SUSAN: A Deep Learning based anomaly detection framework for sustainable industry
Nowadays, sustainability is the core of green technologies, being a critical aspect in many industries concerned with reducing carbon emissions and energy consumption optimization. While this concern increases, the number of cyberattacks causing sustainability issues in industries also grows. These...
Saved in:
Published in | Sustainable computing informatics and systems Vol. 37; p. 100842 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2210-5379 |
DOI | 10.1016/j.suscom.2022.100842 |
Cover
Loading…
Abstract | Nowadays, sustainability is the core of green technologies, being a critical aspect in many industries concerned with reducing carbon emissions and energy consumption optimization. While this concern increases, the number of cyberattacks causing sustainability issues in industries also grows. These cyberattacks impact industrial systems that control and monitor the right functioning of processes and systems. Furthermore, they are very specialized, requiring knowledge about the target industrial processes, and being undetectable for traditional cybersecurity solutions. To overcome this challenge, we present SUSAN, a Deep Learning-based framework, to build anomaly detectors that expose cyberattacks affecting the sustainability of industrial systems. SUSAN follows a modular and flexible design that allows the ensembling of several detectors to achieve more precise detections. To demonstrate the feasibility of SUSAN, we implemented the framework in a water treatment plant using the SWaT testbed. The experiments performed achieved the best recall rate (0.910) and acceptable precision (0.633), resulting in an F1-score of 0.747. Regarding individual cyberattacks that impact the system’s sustainability, our implementation detected all of them, and, concerning the related work, it achieved the most balanced results, with 0.64 as the worst recall rate. Finally, a false-positive rate of 0.000388 makes our solution feasible in real scenarios.
•Anomaly Detection based on Deep Learning techniques improves the sustainability in the Industry.•Resource-consumption features help the model to discriminate between normal and abnormal behavior.•Autocorrelation and Fourier Transform help to extract higher-order features from industrial systems.•An Anomaly Detection Ensembler allows detecting different types of anomalies. |
---|---|
AbstractList | Nowadays, sustainability is the core of green technologies, being a critical aspect in many industries concerned with reducing carbon emissions and energy consumption optimization. While this concern increases, the number of cyberattacks causing sustainability issues in industries also grows. These cyberattacks impact industrial systems that control and monitor the right functioning of processes and systems. Furthermore, they are very specialized, requiring knowledge about the target industrial processes, and being undetectable for traditional cybersecurity solutions. To overcome this challenge, we present SUSAN, a Deep Learning-based framework, to build anomaly detectors that expose cyberattacks affecting the sustainability of industrial systems. SUSAN follows a modular and flexible design that allows the ensembling of several detectors to achieve more precise detections. To demonstrate the feasibility of SUSAN, we implemented the framework in a water treatment plant using the SWaT testbed. The experiments performed achieved the best recall rate (0.910) and acceptable precision (0.633), resulting in an F1-score of 0.747. Regarding individual cyberattacks that impact the system’s sustainability, our implementation detected all of them, and, concerning the related work, it achieved the most balanced results, with 0.64 as the worst recall rate. Finally, a false-positive rate of 0.000388 makes our solution feasible in real scenarios.
