SUSAN: A Deep Learning based anomaly detection framework for sustainable industry

Nowadays, sustainability is the core of green technologies, being a critical aspect in many industries concerned with reducing carbon emissions and energy consumption optimization. While this concern increases, the number of cyberattacks causing sustainability issues in industries also grows. These...

Full description

Saved in:
Bibliographic Details
Published inSustainable computing informatics and systems Vol. 37; p. 100842
Main Authors Gómez, Ángel Luis Perales, Maimó, Lorenzo Fernández, Celdrán, Alberto Huertas, Clemente, Félix J. García
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2023
Subjects
Online AccessGet full text
ISSN2210-5379
DOI10.1016/j.suscom.2022.100842

Cover

Loading…
Abstract Nowadays, sustainability is the core of green technologies, being a critical aspect in many industries concerned with reducing carbon emissions and energy consumption optimization. While this concern increases, the number of cyberattacks causing sustainability issues in industries also grows. These cyberattacks impact industrial systems that control and monitor the right functioning of processes and systems. Furthermore, they are very specialized, requiring knowledge about the target industrial processes, and being undetectable for traditional cybersecurity solutions. To overcome this challenge, we present SUSAN, a Deep Learning-based framework, to build anomaly detectors that expose cyberattacks affecting the sustainability of industrial systems. SUSAN follows a modular and flexible design that allows the ensembling of several detectors to achieve more precise detections. To demonstrate the feasibility of SUSAN, we implemented the framework in a water treatment plant using the SWaT testbed. The experiments performed achieved the best recall rate (0.910) and acceptable precision (0.633), resulting in an F1-score of 0.747. Regarding individual cyberattacks that impact the system’s sustainability, our implementation detected all of them, and, concerning the related work, it achieved the most balanced results, with 0.64 as the worst recall rate. Finally, a false-positive rate of 0.000388 makes our solution feasible in real scenarios. •Anomaly Detection based on Deep Learning techniques improves the sustainability in the Industry.•Resource-consumption features help the model to discriminate between normal and abnormal behavior.•Autocorrelation and Fourier Transform help to extract higher-order features from industrial systems.•An Anomaly Detection Ensembler allows detecting different types of anomalies.
AbstractList Nowadays, sustainability is the core of green technologies, being a critical aspect in many industries concerned with reducing carbon emissions and energy consumption optimization. While this concern increases, the number of cyberattacks causing sustainability issues in industries also grows. These cyberattacks impact industrial systems that control and monitor the right functioning of processes and systems. Furthermore, they are very specialized, requiring knowledge about the target industrial processes, and being undetectable for traditional cybersecurity solutions. To overcome this challenge, we present SUSAN, a Deep Learning-based framework, to build anomaly detectors that expose cyberattacks affecting the sustainability of industrial systems. SUSAN follows a modular and flexible design that allows the ensembling of several detectors to achieve more precise detections. To demonstrate the feasibility of SUSAN, we implemented the framework in a water treatment plant using the SWaT testbed. The experiments performed achieved the best recall rate (0.910) and acceptable precision (0.633), resulting in an F1-score of 0.747. Regarding individual cyberattacks that impact the system’s sustainability, our implementation detected all of them, and, concerning the related work, it achieved the most balanced results, with 0.64 as the worst recall rate. Finally, a false-positive rate of 0.000388 makes our solution feasible in real scenarios. •Anomaly Detection based on Deep Learning techniques improves the sustainability in the Industry.•Resource-consumption features help the model to discriminate between normal and abnormal behavior.•Autocorrelation and Fourier Transform help to extract higher-order features from industrial systems.•An Anomaly Detection Ensembler allows detecting different types of anomalies.
