VTOL UAV digital twin for take-off, hovering and landing in different wind conditions

With UAVs becoming increasingly popular in the industry, vertical take-off and landing (VTOL) convertiplanes are emerging as a compromise between the advantages of planes and multicopters. Due to their large wing surface area, VTOL convertiplanes are subject to a strong wind dependence on critical p...

Full description

Saved in:
Bibliographic Details
Published inSimulation modelling practice and theory Vol. 123; p. 102703
Main Authors Aláez, D., Olaz, X., Prieto, M., Villadangos, J., Astrain, J.J.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With UAVs becoming increasingly popular in the industry, vertical take-off and landing (VTOL) convertiplanes are emerging as a compromise between the advantages of planes and multicopters. Due to their large wing surface area, VTOL convertiplanes are subject to a strong wind dependence on critical phases such as take-off, landing, and hovering. Developing a new and improved unmanned aerial vehicle (UAV) is often expensive and associated with failures and accidents. This paper proposes the dynamic characterization of a commercial VTOL convertiplane UAV in copter mode and provides a novel method to estimate the aerodynamic forces and moments for any possible wind speed and direction. Starting from Euler’s equations of rigid body dynamics, we have derived the mathematical formulation to precisely consider aerodynamic forces and moments caused by any wind speed and direction. This unique approach will allow for VTOL convertiplane UAVs to be trained and tested digitally in take-off, hovering, and landing maneuvers without the cost and hassle of physical testing, and the dependence on existing wind conditions. A digital twin of a VTOL convertiplane UAV in copter mode has been modeled and tested in the Gazebo robotics simulator. Take-off, hovering and landing maneuvers have been compared with and without the wind physics model. Finally, the simulator has been tested against real flight conditions (reproducing the mean wind speed and direction only), showing a natural and realistic behavior. •VTOL UAVs are most affected by wind during critical phases.•Aerodynamic coefficients are determined all around the aircraft.•Wind forces and moments are modeled for any incoming direction.•A software-in-the-loop flight controller replicates real flight behavior.•Flight tests correlate with simulation experiments.
AbstractList With UAVs becoming increasingly popular in the industry, vertical take-off and landing (VTOL) convertiplanes are emerging as a compromise between the advantages of planes and multicopters. Due to their large wing surface area, VTOL convertiplanes are subject to a strong wind dependence on critical phases such as take-off, landing, and hovering. Developing a new and improved unmanned aerial vehicle (UAV) is often expensive and associated with failures and accidents. This paper proposes the dynamic characterization of a commercial VTOL convertiplane UAV in copter mode and provides a novel method to estimate the aerodynamic forces and moments for any possible wind speed and direction. Starting from Euler’s equations of rigid body dynamics, we have derived the mathematical formulation to precisely consider aerodynamic forces and moments caused by any wind speed and direction. This unique approach will allow for VTOL convertiplane UAVs to be trained and tested digitally in take-off, hovering, and landing maneuvers without the cost and hassle of physical testing, and the dependence on existing wind conditions. A digital twin of a VTOL convertiplane UAV in copter mode has been modeled and tested in the Gazebo robotics simulator. Take-off, hovering and landing maneuvers have been compared with and without the wind physics model. Finally, the simulator has been tested against real flight conditions (reproducing the mean wind speed and direction only), showing a natural and realistic behavior. •VTOL UAVs are most affected by wind during critical phases.•Aerodynamic coefficients are determined all around the aircraft.•Wind forces and moments are modeled for any incoming direction.•A software-in-the-loop flight controller replicates real flight behavior.•Flight tests correlate with simulation experiments.
ArticleNumber 102703
Author Villadangos, J.
Astrain, J.J.
Prieto, M.
Aláez, D.
Olaz, X.
Author_xml – sequence: 1
  givenname: D.
  orcidid: 0000-0002-5346-2562
  surname: Aláez
  fullname: Aláez, D.
  email: daniel.alaez@unavarra.es
  organization: Mathematical Engineering and Computer Science Department, Universidad Pública de Navarra, Pamplona, 31006, Spain
– sequence: 2
  givenname: X.
  surname: Olaz
  fullname: Olaz, X.
  organization: Mathematical Engineering and Computer Science Department, Universidad Pública de Navarra, Pamplona, 31006, Spain
– sequence: 3
  givenname: M.
  surname: Prieto
  fullname: Prieto, M.
  organization: Mathematical Engineering and Computer Science Department, Universidad Pública de Navarra, Pamplona, 31006, Spain
– sequence: 4
  givenname: J.
  surname: Villadangos
  fullname: Villadangos, J.
  organization: Mathematical Engineering and Computer Science Department, Universidad Pública de Navarra, Pamplona, 31006, Spain
– sequence: 5
  givenname: J.J.
  surname: Astrain
  fullname: Astrain, J.J.
  organization: Mathematical Engineering and Computer Science Department, Universidad Pública de Navarra, Pamplona, 31006, Spain
BookMark eNqFkM9OwzAMxiMEEtvgDTjkAehI2iZpOSBNE_-kSbtsE7coTZyRsaVTGg3x9qQqJw5wsS3bP8vfN0bnvvWA0A0lU0oov9tNO3c4qjjNSZ6nVi5IcYZGtBJVRkuen6ea8TqjNXm7ROOu2xFCq4qLEVpvVssFXs822Liti2qP46fz2LYBR_UBWWvtLX5vTxCc32LlDd6n0NdpyzhrIYCPODEG6zZNomt9d4UurNp3cP2TJ2j99Liav2SL5fPrfLbIdMHymNGCQKEqYIaXijJdGwulEDllipXW1E0F2laNEFwxwUjJVd4YVjYNJ0kh0GKC7oe7OrRdF8BKnTT0L8Sg3F5SInuD5E4OBsneIDkYlODyF3wM7qDC13_Yw4BBEnZyEGSnHXgNxgXQUZrW_X3gG5Z-hBY
CitedBy_id crossref_primary_10_1186_s43067_024_00185_7
crossref_primary_10_3390_info13120585
crossref_primary_10_1109_TII_2024_3431106
crossref_primary_10_3390_machines12090653
crossref_primary_10_3390_drones8120755
crossref_primary_10_1007_s00202_024_02746_5
crossref_primary_10_1007_s42405_024_00808_3
crossref_primary_10_3390_act13100392
crossref_primary_10_1088_1742_6596_2791_1_012075
crossref_primary_10_1088_1742_6596_2928_1_012002
crossref_primary_10_1109_TTE_2024_3375835
crossref_primary_10_3390_drones7050330
crossref_primary_10_1016_j_comnet_2024_110276
crossref_primary_10_1109_ACCESS_2024_3509226
crossref_primary_10_1016_j_etran_2025_100412
crossref_primary_10_1016_j_eswa_2023_120146
crossref_primary_10_1063_5_0220701
crossref_primary_10_3390_fluids10030062
Cites_doi 10.3390/s21237830
10.1016/j.promfg.2018.12.020
10.1002/we.2636
10.1080/00031305.1997.10473577
10.1049/iet-rsn.2017.0251
10.1109/ACCESS.2019.2924410
10.1109/CDC.2005.1582653
10.1186/s40323-020-00147-4
10.1016/S0967-0661(98)00205-6
10.2514/1.25498
10.1016/j.mechatronics.2018.10.001
10.1007/s10846-013-9930-7
10.1109/MNET.011.2000388
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.simpat.2022.102703
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1878-1462