•Anomaly Detection based on Deep Learning techniques improves the sustainability in the Industry.•Resource-consumption features help the model to discriminate between normal and abnormal behavior.•Autocorrelation and Fourier Transform help to extract higher-order features from industrial systems.•An Anomaly Detection Ensembler allows detecting different types of anomalies. |
ArticleNumber | 100842 |
Author | Maimó, Lorenzo Fernández Clemente, Félix J. García Gómez, Ángel Luis Perales Celdrán, Alberto Huertas |
Author_xml | – sequence: 1 givenname: Ángel Luis Perales orcidid: 0000-0003-1004-881X surname: Gómez fullname: Gómez, Ángel Luis Perales email: angelluis.perales@um.es organization: Departamento de Ingeniería y Tecnología de Computadores, University of Murcia, 30100 Murcia, Spain – sequence: 2 givenname: Lorenzo Fernández orcidid: 0000-0003-2027-4239 surname: Maimó fullname: Maimó, Lorenzo Fernández email: lfmaimo@um.es organization: Departamento de Ingeniería y Tecnología de Computadores, University of Murcia, 30100 Murcia, Spain – sequence: 3 givenname: Alberto Huertas surname: Celdrán fullname: Celdrán, Alberto Huertas email: huertas@ifi.uzh.ch organization: Communication Systems Group CSG, Department of Informatics IfI, University of Zurich UZH, CH 8050, Zürich, Switzerland – sequence: 4 givenname: Félix J. García orcidid: 0000-0001-6181-5033 surname: Clemente fullname: Clemente, Félix J. García email: fgarcia@um.es organization: Departamento de Ingeniería y Tecnología de Computadores, University of Murcia, 30100 Murcia, Spain |
BookMark | eNqFkMtOwzAQRb0oEgX6Byz8Aym283K6QKrKU6pAqHRtTZwxckmcyg6g_j2uwooFzGY0I907d84ZmbjeISGXnM0548XVbh4-gu67uWBCxBWTmZiQqRCcJXlaVqdkFsKOxcoLXqXZlLxstpvl04Iu6Q3inq4RvLPujdYQsKHg-g7aA21wQD3Y3lHjocOv3r9T03sarw1gHdQtUuuaOPnDBTkx0Aac_fRzsr27fV09JOvn-8fVcp3oNBdDwllRGZAoTapLzTIjDWtqJgAKXuZlI6HippSQi6wGkCXn2EAhwWhsDE_T9JwsRl_t-xA8GqXtAMeQgwfbKs7UkYnaqZGJOjJRI5Mozn6J99524A__ya5HGcbHPi16FbRFFyNZHwGpprd_G3wD9IqCqg |
CitedBy_id | crossref_primary_10_3390_s25030773 crossref_primary_10_1016_j_procs_2025_01_258 crossref_primary_10_1080_21642583_2024_2334303 crossref_primary_10_1109_ACCESS_2024_3450709 crossref_primary_10_1080_1206212X_2025_2449999 crossref_primary_10_1007_s10586_024_04461_z crossref_primary_10_1109_TNSM_2024_3378677 |
Cites_doi | 10.1007/s12652-018-0813-4 10.3390/electronics8111210 10.1016/j.apenergy.2017.12.005 10.1038/s41592-019-0686-2 10.1016/j.rser.2017.05.124 10.1016/j.procir.2016.01.129 10.1061/(ASCE)EE.1943-7870.0001686 10.1109/ACCESS.2019.2958284 10.1007/s10845-018-1433-8 10.1002/spe.2879 10.1109/ACCESS.2020.2975066 10.1109/ACCESS.2018.2803446 10.1038/s41586-020-2649-2 10.1109/MITP.2017.3680952 10.3390/sym12101583 10.1016/j.net.2020.05.012 10.3390/su10103524 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.suscom.2022.100842 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_suscom_2022_100842 S2210537922001731 |
GroupedDBID | --K --M .~1 0R~ 1~. 4.4 457 4G. 6I. 7-5 8P~ AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AARJD AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA GBOLZ HZ~ J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSR SSV SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c352t-1069fa8e8f3c7c04f8f0db02aa61757d8a91f78a524baa8711eda68afcedf1333 |
IEDL.DBID | .~1 |
ISSN | 2210-5379 |
IngestDate | Thu Apr 24 23:02:00 EDT 2025 Tue Jul 01 01:35:20 EDT 2025 Fri Feb 23 02:37:58 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | Deep learning Industrial control systems Sustainability Anomaly detection Machine learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-1069fa8e8f3c7c04f8f0db02aa61757d8a91f78a524baa8711eda68afcedf1333 |
ORCID | 0000-0003-2027-4239 0000-0003-1004-881X 0000-0001-6181-5033 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2210537922001731 |
ParticipantIDs | crossref_citationtrail_10_1016_j_suscom_2022_100842 crossref_primary_10_1016_j_suscom_2022_100842 elsevier_sciencedirect_doi_10_1016_j_suscom_2022_100842 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Sustainable computing informatics and systems |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Inoue, Yamagata, Chen, Poskitt, Sun (b26) 2017 Araya, Grolinger, ElYamany, Capretz, Bitsuamlak (b15) 2016 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski (b38) 2020; 17 Gómez, Maimó, Celdrán, Clemente, Cleary (b9) 2021 Hassanzadeh, Rasekh, Galelli, Aghashahi, Taormina, Ostfeld, Banks (b4) 2020; 146 Fan, Xiao, Zhao, Wang (b16) 2018; 211 Szymanski (b3) 2017; 19 Berger, Zhou (b33) 2014 Pelletier, Doyon, Muirhead, Widowski, Nurse-Gupta, Hunniford (b12) 2018; 10 Bag, Telukdarie, Pretorius, Gupta (b13) 2018; 28 Gómez, Maimó, Celdrán, Clemente, Pérez, Pérez (b11) 2020; 51 Ghaeini, Tippenhauer (b30) 2016 Maimó, Gómez, Clemente, Pérez, Pérez (b6) 2018; 6 Caselli, Zambon, Kargl (b25) 2015 Harris, Jarrod Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser (b39) 2020; 585 Chollet (b41) 2015 Gómez, Maimó, Celdrán, Clemente, Sarmiento, Masa, Nistal (b27) 2019; 7 Kravchik, Shabtai (b18) 2018 Kravchik, Shabtai (b28) 2019 Tasfi, Higashino, Grolinger, Capretz (b17) 2017 Grammatikis, Sarigiannidis, Sarigiannidis, Margounakis, Tsiakalos, Efstathopoulos (b23) 2020 Elnour, Meskin, Khan, Jain (b29) 2020; 8 Li, Chen, Jin, Shi, Goh, Ng (b21) 2019 Kim, Yun, Kim (b22) 2019 Gómez, Maimó, Celdrán, Clemente (b10) 2020; 12 Zizzo, Hankin, Maffeis, Jones (b20) 2019 Ayodeji, Liu, Chao, Yang (b8) 2020; 52 Khraisat, Gondal, Vamplew, Kamruzzaman, Alazab (b24) 2019; 8 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel (b37) 2011; 12 Benesty, Chen, Huang, Cohen (b32) 2009 Miller, Nagy, Schlueter (b14) 2018; 81 Goh, Adepu, Junejo, Mathur (b31) 2016 Oztemel, Gursev (b1) 2020; 31 Shalyga, Filonov, Lavrentyev (b19) 2018 Stock, Seliger (b2) 2016; 40 Plėta, Tvaronavičienė, Casa, Agafonov (b5) 2020 Rao, Kim, Hwang (b35) 2010 Maimó, Celdrán, Pérez, Clemente, Pérez (b7) 2019; 10 Gubner (b34) 2006 pandas development team (b36) 2020 Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado (b40) 2016 Goh (10.1016/j.suscom.2022.100842_b31) 2016 Gómez (10.1016/j.suscom.2022.100842_b27) 2019; 7 Harris (10.1016/j.suscom.2022.100842_b39) 2020; 585 Khraisat (10.1016/j.suscom.2022.100842_b24) 2019; 8 Bag (10.1016/j.suscom.2022.100842_b13) 2018; 28 pandas development team (10.1016/j.suscom.2022.100842_b36) 2020 Gómez (10.1016/j.suscom.2022.100842_b10) 2020; 12 Gómez (10.1016/j.suscom.2022.100842_b11) 2020; 51 Caselli (10.1016/j.suscom.2022.100842_b25) 2015 Abadi (10.1016/j.suscom.2022.100842_b40) 2016 Zizzo (10.1016/j.suscom.2022.100842_b20) 2019 Gubner (10.1016/j.suscom.2022.100842_b34) 2006 Berger (10.1016/j.suscom.2022.100842_b33) 2014 Ghaeini (10.1016/j.suscom.2022.100842_b30) 2016 Pedregosa (10.1016/j.suscom.2022.100842_b37) 2011; 12 Fan (10.1016/j.suscom.2022.100842_b16) 2018; 211 Shalyga (10.1016/j.suscom.2022.100842_b19) 2018 Kravchik (10.1016/j.suscom.2022.100842_b18) 2018 Kravchik (10.1016/j.suscom.2022.100842_b28) 2019 Benesty (10.1016/j.suscom.2022.100842_b32) 2009 Rao (10.1016/j.suscom.2022.100842_b35) 2010 Virtanen (10.1016/j.suscom.2022.100842_b38) 2020; 17 Hassanzadeh (10.1016/j.suscom.2022.100842_b4) 2020; 146 Li (10.1016/j.suscom.2022.100842_b21) 2019 Inoue (10.1016/j.suscom.2022.100842_b26) 2017 Oztemel (10.1016/j.suscom.2022.100842_b1) 2020; 31 Chollet (10.1016/j.suscom.2022.100842_b41) 2015 Pelletier (10.1016/j.suscom.2022.100842_b12) 2018; 10 Kim (10.1016/j.suscom.2022.100842_b22) 2019 Elnour (10.1016/j.suscom.2022.100842_b29) 2020; 8 Tasfi (10.1016/j.suscom.2022.100842_b17) 2017 Grammatikis (10.1016/j.suscom.2022.100842_b23) 2020 Gómez (10.1016/j.suscom.2022.100842_b9) 2021 Maimó (10.1016/j.suscom.2022.100842_b6) 2018; 6 Maimó (10.1016/j.suscom.2022.100842_b7) 2019; 10 Miller (10.1016/j.suscom.2022.100842_b14) 2018; 81 Plėta (10.1016/j.suscom.2022.100842_b5) 2020 Stock (10.1016/j.suscom.2022.100842_b2) 2016; 40 Ayodeji (10.1016/j.suscom.2022.100842_b8) 2020; 52 Araya (10.1016/j.suscom.2022.100842_b15) 2016 Szymanski (10.1016/j.suscom.2022.100842_b3) 2017; 19 |
