: 50
  year: 2018
  ident: 9806_CR149
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2018.06.017
– ident: 9806_CR11
  doi: 10.1109/IPTA.2019.8936091
– volume: 2019
  start-page: 1525874
  year: 2019
  ident: 9806_CR46
  publication-title: Plant Phenomics
  doi: 10.34133/2019/1525874
– volume: 181
  start-page: 140
  year: 2019
  ident: 9806_CR162
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2019.03.007
– ident: 9806_CR93
  doi: 10.1109/IROS.2018.8593678
– volume: 17
  start-page: 2007
  issue: 9
  year: 2017
  ident: 9806_CR3
  publication-title: Sensors
  doi: 10.3390/s17092007
– volume: 45
  start-page: 421
  issue: 1
  year: 2012
  ident: 9806_CR111
  publication-title: European Journal of Remote Sensing
  doi: 10.5721/EuJRS20124535
– ident: 9806_CR32
  doi: 10.1109/IROS.2017.8206408
– ident: 9806_CR137
  doi: 10.1109/CVPR.2018.00474
– volume: 14
  start-page: 12191
  issue: 7
  year: 2014
  ident: 9806_CR170
  publication-title: Sensors
  doi: 10.3390/s140712191
– volume: 31
  start-page: 888
  issue: 6
  year: 2014
  ident: 9806_CR9
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.21525
– volume: 142
  start-page: 388
  year: 2017
  ident: 9806_CR152
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2017.09.019
– volume: 20
  start-page: 423
  issue: 2
  year: 2019
  ident: 9806_CR104
  publication-title: Precision Agriculture
  doi: 10.1007/s11119-018-9605-2
– volume: 18
  start-page: 18
  issue: 1
  year: 2018
  ident: 9806_CR154
  publication-title: Sensors
  doi: 10.3390/s18010018
– volume: 11
  start-page: 6270
  issue: 6
  year: 2011
  ident: 9806_CR66
  publication-title: Sensors
  doi: 10.3390/s110606270
– volume: 11
  start-page: 908
  issue: 1
  year: 2011
  ident: 9806_CR153
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.01.011
– ident: 9806_CR47
  doi: 10.1109/ICCV.2015.169
– volume: 190
  start-page: 131
  year: 2020
  ident: 9806_CR29
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2019.12.003
– volume: 6
  start-page: 67940
  year: 2018
  ident: 9806_CR177
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2879324
– ident: 9806_CR43
  doi: 10.1109/ICInfA.2015.7279423
– ident: 9806_CR161
  doi: 10.1109/ICMLA.2010.57
– volume: 3
  start-page: 2995
  issue: 4
  year: 2018
  ident: 9806_CR54
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2018.2849514
– ident: 9806_CR92
  doi: 10.1109/CVPR.2015.7298965
– volume: 147
  start-page: 70
  year: 2018
  ident: 9806_CR73
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.02.016
– ident: 9806_CR13
  doi: 10.1109/ICRA.2017.7989417
– volume: 170
  start-page: 39
  year: 2018
  ident: 9806_CR45
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2018.03.006
– volume: 146
  start-page: 114
  year: 2016
  ident: 9806_CR130
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2015.12.010
– volume: 12
  start-page: 2217
  issue: 7