ExternalDocumentID 10_1016_j_simpat_2022_102703
S1569190X22001721
GrantInformation_xml – fundername: Ministerio de Ciencia e Innovación (Spain)
  grantid: RTI2018-095499-B-C31
  funderid: http://dx.doi.org/10.13039/501100004837
– fundername: Government of Navarre (Departamento de Desarrollo Económico)
  grantid: 0011-1411-2021-000021; 0011-1365-2020-000078; 0011-1411-2021-000025
  funderid: http://dx.doi.org/10.13039/501100003425
– fundername: Agencia Estatal de Investigación (AEI) and European Union NextGenerationEU
  grantid: PRTR PLEC2021-007997
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
UHS
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c352t-130e3a8e5d64a15c9dfe477215a54fd9b8ecf8b776a575046a2bd54bb60703e13
IEDL.DBID .~1
ISSN 1569-190X
IngestDate Thu Apr 24 22:53:44 EDT 2025
Tue Jul 01 02:21:55 EDT 2025
Fri Feb 23 02:39:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Aerodynamic coefficients
VTOL
UAV
Digital twin
Gazebo
Wind model
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-130e3a8e5d64a15c9dfe477215a54fd9b8ecf8b776a575046a2bd54bb60703e13
ORCID 0000-0002-5346-2562
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1569190X22001721
ParticipantIDs crossref_citationtrail_10_1016_j_simpat_2022_102703
crossref_primary_10_1016_j_simpat_2022_102703
elsevier_sciencedirect_doi_10_1016_j_simpat_2022_102703
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Simulation modelling practice and theory
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Luukkonen (b31) 2011; 22
Kousi, Gkournelos, Aivaliotis, Giannoulis, Michalos, Makris (b17) 2019; 28
Tu, Yeoh, Liu (b36) 2018
Gazebo (b20) 2014
Rassõlkin, Rjabtšikov, Vaimann, Kallaste, Kuts, Partyshev (b15) 2020
M. Bacic, On hardware-in-the-loop simulation, in: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp. 3194–3198
Raveh (b26) 2007; 44
Stączek, Pizoń, Danilczuk, Gola (b19) 2021; 21
Ayed, Zouari, Abid (b12) 2017; 7
Tierno, Cortés, Márquez (b29) 2012
Merabti, Bouchachi, Belarbi (b32) 2015
Bansal, Khanesar, Branson (b18) 2019
Yang, Meng, Zhu (b14) 2020
Brezoescu, Castillo, Lozano (b27) 2014; 73
Magnussen, Hovland, Ottestad (b13) 2014
Grieves (b4) 2015
Sun, Li, Wen, Chen (b11) 2018; 56
Yan, Xu, Yao, Zhou, Pham (b16) 2018
S.M. Salim, S. Cheah, Wall Y+ strategy for dealing with wall-bounded turbulent flows, in: Proceedings of the International Multiconference of Engineers and Computer Scientists, Vol. 2, 2009, pp. 2165–2170.
Clothier, Walker (b3) 2006
Shafto, Conroy, Doyle, Glaessgen, Kemp, LeMoigne, Wang (b9) 2012; 32
Chetan, Yao, Griffith (b5) 2021; 24
Shah, Dey, Lovett, Kapoor (b21) 2018
Koubâa, Allouch, Alajlan, Javed, Belghith, Khalgui (b37) 2019; 7
Duke, Antoniewicz, Krambeer (b30) 1988
Westfall, Wolfinger (b33) 1997; 51
Wright, Davidson (b6) 2020; 7
.
Documentation (b22) 2020
Haas (b23) 2014
Council (b24) 1983
Lei, Shen, Zhang, Li (b28) 2021; 35
Jordan, Moore, Hovet, Box, Perry, Kirsche, Lewis, Tse (b1) 2018; 12
Isermann, Schaffnit, Sinsel (b8) 1999; 7
Yoo, Kang, Park (b10) 2010
Chakrabarty, Langelaan (b25) 2013
Vuruskan, Yuksek, Ozdemir, Yukselen, Inalhan (b2) 2014
Trinh (b34) 2010
Council (10.1016/j.simpat.2022.102703_b24) 1983
Kousi (10.1016/j.simpat.2022.102703_b17) 2019; 28
Luukkonen (10.1016/j.simpat.2022.102703_b31) 2011; 22
10.1016/j.simpat.2022.102703_b35
Gazebo (10.1016/j.simpat.2022.102703_b20) 2014
Vuruskan (10.1016/j.simpat.2022.102703_b2) 2014
Isermann (10.1016/j.simpat.2022.102703_b8) 1999; 7
Stączek (10.1016/j.simpat.2022.102703_b19) 2021; 21
Grieves (10.1016/j.simpat.2022.102703_b4) 2015
Duke (10.1016/j.simpat.2022.102703_b30) 1988
Trinh (10.1016/j.simpat.2022.102703_b34) 2010
Yang (10.1016/j.simpat.2022.102703_b14) 2020
Clothier (10.1016/j.simpat.2022.102703_b3) 2006
10.1016/j.simpat.2022.102703_b7
Brezoescu (10.1016/j.simpat.2022.102703_b27) 2014; 73
Wright (10.1016/j.simpat.2022.102703_b6) 2020; 7
Yoo (10.1016/j.simpat.2022.102703_b10) 2010
Tu (10.1016/j.simpat.2022.102703_b36) 2018
Jordan (10.1016/j.simpat.2022.102703_b1) 2018; 12
Merabti (10.1016/j.simpat.2022.102703_b32) 2015
Ayed (10.1016/j.simpat.2022.102703_b12) 2017; 7
Sun (10.1016/j.simpat.2022.102703_b11) 2018; 56
Westfall (10.1016/j.simpat.2022.102703_b33) 1997; 51
Documentation (10.1016/j.simpat.2022.102703_b22) 2020
Bansal (10.1016/j.simpat.2022.102703_b18) 2019
Raveh (10.1016/j.simpat.2022.102703_b26) 2007; 44
Chakrabarty (10.1016/j.simpat.2022.102703_b25) 2013
Shah (10.1016/j.simpat.2022.102703_b21) 2018
Haas (10.1016/j.simpat.2022.102703_b23) 2014
Magnussen (10.1016/j.simpat.2022.102703_b13) 2014
Yan (10.1016/j.simpat.2022.102703_b16) 2018
Lei (10.1016/j.simpat.2022.102703_b28) 2021; 35
Rassõlkin (10.1016/j.simpat.2022.102703_b15) 2020
Chetan (10.1016/j.simpat.2022.102703_b5) 2021; 24
Koubâa (10.1016/j.simpat.2022.102703_b37) 2019; 7
Shafto (10.1016/j.simpat.2022.102703_b9) 2012; 32
Tierno (10.1016/j.simpat.2022.102703_b29) 2012
References_xml – start-page: 591
  year: 2020
  end-page: 596
  ident: b14
  article-title: A digital twin simulation platform for multi-rotor UAV
  publication-title: 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)
– volume: 56
  start-page: 1
  year: 2018
  end-page: 15
  ident: b11
  article-title: Design and implementation of a real-time hardware-in-the-loop testing platform for a dual-rotor tail-sitter unmanned aerial vehicle
  publication-title: Mechatronics
– reference: S.M. Salim, S. Cheah, Wall Y+ strategy for dealing with wall-bounded turbulent flows, in: Proceedings of the International Multiconference of Engineers and Computer Scientists, Vol. 2, 2009, pp. 2165–2170.
– volume: 21
  start-page: 7830
  year: 2021
  ident: b19
  article-title: A digital twin approach for the improvement of an autonomous mobile robots (AMR’s) operating environment—A case study
  publication-title: Sensors
– year: 2014
  ident: b23
  article-title: A history of the unity game engine, Diss
– year: 2010
  ident: b34
  article-title: On the critical Reynolds number for transition from laminar to turbulent flow
– year: 2018
  ident: b36
  article-title: Computational Fluid Dynamics: A Practical Approach
– start-page: 1
  year: 2019
  end-page: 5
  ident: b18
  article-title: Ant colony optimization algorithm for industrial robot programming in a digital twin
  publication-title: 2019 25th International Conference on Automation and Computing (ICAC)
– volume: 7
  start-page: 87658
  year: 2019
  end-page: 87680
  ident: b37
  article-title: Micro air vehicle link (mavlink) in a nutshell: A survey
  publication-title: IEEE Access
– start-page: 1
  year: 2020
  end-page: 4
  ident: b15
  article-title: Digital twin of an electrical motor based on empirical performance model
  publication-title: 2020 XI International Conference on Electrical Power Drive Systems (ICEPDS)
– volume: 12
  start-page: 151
  year: 2018
  end-page: 164
  ident: b1
  article-title: State-of-the-art technologies for UAV inspections
  publication-title: IET Radar, Sonar Navig.
– reference: M. Bacic, On hardware-in-the-loop simulation, in: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp. 3194–3198,
– start-page: 621
  year: 2018
  end-page: 635
  ident: b21
  article-title: Airsim: High-fidelity visual and physical simulation for autonomous vehicles
  publication-title: Field and Service Robotics
– start-page: 483
  year: 2014
  end-page: 491
  ident: b2
  article-title: Dynamic modeling of a fixed-wing VTOL UAV
  publication-title: 2014 International Conference on Unmanned Aircraft Systems (ICUAS)
– volume: 44
  start-page: 888
  year: 2007
  end-page: 897
  ident: b26
  article-title: CFD-based models of aerodynamic gust response
  publication-title: J. Aircr.
– volume: 24
  start-page: 1368
  year: 2021
  end-page: 1387
  ident: b5
  article-title: Multi-fidelity digital twin structural model for a sub-scale downwind wind turbine rotor blade
  publication-title: Wind Energy
– volume: 32
  start-page: 1
  year: 2012
  end-page: 38
  ident: b9
  article-title: Modeling, simulation, information technology & processing roadmap
  publication-title: Natl. Aeronaut. Space Adm.
– volume: 35
  start-page: 386
  year: 2021
  end-page: 392
  ident: b28
  article-title: Toward intelligent cooperation of UAV swarms: When machine learning meets digital twin
  publication-title: IEEE Netw.
– volume: 7
  year: 2017
  ident: b12
  article-title: Software in the loop simulation for robot manipulators
  publication-title: Eng., Technol. Appl. Sci. Res.
– volume: 7
  start-page: 643
  year: 1999
  end-page: 653
  ident: b8
  article-title: Hardware-in-the-loop simulation for the design and testing of engine-control systems
  publication-title: Control Eng. Pract.
– year: 2014
  ident: b20
  article-title: Tutorial: Using Gazebo plugins with ROS
– volume: 73
  start-page: 823
  year: 2014
  end-page: 831
  ident: b27
  article-title: Wind estimation for accurate airplane path following applications
  publication-title: J. Intell. Robot. Syst.
– start-page: 1
  year: 2014
  end-page: 6
  ident: b13
  article-title: Multicopter UAV design optimization
  publication-title: 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA)
– year: 2020
  ident: b22
  article-title: Simulation and model-based design
– start-page: 1729
  year: 2010
  end-page: 1732
  ident: b10
  article-title: Hardware-In-the-Loop simulation test for actuator control system of Smart UAV
  publication-title: ICCAS 2010
– year: 2012
  ident: b29
  article-title: Mecánica Del Vuelo
– volume: 22
  start-page: 22
  year: 2011
  ident: b31
  article-title: Modelling and control of quadcopter
  publication-title: Indep. Res. Proj. Appl. Math., Espoo
– volume: 51
  start-page: 3
  year: 1997
  end-page: 8
  ident: b33
  article-title: Multiple tests with discrete distributions
  publication-title: Amer. Statist.
– reference: .
– start-page: 333
  year: 2018
  end-page: 348
  ident: b16
  article-title: Digital twin-based energy modeling of industrial robots
  publication-title: Asian Simulation Conference
– start-page: 2568
  year: 2013
  end-page: 2574
  ident: b25
  article-title: UAV flight path planning in time varying complex wind-fields
  publication-title: 2013 American Control Conference
– year: 2015
  ident: b4
  article-title: Digital twin: Manufacturing excellence through virtual factory replication
– volume: 28
  start-page: 121
  year: 2019
  end-page: 126
  ident: b17
  article-title: Digital twin for adaptation of robots’ behavior in flexible robotic assembly lines
  publication-title: Procedia Manuf.
– year: 1983
  ident: b24
  article-title: Low-Altitude Wind Shear and Its Hazard To Aviation
– year: 1988
  ident: b30
  article-title: Derivation and Definition of a Linear Aircraft Model, Vol. 1207
– start-page: 18.1
  year: 2006
  end-page: 18.16
  ident: b3
  article-title: Determination and evaluation of UAV safety objectives
  publication-title: Proceedings of the 21st International Conference on Unmanned Air Vehicle Systems
– start-page: 208
  year: 2015
  end-page: 211
  ident: b32
  article-title: Nonlinear model predictive control of quadcopter
  publication-title: 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)
– volume: 7
  start-page: 1
  year: 2020
  end-page: 13
  ident: b6
  article-title: How to tell the difference between a model and a digital twin
  publication-title: Adv. Model. Simul. Eng. Sci.
– year: 2010
  ident: 10.1016/j.simpat.2022.102703_b34
– volume: 21
  start-page: 7830
  issue: 23
  year: 2021
  ident: 10.1016/j.simpat.2022.102703_b19
  article-title: A digital twin approach for the improvement of an autonomous mobile robots (AMR’s) operating environment—A case study
  publication-title: Sensors
  doi: 10.3390/s21237830
– volume: 28
  start-page: 121
  year: 2019
  ident: 10.1016/j.simpat.2022.102703_b17
  article-title: Digital twin for adaptation of robots’ behavior in flexible robotic assembly lines
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2018.12.020
– start-page: 208
  year: 2015
  ident: 10.1016/j.simpat.2022.102703_b32
  article-title: Nonlinear model predictive control of quadcopter
– start-page: 18.1
  year: 2006
  ident: 10.1016/j.simpat.2022.102703_b3
  article-title: Determination and evaluation of UAV safety objectives
– volume: 24
  start-page: 1368
  issue: 12
  year: 2021
  ident: 10.1016/j.simpat.2022.102703_b5
  article-title: Multi-fidelity digital twin structural model for a sub-scale downwind wind turbine rotor blade
  publication-title: Wind Energy
  doi: 10.1002/we.2636
– year: 1983
  ident: 10.1016/j.simpat.2022.102703_b24
– year: 2018
  ident: 10.1016/j.simpat.2022.102703_b36
– start-page: 1
  year: 2019
  ident: 10.1016/j.simpat.2022.102703_b18
  article-title: Ant colony optimization algorithm for industrial robot programming in a digital twin
– volume: 51
  start-page: 3
  issue: 1
  year: 1997
  ident: 10.1016/j.simpat.2022.102703_b33
  article-title: Multiple tests with discrete distributions
  publication-title: Amer. Statist.
  doi: 10.1080/00031305.1997.10473577
– start-page: 621
  year: 2018
  ident: 10.1016/j.simpat.2022.102703_b21
  article-title: Airsim: High-fidelity visual and physical simulation for autonomous vehicles
– volume: 12
  start-page: 151
  issue: 2
  year: 2018
  ident: 10.1016/j.simpat.2022.102703_b1
  article-title: State-of-the-art technologies for UAV inspections
  publication-title: IET Radar, Sonar Navig.
  doi: 10.1049/iet-rsn.2017.0251
– volume: 7
  start-page: 87658
  year: 2019
  ident: 10.1016/j.simpat.2022.102703_b37
  article-title: Micro air vehicle link (mavlink) in a nutshell: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924410
– ident: 10.1016/j.simpat.2022.102703_b7
  doi: 10.1109/CDC.2005.1582653
– start-page: 591
  year: 2020
  ident: 10.1016/j.simpat.2022.102703_b14
  article-title: A digital twin simulation platform for multi-rotor UAV
– year: 2012
  ident: 10.1016/j.simpat.2022.102703_b29
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.simpat.2022.102703_b6
  article-title: How to tell the difference between a model and a digital twin
  publication-title: Adv. Model. Simul. Eng. Sci.
  doi: 10.1186/s40323-020-00147-4
– start-page: 1
  year: 2020
  ident: 10.1016/j.simpat.2022.102703_b15
  article-title: Digital twin of an electrical motor based on empirical performance model
– volume: 7
  start-page: 643
  issue: 5
  year: 1999
  ident: 10.1016/j.simpat.2022.102703_b8
  article-title: Hardware-in-the-loop simulation for the design and testing of engine-control systems
  publication-title: Control Eng. Pract.
  doi: 10.1016/S0967-0661(98)00205-6
– year: 2020
  ident: 10.1016/j.simpat.2022.102703_b22
– year: 1988
  ident: 10.1016/j.simpat.2022.102703_b30
– start-page: 333
  year: 2018
  ident: 10.1016/j.simpat.2022.102703_b16
  article-title: Digital twin-based energy modeling of industrial robots
– year: 2015
  ident: 10.1016/j.simpat.2022.102703_b4
– ident: 10.1016/j.simpat.2022.102703_b35
– volume: 44
  start-page: 888
  issue: 3
  year: 2007
  ident: 10.1016/j.simpat.2022.102703_b26
  article-title: CFD-based models of aerodynamic gust response
  publication-title: J. Aircr.
  doi: 10.2514/1.25498
– volume: 32
  start-page: 1
  year: 2012
  ident: 10.1016/j.simpat.2022.102703_b9
  article-title: Modeling, simulation, information technology & processing roadmap
  publication-title: Natl. Aeronaut. Space Adm.
– volume: 56
  start-page: 1
  year: 2018
  ident: 10.1016/j.simpat.2022.102703_b11
  article-title: Design and implementation of a real-time hardware-in-the-loop testing platform for a dual-rotor tail-sitter unmanned aerial vehicle
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2018.10.001
– year: 2014
  ident: 10.1016/j.simpat.2022.102703_b20
– start-page: 483
  year: 2014
  ident: 10.1016/j.simpat.2022.102703_b2
  article-title: Dynamic modeling of a fixed-wing VTOL UAV
– year: 2014
  ident: 10.1016/j.simpat.2022.102703_b23
– start-page: 1
  year: 2014
  ident: 10.1016/j.simpat.2022.102703_b13
  article-title: Multicopter UAV design optimization
– start-page: 2568
  year: 2013
  ident: 10.1016/j.simpat.2022.102703_b25
  article-title: UAV flight path planning in time varying complex wind-fields
– volume: 7
  issue: 5
  year: 2017
  ident: 10.1016/j.simpat.2022.102703_b12
  article-title: Software in the loop simulation for robot manipulators
  publication-title: Eng., Technol. Appl. Sci. Res.
– volume: 73
  start-page: 823
  issue: 1
  year: 2014
  ident: 10.1016/j.simpat.2022.102703_b27
  article-title: Wind estimation for accurate airplane path following applications
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-013-9930-7
– volume: 35
  start-page: 386
  issue: 1
  year: 2021
  ident: 10.1016/j.simpat.2022.102703_b28
  article-title: Toward intelligent cooperation of UAV swarms: When machine learning meets digital twin
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.011.2000388
– volume: 22
  start-page: 22
  year: 2011
  ident: 10.1016/j.simpat.2022.102703_b31
  article-title: Modelling and control of quadcopter
  publication-title: Indep. Res. Proj. Appl. Math., Espoo
– start-page: 1729
  year: 2010
  ident: 10.1016/j.simpat.2022.102703_b10
  article-title: Hardware-In-the-Loop simulation test for actuator control system of Smart UAV
SSID ssj0018867
Score 2.4580886
Snippet With UAVs becoming increasingly popular in the industry, vertical take-off and landing (VTOL) convertiplanes are emerging as a compromise between the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102703
SubjectTerms Aerodynamic coefficients
Digital twin
Gazebo
UAV
VTOL
Wind model
Title VTOL UAV digital twin for take-off, hovering and landing in different wind conditions
URI https://dx.doi.org/10.1016/j.simpat.2022.102703
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YGR0CaxY3esKqryKgNN1S2yYxsCVVpBEBu_HV-cVMAAEmt0J0UX--676Lv7EDqVJpSGp8STmnIPtqN4Mohss2JYEAjFiBbwH_J2HI1icjWjswYa1LMwQKuscr_L6WW2rp50qmh2llnWubedR8-Ws1kQuEYGJtgJg1N-_rGieficlyqyYOyBdT0-V3K8XmEUERiVQQA7DFgtnfWzPH0pOcMttFFhRdx3r7ONGjrfQZu1DgOuruUuiqeTuxsc96dYZQ8gAoKL9yzHFo7iQjxrb2HMGX4ErqatU1jkCs_dMAu2VrVCSoGtj8K2PVaOxbWH4uHFZDDyKrkEL7UoCkTluzoUXFMVEeHTtKeMJhY8-1RQYlRPcp0aLhmLBIWl7pEIpKJEygiuvfbDfdTMF7k-QJixLlfMYrEo1PZSG2G4IFpZ6MFTzk3aQmEdpSStdomDpMU8qUljT4mLbQKxTVxsW8hbeS3dLo0_7Fn9AZJvZyKx6f5Xz8N_ex6hdRCUd7zsY9QsXt70iYUdhWyX56qN1vqX16PxJ0qn1u8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN6I8PTAStU3i2B2riqqlDwbaqltkxzYUqrSCIP4-vjpBwAASa-STrIt9913y3X0AV9IE0vAk9KSm3MPpKJ70I1usGOb7QrFQC_wOORxF3Ul4O6OzErSLXhikVeax38X0dbTOn9Ryb9ZW83nt3lYeTZvOZr7vCpkNqOB0KlqGSqvX744-fyZwvhaSxfUeGhQddGua1yt2IyKp0vdxjAEr1LN-ZqgvWaezC9s5XCQtt6M9KOl0H3YKKQaS38wDmEzHdwMyaU2Jmj-gDgjJ3ucpsYiUZOJZe0tjrskj0jVtqiIiVWTh-lmIXVWIpGTE2ihiK2TliFyHMOncjNtdL1dM8BILpFBXvq4DwTVVUSgaNGkqo0OLnxtU0NCopuQ6MVwyFgmKc90j4UtFQykjvPm6ERxBOV2m-hgIY3WumIVjUaDtvTbCcBFqZdEHTzg3SRWCwktxko8TR1WLRVzwxp5i59sYfRs731bB-7RauXEaf6xnxQuIvx2L2Eb8Xy1P_m15CZvd8XAQD3qj_ilsob68o2mfQTl7edPnFoVk8iI_ZR-3odmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VTOL+UAV+digital+twin+for+take-off%2C+hovering+and+landing+in+different+wind+conditions&rft.jtitle=Simulation+modelling+practice+and+theory&rft.au=Al%C3%A1ez%2C+D.&rft.au=Olaz%2C+X.&rft.au=Prieto%2C+M.&rft.au=Villadangos%2C+J.&rft.date=2023-02-01&rft.pub=Elsevier+B.V&rft.issn=1569-190X&rft.eissn=1878-1462&rft.volume=123&rft_id=info:doi/10.1016%2Fj.simpat.2022.102703&rft.externalDocID=S1569190X22001721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-190X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-190X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-190X&client=summon