References_xml | – volume: 40 start-page: 536 year: 2016 end-page: 541 ident: b2 article-title: Opportunities of sustainable manufacturing in industry 4.0 publication-title: Procedia CIRP – start-page: 703 year: 2019 end-page: 716 ident: b21 article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks publication-title: Artificial Neural Networks and Machine Learning – ICANN 2019: Text and Time Series – volume: 10 start-page: 3524 year: 2018 ident: b12 article-title: Sustainability in the Canadian egg industry—Learning from the past, navigating the present, planning for the future publication-title: Sustainability – start-page: 13 year: 2015 end-page: 24 ident: b25 article-title: Sequence-aware intrusion detection in industrial control systems publication-title: Proceedings of the 1st ACM Workshop on Cyber-Physical System Security – volume: 211 start-page: 1123 year: 2018 end-page: 1135 ident: b16 article-title: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data publication-title: Appl. Energy – year: 2014 ident: b33 article-title: Kolmogorov–smirnov test: Overview publication-title: Wiley Statsref: Statistics Reference Online – volume: 81 start-page: 1365 year: 2018 end-page: 1377 ident: b14 article-title: A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings publication-title: Renew. Sustain. Energy – year: 2020 ident: b5 article-title: Cyber-attacks to critical energy infrastructure and management issues: Overview of selected cases – start-page: 1038 year: 2017 end-page: 1045 ident: b17 article-title: Deep neural networks with confidence sampling for electrical anomaly detection publication-title: 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) – volume: 31 start-page: 127 year: 2020 end-page: 182 ident: b1 article-title: Literature review of industry 4.0 and related technologies publication-title: J. Intell. Manuf. – year: 2019 ident: b28 article-title: Efficient cyber attacks detection in industrial control systems using lightweight neural networks – start-page: 103 year: 2016 end-page: 111 ident: b30 article-title: Hamids: Hierarchical monitoring intrusion detection system for industrial control systems publication-title: Proceedings of the 2nd ACM Workshop on Cyber-Physical Systems Security and Privacy – start-page: 1 year: 2020 end-page: 4 ident: b23 article-title: An anomaly detection mechanism for IEC 60870-5-104 publication-title: 2020 9th International Conference on Modern Circuits and Systems Technologies – volume: 8 start-page: 36639 year: 2020 end-page: 36651 ident: b29 article-title: A dual-isolation-forests-based attack detection framework for industrial control systems publication-title: IEEE Access – year: 2020 ident: b36 article-title: Pandas-dev/pandas: Pandas – volume: 52 start-page: 2687 year: 2020 end-page: 2698 ident: b8 article-title: A new perspective towards the development of robust data-driven intrusion detection for industrial control systems publication-title: Nucl. Eng. Technol. – volume: 51 start-page: 607 year: 2020 end-page: 627 ident: b11 article-title: SafeMan: A unified framework to manage cybersecurity and safety in manufacturing industry publication-title: Softw. Pract. Exp. – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: b38 article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python publication-title: Nature Methods – start-page: 88 year: 2016 end-page: 99 ident: b31 article-title: A dataset to support research in the design of secure water treatment systems publication-title: International Conference on Critical Information Infrastructures Security – year: 2006 ident: b34 article-title: Probability and Random Processes for Electrical and Computer Engineers – start-page: 1 year: 2009 end-page: 4 ident: b32 article-title: Pearson correlation coefficient publication-title: Noise Reduction in Speech Processing – volume: 8 start-page: 1210 year: 2019 ident: b24 article-title: A novel ensemble of hybrid intrusion detection system for detecting internet of things attacks publication-title: Electronics – start-page: 1058 year: 2017 end-page: 1065 ident: b26 article-title: Anomaly detection for a water treatment system using unsupervised machine learning publication-title: 2017 IEEE International Conference on Data Mining Workshops – volume: 19 start-page: 34 year: 2017 end-page: 41 ident: b3 article-title: Security and privacy for a green internet of things publication-title: IT Prof. – year: 2010 ident: b35 article-title: Fast Fourier Transform: Algorithms and Applications, Vol. 32 – start-page: 511 year: 2016 end-page: 518 ident: b15 article-title: Collective contextual anomaly detection framework for smart buildings publication-title: 2016 International Joint Conference on Neural Networks – year: 2016 ident: b40 article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems – year: 2019 ident: b22 article-title: Anomaly detection for industrial control systems using sequence-to-sequence neural networks – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: b39 article-title: Array programming with NumPy publication-title: Nature – volume: 12 start-page: 1583 year: 2020 ident: b10 article-title: MADICS: A methodology for anomaly detection in industrial control systems publication-title: Symmetry (Basel) – year: 2015 ident: b41 article-title: Keras – volume: 10 start-page: 3083 year: 2019 end-page: 3097 ident: b7 article-title: Dynamic management of a dep learning-based anomaly detection system for 5G networks publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 146 year: 2020 ident: b4 article-title: A review of cybersecurity incidents in the water sector publication-title: J. Environ. Eng. – start-page: 72 year: 2018 end-page: 83 ident: b18 article-title: Detecting cyber attacks in industrial control systems using convolutional neural networks publication-title: Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy – year: 2019 ident: b20 article-title: Intrusion detection for industrial control systems: Evaluation analysis and adversarial attacks – volume: 28 start-page: 1410 year: 2018 end-page: 1450 ident: b13 article-title: Industry 4.0 and supply chain sustainability: Framework and future research directions publication-title: Benchmarking: Int. J. – year: 2018 ident: b19 article-title: Anomaly detection for water treatment system based on neural network with automatic architecture optimization – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b37 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 6 start-page: 7700 year: 2018 end-page: 7712 ident: b6 article-title: A self-adaptive deep learning-based system for anomaly detection in 5G networks publication-title: IEEE Access – volume: 7 start-page: 177460 year: 2019 end-page: 177473 ident: b27 article-title: On the generation of anomaly detection datasets in industrial control systems publication-title: IEEE Access – year: 2021 ident: b9 article-title: Crafting adversarial samples for anomaly detectors in industrial control systems publication-title: The 4th International Conference on Emerging Data and Industry 4.0 (EDI40) – volume: 10 start-page: 3083 issue: 8 year: 2019 ident: 10.1016/j.suscom.2022.100842_b7 article-title: Dynamic management of a dep learning-based anomaly detection system for 5G networks publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-018-0813-4 – year: 2015 ident: 10.1016/j.suscom.2022.100842_b41 – volume: 8 start-page: 1210 issue: 11 year: 2019 ident: 10.1016/j.suscom.2022.100842_b24 article-title: A novel ensemble of hybrid intrusion detection system for detecting internet of things attacks publication-title: Electronics doi: 10.3390/electronics8111210 – year: 2014 ident: 10.1016/j.suscom.2022.100842_b33 article-title: Kolmogorov–smirnov test: Overview – volume: 211 start-page: 1123 year: 2018 ident: 10.1016/j.suscom.2022.100842_b16 article-title: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.005 – volume: 17 start-page: 261 year: 2020 ident: 10.1016/j.suscom.2022.100842_b38 article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python publication-title: Nature Methods doi: 10.1038/s41592-019-0686-2 – start-page: 1038 year: 2017 ident: 10.1016/j.suscom.2022.100842_b17 article-title: Deep neural networks with confidence sampling for electrical anomaly detection – start-page: 1 year: 2020 ident: 10.1016/j.suscom.2022.100842_b23 article-title: An anomaly detection mechanism for IEC 60870-5-104 – year: 2019 ident: 10.1016/j.suscom.2022.100842_b22 – start-page: 703 year: 2019 ident: 10.1016/j.suscom.2022.100842_b21 article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks – start-page: 1058 year: 2017 ident: 10.1016/j.suscom.2022.100842_b26 article-title: Anomaly detection for a water treatment system using unsupervised machine learning – start-page: 88 year: 2016 ident: 10.1016/j.suscom.2022.100842_b31 article-title: A dataset to support research in the design of secure water treatment systems – volume: 81 start-page: 1365 year: 2018 ident: 10.1016/j.suscom.2022.100842_b14 article-title: A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings publication-title: Renew. Sustain. Energy doi: 10.1016/j.rser.2017.05.124 – year: 2019 ident: 10.1016/j.suscom.2022.100842_b20 – start-page: 1 year: 2009 ident: 10.1016/j.suscom.2022.100842_b32 article-title: Pearson correlation coefficient – year: 2018 ident: 10.1016/j.suscom.2022.100842_b19 – start-page: 13 year: 2015 ident: 10.1016/j.suscom.2022.100842_b25 article-title: Sequence-aware intrusion detection in industrial control systems – volume: 40 start-page: 536 year: 2016 ident: 10.1016/j.suscom.2022.100842_b2 article-title: Opportunities of sustainable manufacturing in industry 4.0 publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.01.129 – volume: 146 issue: 5 year: 2020 ident: 10.1016/j.suscom.2022.100842_b4 article-title: A review of cybersecurity incidents in the water sector publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)EE.1943-7870.0001686 – volume: 7 start-page: 177460 year: 2019 ident: 10.1016/j.suscom.2022.100842_b27 article-title: On the generation of anomaly detection datasets in industrial control systems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2958284 – year: 2019 ident: 10.1016/j.suscom.2022.100842_b28 – volume: 31 start-page: 127 issue: 1 year: 2020 ident: 10.1016/j.suscom.2022.100842_b1 article-title: Literature review of industry 4.0 and related technologies publication-title: J. Intell. Manuf. doi: 10.1007/s10845-018-1433-8 – start-page: 103 year: 2016 ident: 10.1016/j.suscom.2022.100842_b30 article-title: Hamids: Hierarchical monitoring intrusion detection system for industrial control systems – start-page: 511 year: 2016 ident: 10.1016/j.suscom.2022.100842_b15 article-title: Collective contextual anomaly detection framework for smart buildings – volume: 51 start-page: 607 issue: 3 year: 2020 ident: 10.1016/j.suscom.2022.100842_b11 article-title: SafeMan: A unified framework to manage cybersecurity and safety in manufacturing industry publication-title: Softw. Pract. Exp. doi: 10.1002/spe.2879 – volume: 8 start-page: 36639 year: 2020 ident: 10.1016/j.suscom.2022.100842_b29 article-title: A dual-isolation-forests-based attack detection framework for industrial control systems publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2975066 – volume: 28 start-page: 1410 issue: 5 year: 2018 ident: 10.1016/j.suscom.2022.100842_b13 article-title: Industry 4.0 and supply chain sustainability: Framework and future research directions publication-title: Benchmarking: Int. J. – year: 2020 ident: 10.1016/j.suscom.2022.100842_b36 – volume: 6 start-page: 7700 year: 2018 ident: 10.1016/j.suscom.2022.100842_b6 article-title: A self-adaptive deep learning-based system for anomaly detection in 5G networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2803446 – year: 2006 ident: 10.1016/j.suscom.2022.100842_b34 – volume: 585 start-page: 357 issue: 7825 year: 2020 ident: 10.1016/j.suscom.2022.100842_b39 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 19 start-page: 34 issue: 5 year: 2017 ident: 10.1016/j.suscom.2022.100842_b3 article-title: Security and privacy for a green internet of things publication-title: IT Prof. doi: 10.1109/MITP.2017.3680952 – volume: 12 start-page: 1583 issue: 10 year: 2020 ident: 10.1016/j.suscom.2022.100842_b10 article-title: MADICS: A methodology for anomaly detection in industrial control systems publication-title: Symmetry (Basel) doi: 10.3390/sym12101583 – start-page: 72 year: 2018 ident: 10.1016/j.suscom.2022.100842_b18 article-title: Detecting cyber attacks in industrial control systems using convolutional neural networks – year: 2020 ident: 10.1016/j.suscom.2022.100842_b5 – year: 2021 ident: 10.1016/j.suscom.2022.100842_b9 article-title: Crafting adversarial samples for anomaly detectors in industrial control systems – year: 2016 ident: 10.1016/j.suscom.2022.100842_b40 – year: 2010 ident: 10.1016/j.suscom.2022.100842_b35 – volume: 52 start-page: 2687 issue: 12 year: 2020 ident: 10.1016/j.suscom.2022.100842_b8 article-title: A new perspective towards the development of robust data-driven intrusion detection for industrial control systems publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2020.05.012 – volume: 10 start-page: 3524 issue: 10 year: 2018 ident: 10.1016/j.suscom.2022.100842_b12 article-title: Sustainability in the Canadian egg industry—Learning from the past, navigating the present, planning for the future publication-title: Sustainability doi: 10.3390/su10103524 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.suscom.2022.100842_b37 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. |
SSID | ssj0000561934 |
Score | 2.3572104 |
Snippet | Nowadays, sustainability is the core of green technologies, being a critical aspect in many industries concerned with reducing carbon emissions and energy... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100842 |
SubjectTerms | Anomaly detection Deep learning Industrial control systems Machine learning Sustainability |
Title | SUSAN: A Deep Learning based anomaly detection framework for sustainable industry |
URI | https://dx.doi.org/10.1016/j.suscom.2022.100842 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5w_Rg5e49Y0TVJvZTqmwkDmYLeSNIlMZjdcd9jFv92kTaeCKHgt70H5mrz3Jf3eewBcYirigGQcUUsuEDGaIE61RIwrQkXkRm6XKt8hHYzJ_SSaNECvroVxskof-6uYXkZr_6Tj0ewsptPOCNvTShSyGDtZECtrqV33Orumr96DzT2LY8hx-XPZ2SPnUFfQlTKv5WrpZCPY5jKnGOAE_5yhvmSd_h7Y8XQRJtUb7YOGzg_Abj2KAfqdeQgeR-NRMryGCbzRegF919Rn6JKUgiKfv4rZGipdlMqrHJpakwUtaYXLzyoqOK1meayPwLh_-9QbID8tAWWWRBU2ntLYCK65CTOWdYnhpqtkFwthSUrEFLcfxTAuIkykEPacFGglKBfGIm3sSTU8Bs18nusTAEMmsaDGhj6ZkcAYyVSgeGitKGGSmBYIa4TSzLcSdxMtZmmtGXtJK1xTh2ta4doCaOO1qFpp_GHPavDTb0sitdH-V8_Tf3uegW03T766YzkHzeJtpS8s6yhku1xWbbCV3D0Mhh8DVNdB |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IHPTibyP-7MFrA2xd23lbUDIElxgg4ba0W2swOIiMA_-97dahJkYTr0tfsnxr3_te9733ALh1CPc7OGGIaHKBsJIYMSIFoizFhHtm5Hah8o1IOMGPU29aA92qFsbIKq3vL3164a3tk5ZFs7WczVojR2crnkt9x8iCqKmlbpjuVLgOGkF_EEbbqxZDkv3i_7IxQcamKqIrlF6r9cooRxwdzoxogGHn5yD1JfD0DsCeZYwwKF_qENRkdgT2q2kM0B7OY_A8moyC6A4G8F7KJbSNU1-giVMp5Nnijc83MJV5Ib7KoKpkWVDzVrj6LKSCs3Kcx-YETHoP426I7MAElGgelWuXSnzFmWTKTWjSxoqpdiraDueap3g0Zfq7KMq452DBuU6VOjLlhHGlwVY6WXVPQT1bZPIMQJcKhxOlvZ9IcEcpQdNOyly9imAqsGoCt0IoTmw3cTPUYh5XsrHXuMQ1NrjGJa5NgLZWy7Kbxh_raQV-_G1XxNrh_2p5_m_LG7ATjp-G8bAfDS7ArhkvX165XIJ6_r6WV5qE5OLabrIPbnbZ8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SUSAN%3A+A+Deep+Learning+based+anomaly+detection+framework+for+sustainable+industry&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=G%C3%B3mez%2C+%C3%81ngel+Luis+Perales&rft.au=Maim%C3%B3%2C+Lorenzo+Fern%C3%A1ndez&rft.au=Celdr%C3%A1n%2C+Alberto+Huertas&rft.au=Clemente%2C+F%C3%A9lix+J.+Garc%C3%ADa&rft.date=2023-01-01&rft.issn=2210-5379&rft.volume=37&rft.spage=100842&rft_id=info:doi/10.1016%2Fj.suscom.2022.100842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_suscom_2022_100842 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon |