VTOL UAV digital twin for take-off, hovering and landing in different wind conditions
With UAVs becoming increasingly popular in the industry, vertical take-off and landing (VTOL) convertiplanes are emerging as a compromise between the advantages of planes and multicopters. Due to their large wing surface area, VTOL convertiplanes are subject to a strong wind dependence on critical p...
Saved in:
Published in | Simulation modelling practice and theory Vol. 123; p. 102703 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With UAVs becoming increasingly popular in the industry, vertical take-off and landing (VTOL) convertiplanes are emerging as a compromise between the advantages of planes and multicopters. Due to their large wing surface area, VTOL convertiplanes are subject to a strong wind dependence on critical phases such as take-off, landing, and hovering. Developing a new and improved unmanned aerial vehicle (UAV) is often expensive and associated with failures and accidents. This paper proposes the dynamic characterization of a commercial VTOL convertiplane UAV in copter mode and provides a novel method to estimate the aerodynamic forces and moments for any possible wind speed and direction. Starting from Euler’s equations of rigid body dynamics, we have derived the mathematical formulation to precisely consider aerodynamic forces and moments caused by any wind speed and direction. This unique approach will allow for VTOL convertiplane UAVs to be trained and tested digitally in take-off, hovering, and landing maneuvers without the cost and hassle of physical testing, and the dependence on existing wind conditions. A digital twin of a VTOL convertiplane UAV in copter mode has been modeled and tested in the Gazebo robotics simulator. Take-off, hovering and landing maneuvers have been compared with and without the wind physics model. Finally, the simulator has been tested against real flight conditions (reproducing the mean wind speed and direction only), showing a natural and realistic behavior.
•VTOL UAVs are most affected by wind during critical phases.•Aerodynamic coefficients are determined all around the aircraft.•Wind forces and moments are modeled for any incoming direction.•A software-in-the-loop flight controller replicates real flight behavior.•Flight tests correlate with simulation experiments. |
---|---|
AbstractList | With UAVs becoming increasingly popular in the industry, vertical take-off and landing (VTOL) convertiplanes are emerging as a compromise between the advantages of planes and multicopters. Due to their large wing surface area, VTOL convertiplanes are subject to a strong wind dependence on critical phases such as take-off, landing, and hovering. Developing a new and improved unmanned aerial vehicle (UAV) is often expensive and associated with failures and accidents. This paper proposes the dynamic characterization of a commercial VTOL convertiplane UAV in copter mode and provides a novel method to estimate the aerodynamic forces and moments for any possible wind speed and direction. Starting from Euler’s equations of rigid body dynamics, we have derived the mathematical formulation to precisely consider aerodynamic forces and moments caused by any wind speed and direction. This unique approach will allow for VTOL convertiplane UAVs to be trained and tested digitally in take-off, hovering, and landing maneuvers without the cost and hassle of physical testing, and the dependence on existing wind conditions. A digital twin of a VTOL convertiplane UAV in copter mode has been modeled and tested in the Gazebo robotics simulator. Take-off, hovering and landing maneuvers have been compared with and without the wind physics model. Finally, the simulator has been tested against real flight conditions (reproducing the mean wind speed and direction only), showing a natural and realistic behavior.
•VTOL UAVs are most affected by wind during critical phases.•Aerodynamic coefficients are determined all around the aircraft.•Wind forces and moments are modeled for any incoming direction.•A software-in-the-loop flight controller replicates real flight behavior.•Flight tests correlate with simulation experiments. |
ArticleNumber | 102703 |
Author | Villadangos, J. Astrain, J.J. Prieto, M. Aláez, D. Olaz, X. |
Author_xml | – sequence: 1 givenname: D. orcidid: 0000-0002-5346-2562 surname: Aláez fullname: Aláez, D. email: daniel.alaez@unavarra.es organization: Mathematical Engineering and Computer Science Department, Universidad Pública de Navarra, Pamplona, 31006, Spain – sequence: 2 givenname: X. surname: Olaz fullname: Olaz, X. organization: Mathematical Engineering and Computer Science Department, Universidad Pública de Navarra, Pamplona, 31006, Spain – sequence: 3 givenname: M. surname: Prieto fullname: Prieto, M. organization: Mathematical Engineering and Computer Science Department, Universidad Pública de Navarra, Pamplona, 31006, Spain – sequence: 4 givenname: J. surname: Villadangos fullname: Villadangos, J. organization: Mathematical Engineering and Computer Science Department, Universidad Pública de Navarra, Pamplona, 31006, Spain – sequence: 5 givenname: J.J. surname: Astrain fullname: Astrain, J.J. organization: Mathematical Engineering and Computer Science Department, Universidad Pública de Navarra, Pamplona, 31006, Spain |
BookMark | eNqFkM9OwzAMxiMEEtvgDTjkAehI2iZpOSBNE_-kSbtsE7coTZyRsaVTGg3x9qQqJw5wsS3bP8vfN0bnvvWA0A0lU0oov9tNO3c4qjjNSZ6nVi5IcYZGtBJVRkuen6ea8TqjNXm7ROOu2xFCq4qLEVpvVssFXs822Liti2qP46fz2LYBR_UBWWvtLX5vTxCc32LlDd6n0NdpyzhrIYCPODEG6zZNomt9d4UurNp3cP2TJ2j99Liav2SL5fPrfLbIdMHymNGCQKEqYIaXijJdGwulEDllipXW1E0F2laNEFwxwUjJVd4YVjYNJ0kh0GKC7oe7OrRdF8BKnTT0L8Sg3F5SInuD5E4OBsneIDkYlODyF3wM7qDC13_Yw4BBEnZyEGSnHXgNxgXQUZrW_X3gG5Z-hBY |
CitedBy_id | crossref_primary_10_1186_s43067_024_00185_7 crossref_primary_10_3390_info13120585 crossref_primary_10_1109_TII_2024_3431106 crossref_primary_10_3390_machines12090653 crossref_primary_10_3390_drones8120755 crossref_primary_10_1007_s00202_024_02746_5 crossref_primary_10_1007_s42405_024_00808_3 crossref_primary_10_3390_act13100392 crossref_primary_10_1088_1742_6596_2791_1_012075 crossref_primary_10_1088_1742_6596_2928_1_012002 crossref_primary_10_1109_TTE_2024_3375835 crossref_primary_10_3390_drones7050330 crossref_primary_10_1016_j_comnet_2024_110276 crossref_primary_10_1109_ACCESS_2024_3509226 crossref_primary_10_1016_j_etran_2025_100412 crossref_primary_10_1016_j_eswa_2023_120146 crossref_primary_10_1063_5_0220701 crossref_primary_10_3390_fluids10030062 |
Cites_doi | 10.3390/s21237830 10.1016/j.promfg.2018.12.020 10.1002/we.2636 10.1080/00031305.1997.10473577 10.1049/iet-rsn.2017.0251 10.1109/ACCESS.2019.2924410 10.1109/CDC.2005.1582653 10.1186/s40323-020-00147-4 10.1016/S0967-0661(98)00205-6 10.2514/1.25498 10.1016/j.mechatronics.2018.10.001 10.1007/s10846-013-9930-7 10.1109/MNET.011.2000388 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.simpat.2022.102703 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1878-1462 |
ExternalDocumentID | 10_1016_j_simpat_2022_102703 S1569190X22001721 |
GrantInformation_xml | – fundername: Ministerio de Ciencia e Innovación (Spain) grantid: RTI2018-095499-B-C31 funderid: http://dx.doi.org/10.13039/501100004837 – fundername: Government of Navarre (Departamento de Desarrollo Económico) grantid: 0011-1411-2021-000021; 0011-1365-2020-000078; 0011-1411-2021-000025 funderid: http://dx.doi.org/10.13039/501100003425 – fundername: Agencia Estatal de Investigación (AEI) and European Union NextGenerationEU grantid: PRTR PLEC2021-007997 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ AAAKF AAAKG AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K UHS ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c352t-130e3a8e5d64a15c9dfe477215a54fd9b8ecf8b776a575046a2bd54bb60703e13 |
IEDL.DBID | .~1 |
ISSN | 1569-190X |
IngestDate | Thu Apr 24 22:53:44 EDT 2025 Tue Jul 01 02:21:55 EDT 2025 Fri Feb 23 02:39:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Aerodynamic coefficients VTOL UAV Digital twin Gazebo Wind model |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-130e3a8e5d64a15c9dfe477215a54fd9b8ecf8b776a575046a2bd54bb60703e13 |
ORCID | 0000-0002-5346-2562 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1569190X22001721 |
ParticipantIDs | crossref_citationtrail_10_1016_j_simpat_2022_102703 crossref_primary_10_1016_j_simpat_2022_102703 elsevier_sciencedirect_doi_10_1016_j_simpat_2022_102703 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | Simulation modelling practice and theory |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Luukkonen (b31) 2011; 22 Kousi, Gkournelos, Aivaliotis, Giannoulis, Michalos, Makris (b17) 2019; 28 Tu, Yeoh, Liu (b36) 2018 Gazebo (b20) 2014 Rassõlkin, Rjabtšikov, Vaimann, Kallaste, Kuts, Partyshev (b15) 2020 M. Bacic, On hardware-in-the-loop simulation, in: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp. 3194–3198 Raveh (b26) 2007; 44 Stączek, Pizoń, Danilczuk, Gola (b19) 2021; 21 Ayed, Zouari, Abid (b12) 2017; 7 Tierno, Cortés, Márquez (b29) 2012 Merabti, Bouchachi, Belarbi (b32) 2015 Bansal, Khanesar, Branson (b18) 2019 Yang, Meng, Zhu (b14) 2020 Brezoescu, Castillo, Lozano (b27) 2014; 73 Magnussen, Hovland, Ottestad (b13) 2014 Grieves (b4) 2015 Sun, Li, Wen, Chen (b11) 2018; 56 Yan, Xu, Yao, Zhou, Pham (b16) 2018 S.M. Salim, S. Cheah, Wall Y+ strategy for dealing with wall-bounded turbulent flows, in: Proceedings of the International Multiconference of Engineers and Computer Scientists, Vol. 2, 2009, pp. 2165–2170. Clothier, Walker (b3) 2006 Shafto, Conroy, Doyle, Glaessgen, Kemp, LeMoigne, Wang (b9) 2012; 32 Chetan, Yao, Griffith (b5) 2021; 24 Shah, Dey, Lovett, Kapoor (b21) 2018 Koubâa, Allouch, Alajlan, Javed, Belghith, Khalgui (b37) 2019; 7 Duke, Antoniewicz, Krambeer (b30) 1988 Westfall, Wolfinger (b33) 1997; 51 Wright, Davidson (b6) 2020; 7 . Documentation (b22) 2020 Haas (b23) 2014 Council (b24) 1983 Lei, Shen, Zhang, Li (b28) 2021; 35 Jordan, Moore, Hovet, Box, Perry, Kirsche, Lewis, Tse (b1) 2018; 12 Isermann, Schaffnit, Sinsel (b8) 1999; 7 Yoo, Kang, Park (b10) 2010 Chakrabarty, Langelaan (b25) 2013 Vuruskan, Yuksek, Ozdemir, Yukselen, Inalhan (b2) 2014 Trinh (b34) 2010 Council (10.1016/j.simpat.2022.102703_b24) 1983 Kousi (10.1016/j.simpat.2022.102703_b17) 2019; 28 Luukkonen (10.1016/j.simpat.2022.102703_b31) 2011; 22 10.1016/j.simpat.2022.102703_b35 Gazebo (10.1016/j.simpat.2022.102703_b20) 2014 Vuruskan (10.1016/j.simpat.2022.102703_b2) 2014 Isermann (10.1016/j.simpat.2022.102703_b8) 1999; 7 Stączek (10.1016/j.simpat.2022.102703_b19) 2021; 21 Grieves (10.1016/j.simpat.2022.102703_b4) 2015 Duke (10.1016/j.simpat.2022.102703_b30) 1988 Trinh (10.1016/j.simpat.2022.102703_b34) 2010 Yang (10.1016/j.simpat.2022.102703_b14) 2020 Clothier (10.1016/j.simpat.2022.102703_b3) 2006 10.1016/j.simpat.2022.102703_b7 Brezoescu (10.1016/j.simpat.2022.102703_b27) 2014; 73 Wright (10.1016/j.simpat.2022.102703_b6) 2020; 7 Yoo (10.1016/j.simpat.2022.102703_b10) 2010 Tu (10.1016/j.simpat.2022.102703_b36) 2018 Jordan (10.1016/j.simpat.2022.102703_b1) 2018; 12 Merabti (10.1016/j.simpat.2022.102703_b32) 2015 Ayed (10.1016/j.simpat.2022.102703_b12) 2017; 7 Sun (10.1016/j.simpat.2022.102703_b11) 2018; 56 Westfall (10.1016/j.simpat.2022.102703_b33) 1997; 51 Documentation (10.1016/j.simpat.2022.102703_b22) 2020 Bansal (10.1016/j.simpat.2022.102703_b18) 2019 Raveh (10.1016/j.simpat.2022.102703_b26) 2007; 44 Chakrabarty (10.1016/j.simpat.2022.102703_b25) 2013 Shah (10.1016/j.simpat.2022.102703_b21) 2018 Haas (10.1016/j.simpat.2022.102703_b23) 2014 Magnussen (10.1016/j.simpat.2022.102703_b13) 2014 Yan (10.1016/j.simpat.2022.102703_b16) 2018 Lei (10.1016/j.simpat.2022.102703_b28) 2021; 35 Rassõlkin (10.1016/j.simpat.2022.102703_b15) 2020 Chetan (10.1016/j.simpat.2022.102703_b5) 2021; 24 Koubâa (10.1016/j.simpat.2022.102703_b37) 2019; 7 Shafto (10.1016/j.simpat.2022.102703_b9) 2012; 32 Tierno (10.1016/j.simpat.2022.102703_b29) 2012 |
References_xml | – start-page: 591 year: 2020 end-page: 596 ident: b14 article-title: A digital twin simulation platform for multi-rotor UAV publication-title: 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS) – volume: 56 start-page: 1 year: 2018 end-page: 15 ident: b11 article-title: Design and implementation of a real-time hardware-in-the-loop testing platform for a dual-rotor tail-sitter unmanned aerial vehicle publication-title: Mechatronics – reference: S.M. Salim, S. Cheah, Wall Y+ strategy for dealing with wall-bounded turbulent flows, in: Proceedings of the International Multiconference of Engineers and Computer Scientists, Vol. 2, 2009, pp. 2165–2170. – volume: 21 start-page: 7830 year: 2021 ident: b19 article-title: A digital twin approach for the improvement of an autonomous mobile robots (AMR’s) operating environment—A case study publication-title: Sensors – year: 2014 ident: b23 article-title: A history of the unity game engine, Diss – year: 2010 ident: b34 article-title: On the critical Reynolds number for transition from laminar to turbulent flow – year: 2018 ident: b36 article-title: Computational Fluid Dynamics: A Practical Approach – start-page: 1 year: 2019 end-page: 5 ident: b18 article-title: Ant colony optimization algorithm for industrial robot programming in a digital twin publication-title: 2019 25th International Conference on Automation and Computing (ICAC) – volume: 7 start-page: 87658 year: 2019 end-page: 87680 ident: b37 article-title: Micro air vehicle link (mavlink) in a nutshell: A survey publication-title: IEEE Access – start-page: 1 year: 2020 end-page: 4 ident: b15 article-title: Digital twin of an electrical motor based on empirical performance model publication-title: 2020 XI International Conference on Electrical Power Drive Systems (ICEPDS) – volume: 12 start-page: 151 year: 2018 end-page: 164 ident: b1 article-title: State-of-the-art technologies for UAV inspections publication-title: IET Radar, Sonar Navig. – reference: M. Bacic, On hardware-in-the-loop simulation, in: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp. 3194–3198, – start-page: 621 year: 2018 end-page: 635 ident: b21 article-title: Airsim: High-fidelity visual and physical simulation for autonomous vehicles publication-title: Field and Service Robotics – start-page: 483 year: 2014 end-page: 491 ident: b2 article-title: Dynamic modeling of a fixed-wing VTOL UAV publication-title: 2014 International Conference on Unmanned Aircraft Systems (ICUAS) – volume: 44 start-page: 888 year: 2007 end-page: 897 ident: b26 article-title: CFD-based models of aerodynamic gust response publication-title: J. Aircr. – volume: 24 start-page: 1368 year: 2021 end-page: 1387 ident: b5 article-title: Multi-fidelity digital twin structural model for a sub-scale downwind wind turbine rotor blade publication-title: Wind Energy – volume: 32 start-page: 1 year: 2012 end-page: 38 ident: b9 article-title: Modeling, simulation, information technology & processing roadmap publication-title: Natl. Aeronaut. Space Adm. – volume: 35 start-page: 386 year: 2021 end-page: 392 ident: b28 article-title: Toward intelligent cooperation of UAV swarms: When machine learning meets digital twin publication-title: IEEE Netw. – volume: 7 year: 2017 ident: b12 article-title: Software in the loop simulation for robot manipulators publication-title: Eng., Technol. Appl. Sci. Res. – volume: 7 start-page: 643 year: 1999 end-page: 653 ident: b8 article-title: Hardware-in-the-loop simulation for the design and testing of engine-control systems publication-title: Control Eng. Pract. – year: 2014 ident: b20 article-title: Tutorial: Using Gazebo plugins with ROS – volume: 73 start-page: 823 year: 2014 end-page: 831 ident: b27 article-title: Wind estimation for accurate airplane path following applications publication-title: J. Intell. Robot. Syst. – start-page: 1 year: 2014 end-page: 6 ident: b13 article-title: Multicopter UAV design optimization publication-title: 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA) – year: 2020 ident: b22 article-title: Simulation and model-based design – start-page: 1729 year: 2010 end-page: 1732 ident: b10 article-title: Hardware-In-the-Loop simulation test for actuator control system of Smart UAV publication-title: ICCAS 2010 – year: 2012 ident: b29 article-title: Mecánica Del Vuelo – volume: 22 start-page: 22 year: 2011 ident: b31 article-title: Modelling and control of quadcopter publication-title: Indep. Res. Proj. Appl. Math., Espoo – volume: 51 start-page: 3 year: 1997 end-page: 8 ident: b33 article-title: Multiple tests with discrete distributions publication-title: Amer. Statist. – reference: . – start-page: 333 year: 2018 end-page: 348 ident: b16 article-title: Digital twin-based energy modeling of industrial robots publication-title: Asian Simulation Conference – start-page: 2568 year: 2013 end-page: 2574 ident: b25 article-title: UAV flight path planning in time varying complex wind-fields publication-title: 2013 American Control Conference – year: 2015 ident: b4 article-title: Digital twin: Manufacturing excellence through virtual factory replication – volume: 28 start-page: 121 year: 2019 end-page: 126 ident: b17 article-title: Digital twin for adaptation of robots’ behavior in flexible robotic assembly lines publication-title: Procedia Manuf. – year: 1983 ident: b24 article-title: Low-Altitude Wind Shear and Its Hazard To Aviation – year: 1988 ident: b30 article-title: Derivation and Definition of a Linear Aircraft Model, Vol. 1207 – start-page: 18.1 year: 2006 end-page: 18.16 ident: b3 article-title: Determination and evaluation of UAV safety objectives publication-title: Proceedings of the 21st International Conference on Unmanned Air Vehicle Systems – start-page: 208 year: 2015 end-page: 211 ident: b32 article-title: Nonlinear model predictive control of quadcopter publication-title: 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) – volume: 7 start-page: 1 year: 2020 end-page: 13 ident: b6 article-title: How to tell the difference between a model and a digital twin publication-title: Adv. Model. Simul. Eng. Sci. – year: 2010 ident: 10.1016/j.simpat.2022.102703_b34 – volume: 21 start-page: 7830 issue: 23 year: 2021 ident: 10.1016/j.simpat.2022.102703_b19 article-title: A digital twin approach for the improvement of an autonomous mobile robots (AMR’s) operating environment—A case study publication-title: Sensors doi: 10.3390/s21237830 – volume: 28 start-page: 121 year: 2019 ident: 10.1016/j.simpat.2022.102703_b17 article-title: Digital twin for adaptation of robots’ behavior in flexible robotic assembly lines publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2018.12.020 – start-page: 208 year: 2015 ident: 10.1016/j.simpat.2022.102703_b32 article-title: Nonlinear model predictive control of quadcopter – start-page: 18.1 year: 2006 ident: 10.1016/j.simpat.2022.102703_b3 article-title: Determination and evaluation of UAV safety objectives – volume: 24 start-page: 1368 issue: 12 year: 2021 ident: 10.1016/j.simpat.2022.102703_b5 article-title: Multi-fidelity digital twin structural model for a sub-scale downwind wind turbine rotor blade publication-title: Wind Energy doi: 10.1002/we.2636 – year: 1983 ident: 10.1016/j.simpat.2022.102703_b24 – year: 2018 ident: 10.1016/j.simpat.2022.102703_b36 – start-page: 1 year: 2019 ident: 10.1016/j.simpat.2022.102703_b18 article-title: Ant colony optimization algorithm for industrial robot programming in a digital twin – volume: 51 start-page: 3 issue: 1 year: 1997 ident: 10.1016/j.simpat.2022.102703_b33 article-title: Multiple tests with discrete distributions publication-title: Amer. Statist. doi: 10.1080/00031305.1997.10473577 – start-page: 621 year: 2018 ident: 10.1016/j.simpat.2022.102703_b21 article-title: Airsim: High-fidelity visual and physical simulation for autonomous vehicles – volume: 12 start-page: 151 issue: 2 year: 2018 ident: 10.1016/j.simpat.2022.102703_b1 article-title: State-of-the-art technologies for UAV inspections publication-title: IET Radar, Sonar Navig. doi: 10.1049/iet-rsn.2017.0251 – volume: 7 start-page: 87658 year: 2019 ident: 10.1016/j.simpat.2022.102703_b37 article-title: Micro air vehicle link (mavlink) in a nutshell: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2924410 – ident: 10.1016/j.simpat.2022.102703_b7 doi: 10.1109/CDC.2005.1582653 – start-page: 591 year: 2020 ident: 10.1016/j.simpat.2022.102703_b14 article-title: A digital twin simulation platform for multi-rotor UAV – year: 2012 ident: 10.1016/j.simpat.2022.102703_b29 – volume: 7 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.simpat.2022.102703_b6 article-title: How to tell the difference between a model and a digital twin publication-title: Adv. Model. Simul. Eng. Sci. doi: 10.1186/s40323-020-00147-4 – start-page: 1 year: 2020 ident: 10.1016/j.simpat.2022.102703_b15 article-title: Digital twin of an electrical motor based on empirical performance model – volume: 7 start-page: 643 issue: 5 year: 1999 ident: 10.1016/j.simpat.2022.102703_b8 article-title: Hardware-in-the-loop simulation for the design and testing of engine-control systems publication-title: Control Eng. Pract. doi: 10.1016/S0967-0661(98)00205-6 – year: 2020 ident: 10.1016/j.simpat.2022.102703_b22 – year: 1988 ident: 10.1016/j.simpat.2022.102703_b30 – start-page: 333 year: 2018 ident: 10.1016/j.simpat.2022.102703_b16 article-title: Digital twin-based energy modeling of industrial robots – year: 2015 ident: 10.1016/j.simpat.2022.102703_b4 – ident: 10.1016/j.simpat.2022.102703_b35 – volume: 44 start-page: 888 issue: 3 year: 2007 ident: 10.1016/j.simpat.2022.102703_b26 article-title: CFD-based models of aerodynamic gust response publication-title: J. Aircr. doi: 10.2514/1.25498 – volume: 32 start-page: 1 year: 2012 ident: 10.1016/j.simpat.2022.102703_b9 article-title: Modeling, simulation, information technology & processing roadmap publication-title: Natl. Aeronaut. Space Adm. – volume: 56 start-page: 1 year: 2018 ident: 10.1016/j.simpat.2022.102703_b11 article-title: Design and implementation of a real-time hardware-in-the-loop testing platform for a dual-rotor tail-sitter unmanned aerial vehicle publication-title: Mechatronics doi: 10.1016/j.mechatronics.2018.10.001 – year: 2014 ident: 10.1016/j.simpat.2022.102703_b20 – start-page: 483 year: 2014 ident: 10.1016/j.simpat.2022.102703_b2 article-title: Dynamic modeling of a fixed-wing VTOL UAV – year: 2014 ident: 10.1016/j.simpat.2022.102703_b23 – start-page: 1 year: 2014 ident: 10.1016/j.simpat.2022.102703_b13 article-title: Multicopter UAV design optimization – start-page: 2568 year: 2013 ident: 10.1016/j.simpat.2022.102703_b25 article-title: UAV flight path planning in time varying complex wind-fields – volume: 7 issue: 5 year: 2017 ident: 10.1016/j.simpat.2022.102703_b12 article-title: Software in the loop simulation for robot manipulators publication-title: Eng., Technol. Appl. Sci. Res. – volume: 73 start-page: 823 issue: 1 year: 2014 ident: 10.1016/j.simpat.2022.102703_b27 article-title: Wind estimation for accurate airplane path following applications publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-013-9930-7 – volume: 35 start-page: 386 issue: 1 year: 2021 ident: 10.1016/j.simpat.2022.102703_b28 article-title: Toward intelligent cooperation of UAV swarms: When machine learning meets digital twin publication-title: IEEE Netw. doi: 10.1109/MNET.011.2000388 – volume: 22 start-page: 22 year: 2011 ident: 10.1016/j.simpat.2022.102703_b31 article-title: Modelling and control of quadcopter publication-title: Indep. Res. Proj. Appl. Math., Espoo – start-page: 1729 year: 2010 ident: 10.1016/j.simpat.2022.102703_b10 article-title: Hardware-In-the-Loop simulation test for actuator control system of Smart UAV |
SSID | ssj0018867 |
Score | 2.4580886 |
Snippet | With UAVs becoming increasingly popular in the industry, vertical take-off and landing (VTOL) convertiplanes are emerging as a compromise between the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102703 |
SubjectTerms | Aerodynamic coefficients Digital twin Gazebo UAV VTOL Wind model |
Title | VTOL UAV digital twin for take-off, hovering and landing in different wind conditions |
URI | https://dx.doi.org/10.1016/j.simpat.2022.102703 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YGR0CaxY3esKqryKgNN1S2yYxsCVVpBEBu_HV-cVMAAEmt0J0UX--676Lv7EDqVJpSGp8STmnIPtqN4Mohss2JYEAjFiBbwH_J2HI1icjWjswYa1LMwQKuscr_L6WW2rp50qmh2llnWubedR8-Ws1kQuEYGJtgJg1N-_rGieficlyqyYOyBdT0-V3K8XmEUERiVQQA7DFgtnfWzPH0pOcMttFFhRdx3r7ONGjrfQZu1DgOuruUuiqeTuxsc96dYZQ8gAoKL9yzHFo7iQjxrb2HMGX4ErqatU1jkCs_dMAu2VrVCSoGtj8K2PVaOxbWH4uHFZDDyKrkEL7UoCkTluzoUXFMVEeHTtKeMJhY8-1RQYlRPcp0aLhmLBIWl7pEIpKJEygiuvfbDfdTMF7k-QJixLlfMYrEo1PZSG2G4IFpZ6MFTzk3aQmEdpSStdomDpMU8qUljT4mLbQKxTVxsW8hbeS3dLo0_7Fn9AZJvZyKx6f5Xz8N_ex6hdRCUd7zsY9QsXt70iYUdhWyX56qN1vqX16PxJ0qn1u8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN6I8PTAStU3i2B2riqqlDwbaqltkxzYUqrSCIP4-vjpBwAASa-STrIt9913y3X0AV9IE0vAk9KSm3MPpKJ70I1usGOb7QrFQC_wOORxF3Ul4O6OzErSLXhikVeax38X0dbTOn9Ryb9ZW83nt3lYeTZvOZr7vCpkNqOB0KlqGSqvX744-fyZwvhaSxfUeGhQddGua1yt2IyKp0vdxjAEr1LN-ZqgvWaezC9s5XCQtt6M9KOl0H3YKKQaS38wDmEzHdwMyaU2Jmj-gDgjJ3ucpsYiUZOJZe0tjrskj0jVtqiIiVWTh-lmIXVWIpGTE2ihiK2TliFyHMOncjNtdL1dM8BILpFBXvq4DwTVVUSgaNGkqo0OLnxtU0NCopuQ6MVwyFgmKc90j4UtFQykjvPm6ERxBOV2m-hgIY3WumIVjUaDtvTbCcBFqZdEHTzg3SRWCwktxko8TR1WLRVzwxp5i59sYfRs731bB-7RauXEaf6xnxQuIvx2L2Eb8Xy1P_m15CZvd8XAQD3qj_ilsob68o2mfQTl7edPnFoVk8iI_ZR-3odmg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VTOL+UAV+digital+twin+for+take-off%2C+hovering+and+landing+in+different+wind+conditions&rft.jtitle=Simulation+modelling+practice+and+theory&rft.au=Al%C3%A1ez%2C+D.&rft.au=Olaz%2C+X.&rft.au=Prieto%2C+M.&rft.au=Villadangos%2C+J.&rft.date=2023-02-01&rft.pub=Elsevier+B.V&rft.issn=1569-190X&rft.eissn=1878-1462&rft.volume=123&rft_id=info:doi/10.1016%2Fj.simpat.2022.102703&rft.externalDocID=S1569190X22001721 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-190X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-190X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-190X&client=summon |