  year: 2019
  ident: 9806_CR57
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2019.2918242
– volume: 10
  start-page: 1119
  issue: 7
  year: 2018
  ident: 9806_CR98
  publication-title: Remote Sensing
  doi: 10.3390/rs10071119
– volume: 150
  start-page: 220
  year: 2018
  ident: 9806_CR142
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.04.023
– ident: 9806_CR80
  doi: 10.1109/IROS.2016.7759121
– volume: 12
  start-page: 2448
  issue: 12
  year: 2015
  ident: 9806_CR97
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2015.2483680
– volume: 9
  start-page: 643
  issue: 4
  year: 2019
  ident: 9806_CR82
  publication-title: Applied Sciences
  doi: 10.3390/app9040643
– volume: 3
  start-page: 128
  issue: 03
  year: 2014
  ident: 9806_CR65
  publication-title: Advances in Remote Sensing
  doi: 10.4236/ars.2014.33011
– volume: 27
  start-page: 4287
  issue: 9
  year: 2018
  ident: 9806_CR84
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2018.2836321
– ident: 9806_CR169
  doi: 10.1109/IJCNN.2017.7966067
– volume: 71
  start-page: 107
  issue: 2
  year: 2010
  ident: 9806_CR63
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2010.01.001
SSID ssj0010042
Score 2.6590183
SecondaryResourceType review_article
Snippet Recently, agriculture has gained much attention regarding automation by artificial intelligence techniques and robotic systems. Particularly, with the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2053
SubjectTerms Agricultural equipment
Agricultural land
Agriculture
Algorithms
Artificial intelligence
Artificial neural networks
Atmospheric Sciences
Automation
Biomedical and Life Sciences
Chemistry and Earth Sciences
Classification
Computer Science
Crop diseases
Crops
Deep learning
Discrimination
Disease detection
Feature extraction
fruits
Land cover
Learning algorithms
Life Sciences
Machine learning
Multilayers
Neural networks
Physics
Plant diseases
precision agriculture
Remote Sensing/Photogrammetry
Review
robots
Soil Science & Conservation
Statistics for Engineering
Support vector machines
weeds
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iCPrgx1ScX0TwTQtdkrapb8UPhjCfHPhWkvQignTDbqD_vZcs3VRUME-FXtLSu2t-x_3uQsgZBxUrzhkar8kjoeI4yqtKRNJasJUx1vpamMF92h-Ku8fkMRSFNS3bvU1J-j_1otgNRx45SkGcS4yDETmuJC52RysesmKeO3B26MMsmURorWkolfl5ja_b0QJjfkuL-t3mdotsBJhIi5let8kS1B2yXjy9hlYZ0CGb7YEMNPhnh6x6PqdpdoguppPRrCqRPtf000Sq3-nAMyiBqrqi1wBjGrqsPtGHtqVrc0kLOksc0JHFK8fipJ8oRs0uGd7ePFz1o3CcQmQQZU2ingBQNleqskZm2saIRDTn1nAQChCJaJ1oRDPMMI04jKdG80qxjCkhVaYk3yPL9aiGfVfoXXEDPOVaYHjXE0oDQ09OTQK9LNayS3rtVy1N6DXujrx4KRddkp0mStRE6TVRvnXJ-XzOeNZp40_po1ZZZfC6pmSJzIR0Hf265HR-G_3FJUFUDaMpyuBrphkO0SUXrZIXS_z-xIP_iR-SNebszDNfjsjy5HUKx4hfJvrEm-sHwwbnYA
  priority: 102
  providerName: Springer Nature
Title Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments
URI https://link.springer.com/article/10.1007/s11119-021-09806-x
https://www.proquest.com/docview/2587485443
https://www.proquest.com/docview/2636677774
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9swFBdrc9kOZVs3ln4EDXbbxBxJtuVehtMlKxsNZTTQnYwkP5VCsdMmgfa_75MtJ12h1cUGyZZ4epJ-T--LkC8CdKSF4Mi8NmNSRxHLylIy5Ry40lrnGl-Y02lyMpO_L-KLcOG2CGaV3Z7YbNRlbf0d-Xceq1QqH63tx_yG-axRXrsaUmhskR5uwQqFr95oPD37u9YjeJ5sRC4VM-TcJLjNtM5zWDLmTRSiTKFcfff_0bTBm09UpM3JM3lLdgJkpHk7x-_IK6jekzf55W0ImwG7xOSrZd06IdKrij6qo-aenjYGk0B1VdKfAHMagqpe0vMuguviiOa01RPQ2uGbN9qkjyyKFh_IbDI-Pz5hIXsCswiqlmwoAbTLtC6dValxEQIPI4SzAqQGBB7GxAbBC7fcIOwSiTWi1DzlWiqdaiU-ku2qruCT9-suhQWRCCNRmhtKbYDjwk1sDMM0MqpPhh3hChtCi_sMF9fFJiiyJ3aBxC4aYhd3ffJ1_c28DazxYuuDbj6KsMgWxYYl-uTzuhqXh9d56ArqFbbBYSYpFtkn37p53Pzi-R73Xu5xn7zmnnUaw5YDsr28XcEhwpOlGZBePhmNpv7569-f8SDw5IBszXj-ADKH5hc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DS6B-AB8Sk6BhgJnsAitZ3EQUKosE0dWyuEOmlvme2cJySUdGsrtj_Fb-Scj3Ygsbf5KZIdO7oP313uC-C1RBMZKQURr8u4MlHEs6JQXHuPvnDO-zoXZjxJRkfq63F8vAG_u1yYEFbZ3Yn1RV1ULvwjfy9inSodqrV9mp3x0DUqeFe7FhoNWRzg5S8y2eYf93cIv2-E2NudfhnxtqsAd6RsLPhAIRqfGVN4p1PrIxLIVkrvJCqDJJCtjS0JdeGEJXVEJs7KwohUGKVNarSkfW_BppJkyvRg8_Pu5Nv3ld8i8EBt4umYE6ckbZpOk6xHI-MhJCLKNNnxF3-LwrV--49LtpZ0e_fhXquismFDUw9gA8uHcHd4et6W6cBHYIfLRdUkPbIfJbsyx-wlG9cBmshMWbAdxBlri7iesmlXMXb-gQ1Z45dglaenECTKrkQwzR_D0Y3A9Qn0yqrEpyGPvJAOZSKtIutxoIxFQRdF4mIcpJHVfRh0gMtdW8o8dNT4ma-LMAdg5wTsvAZ2ftGHt6t3Zk0hj2tXb3f4yFumnudrEuzDq9U0sWPwsZgSqyWtoc9MUhqqD-86PK63-P-JW9ef-BJuj6bjw_xwf3LwDO6IQEZ1UM029BbnS3xOqtHCvmjpkcHJTbPAH1skIJ4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6CcEDGl-isIGR4AmipbaTOEgIdeuqjbFqQpu0t2A75wkJJWVtxfbX-HWcE6cdSOxtfopkx47uw3eX-wJ4I1DHWghOxGvzSOo4jvKylJFyDl1prXNNLszRJN0_lZ_PkrM1-N3lwviwyu5ObC7qsrb-H_k2T1Qmla_Wtu1CWMTxaPxp-jPyHaS8p7Vrp9GSyCFe_SLzbfbxYES4fsv5eO9kdz8KHQYiS4rHPBpIRO1yrUtnVWZcTMLZCOGsQKmRhLMxiSEBzy03pJqI1BpRap5xLZXOtBK07x1Yz8gqinuwvrM3Of669GF4fmjMPZVExDVpSNlpE_do5JEPj4hzRTb95d9icaXr_uOebaTeeAMeBHWVDVv6eghrWD2C-8Pzi1CyAx-DGS7mdZsAyb5X7NocM1fsqAnWRKarko0QpywUdD1nJ1312NkHNmStj4LVjp58wCi7Fs00ewKntwLXp9Cr6gqf-ZzyUlgUqTCSLMmB1AY5XRqpTXCQxUb1YdABrrChrLnvrvGjWBVk9sAuCNhFA-zisg_vlu9M26IeN67e7PBRBAafFSty7MPr5TSxpve36ArrBa2hz0wzGrIP7zs8rrb4_4nPbz7xFdwl0i--HEwOX8A97qmoia_ZhN78YoFbpCXNzctAjgy-3TYH_AG0oSTT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automation+in+Agriculture+by+Machine+and+Deep+Learning+Techniques%3A+A+Review+of+Recent+Developments&rft.jtitle=Precision+agriculture&rft.au=Saleem%2C+Muhammad+Hammad&rft.au=Potgieter%2C+Johan&rft.au=Arif%2C+Khalid+Mahmood&rft.date=2021-12-01&rft.issn=1385-2256&rft.eissn=1573-1618&rft.volume=22&rft.issue=6&rft.spage=2053&rft.epage=2091&rft_id=info:doi/10.1007%2Fs11119-021-09806-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11119_021_09806_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-2256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-2256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-2256&client=summon