ArticleNumber 100842
Author Maimó, Lorenzo Fernández
Clemente, Félix J. García
Gómez, Ángel Luis Perales
Celdrán, Alberto Huertas
Author_xml – sequence: 1
  givenname: Ángel Luis Perales
  orcidid: 0000-0003-1004-881X
  surname: Gómez
  fullname: Gómez, Ángel Luis Perales
  email: angelluis.perales@um.es
  organization: Departamento de Ingeniería y Tecnología de Computadores, University of Murcia, 30100 Murcia, Spain
– sequence: 2
  givenname: Lorenzo Fernández
  orcidid: 0000-0003-2027-4239
  surname: Maimó
  fullname: Maimó, Lorenzo Fernández
  email: lfmaimo@um.es
  organization: Departamento de Ingeniería y Tecnología de Computadores, University of Murcia, 30100 Murcia, Spain
– sequence: 3
  givenname: Alberto Huertas
  surname: Celdrán
  fullname: Celdrán, Alberto Huertas
  email: huertas@ifi.uzh.ch
  organization: Communication Systems Group CSG, Department of Informatics IfI, University of Zurich UZH, CH 8050, Zürich, Switzerland
– sequence: 4
  givenname: Félix J. García
  orcidid: 0000-0001-6181-5033
  surname: Clemente
  fullname: Clemente, Félix J. García
  email: fgarcia@um.es
  organization: Departamento de Ingeniería y Tecnología de Computadores, University of Murcia, 30100 Murcia, Spain
BookMark eNqFkMtOwzAQRb0oEgX6Byz8Aym283K6QKrKU6pAqHRtTZwxckmcyg6g_j2uwooFzGY0I907d84ZmbjeISGXnM0548XVbh4-gu67uWBCxBWTmZiQqRCcJXlaVqdkFsKOxcoLXqXZlLxstpvl04Iu6Q3inq4RvLPujdYQsKHg-g7aA21wQD3Y3lHjocOv3r9T03sarw1gHdQtUuuaOPnDBTkx0Aac_fRzsr27fV09JOvn-8fVcp3oNBdDwllRGZAoTapLzTIjDWtqJgAKXuZlI6HippSQi6wGkCXn2EAhwWhsDE_T9JwsRl_t-xA8GqXtAMeQgwfbKs7UkYnaqZGJOjJRI5Mozn6J99524A__ya5HGcbHPi16FbRFFyNZHwGpprd_G3wD9IqCqg
CitedBy_id crossref_primary_10_3390_s25030773
crossref_primary_10_1016_j_procs_2025_01_258
crossref_primary_10_1080_21642583_2024_2334303
crossref_primary_10_1109_ACCESS_2024_3450709
crossref_primary_10_1080_1206212X_2025_2449999
crossref_primary_10_1007_s10586_024_04461_z
crossref_primary_10_1109_TNSM_2024_3378677
Cites_doi 10.1007/s12652-018-0813-4
10.3390/electronics8111210
10.1016/j.apenergy.2017.12.005
10.1038/s41592-019-0686-2
10.1016/j.rser.2017.05.124
10.1016/j.procir.2016.01.129
10.1061/(ASCE)EE.1943-7870.0001686
10.1109/ACCESS.2019.2958284
10.1007/s10845-018-1433-8
10.1002/spe.2879
10.1109/ACCESS.2020.2975066
10.1109/ACCESS.2018.2803446
10.1038/s41586-020-2649-2
10.1109/MITP.2017.3680952
10.3390/sym12101583
10.1016/j.net.2020.05.012
10.3390/su10103524
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.suscom.2022.100842
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_suscom_2022_100842
S2210537922001731
GroupedDBID --K
--M
.~1
0R~
1~.
4.4
457
4G.
6I.
7-5
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AARJD
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HZ~
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSR
SSV
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c352t-1069fa8e8f3c7c04f8f0db02aa61757d8a91f78a524baa8711eda68afcedf1333
IEDL.DBID .~1
ISSN 2210-5379
IngestDate Thu Apr 24 23:02:00 EDT 2025
Tue Jul 01 01:35:20 EDT 2025
Fri Feb 23 02:37:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords Deep learning
Industrial control systems
Sustainability
Anomaly detection
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-1069fa8e8f3c7c04f8f0db02aa61757d8a91f78a524baa8711eda68afcedf1333
ORCID 0000-0003-2027-4239
0000-0003-1004-881X
0000-0001-6181-5033
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2210537922001731
ParticipantIDs crossref_citationtrail_10_1016_j_suscom_2022_100842
crossref_primary_10_1016_j_suscom_2022_100842
elsevier_sciencedirect_doi_10_1016_j_suscom_2022_100842
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Sustainable computing informatics and systems
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Inoue, Yamagata, Chen, Poskitt, Sun (b26) 2017
Araya, Grolinger, ElYamany, Capretz, Bitsuamlak (b15) 2016
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski (b38) 2020; 17
Gómez, Maimó, Celdrán, Clemente, Cleary (b9) 2021
Hassanzadeh, Rasekh, Galelli, Aghashahi, Taormina, Ostfeld, Banks (b4) 2020; 146
Fan, Xiao, Zhao, Wang (b16) 2018; 211
Szymanski (b3) 2017; 19
Berger, Zhou (b33) 2014
Pelletier, Doyon, Muirhead, Widowski, Nurse-Gupta, Hunniford (b12) 2018; 10
Bag, Telukdarie, Pretorius, Gupta (b13) 2018; 28
Gómez, Maimó, Celdrán, Clemente, Pérez, Pérez (b11) 2020; 51
Ghaeini, Tippenhauer (b30) 2016
Maimó, Gómez, Clemente, Pérez, Pérez (b6) 2018; 6
Caselli, Zambon, Kargl (b25) 2015
Harris, Jarrod Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser (b39) 2020; 585
Chollet (b41) 2015
Gómez, Maimó, Celdrán, Clemente, Sarmiento, Masa, Nistal (b27) 2019; 7
Kravchik, Shabtai (b18) 2018
Kravchik, Shabtai (b28) 2019
Tasfi, Higashino, Grolinger, Capretz (b17) 2017
Grammatikis, Sarigiannidis, Sarigiannidis, Margounakis, Tsiakalos, Efstathopoulos (b23) 2020
Elnour, Meskin, Khan, Jain (b29) 2020; 8
Li, Chen, Jin, Shi, Goh, Ng (b21) 2019
Kim, Yun, Kim (b22) 2019
Gómez, Maimó, Celdrán, Clemente (b10) 2020; 12
Zizzo, Hankin, Maffeis, Jones (b20) 2019
Ayodeji, Liu, Chao, Yang (b8) 2020; 52
Khraisat, Gondal, Vamplew, Kamruzzaman, Alazab (b24) 2019; 8
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel (b37) 2011; 12
Benesty, Chen, Huang, Cohen (b32) 2009
Miller, Nagy, Schlueter (b14) 2018; 81
Goh, Adepu, Junejo, Mathur (b31) 2016
Oztemel, Gursev (b1) 2020; 31
Shalyga, Filonov, Lavrentyev (b19) 2018
Stock, Seliger (b2) 2016; 40
Plėta, Tvaronavičienė, Casa, Agafonov (b5) 2020
Rao, Kim, Hwang (b35) 2010
Maimó, Celdrán, Pérez, Clemente, Pérez (b7) 2019; 10
Gubner (b34) 2006
pandas development team (b36) 2020
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado (b40) 2016
Goh (10.1016/j.suscom.2022.100842_b31) 2016
Gómez (10.1016/j.suscom.2022.100842_b27) 2019; 7
Harris (10.1016/j.suscom.2022.100842_b39) 2020; 585
Khraisat (10.1016/j.suscom.2022.100842_b24) 2019; 8
Bag (10.1016/j.suscom.2022.100842_b13) 2018; 28
pandas development team (10.1016/j.suscom.2022.100842_b36) 2020
Gómez (10.1016/j.suscom.2022.100842_b10) 2020; 12
Gómez (10.1016/j.suscom.2022.100842_b11) 2020; 51
Caselli (10.1016/j.suscom.2022.100842_b25) 2015
Abadi (10.1016/j.suscom.2022.100842_b40) 2016
Zizzo (10.1016/j.suscom.2022.100842_b20) 2019
Gubner (10.1016/j.suscom.2022.100842_b34) 2006
Berger (10.1016/j.suscom.2022.100842_b33) 2014
Ghaeini (10.1016/j.suscom.2022.100842_b30) 2016
Pedregosa (10.1016/j.suscom.2022.100842_b37) 2011; 12
Fan (10.1016/j.suscom.2022.100842_b16) 2018; 211
Shalyga (10.1016/j.suscom.2022.100842_b19) 2018
Kravchik (10.1016/j.suscom.2022.100842_b18) 2018
Kravchik (10.1016/j.suscom.2022.100842_b28) 2019
Benesty (10.1016/j.suscom.2022.100842_b32) 2009
Rao (10.1016/j.suscom.2022.100842_b35) 2010
Virtanen (10.1016/j.suscom.2022.100842_b38) 2020; 17
Hassanzadeh (10.1016/j.suscom.2022.100842_b4) 2020; 146
Li (10.1016/j.suscom.2022.100842_b21) 2019
Inoue (10.1016/j.suscom.2022.100842_b26) 2017
Oztemel (10.1016/j.suscom.2022.100842_b1) 2020; 31
Chollet (10.1016/j.suscom.2022.100842_b41) 2015
Pelletier (10.1016/j.suscom.2022.100842_b12) 2018; 10
Kim (10.1016/j.suscom.2022.100842_b22) 2019
Elnour (10.1016/j.suscom.2022.100842_b29) 2020; 8
Tasfi (10.1016/j.suscom.2022.100842_b17) 2017
Grammatikis (10.1016/j.suscom.2022.100842_b23) 2020
Gómez (10.1016/j.suscom.2022.100842_b9) 2021
Maimó (10.1016/j.suscom.2022.100842_b6) 2018; 6
Maimó (10.1016/j.suscom.2022.100842_b7) 2019; 10
Miller (10.1016/j.suscom.2022.100842_b14) 2018; 81
Plėta (10.1016/j.suscom.2022.100842_b5) 2020
Stock (10.1016/j.suscom.2022.100842_b2) 2016; 40
Ayodeji (10.1016/j.suscom.2022.100842_b8) 2020; 52
Araya (10.1016/j.suscom.2022.100842_b15) 2016
Szymanski (10.1016/j.suscom.2022.100842_b3) 2017; 19
References_xml – volume: 40
  start-page: 536
  year: 2016
  end-page: 541
  ident: b2
  article-title: Opportunities of sustainable manufacturing in industry 4.0
  publication-title: Procedia CIRP
– start-page: 703
  year: 2019
  end-page: 716
  ident: b21
  article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks
  publication-title: Artificial Neural Networks and Machine Learning – ICANN 2019: Text and Time Series
– volume: 10
  start-page: 3524
  year: 2018
  ident: b12
  article-title: Sustainability in the Canadian egg industry—Learning from the past, navigating the present, planning for the future
  publication-title: Sustainability
– start-page: 13
  year: 2015
  end-page: 24
  ident: b25
  article-title: Sequence-aware intrusion detection in industrial control systems
  publication-title: Proceedings of the 1st ACM Workshop on Cyber-Physical System Security
– volume: 211
  start-page: 1123
  year: 2018
  end-page: 1135
  ident: b16
  article-title: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data
  publication-title: Appl. Energy
– year: 2014
  ident: b33
  article-title: Kolmogorov–smirnov test: Overview
  publication-title: Wiley Statsref: Statistics Reference Online
– volume: 81
  start-page: 1365
  year: 2018
  end-page: 1377
  ident: b14
  article-title: A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings
  publication-title: Renew. Sustain. Energy
– year: 2020
  ident: b5
  article-title: Cyber-attacks to critical energy infrastructure and management issues: Overview of selected cases
– start-page: 1038
  year: 2017
  end-page: 1045
  ident: b17
  article-title: Deep neural networks with confidence sampling for electrical anomaly detection
  publication-title: 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)
– volume: 31
  start-page: 127
  year: 2020
  end-page: 182
  ident: b1
  article-title: Literature review of industry 4.0 and related technologies
  publication-title: J. Intell. Manuf.
– year: 2019
  ident: b28
  article-title: Efficient cyber attacks detection in industrial control systems using lightweight neural networks
– start-page: 103
  year: 2016
  end-page: 111
  ident: b30
  article-title: Hamids: Hierarchical monitoring intrusion detection system for industrial control systems
  publication-title: Proceedings of the 2nd ACM Workshop on Cyber-Physical Systems Security and Privacy
– start-page: 1
  year: 2020
  end-page: 4
  ident: b23
  article-title: An anomaly detection mechanism for IEC 60870-5-104
  publication-title: 2020 9th International Conference on Modern Circuits and Systems Technologies
– volume: 8
  start-page: 36639
  year: 2020
  end-page: 36651
  ident: b29
  article-title: A dual-isolation-forests-based attack detection framework for industrial control systems
  publication-title: IEEE Access
– year: 2020
  ident: b36
  article-title: Pandas-dev/pandas: Pandas
– volume: 52
  start-page: 2687
  year: 2020
  end-page: 2698
  ident: b8
  article-title: A new perspective towards the development of robust data-driven intrusion detection for industrial control systems
  publication-title: Nucl. Eng. Technol.
– volume: 51
  start-page: 607
  year: 2020
  end-page: 627
  ident: b11
  article-title: SafeMan: A unified framework to manage cybersecurity and safety in manufacturing industry
  publication-title: Softw. Pract. Exp.
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: b38
  article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python
  publication-title: Nature Methods
– start-page: 88
  year: 2016
  end-page: 99
  ident: b31
  article-title: A dataset to support research in the design of secure water treatment systems
  publication-title: International Conference on Critical Information Infrastructures Security
– year: 2006
  ident: b34
  article-title: Probability and Random Processes for Electrical and Computer Engineers
– start-page: 1
  year: 2009
  end-page: 4
  ident: b32
  article-title: Pearson correlation coefficient
  publication-title: Noise Reduction in Speech Processing
– volume: 8
  start-page: 1210
  year: 2019
  ident: b24
  article-title: A novel ensemble of hybrid intrusion detection system for detecting internet of things attacks
  publication-title: Electronics
– start-page: 1058
  year: 2017
  end-page: 1065
  ident: b26
  article-title: Anomaly detection for a water treatment system using unsupervised machine learning
  publication-title: 2017 IEEE International Conference on Data Mining Workshops
– volume: 19
  start-page: 34
  year: 2017
  end-page: 41
  ident: b3
  article-title: Security and privacy for a green internet of things
  publication-title: IT Prof.
– year: 2010
  ident: b35
  article-title: Fast Fourier Transform: Algorithms and Applications, Vol. 32
– start-page: 511
  year: 2016
  end-page: 518
  ident: b15
  article-title: Collective contextual anomaly detection framework for smart buildings
  publication-title: 2016 International Joint Conference on Neural Networks
– year: 2016
  ident: b40
  article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems
– year: 2019
  ident: b22
  article-title: Anomaly detection for industrial control systems using sequence-to-sequence neural networks
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: b39
  article-title: Array programming with NumPy
  publication-title: Nature
– volume: 12
  start-page: 1583
  year: 2020
  ident: b10
  article-title: MADICS: A methodology for anomaly detection in industrial control systems
  publication-title: Symmetry (Basel)
– year: 2015
  ident: b41
  article-title: Keras
– volume: 10
  start-page: 3083
  year: 2019
  end-page: 3097
  ident: b7
  article-title: Dynamic management of a dep learning-based anomaly detection system for 5G networks
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 146
  year: 2020
  ident: b4
  article-title: A review of cybersecurity incidents in the water sector
  publication-title: J. Environ. Eng.
– start-page: 72
  year: 2018
  end-page: 83
  ident: b18
  article-title: Detecting cyber attacks in industrial control systems using convolutional neural networks
  publication-title: Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy
– year: 2019
  ident: b20
  article-title: Intrusion detection for industrial control systems: Evaluation analysis and adversarial attacks
– volume: 28
  start-page: 1410
  year: 2018
  end-page: 1450
  ident: b13
  article-title: Industry 4.0 and supply chain sustainability: Framework and future research directions
  publication-title: Benchmarking: Int. J.
– year: 2018
  ident: b19
  article-title: Anomaly detection for water treatment system based on neural network with automatic architecture optimization
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b37
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 7700
  year: 2018
  end-page: 7712
  ident: b6
  article-title: A self-adaptive deep learning-based system for anomaly detection in 5G networks
  publication-title: IEEE Access
– volume: 7
  start-page: 177460
  year: 2019
  end-page: 177473
  ident: b27
  article-title: On the generation of anomaly detection datasets in industrial control systems
  publication-title: IEEE Access
– year: 2021
  ident: b9
  article-title: Crafting adversarial samples for anomaly detectors in industrial control systems
  publication-title: The 4th International Conference on Emerging Data and Industry 4.0 (EDI40)
– volume: 10
  start-page: 3083
  issue: 8
  year: 2019
  ident: 10.1016/j.suscom.2022.100842_b7
  article-title: Dynamic management of a dep learning-based anomaly detection system for 5G networks
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-018-0813-4
– year: 2015
  ident: 10.1016/j.suscom.2022.100842_b41
– volume: 8
  start-page: 1210
  issue: 11
  year: 2019
  ident: 10.1016/j.suscom.2022.100842_b24
  article-title: A novel ensemble of hybrid intrusion detection system for detecting internet of things attacks
  publication-title: Electronics
  doi: 10.3390/electronics8111210
– year: 2014
  ident: 10.1016/j.suscom.2022.100842_b33
  article-title: Kolmogorov–smirnov test: Overview
– volume: 211
  start-page: 1123
  year: 2018
  ident: 10.1016/j.suscom.2022.100842_b16
  article-title: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.005
– volume: 17
  start-page: 261
  year: 2020
  ident: 10.1016/j.suscom.2022.100842_b38
  article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python
  publication-title: Nature Methods
  doi: 10.1038/s41592-019-0686-2
– start-page: 1038
  year: 2017
  ident: 10.1016/j.suscom.2022.100842_b17
  article-title: Deep neural networks with confidence sampling for electrical anomaly detection
– start-page: 1
  year: 2020
  ident: 10.1016/j.suscom.2022.100842_b23
  article-title: An anomaly detection mechanism for IEC 60870-5-104
– year: 2019
  ident: 10.1016/j.suscom.2022.100842_b22
– start-page: 703
  year: 2019
  ident: 10.1016/j.suscom.2022.100842_b21
  article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks
– start-page: 1058
  year: 2017
  ident: 10.1016/j.suscom.2022.100842_b26
  article-title: Anomaly detection for a water treatment system using unsupervised machine learning
– start-page: 88
  year: 2016
  ident: 10.1016/j.suscom.2022.100842_b31
  article-title: A dataset to support research in the design of secure water treatment systems
– volume: 81
  start-page: 1365
  year: 2018
  ident: 10.1016/j.suscom.2022.100842_b14
  article-title: A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings
  publication-title: Renew. Sustain. Energy
  doi: 10.1016/j.rser.2017.05.124
– year: 2019
  ident: 10.1016/j.suscom.2022.100842_b20
– start-page: 1
  year: 2009
  ident: 10.1016/j.suscom.2022.100842_b32
  article-title: Pearson correlation coefficient
– year: 2018
  ident: 10.1016/j.suscom.2022.100842_b19
– start-page: 13
  year: 2015
  ident: 10.1016/j.suscom.2022.100842_b25
  article-title: Sequence-aware intrusion detection in industrial control systems
– volume: 40
  start-page: 536
  year: 2016
  ident: 10.1016/j.suscom.2022.100842_b2
  article-title: Opportunities of sustainable manufacturing in industry 4.0
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2016.01.129
– volume: 146
  issue: 5
  year: 2020
  ident: 10.1016/j.suscom.2022.100842_b4
  article-title: A review of cybersecurity incidents in the water sector
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0001686
– volume: 7
  start-page: 177460
  year: 2019
  ident: 10.1016/j.suscom.2022.100842_b27
  article-title: On the generation of anomaly detection datasets in industrial control systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2958284
– year: 2019
  ident: 10.1016/j.suscom.2022.100842_b28
– volume: 31
  start-page: 127
  issue: 1
  year: 2020
  ident: 10.1016/j.suscom.2022.100842_b1
  article-title: Literature review of industry 4.0 and related technologies
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-018-1433-8
– start-page: 103
  year: 2016
  ident: 10.1016/j.suscom.2022.100842_b30
  article-title: Hamids: Hierarchical monitoring intrusion detection system for industrial control systems
– start-page: 511
  year: 2016
  ident: 10.1016/j.suscom.2022.100842_b15
  article-title: Collective contextual anomaly detection framework for smart buildings
– volume: 51
  start-page: 607
  issue: 3
  year: 2020
  ident: 10.1016/j.suscom.2022.100842_b11
  article-title: SafeMan: A unified framework to manage cybersecurity and safety in manufacturing industry
  publication-title: Softw. Pract. Exp.
  doi: 10.1002/spe.2879
– volume: 8
  start-page: 36639
  year: 2020
  ident: 10.1016/j.suscom.2022.100842_b29
  article-title: A dual-isolation-forests-based attack detection framework for industrial control systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2975066
– volume: 28
  start-page: 1410
  issue: 5
  year: 2018
  ident: 10.1016/j.suscom.2022.100842_b13
  article-title: Industry 4.0 and supply chain sustainability: Framework and future research directions
  publication-title: Benchmarking: Int. J.
– year: 2020
  ident: 10.1016/j.suscom.2022.100842_b36
– volume: 6
  start-page: 7700
  year: 2018
  ident: 10.1016/j.suscom.2022.100842_b6
  article-title: A self-adaptive deep learning-based system for anomaly detection in 5G networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2803446
– year: 2006
  ident: 10.1016/j.suscom.2022.100842_b34
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  ident: 10.1016/j.suscom.2022.100842_b39
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 19
  start-page: 34
  issue: 5
  year: 2017
  ident: 10.1016/j.suscom.2022.100842_b3
  article-title: Security and privacy for a green internet of things
  publication-title: IT Prof.
  doi: 10.1109/MITP.2017.3680952
– volume: 12
  start-page: 1583
  issue: 10
  year: 2020
  ident: 10.1016/j.suscom.2022.100842_b10
  article-title: MADICS: A methodology for anomaly detection in industrial control systems
  publication-title: Symmetry (Basel)
  doi: 10.3390/sym12101583
– start-page: 72
  year: 2018
  ident: 10.1016/j.suscom.2022.100842_b18
  article-title: Detecting cyber attacks in industrial control systems using convolutional neural networks
– year: 2020
  ident: 10.1016/j.suscom.2022.100842_b5
– year: 2021
  ident: 10.1016/j.suscom.2022.100842_b9
  article-title: Crafting adversarial samples for anomaly detectors in industrial control systems
– year: 2016
  ident: 10.1016/j.suscom.2022.100842_b40
– year: 2010
  ident: 10.1016/j.suscom.2022.100842_b35
– volume: 52
  start-page: 2687
  issue: 12
  year: 2020
  ident: 10.1016/j.suscom.2022.100842_b8
  article-title: A new perspective towards the development of robust data-driven intrusion detection for industrial control systems
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2020.05.012
– volume: 10
  start-page: 3524
  issue: 10
  year: 2018
  ident: 10.1016/j.suscom.2022.100842_b12
  article-title: Sustainability in the Canadian egg industry—Learning from the past, navigating the present, planning for the future
  publication-title: Sustainability
  doi: 10.3390/su10103524
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.suscom.2022.100842_b37
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
SSID ssj0000561934
Score 2.3572104
Snippet Nowadays, sustainability is the core of green technologies, being a critical aspect in many industries concerned with reducing carbon emissions and energy...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100842
SubjectTerms Anomaly detection
Deep learning
Industrial control systems
Machine learning
Sustainability
Title SUSAN: A Deep Learning based anomaly detection framework for sustainable industry
URI https://dx.doi.org/10.1016/j.suscom.2022.100842
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5w_Rg5e49Y0TVJvZTqmwkDmYLeSNIlMZjdcd9jFv92kTaeCKHgt70H5mrz3Jf3eewBcYirigGQcUUsuEDGaIE61RIwrQkXkRm6XKt8hHYzJ_SSaNECvroVxskof-6uYXkZr_6Tj0ewsptPOCNvTShSyGDtZECtrqV33Orumr96DzT2LY8hx-XPZ2SPnUFfQlTKv5WrpZCPY5jKnGOAE_5yhvmSd_h7Y8XQRJtUb7YOGzg_Abj2KAfqdeQgeR-NRMryGCbzRegF919Rn6JKUgiKfv4rZGipdlMqrHJpakwUtaYXLzyoqOK1meayPwLh_-9QbID8tAWWWRBU2ntLYCK65CTOWdYnhpqtkFwthSUrEFLcfxTAuIkykEPacFGglKBfGIm3sSTU8Bs18nusTAEMmsaDGhj6ZkcAYyVSgeGitKGGSmBYIa4TSzLcSdxMtZmmtGXtJK1xTh2ta4doCaOO1qFpp_GHPavDTb0sitdH-V8_Tf3uegW03T766YzkHzeJtpS8s6yhku1xWbbCV3D0Mhh8DVNdB
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IHPTibyP-7MFrA2xd23lbUDIElxgg4ba0W2swOIiMA_-97dahJkYTr0tfsnxr3_te9733ALh1CPc7OGGIaHKBsJIYMSIFoizFhHtm5Hah8o1IOMGPU29aA92qFsbIKq3vL3164a3tk5ZFs7WczVojR2crnkt9x8iCqKmlbpjuVLgOGkF_EEbbqxZDkv3i_7IxQcamKqIrlF6r9cooRxwdzoxogGHn5yD1JfD0DsCeZYwwKF_qENRkdgT2q2kM0B7OY_A8moyC6A4G8F7KJbSNU1-giVMp5Nnijc83MJV5Ib7KoKpkWVDzVrj6LKSCs3Kcx-YETHoP426I7MAElGgelWuXSnzFmWTKTWjSxoqpdiraDueap3g0Zfq7KMq452DBuU6VOjLlhHGlwVY6WXVPQT1bZPIMQJcKhxOlvZ9IcEcpQdNOyly9imAqsGoCt0IoTmw3cTPUYh5XsrHXuMQ1NrjGJa5NgLZWy7Kbxh_raQV-_G1XxNrh_2p5_m_LG7ATjp-G8bAfDS7ArhkvX165XIJ6_r6WV5qE5OLabrIPbnbZ8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SUSAN%3A+A+Deep+Learning+based+anomaly+detection+framework+for+sustainable+industry&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=G%C3%B3mez%2C+%C3%81ngel+Luis+Perales&rft.au=Maim%C3%B3%2C+Lorenzo+Fern%C3%A1ndez&rft.au=Celdr%C3%A1n%2C+Alberto+Huertas&rft.au=Clemente%2C+F%C3%A9lix+J.+Garc%C3%ADa&rft.date=2023-01-01&rft.issn=2210-5379&rft.volume=37&rft.spage=100842&rft_id=info:doi/10.1016%2Fj.suscom.2022.100842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_suscom_2022_100842
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon