The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review

Abstract The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an important role in the health of the host, as it has a positive impact on the immune system, the physiology of the GIT, and productivity. Also,...

Full description

Saved in:
Bibliographic Details
Published inPoultry science Vol. 97; no. 3; pp. 1006 - 1021
Main Authors Clavijo, Viviana, Flórez, Martha Josefina Vives
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an important role in the health of the host, as it has a positive impact on the immune system, the physiology of the GIT, and productivity. Also, the microbiota is involved in reducing and preventing colonization by enteric pathogens through the process of competitive exclusion and the production of bacteriostatic and bactericidal substances. The taxonomic composition of the microbiota is affected by different factors, such as the organ, the age of the animal, diet and the use of antimicrobials. Different kinds of additives that regulate the microbial community in feed include probiotics (live microorganisms that when administered in adequate amounts confer a health benefit on the host), prebiotics (ingredients that stimulate increased beneficial microbial activity in the digestive system in order to improve the health of the host) and phytobiotics (primary or secondary components of plants that contain bioactive compounds that exert a positive effect on the growth and health of animals). Phages may potentially provide an integrated solution to modulate the intestinal microbiome of chicken intestines, as they reduce specific pathogenic microbial populations, permitting the proliferation of beneficial microbiota. Studies have shown that the use of cocktails of phages, especially in high concentrations and with short lapses of time between exposure to the bacteria and treatment with phages, optimize the reduction of Salmonella in chickens. Each of these technologies has demonstrable positive effects on the health of the host and the reduction of the pathogen load in controlled assays. This paper presents a comprehensive summary of the role of the microbiota in the broiler chicken gastrointestinal tract, and discusses the usefulness of different strategies for its modulation to control pathogens, with a particular emphasis on bacteriophages.
AbstractList The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an important role in the health of the host, as it has a positive impact on the immune system, the physiology of the GIT, and productivity. Also, the microbiota is involved in reducing and preventing colonization by enteric pathogens through the process of competitive exclusion and the production of bacteriostatic and bactericidal substances. The taxonomic composition of the microbiota is affected by different factors, such as the organ, the age of the animal, diet and the use of antimicrobials.Different kinds of additives that regulate the microbial community in feed include probiotics (live microorganisms that when administered in adequate amounts confer a health benefit on the host), prebiotics (ingredients that stimulate increased beneficial microbial activity in the digestive system in order to improve the health of the host) and phytobiotics (primary or secondary components of plants that contain bioactive compounds that exert a positive effect on the growth and health of animals). Phages may potentially provide an integrated solution to modulate the intestinal microbiome of chicken intestines, as they reduce specific pathogenic microbial populations, permitting the proliferation of beneficial microbiota. Studies have shown that the use of cocktails of phages, especially in high concentrations and with short lapses of time between exposure to the bacteria and treatment with phages, optimize the reduction of Salmonella in chickens. Each of these technologies has demonstrable positive effects on the health of the host and the reduction of the pathogen load in controlled assays.This paper presents a comprehensive summary of the role of the microbiota in the broiler chicken gastrointestinal tract, and discusses the usefulness of different strategies for its modulation to control pathogens, with a particular emphasis on bacteriophages.
The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an important role in the health of the host, as it has a positive impact on the immune system, the physiology of the GIT, and productivity. Also, the microbiota is involved in reducing and preventing colonization by enteric pathogens through the process of competitive exclusion and the production of bacteriostatic and bactericidal substances. The taxonomic composition of the microbiota is affected by different factors, such as the organ, the age of the animal, diet and the use of antimicrobials.Different kinds of additives that regulate the microbial community in feed include probiotics (live microorganisms that when administered in adequate amounts confer a health benefit on the host), prebiotics (ingredients that stimulate increased beneficial microbial activity in the digestive system in order to improve the health of the host) and phytobiotics (primary or secondary components of plants that contain bioactive compounds that exert a positive effect on the growth and health of animals). Phages may potentially provide an integrated solution to modulate the intestinal microbiome of chicken intestines, as they reduce specific pathogenic microbial populations, permitting the proliferation of beneficial microbiota. Studies have shown that the use of cocktails of phages, especially in high concentrations and with short lapses of time between exposure to the bacteria and treatment with phages, optimize the reduction of Salmonella in chickens. Each of these technologies has demonstrable positive effects on the health of the host and the reduction of the pathogen load in controlled assays.This paper presents a comprehensive summary of the role of the microbiota in the broiler chicken gastrointestinal tract, and discusses the usefulness of different strategies for its modulation to control pathogens, with a particular emphasis on bacteriophages.The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an important role in the health of the host, as it has a positive impact on the immune system, the physiology of the GIT, and productivity. Also, the microbiota is involved in reducing and preventing colonization by enteric pathogens through the process of competitive exclusion and the production of bacteriostatic and bactericidal substances. The taxonomic composition of the microbiota is affected by different factors, such as the organ, the age of the animal, diet and the use of antimicrobials.Different kinds of additives that regulate the microbial community in feed include probiotics (live microorganisms that when administered in adequate amounts confer a health benefit on the host), prebiotics (ingredients that stimulate increased beneficial microbial activity in the digestive system in order to improve the health of the host) and phytobiotics (primary or secondary components of plants that contain bioactive compounds that exert a positive effect on the growth and health of animals). Phages may potentially provide an integrated solution to modulate the intestinal microbiome of chicken intestines, as they reduce specific pathogenic microbial populations, permitting the proliferation of beneficial microbiota. Studies have shown that the use of cocktails of phages, especially in high concentrations and with short lapses of time between exposure to the bacteria and treatment with phages, optimize the reduction of Salmonella in chickens. Each of these technologies has demonstrable positive effects on the health of the host and the reduction of the pathogen load in controlled assays.This paper presents a comprehensive summary of the role of the microbiota in the broiler chicken gastrointestinal tract, and discusses the usefulness of different strategies for its modulation to control pathogens, with a particular emphasis on bacteriophages.
The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an important role in the health of the host, as it has a positive impact on the immune system, the physiology of the GIT, and productivity. Also, the microbiota is involved in reducing and preventing colonization by enteric pathogens through the process of competitive exclusion and the production of bacteriostatic and bactericidal substances. The taxonomic composition of the microbiota is affected by different factors, such as the organ, the age of the animal, diet and the use of antimicrobials. Different kinds of additives that regulate the microbial community in feed include probiotics (live microorganisms that when administered in adequate amounts confer a health benefit on the host), prebiotics (ingredients that stimulate increased beneficial microbial activity in the digestive system in order to improve the health of the host) and phytobiotics (primary or secondary components of plants that contain bioactive compounds that exert a positive effect on the growth and health of animals). Phages may potentially provide an integrated solution to modulate the intestinal microbiome of chicken intestines, as they reduce specific pathogenic microbial populations, permitting the proliferation of beneficial microbiota. Studies have shown that the use of cocktails of phages, especially in high concentrations and with short lapses of time between exposure to the bacteria and treatment with phages, optimize the reduction of Salmonella in chickens. Each of these technologies has demonstrable positive effects on the health of the host and the reduction of the pathogen load in controlled assays. This paper presents a comprehensive summary of the role of the microbiota in the broiler chicken gastrointestinal tract, and discusses the usefulness of different strategies for its modulation to control pathogens, with a particular emphasis on bacteriophages.
Abstract The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an important role in the health of the host, as it has a positive impact on the immune system, the physiology of the GIT, and productivity. Also, the microbiota is involved in reducing and preventing colonization by enteric pathogens through the process of competitive exclusion and the production of bacteriostatic and bactericidal substances. The taxonomic composition of the microbiota is affected by different factors, such as the organ, the age of the animal, diet and the use of antimicrobials. Different kinds of additives that regulate the microbial community in feed include probiotics (live microorganisms that when administered in adequate amounts confer a health benefit on the host), prebiotics (ingredients that stimulate increased beneficial microbial activity in the digestive system in order to improve the health of the host) and phytobiotics (primary or secondary components of plants that contain bioactive compounds that exert a positive effect on the growth and health of animals). Phages may potentially provide an integrated solution to modulate the intestinal microbiome of chicken intestines, as they reduce specific pathogenic microbial populations, permitting the proliferation of beneficial microbiota. Studies have shown that the use of cocktails of phages, especially in high concentrations and with short lapses of time between exposure to the bacteria and treatment with phages, optimize the reduction of Salmonella in chickens. Each of these technologies has demonstrable positive effects on the health of the host and the reduction of the pathogen load in controlled assays. This paper presents a comprehensive summary of the role of the microbiota in the broiler chicken gastrointestinal tract, and discusses the usefulness of different strategies for its modulation to control pathogens, with a particular emphasis on bacteriophages.
Author Flórez, Martha Josefina Vives
Clavijo, Viviana
AuthorAffiliation Department of Biological Sciences, Universidad de los Andes, Carrera 1 Este N° 19A–40, Bogotá, Colombia
AuthorAffiliation_xml – name: Department of Biological Sciences, Universidad de los Andes, Carrera 1 Este N° 19A–40, Bogotá, Colombia
Author_xml – sequence: 1
  givenname: Viviana
  surname: Clavijo
  fullname: Clavijo, Viviana
  organization: Department of Biological Sciences, Universidad de los Andes, Carrera 1 Este N° 19A-40, Bogotá, Colombia
– sequence: 2
  givenname: Martha Josefina Vives
  orcidid: 0000-0001-7795-1494
  surname: Flórez
  fullname: Flórez, Martha Josefina Vives
  email: mvives@uniandes.edu.co
  organization: Department of Biological Sciences, Universidad de los Andes, Carrera 1 Este N° 19A-40, Bogotá, Colombia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29253263$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFA38A-cCBHtL12Osk5lCpqihUqsSlnC3HmWwMiR3spKX_HrdbKooQnCxrvvc0894B2fPBIyGvgR0LUfP1lNYT_hBSPSMrkFwWAirYIyvGBC9kpWCfHKT0lTEOZVm9IPtccSl4KVbk9qpHujVpjsH5GdPsvBno6GwMjQsjUuNb6uZETUrBOjO74OmNm3s6Z6ENPgsHGjo6mbkPW_SJOk-b7DZgpLZ39ht6OsXQLvZO-56e0ojXDm9ekuedGRK-engPyZfzD1dnn4rLzx8vzk4vCyskV8VGyAZgIxTaplUoWi5kJxUYled1lb8tbMqyq3hbA2sYCAaM16XhzFatYuKQnOx8p6UZsbWYVzaDnqIbTbzVwTj9dOJdr7fhWsta5sBUNnj3YBDD9yVHpEeXLA6D8RiWpLkQEoCXOdL_oaCqusodQJ3RN7-v9bjPr2oycLQDchUpReweEWD6rnY9Jb2rPbPrP1jr5vuu8kVu-Kvi7U4Rlukfxj8BxES-xQ
CitedBy_id crossref_primary_10_3390_nano12091534
crossref_primary_10_1139_cjm_2019_0469
crossref_primary_10_3382_ps_pez223
crossref_primary_10_3390_ani14192780
crossref_primary_10_1111_jpn_13929
crossref_primary_10_2141_jpsa_0180022
crossref_primary_10_1186_s12917_020_02688_7
crossref_primary_10_3390_pathogens12091168
crossref_primary_10_1016_j_psj_2025_105037
crossref_primary_10_3390_ani11030615
crossref_primary_10_1016_j_psj_2025_105038
crossref_primary_10_1093_femsre_fuab017
crossref_primary_10_1371_journal_pone_0234920
crossref_primary_10_3389_fmicb_2024_1422272
crossref_primary_10_3390_v10040158
crossref_primary_10_1016_j_psj_2025_104869
crossref_primary_10_3390_microorganisms8030322
crossref_primary_10_1016_j_psj_2024_104451
crossref_primary_10_1038_s41598_024_77017_1
crossref_primary_10_3390_biology12020304
crossref_primary_10_1139_cjas_2021_0015
crossref_primary_10_2141_jpsa_2023018
crossref_primary_10_1016_j_cis_2022_102781
crossref_primary_10_3390_ani11123482
crossref_primary_10_1080_09540105_2020_1788516
crossref_primary_10_3390_antibiotics12091356
crossref_primary_10_3390_ani12243474
crossref_primary_10_1016_j_psj_2020_06_016
crossref_primary_10_7717_peerj_10571
crossref_primary_10_14202_vetworld_2022_2986_2996
crossref_primary_10_2478_aoas_2023_0026
crossref_primary_10_1038_s41598_021_91387_w
crossref_primary_10_31196_huvfd_1141341
crossref_primary_10_1016_j_psj_2023_102786
crossref_primary_10_3390_ijms21176152
crossref_primary_10_1016_j_psj_2022_102046
crossref_primary_10_1016_j_scitotenv_2023_165951
crossref_primary_10_3390_antiox13111375
crossref_primary_10_1007_s12088_019_00785_2
crossref_primary_10_3390_antibiotics12091461
crossref_primary_10_1071_AN23011
crossref_primary_10_1093_lambio_ovad140
crossref_primary_10_3389_fvets_2020_599337
crossref_primary_10_1146_annurev_animal_061220_023200
crossref_primary_10_1007_s00284_018_1602_1
crossref_primary_10_1186_s13059_020_1947_1
crossref_primary_10_3389_fmicb_2020_584380
crossref_primary_10_5536_KJPS_2022_49_2_125
crossref_primary_10_1016_j_psj_2021_101124
crossref_primary_10_3389_fphys_2018_01968
crossref_primary_10_1637_21_00068
crossref_primary_10_3389_fimmu_2022_849780
crossref_primary_10_3390_ani10040669
crossref_primary_10_3390_vaccines11061116
crossref_primary_10_5713_ab_22_0455
crossref_primary_10_1590_1519_6984_233523
crossref_primary_10_3390_ani9121085
crossref_primary_10_58803_jwps_v3i4_42
crossref_primary_10_1016_j_ijbiomac_2025_139938
crossref_primary_10_1186_s12917_018_1738_z
crossref_primary_10_3390_microorganisms8081134
crossref_primary_10_1371_journal_pone_0225871
crossref_primary_10_1186_s40168_022_01348_2
crossref_primary_10_1016_j_fbio_2024_105803
crossref_primary_10_1590_0103_8478cr20230372
crossref_primary_10_3390_microbiolres14040113
crossref_primary_10_3390_ani13233672
crossref_primary_10_29059_cienciauat_v18i2_1795
crossref_primary_10_1186_s12866_020_01828_1
crossref_primary_10_17221_175_2023_CJAS
crossref_primary_10_3390_ani11030840
crossref_primary_10_1016_j_psj_2021_01_030
crossref_primary_10_1186_s40104_021_00640_9
crossref_primary_10_1007_s12602_019_09558_1
crossref_primary_10_3390_microorganisms11040957
crossref_primary_10_1016_j_psj_2021_01_035
crossref_primary_10_1016_j_psj_2021_101118
crossref_primary_10_3389_fmicb_2021_703441
crossref_primary_10_1111_jpn_14103
crossref_primary_10_1016_j_psj_2022_102068
crossref_primary_10_3390_ani11071997
crossref_primary_10_1186_s42523_021_00128_x
crossref_primary_10_3382_ps_pey578
crossref_primary_10_1016_j_micpath_2019_103671
crossref_primary_10_3389_frabi_2022_1003912
crossref_primary_10_1007_s11356_018_1991_5
crossref_primary_10_1590_1806_9061_2022_1640
crossref_primary_10_1186_s12917_022_03400_7
crossref_primary_10_1016_j_vetimm_2018_10_002
crossref_primary_10_3390_ani10091718
crossref_primary_10_3390_biology10090942
crossref_primary_10_3389_fimmu_2023_1329590
crossref_primary_10_1186_s12917_024_03881_8
crossref_primary_10_3390_microorganisms7120596
crossref_primary_10_1016_j_psj_2020_12_032
crossref_primary_10_1016_j_psj_2022_101788
crossref_primary_10_1016_j_psj_2020_05_002
crossref_primary_10_1016_j_psj_2022_101789
crossref_primary_10_1186_s44364_024_00001_y
crossref_primary_10_3390_microorganisms10010121
crossref_primary_10_3390_pathogens13100899
crossref_primary_10_71320_bcs_0004
crossref_primary_10_1016_j_psj_2022_101786
crossref_primary_10_1089_jmf_2022_K_0144
crossref_primary_10_3389_fmicb_2019_01263
crossref_primary_10_1016_j_psj_2023_103169
crossref_primary_10_1016_j_psj_2025_104943
crossref_primary_10_3390_ani12091109
crossref_primary_10_1016_j_psj_2024_104548
crossref_primary_10_1016_j_envadv_2022_100304
crossref_primary_10_1051_e3sconf_202127302029
crossref_primary_10_3389_fmicb_2023_1041072
crossref_primary_10_1016_j_gene_2024_148137
crossref_primary_10_3390_ani14182705
crossref_primary_10_3389_fmicb_2023_1257819
crossref_primary_10_1139_cjas_2023_0125
crossref_primary_10_3389_fvets_2024_1430518
crossref_primary_10_1016_j_anifeedsci_2023_115856
crossref_primary_10_1016_j_scitotenv_2022_155300
crossref_primary_10_1292_jvms_23_0185
crossref_primary_10_1146_annurev_animal_091020_075907
crossref_primary_10_1016_j_psj_2023_102983
crossref_primary_10_3390_ani11082302
crossref_primary_10_15237_gida_GD19150
crossref_primary_10_1007_s11033_024_09858_y
crossref_primary_10_1139_cjas_2022_0001
crossref_primary_10_5713_ajas_20_0314
crossref_primary_10_1016_j_psj_2023_102740
crossref_primary_10_1128_AEM_03137_18
crossref_primary_10_3389_fmicb_2019_02126
crossref_primary_10_1016_j_rvsc_2020_05_013
crossref_primary_10_1007_s12602_021_09901_5
crossref_primary_10_3390_microorganisms8101518
crossref_primary_10_5433_1679_0359_2024v45n5p1367
crossref_primary_10_1093_jas_skad370
crossref_primary_10_1590_1678_4162_13059
crossref_primary_10_1093_lambio_ovae071
crossref_primary_10_3920_BM2019_0059
crossref_primary_10_1007_s11250_020_02409_0
crossref_primary_10_1186_s12917_024_04439_4
crossref_primary_10_3389_fvets_2019_00114
crossref_primary_10_1038_s41598_022_18663_1
crossref_primary_10_1080_00071668_2022_2062220
crossref_primary_10_1108_BFJ_06_2020_0487
crossref_primary_10_3389_fimmu_2022_855426
crossref_primary_10_1016_j_psj_2023_102975
crossref_primary_10_24188_recia_v15_n2_2023_1019
crossref_primary_10_3390_ani12233375
crossref_primary_10_1016_j_tree_2021_01_008
crossref_primary_10_3390_ani14162352
crossref_primary_10_1186_s12263_024_00755_4
crossref_primary_10_3389_fphys_2022_1000144
crossref_primary_10_3390_pathogens9040293
crossref_primary_10_1016_j_psj_2020_11_047
crossref_primary_10_1007_s12602_022_09970_0
crossref_primary_10_1080_00439339_2024_2315461
crossref_primary_10_32417_1997_4868_2023_230_01_34_42
crossref_primary_10_3389_fmicb_2022_831882
crossref_primary_10_1080_10495398_2021_1883637
crossref_primary_10_3389_fcimb_2023_1191939
crossref_primary_10_4236_aim_2018_811058
crossref_primary_10_1080_1828051X_2024_2406517
crossref_primary_10_1016_j_psj_2020_06_078
crossref_primary_10_14202_vetworld_2024_1490_1496
crossref_primary_10_1007_s42770_024_01593_7
crossref_primary_10_3390_toxins14100665
crossref_primary_10_47836_pjtas_47_3_11
crossref_primary_10_1016_j_psj_2023_102840
crossref_primary_10_1016_j_animal_2023_100765
crossref_primary_10_1016_j_engmic_2025_100189
crossref_primary_10_1590_1806_9061_2019_1092
crossref_primary_10_3390_microorganisms11040876
crossref_primary_10_3389_fphys_2022_971255
crossref_primary_10_1128_spectrum_01005_22
crossref_primary_10_3389_fphys_2022_996654
crossref_primary_10_3390_poultry3030019
crossref_primary_10_1016_j_psj_2023_103130
crossref_primary_10_5433_1679_0359_2023v44n5p1859
crossref_primary_10_3923_ijps_2020_161_168
crossref_primary_10_3390_ani10071209
crossref_primary_10_1186_s40104_021_00570_6
crossref_primary_10_3382_ps_pey416
crossref_primary_10_3390_ijms242015201
crossref_primary_10_1111_lam_13629
crossref_primary_10_2478_aoas_2019_0007
crossref_primary_10_3382_ps_pey533
crossref_primary_10_1093_jas_skae086
crossref_primary_10_1186_s12866_022_02619_6
crossref_primary_10_1016_j_psj_2020_08_015
crossref_primary_10_1186_s12711_022_00699_6
crossref_primary_10_3390_ani11113043
crossref_primary_10_1186_s12887_021_03099_9
crossref_primary_10_1016_j_psj_2020_05_048
crossref_primary_10_1177_1535370219830075
crossref_primary_10_3389_fmicb_2019_02948
crossref_primary_10_3389_frmbi_2023_1301609
crossref_primary_10_1016_j_foodres_2024_114432
crossref_primary_10_1016_j_psj_2020_10_071
crossref_primary_10_14202_vetworld_2023_518_525
crossref_primary_10_3390_antibiotics10020146
crossref_primary_10_1038_s41598_021_04679_6
crossref_primary_10_1038_s41598_021_81984_0
crossref_primary_10_1186_s42523_024_00316_5
crossref_primary_10_1111_jpn_13515
crossref_primary_10_3389_fmicb_2020_585623
crossref_primary_10_1016_j_psj_2020_05_051
crossref_primary_10_3389_fnut_2022_907386
crossref_primary_10_3389_frmbi_2025_1539923
crossref_primary_10_1007_s11250_025_04291_0
crossref_primary_10_1016_j_psj_2023_102823
crossref_primary_10_3382_ps_pez053
crossref_primary_10_3390_antiox11112094
crossref_primary_10_14202_vetworld_2020_2484_2492
crossref_primary_10_3390_agriculture13051001
crossref_primary_10_1016_j_psj_2024_103894
crossref_primary_10_1016_j_psj_2024_103651
crossref_primary_10_1128_spectrum_04799_22
crossref_primary_10_1186_s12866_024_03467_2
crossref_primary_10_3389_fphys_2022_1057810
crossref_primary_10_1016_j_japr_2020_10_011
crossref_primary_10_3389_fvets_2022_891429
crossref_primary_10_1016_j_fm_2021_103823
crossref_primary_10_1111_jpn_13076
crossref_primary_10_1016_j_psj_2021_101174
crossref_primary_10_1071_MA20016
crossref_primary_10_1364_BOE_510543
crossref_primary_10_3390_molecules26144307
crossref_primary_10_1080_1828051X_2022_2149357
crossref_primary_10_1017_S0007485319000634
crossref_primary_10_3390_metabo12101000
crossref_primary_10_3390_microorganisms11030771
crossref_primary_10_1080_00439339_2022_1988804
crossref_primary_10_3390_microorganisms11071765
crossref_primary_10_1371_journal_pone_0225921
crossref_primary_10_3390_agriculture12010024
crossref_primary_10_3390_ani14233435
crossref_primary_10_3390_ani13182824
crossref_primary_10_3390_app132312748
crossref_primary_10_3390_antibiotics11121703
crossref_primary_10_1080_03079457_2021_1955826
crossref_primary_10_1515_psr_2021_0123
crossref_primary_10_1128_Spectrum_00834_21
crossref_primary_10_1093_femsec_fiz182
crossref_primary_10_1146_annurev_food_100121_050244
crossref_primary_10_3389_fvets_2023_1157683
crossref_primary_10_1128_msphere_00614_22
crossref_primary_10_1016_j_animal_2022_100532
crossref_primary_10_1016_j_micres_2022_127052
crossref_primary_10_1016_j_psj_2022_101922
crossref_primary_10_1016_j_psj_2024_103505
crossref_primary_10_1016_j_psj_2022_102454
crossref_primary_10_3389_fphys_2021_809341
crossref_primary_10_3390_agriculture15050476
crossref_primary_10_1016_j_psj_2024_104394
crossref_primary_10_3390_ani11102819
crossref_primary_10_1186_s40104_021_00545_7
crossref_primary_10_1186_s12917_020_02430_3
crossref_primary_10_3389_fcimb_2022_871293
crossref_primary_10_3923_ijps_2020_294_302
crossref_primary_10_3389_fmicb_2023_1175858
crossref_primary_10_1007_s13205_019_1970_7
crossref_primary_10_1111_jpn_13532
crossref_primary_10_3390_microorganisms7120684
crossref_primary_10_1186_s40104_023_00979_1
crossref_primary_10_5433_1679_0359_2024v45n4p1251
crossref_primary_10_1051_e3sconf_202236303063
crossref_primary_10_1128_msystems_00381_21
crossref_primary_10_1051_e3sconf_202337101052
crossref_primary_10_3389_fimmu_2024_1414869
crossref_primary_10_3389_fmicb_2025_1504264
crossref_primary_10_1186_s40104_020_00459_w
crossref_primary_10_3389_fmicb_2022_930289
crossref_primary_10_1016_j_aninu_2021_04_003
crossref_primary_10_14202_vetworld_2019_2046_2051
crossref_primary_10_1371_journal_pone_0242108
crossref_primary_10_1007_s13205_019_1834_1
crossref_primary_10_3390_ani13152510
crossref_primary_10_3390_ijms21228821
crossref_primary_10_3389_fmicb_2023_1147579
crossref_primary_10_1007_s10517_024_06225_6
crossref_primary_10_1038_s41598_024_61299_6
crossref_primary_10_1016_j_psj_2021_101541
crossref_primary_10_1016_j_psj_2021_101668
crossref_primary_10_1093_femsle_fnac055
crossref_primary_10_1007_s12602_024_10316_1
crossref_primary_10_1016_j_psj_2019_12_018
crossref_primary_10_1016_j_psj_2023_102595
crossref_primary_10_3389_fvets_2024_1492545
crossref_primary_10_1016_j_psj_2023_102596
crossref_primary_10_1016_j_psj_2024_104135
crossref_primary_10_3390_ijms24033045
crossref_primary_10_1051_bioconf_20213607007
crossref_primary_10_1051_parasite_2021047
crossref_primary_10_54203_scil_2024_wvj34
crossref_primary_10_1016_j_fm_2022_103998
crossref_primary_10_1080_1828051X_2021_2025161
crossref_primary_10_3389_fimmu_2024_1354040
crossref_primary_10_3390_biom14081017
crossref_primary_10_3390_ani14233528
crossref_primary_10_1016_j_psj_2025_105088
crossref_primary_10_1016_j_ijbiomac_2024_133009
crossref_primary_10_1016_j_psj_2025_105089
crossref_primary_10_3390_ani11113197
crossref_primary_10_3382_ps_pez251
crossref_primary_10_1016_j_japr_2024_100490
crossref_primary_10_1016_j_psj_2023_103316
crossref_primary_10_1155_2022_6240711
crossref_primary_10_3923_ajbs_2025_55_67
crossref_primary_10_1016_j_psj_2022_102242
crossref_primary_10_1016_j_psj_2023_103312
crossref_primary_10_1111_asj_13619
crossref_primary_10_3389_fmicb_2021_719877
crossref_primary_10_3390_microorganisms11071724
crossref_primary_10_3389_fvets_2023_1309151
crossref_primary_10_3390_antibiotics10060651
crossref_primary_10_3390_ani14233515
crossref_primary_10_1016_j_anifeedsci_2020_114730
crossref_primary_10_1016_j_psj_2022_101844
crossref_primary_10_3389_fvets_2024_1286152
crossref_primary_10_3390_plants12020297
crossref_primary_10_1016_j_psj_2023_103304
crossref_primary_10_1038_s41598_023_38791_6
crossref_primary_10_1016_j_psj_2019_12_046
crossref_primary_10_1016_j_psj_2022_101960
crossref_primary_10_1016_j_psj_2024_103943
crossref_primary_10_1016_j_psj_2022_102373
crossref_primary_10_1128_msystems_01124_20
crossref_primary_10_1016_j_psj_2024_104235
crossref_primary_10_5713_ajas_18_0009
crossref_primary_10_1016_j_aninu_2019_11_004
crossref_primary_10_3389_fmicb_2022_885862
crossref_primary_10_3390_ani11071941
crossref_primary_10_1016_j_micpath_2018_03_001
crossref_primary_10_1038_s41598_020_60304_y
crossref_primary_10_3390_microorganisms8050718
crossref_primary_10_3390_ani12020169
crossref_primary_10_3389_fmicb_2019_02292
crossref_primary_10_3390_microorganisms7100374
crossref_primary_10_1590_1806_9061_2021_1608
crossref_primary_10_3389_frym_2022_727426
crossref_primary_10_3390_ani10081401
crossref_primary_10_3389_fimmu_2020_628374
crossref_primary_10_3390_fermentation9110947
crossref_primary_10_1016_j_rvsc_2022_01_004
crossref_primary_10_3389_fphys_2022_934381
crossref_primary_10_1016_j_psj_2022_102021
crossref_primary_10_1007_s12602_022_10029_3
crossref_primary_10_1016_j_psj_2022_102266
crossref_primary_10_3389_fgene_2022_1060713
crossref_primary_10_1007_s12088_021_00993_9
crossref_primary_10_3390_ani13162633
crossref_primary_10_52419_issn2782_6252_2023_1_104
crossref_primary_10_3389_fmicb_2022_1009945
crossref_primary_10_3389_fvets_2023_1124007
crossref_primary_10_3389_fmicb_2019_03030
crossref_primary_10_3390_microorganisms11092308
crossref_primary_10_1007_s00284_022_02836_2
crossref_primary_10_1038_s41598_023_43123_9
crossref_primary_10_1016_j_livsci_2024_105585
Cites_doi 10.1128/AEM.00049-07
10.1016/j.fm.2015.09.008
10.1093/jn/130.7.1857S
10.1073/pnas.1219451110
10.1128/CVI.00161-06
10.1016/j.copbio.2012.08.005
10.1186/s12917-014-0282-8
10.1017/S1751731110001266
10.1111/1462-2920.13363
10.3109/03009734.2014.902878
10.1016/j.tifs.2012.06.016
10.1093/ps/86.9.1904
10.1128/AAC.00259-06
10.1111/j.1365-2672.2008.04116.x
10.1637/7286-100404R
10.1017/S0043933909000063
10.1080/03079450400013162
10.1016/0300-9629(94)90193-7
10.3382/ps.0740366
10.1038/241210a0
10.1128/CVI.05100-11
10.1111/j.1574-6941.2002.tb00978.x
10.3923/ijps.2007.393.396
10.1111/j.1574-6968.2002.tb11467.x
10.3920/BM2008.1002
10.1016/j.ijfoodmicro.2013.11.034
10.1186/s12985-017-0849-7
10.1016/j.dci.2009.11.009
10.3201/eid0907.030024
10.1128/AEM.00786-09
10.3382/ps.2013-03360
10.1128/AEM.68.11.5311-5317.2002
10.1637/8288-031808-Reg.1
10.1016/j.mimet.2016.07.027
10.1046/j.1365-2672.2000.00969.x
10.1007/s12011-016-0672-9
10.1017/S146625230800145X
10.1111/1574-6968.12608
10.1016/j.foodres.2011.08.017
10.1079/BJN19830149
10.1016/S1521-6918(03)00052-0
10.3382/ps.2011-01637
10.3382/ps.2007-00222
10.1016/j.vetmic.2007.06.026
10.1371/journal.pone.0027949
10.1002/jez.1402520517
10.4161/bact.1.2.15845
10.1016/j.csbj.2014.12.005
10.1080/00071660500191056
10.4161/gmic.26945
10.1016/j.anifeedsci.2003.09.007
10.1007/s00253-014-5646-2
10.4161/bact.1.2.14590
10.1128/AEM.01384-07
10.1081/ABIO-120005768
10.1371/journal.pbio.1002533
10.1186/1471-2180-10-232
10.3382/ps/pev014
10.1093/ps/83.4.669
10.1128/AEM.02703-13
10.2307/1591467
10.1128/AEM.01257-12
10.1080/00071660701463221
10.1093/ps/85.8.1383
10.1146/annurev.nutr.22.011602.092259
10.1038/nature06244
10.1128/CVI.00143-10
10.4315/0362-028X-68.12.2672
10.1016/j.exppara.2014.04.016
10.21608/epsj.2014.5306
10.1637/8091-082007-Reg
10.1111/j.1472-765X.2009.02674.x
10.1002/jsfa.6222
10.1186/s40064-016-2604-8
10.1093/jn/134.9.2450S
10.1637/11580-010517-ResNoteR
10.1007/s13197-015-2011-0
10.3382/japr.2013-00742
10.3390/ijms10083531
10.1016/j.fm.2012.05.002
10.1080/00071668.2011.587183
10.1093/jn/134.2.465
10.1093/ps/78.2.215
10.1080/0007166031000085445
10.1016/j.vetmic.2013.01.030
10.1007/s13205-012-0044-x
10.1080/01445340500112157
10.1637/7474-111605R.1
10.1007/s00248-002-2015-y
10.1146/annurev-micro-091213-113052
10.1080/713654979
10.1647/2012-031
10.1079/WPS20020036
10.1073/pnas.0306466101
10.3382/ps.2012-02822
10.1079/WPS200445
10.1016/j.tim.2008.09.005
10.22358/jafs/66297/2010
10.1371/journal.pone.0091941
10.1002/jez.1402520508
10.1002/jez.1402520519
10.1111/j.1574-6976.2009.00176.x
10.1093/japr/15.1.136
10.1371/journal.pone.0170777
10.4161/bact.20757
ContentType Journal Article
Copyright The Author(s) 2017. Published by Oxford University Press on behalf of Poultry Science Association. 2018
Copyright_xml – notice: The Author(s) 2017. Published by Oxford University Press on behalf of Poultry Science Association. 2018
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.3382/ps/pex359
DatabaseName Oxford Journals Open Access (Activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection (WRLC)
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1525-3171
EndPage 1021
ExternalDocumentID PMC5850219
29253263
10_3382_ps_pex359
10.3382/ps/pex359
Genre Journal Article
Review
GroupedDBID ---
0R~
0SF
123
18M
2WC
4.4
48X
53G
5RE
5VS
6I.
AAEDW
AAHBH
AAIMJ
AAJQQ
AALRI
AAMDB
AAMVS
AAOGV
AAXUO
ABCQX
ABEUO
ABIXL
ABJNI
ABQLI
ACGFO
ACGFS
ACIWK
ACLIJ
ACUFI
ADBBV
ADHKW
ADHZD
ADRIX
ADRTK
ADVLN
ADYVW
AEGPL
AEGXH
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEWNT
AEXQZ
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKRT
AGSYK
AHMBA
AIAGR
AITUG
AKRWK
AKWXX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMRAJ
APIBT
ARIXL
AVWKF
AXUDD
AYOIW
BAWUL
BAYMD
BHONS
BQDIO
BSWAC
CDBKE
CKLRP
CS3
DAKXR
DIK
DILTD
DU5
E3Z
EBS
EJD
F5P
F9R
FDB
GJXCC
GROUPED_DOAJ
HAR
HF~
INIJC
J21
KQ8
KSI
KSN
L7B
NCXOZ
NLBLG
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
P2P
PAFKI
PEELM
Q5Y
ROL
ROX
ROZ
RPM
RXO
SJN
TEORI
TLC
TOX
TPS
TR2
TWZ
W8F
WOQ
Y6R
YAYTL
YKOAZ
~KM
.GJ
1TH
29O
7X2
7X7
7XC
88E
8FE
8FG
8FH
8FI
8FJ
8FW
8R4
8R5
AAUQX
AAYWO
AAYXX
ABJCF
ABSMQ
ABUWG
ACVFH
ADCNI
AEUPX
AEUYN
AFJKZ
AFKRA
AFPUW
AIGII
AKBMS
AKYEP
APXCP
ASAOO
ATCPS
ATDFG
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
CXTWN
DFGAJ
FYUFA
H13
HCIFZ
HMCUK
H~9
L6V
M0K
M1P
M7S
MBTAY
NVLIB
OHT
PATMY
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
S0X
UKHRP
XOL
ZXP
AHVMP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c3529-435b11439ecbd9e3d235f591a9c3587d23d1466f72d810b013010286a20c7d903
ISSN 0032-5791
1525-3171
IngestDate Thu Aug 21 18:09:38 EDT 2025
Fri Jul 11 05:09:37 EDT 2025
Fri Jul 11 10:21:38 EDT 2025
Wed Feb 19 02:31:30 EST 2025
Tue Jul 01 03:55:22 EDT 2025
Thu Apr 24 22:53:10 EDT 2025
Wed Aug 28 03:19:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords broiler microbiota
pathogen control
phage-therapy
bacteriophage
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.
https://www.elsevier.com/tdm/userlicense/1.0
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3529-435b11439ecbd9e3d235f591a9c3587d23d1466f72d810b013010286a20c7d903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7795-1494
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5850219
PMID 29253263
PQID 1978716618
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5850219
proquest_miscellaneous_2335112625
proquest_miscellaneous_1978716618
pubmed_primary_29253263
crossref_primary_10_3382_ps_pex359
crossref_citationtrail_10_3382_ps_pex359
oup_primary_10_3382_ps_pex359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Poultry science
PublicationTitleAlternate Poult Sci
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Nakphaichit (10.3382/ps/pex359_bib64) 2011; 90
Sanderson (10.3382/ps/pex359_bib84) 2004; 134
Sulakvelidze (10.3382/ps/pex359_bib93) 2013; 93
Mitsch (10.3382/ps/pex359_bib61) 2004; 83
Oakley (10.3382/ps/pex359_bib70) 2014; 10
Gonzalez-Gil (10.3382/ps/pex359_bib38) 2014; 119
Hooper (10.3382/ps/pex359_bib44) 2002; 22
Uni (10.3382/ps/pex359_bib103) 1999; 78
Mwangi (10.3382/ps/pex359_bib63) 2010; 34
Oliveira (10.3382/ps/pex359_bib73) 2012; 28
Rougière (10.3382/ps/pex359_bib83) 2010; 4
Clench (10.3382/ps/pex359_bib17) 1995; 107
van Immerseel (10.3382/ps/pex359_bib104) 2009; 17
Kittler (10.3382/ps/pex359_bib50) 2013; 79
Fiorentin (10.3382/ps/pex359_bib28) 2005; 34
Atterbury (10.3382/ps/pex359_bib5) 2007; 73
LeBlanc (10.3382/ps/pex359_bib52) 2013; 24
Zoetendal (10.3382/ps/pex359_bib115) 2004; 134
Torok (10.3382/ps/pex359_bib101) 2008; 74
Kalavathy (10.3382/ps/pex359_bib49) 2003; 44
Mead (10.3382/ps/pex359_bib57) 1989; 252
10.3382/ps/pex359_bib79
Carter (10.3382/ps/pex359_bib12) 2009; 5
Stern (10.3382/ps/pex359_bib91) 2006; 50
Bardina (10.3382/ps/pex359_bib6) 2012; 78
Hurley (10.3382/ps/pex359_bib45) 2008; 52
Cooper (10.3382/ps/pex359_bib19) 2016; 130
Wei (10.3382/ps/pex359_bib110) 2013; 92
Brisbin (10.3382/ps/pex359_bib11) 2008; 9
Józefiak (10.3382/ps/pex359_bib47) 2004; 113
Obst (10.3382/ps/pex359_bib72) 1989; 252
Chambers (10.3382/ps/pex359_bib15) 2011; 44
Haghighi (10.3382/ps/pex359_bib42) 2006; 13
Toro (10.3382/ps/pex359_bib100) 2005; 49
Metges (10.3382/ps/pex359_bib60) 2000; 130
Jamroz (10.3382/ps/pex359_bib46) 2005; 46
van Immerseel (10.3382/ps/pex359_bib105) 2004; 33
Cross (10.3382/ps/pex359_bib20) 2007; 48
Kabir (10.3382/ps/pex359_bib48) 2009; 10
Stanley (10.3382/ps/pex359_bib90) 2013; 164
Wernicki (10.3382/ps/pex359_bib111) 2017; 14
Everard (10.3382/ps/pex359_bib27) 2013; 110
Turnbaugh (10.3382/ps/pex359_bib102) 2007; 449
Tellez (10.3382/ps/pex359_bib97) 2006; 15
Mitsuhiro (10.3382/ps/pex359_bib62) 1994; 109
Stern (10.3382/ps/pex359_bib92) 1995; 74
Noy (10.3382/ps/pex359_bib67) 1995; 74
Gaskins (10.3382/ps/pex359_bib32) 2002; 13
Brisbin (10.3382/ps/pex359_bib9) 2011; 18
Diaz-Sanchez (10.3382/ps/pex359_bib25) 2015; 94
Pryde (10.3382/ps/pex359_bib77) 2002; 217
Goldstein (10.3382/ps/pex359_bib35) 1989; 252
Meimandipour (10.3382/ps/pex359_bib58) 2009; 49
Van Der Wielen (10.3382/ps/pex359_bib112) 2002; 44
Lee (10.3382/ps/pex359_bib53) 2006; 50
Sergeant (10.3382/ps/pex359_bib86) 2014; 9
Tellez (10.3382/ps/pex359_bib98) 1993; 37
Wong (10.3382/ps/pex359_bib113) 2014; 172
Golder (10.3382/ps/pex359_bib34) 2011; 52
Zulkifli (10.3382/ps/pex359_bib116) 2000; 41
Servin (10.3382/ps/pex359_bib87) 2003; 17
van Immerseel (10.3382/ps/pex359_bib106) 2002; 58
Oakley (10.3382/ps/pex359_bib71) 2014; 360
Chaucheyras-Durand (10.3382/ps/pex359_bib16) 2010; 1
Dho-Moulin (10.3382/ps/pex359_bib24) 1999; 30
Messaoudi (10.3382/ps/pex359_bib59) 2012; 32
Nilsson (10.3382/ps/pex359_bib66) 2014; 119
Summers (10.3382/ps/pex359_bib95) 2012; 2
Smith (10.3382/ps/pex359_bib88) 2014; 28
Denbow (10.3382/ps/pex359_bib22) 2014
Grashorn (10.3382/ps/pex359_bib40) 2010; 19
Syngai (10.3382/ps/pex359_bib96) 2016; 53
Danzeisen (10.3382/ps/pex359_bib21) 2011; 6
Haghighi (10.3382/ps/pex359_bib41) 2008; 126
Vicente (10.3382/ps/pex359_bib107) 2007; 6
Luo (10.3382/ps/pex359_bib55) 2016; 173
Dorman (10.3382/ps/pex359_bib26) 2000; 88
Pan (10.3382/ps/pex359_bib75) 2014; 5
Deusch (10.3382/ps/pex359_bib23) 2015; 13
Lan (10.3382/ps/pex359_bib51) 2005; 61
Blajman (10.3382/ps/pex359_bib7) 2015; 47
Nurmi (10.3382/ps/pex359_bib68) 1973; 241
Grant (10.3382/ps/pex359_bib39) 2016; 53
Castellanos (10.3382/ps/pex359_bib14) 2017; 12
Nandi (10.3382/ps/pex359_bib65) 2004; 101
Ren (10.3382/ps/pex359_bib81) 2014; 143
Carvalho (10.3382/ps/pex359_bib13) 2010; 10
O’Flaherty (10.3382/ps/pex359_bib69) 2009; 33
Ali (10.3382/ps/pex359_bib2) 2014; 34
Gonçalves (10.3382/ps/pex359_bib37) 2014; 93
Abedon (10.3382/ps/pex359_bib1) 2011; 1
Vispo (10.3382/ps/pex359_bib108) 1997
Wegener (10.3382/ps/pex359_bib109) 2003; 9
Loc-Carrillo (10.3382/ps/pex359_bib54) 2011; 1
Rinttilä (10.3382/ps/pex359_bib82) 2013; 22
Razmyar (10.3382/ps/pex359_bib78) 2017; 61
Han (10.3382/ps/pex359_bib43) 2016; 5
Palmer (10.3382/ps/pex359_bib74) 1983; 50
Borie (10.3382/ps/pex359_bib8) 2008; 52
Geier (10.3382/ps/pex359_bib33) 2009; 106
Fricke (10.3382/ps/pex359_bib30) 2009; 75
Gabriel (10.3382/ps/pex359_bib31) 2006; 62
Brisbin (10.3382/ps/pex359_bib10) 2010; 17
Rehman (10.3382/ps/pex359_bib80) 2009; 65
Sulakvelidze (10.3382/ps/pex359_bib94) 2011; 6
Stanley (10.3382/ps/pex359_bib89) 2014; 98
Zimmer (10.3382/ps/pex359_bib114) 2002; 68
Gong (10.3382/ps/pex359_bib36) 2002; 41
Timmerman (10.3382/ps/pex359_bib99) 2006; 85
Forder (10.3382/ps/pex359_bib29) 2007; 86
Patel (10.3382/ps/pex359_bib76) 2012; 2
Allen (10.3382/ps/pex359_bib3) 2014; 68
Andreatti Filho (10.3382/ps/pex359_bib4) 2007; 86
Collado (10.3382/ps/pex359_bib18) 2005; 68
Mancabelli (10.3382/ps/pex359_bib56) 2016; 18
Sender (10.3382/ps/pex359_bib85) 2016; 14
References_xml – volume: 73
  start-page: 4543
  year: 2007
  ident: 10.3382/ps/pex359_bib5
  article-title: Bacteriophage therapy to reduce Salmonella colonization of broiler chickens
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00049-07
– volume: 53
  start-page: 104
  year: 2016
  ident: 10.3382/ps/pex359_bib39
  article-title: Salmonella and Campylobacter: Antimicrobial resistance and bacteriophage control in poultry
  publication-title: Food Microbiol.
  doi: 10.1016/j.fm.2015.09.008
– volume: 130
  start-page: 1857S
  year: 2000
  ident: 10.3382/ps/pex359_bib60
  article-title: Contribution of microbial amino acids to amino acid homeostasis of the host
  publication-title: J. Nutr.
  doi: 10.1093/jn/130.7.1857S
– volume: 5
  start-page: 103
  year: 2009
  ident: 10.3382/ps/pex359_bib12
  article-title: Control strategies for Salmonella colonization of poultry: The probiotic perspective
  publication-title: J. Food Sci. Technol.
– volume: 110
  start-page: 9066
  year: 2013
  ident: 10.3382/ps/pex359_bib27
  article-title: Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1219451110
– volume: 13
  start-page: 975
  year: 2006
  ident: 10.3382/ps/pex359_bib42
  article-title: Probiotics stimulate production of natural antibodies in chickens
  publication-title: Clin. Vaccine Immunol.
  doi: 10.1128/CVI.00161-06
– volume: 24
  start-page: 160
  year: 2013
  ident: 10.3382/ps/pex359_bib52
  article-title: Bacteria as vitamin suppliers to their host: A gut microbiota perspective
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2012.08.005
– volume: 10
  start-page: 282
  year: 2014
  ident: 10.3382/ps/pex359_bib70
  article-title: Successional changes in the chicken cecal microbiome during 42 days of growth are independent of organic acid feed additives
  publication-title: BMC Vet. Res.
  doi: 10.1186/s12917-014-0282-8
– volume: 4
  start-page: 1861
  year: 2010
  ident: 10.3382/ps/pex359_bib83
  article-title: Comparison of gastrointestinal transit times between chickens from D+ and D- genetic lines selected for divergent digestion efficiency
  publication-title: Animal.
  doi: 10.1017/S1751731110001266
– volume: 18
  start-page: 4727
  year: 2016
  ident: 10.3382/ps/pex359_bib56
  article-title: Insights into the biodiversity of the gut microbiota of broiler chickens
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13363
– volume: 119
  start-page: 192
  year: 2014
  ident: 10.3382/ps/pex359_bib66
  article-title: Phage therapy—constraints and possibilities
  publication-title: Ups. J. Med. Sci.
  doi: 10.3109/03009734.2014.902878
– volume: 28
  start-page: 103
  year: 2012
  ident: 10.3382/ps/pex359_bib73
  article-title: Bacteriophage endolysins as a response to emerging foodborne pathogens
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2012.06.016
– volume: 86
  start-page: 1904
  year: 2007
  ident: 10.3382/ps/pex359_bib4
  article-title: Ability of bacteriophages isolated from different sources to reduce Salmonella enterica serovar Enteritidis in vitro and in vivo
  publication-title: Poult. Sci.
  doi: 10.1093/ps/86.9.1904
– volume: 50
  start-page: 3111
  year: 2006
  ident: 10.3382/ps/pex359_bib91
  article-title: Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00259-06
– volume: 74
  start-page: 937
  year: 1995
  ident: 10.3382/ps/pex359_bib92
  article-title: Campylobacter spp
  publication-title: in broilers on the farm and after transport. Poult. Sci.
– volume: 106
  start-page: 1540
  year: 2009
  ident: 10.3382/ps/pex359_bib33
  article-title: Indigestible carbohydrates alter the intestinal microbiota but do not influence the performance of broiler chickens
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2008.04116.x
– volume: 49
  start-page: 118
  year: 2005
  ident: 10.3382/ps/pex359_bib100
  article-title: Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens
  publication-title: Avian Dis.
  doi: 10.1637/7286-100404R
– volume: 30
  start-page: 299
  year: 1999
  ident: 10.3382/ps/pex359_bib24
  article-title: Avian pathogenic Escherichia coli (APEC)
  publication-title: Vet. Res.
– volume: 65
  start-page: 75
  year: 2009
  ident: 10.3382/ps/pex359_bib80
  article-title: Influence of fermentable carbohydrates on the intestinal bacteria and enteropathogens in broilers
  publication-title: World. Poult. Sci. J.
  doi: 10.1017/S0043933909000063
– volume: 33
  start-page: 537
  year: 2004
  ident: 10.3382/ps/pex359_bib105
  article-title: Clostridium perfringens in poultry: An emerging threat for animal and public health
  publication-title: Avian Pathol.
  doi: 10.1080/03079450400013162
– volume: 109
  start-page: 547
  year: 1994
  ident: 10.3382/ps/pex359_bib62
  article-title: Nutritional and physiological characteristics in germ-free chickens
  publication-title: Comp. Biochem. Physiol. - Pt. A Physiol.
  doi: 10.1016/0300-9629(94)90193-7
– volume: 74
  start-page: 366
  year: 1995
  ident: 10.3382/ps/pex359_bib67
  article-title: Digestion and absorption in the young chick
  publication-title: Poult. Sci.
  doi: 10.3382/ps.0740366
– volume: 241
  start-page: 210
  year: 1973
  ident: 10.3382/ps/pex359_bib68
  article-title: New aspects of Salmonella infection in broiler production
  publication-title: Nature.
  doi: 10.1038/241210a0
– volume: 18
  start-page: 1447
  year: 2011
  ident: 10.3382/ps/pex359_bib9
  article-title: Oral treatment of chickens with lactobacilli influences elicitation of immune responses
  publication-title: Clin. Vaccine Immunol.
  doi: 10.1128/CVI.05100-11
– volume: 41
  start-page: 171
  year: 2002
  ident: 10.3382/ps/pex359_bib36
  article-title: Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2002.tb00978.x
– volume: 6
  start-page: 393
  year: 2007
  ident: 10.3382/ps/pex359_bib107
  article-title: Effect of dietary natural capsaicin on experimental Salmonella Enteritidis infection and yolk pigmentation in laying hens
  publication-title: Int. J. Poult. Sci.
  doi: 10.3923/ijps.2007.393.396
– volume: 217
  start-page: 133
  year: 2002
  ident: 10.3382/ps/pex359_bib77
  article-title: The microbiology of butyrate formation in the human colon
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2002.tb11467.x
– volume: 1
  start-page: 3
  year: 2010
  ident: 10.3382/ps/pex359_bib16
  article-title: Probiotics in animal nutrition and health
  publication-title: Benef. Microbes
  doi: 10.3920/BM2008.1002
– volume: 172
  start-page: 92
  year: 2014
  ident: 10.3382/ps/pex359_bib113
  article-title: Evaluation of a lytic bacteriophage, F st1, for biocontrol of Salmonella enterica serovar Typhimurium in chickens
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2013.11.034
– volume: 14
  start-page: 179
  year: 2017
  ident: 10.3382/ps/pex359_bib111
  article-title: Bacteriophage therapy to combat bacterial infections in poultry
  publication-title: Virol. J.
  doi: 10.1186/s12985-017-0849-7
– volume: 34
  start-page: 406
  year: 2010
  ident: 10.3382/ps/pex359_bib63
  article-title: Regional and global changes in TCRaß T cell repertoires in the gut are dependent upon the complexity of the enteric microflora
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2009.11.009
– volume: 9
  start-page: 774
  year: 2003
  ident: 10.3382/ps/pex359_bib109
  article-title: Salmonella control programs in Denmark
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid0907.030024
– volume: 75
  start-page: 5963
  year: 2009
  ident: 10.3382/ps/pex359_bib30
  article-title: Antimicrobial resistance-conferring plasmids with similarity to virulence plasmids from avian pathogenic Escherichia coli strains in Salmonella enterica serovar Kentucky isolates from poultry
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00786-09
– volume: 93
  start-page: 216
  year: 2014
  ident: 10.3382/ps/pex359_bib37
  article-title: Bacteriophage-induced reduction in Salmonella Enteritidis counts in the crop of broiler chickens undergoing preslaughter feed withdrawal
  publication-title: Poult. Sci.
  doi: 10.3382/ps.2013-03360
– volume: 68
  start-page: 5311
  year: 2002
  ident: 10.3382/ps/pex359_bib114
  article-title: The murein hydrolase of the bacteriophage f3626 dual lysis system is active against all tested Clostridium perfringens strains
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.68.11.5311-5317.2002
– volume: 52
  start-page: 599
  year: 2008
  ident: 10.3382/ps/pex359_bib45
  article-title: Using bacteriophages to modulate Salmonella colonization of the chicken’s gastrointestinal tract: lessons learned from in silico and in vivo modeling
  publication-title: Avian Dis.
  doi: 10.1637/8288-031808-Reg.1
– volume: 130
  start-page: 38
  year: 2016
  ident: 10.3382/ps/pex359_bib19
  article-title: A review of current methods using bacteriophages in live animals, food and animal products intended for human consumption
  publication-title: J. Microbiol. Methods.
  doi: 10.1016/j.mimet.2016.07.027
– volume: 88
  start-page: 308
  year: 2000
  ident: 10.3382/ps/pex359_bib26
  article-title: Antimicrobial agents from plants: antibacterial activity of plant volatile oils
  publication-title: J. Appl. Microbiol.
  doi: 10.1046/j.1365-2672.2000.00969.x
– volume: 173
  start-page: 483
  year: 2016
  ident: 10.3382/ps/pex359_bib55
  article-title: Dietary high fluorine alters intestinal microbiota in broiler chickens
  publication-title: Biol. Trace Elem. Res.
  doi: 10.1007/s12011-016-0672-9
– volume: 9
  start-page: 101
  year: 2008
  ident: 10.3382/ps/pex359_bib11
  article-title: Interactions between commensal bacteria and the gut-associated immune system of the chicken
  publication-title: Anim. Health Res. Rev.
  doi: 10.1017/S146625230800145X
– volume: 360
  start-page: 100
  year: 2014
  ident: 10.3382/ps/pex359_bib71
  article-title: The chicken gastrointestinal microbiome
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/1574-6968.12608
– volume: 119
  start-page: 434
  year: 2014
  ident: 10.3382/ps/pex359_bib38
  article-title: Yerba mate enhances probiotic bacteria growth in vitro but as a feed additive does not reduce Salmonella Enteritidis colonization in vivo
  publication-title: Am. Hist. Rev.
– volume: 44
  start-page: 3149
  year: 2011
  ident: 10.3382/ps/pex359_bib15
  article-title: The intestinal microbiota and its modulation for Salmonella control in chickens
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2011.08.017
– volume: 50
  start-page: 783
  year: 1983
  ident: 10.3382/ps/pex359_bib74
  article-title: The activities of some metabolic enzymes in the intestines of germ-free and conventional chicks
  publication-title: Br. J. Nutr.
  doi: 10.1079/BJN19830149
– volume: 17
  start-page: 741
  year: 2003
  ident: 10.3382/ps/pex359_bib87
  article-title: Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens
  publication-title: Bailliere’s Best Pract. Res. Clin. Gastroenterol.
  doi: 10.1016/S1521-6918(03)00052-0
– volume: 90
  start-page: 2753
  year: 2011
  ident: 10.3382/ps/pex359_bib64
  article-title: The effect of including Lactobacillus reuteri KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens
  publication-title: Poult. Sci.
  doi: 10.3382/ps.2011-01637
– volume: 86
  start-page: 2396
  year: 2007
  ident: 10.3382/ps/pex359_bib29
  article-title: Bacterial modulation of small intestinal goblet cells and mucin composition during early posthatch development of poultry
  publication-title: Poult. Sci.
  doi: 10.3382/ps.2007-00222
– volume: 126
  start-page: 225
  year: 2008
  ident: 10.3382/ps/pex359_bib41
  article-title: Cytokine gene expression in chicken cecal tonsils following treatment with probiotics and Salmonella infection
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2007.06.026
– volume: 6
  start-page: e27949
  issue: 11
  year: 2011
  ident: 10.3382/ps/pex359_bib21
  article-title: Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0027949
– volume: 252
  start-page: 103
  year: 1989
  ident: 10.3382/ps/pex359_bib35
  article-title: Absorption by the cecum of wild birds: Is there interspecific variation?
  publication-title: J. Exp. Zool.
  doi: 10.1002/jez.1402520517
– volume: 1
  start-page: 66
  year: 2011
  ident: 10.3382/ps/pex359_bib1
  article-title: Phage treatment of human infections
  publication-title: Bacteriophage.
  doi: 10.4161/bact.1.2.15845
– volume: 6
  start-page: 122
  year: 2011
  ident: 10.3382/ps/pex359_bib94
  article-title: Safety by nature: Potential bacteriophage applications
  publication-title: Microbe.
– volume: 13
  start-page: 55
  year: 2015
  ident: 10.3382/ps/pex359_bib23
  article-title: News in livestock research - Use of omics-technologies to study the microbiota in the gastrointestinal tract of farm animals
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2014.12.005
– volume: 46
  start-page: 485
  year: 2005
  ident: 10.3382/ps/pex359_bib46
  article-title: Use of active substances of plant origin in chicken diets based on maize and locally grown cereals
  publication-title: Br. Poult. Sci.
  doi: 10.1080/00071660500191056
– volume: 5
  start-page: 108
  year: 2014
  ident: 10.3382/ps/pex359_bib75
  article-title: Intestinal microbiome of poultry and its interaction with host and diet
  publication-title: Gut Microbes.
  doi: 10.4161/gmic.26945
– volume: 113
  start-page: 1
  year: 2004
  ident: 10.3382/ps/pex359_bib47
  article-title: Carbohydrate fermentation in the avian ceca: A review
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2003.09.007
– volume: 98
  start-page: 4301
  year: 2014
  ident: 10.3382/ps/pex359_bib89
  article-title: Microbiota of the chicken gastrointestinal tract: Influence on health, productivity and disease
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-014-5646-2
– volume: 1
  start-page: 111
  year: 2011
  ident: 10.3382/ps/pex359_bib54
  article-title: Pros and cons of phage therapy
  publication-title: Bacteriophage.
  doi: 10.4161/bact.1.2.14590
– volume: 74
  start-page: 783
  year: 2008
  ident: 10.3382/ps/pex359_bib101
  article-title: Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01384-07
– volume: 13
  start-page: 29
  year: 2002
  ident: 10.3382/ps/pex359_bib32
  article-title: Antibiotics as growth promotants: mode of action
  publication-title: Anim. Biotechnol.
  doi: 10.1081/ABIO-120005768
– volume: 14
  start-page: e1002533
  year: 2016
  ident: 10.3382/ps/pex359_bib85
  article-title: Revised estimates for the number of human and bacteria cells in the body
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1002533
– volume: 10
  start-page: 232
  year: 2010
  ident: 10.3382/ps/pex359_bib13
  article-title: The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens
  publication-title: BMC Microbiol.
  doi: 10.1186/1471-2180-10-232
– volume: 94
  start-page: 1419
  year: 2015
  ident: 10.3382/ps/pex359_bib25
  article-title: Botanical alternatives to antibiotics for use in organic poultry production
  publication-title: Poult. Sci.
  doi: 10.3382/ps/pev014
– volume: 83
  start-page: 669
  year: 2004
  ident: 10.3382/ps/pex359_bib61
  article-title: The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler chickens
  publication-title: Poult. Sci.
  doi: 10.1093/ps/83.4.669
– volume: 79
  start-page: 7525
  year: 2013
  ident: 10.3382/ps/pex359_bib50
  article-title: Effect of bacteriophage application on Campylobacter jejuni loads in commercial broiler flocks
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02703-13
– volume: 37
  start-page: 143
  year: 1993
  ident: 10.3382/ps/pex359_bib98
  article-title: Effect of prolonged administration of dietary capsaicin on Salmonella enteritidis infection in leghorn chicks
  publication-title: Avian Dis.
  doi: 10.2307/1591467
– volume: 78
  start-page: 6600
  year: 2012
  ident: 10.3382/ps/pex359_bib6
  article-title: Significance of the bacteriophage treatment schedule in reducing Salmonella colonization of poultry
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01257-12
– volume: 107
  start-page: 93
  year: 1995
  ident: 10.3382/ps/pex359_bib17
  article-title: The avian cecum: a review
  publication-title: Wilson Bull.
– volume: 48
  start-page: 496
  year: 2007
  ident: 10.3382/ps/pex359_bib20
  article-title: The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age
  publication-title: Br. Poult. Sci.
  doi: 10.1080/00071660701463221
– ident: 10.3382/ps/pex359_bib79
– volume: 85
  start-page: 1383
  year: 2006
  ident: 10.3382/ps/pex359_bib99
  article-title: Mortality and growth performance of broilers given drinking water supplemented with chicken-specific probiotics
  publication-title: Poult. Sci.
  doi: 10.1093/ps/85.8.1383
– volume: 22
  start-page: 283
  year: 2002
  ident: 10.3382/ps/pex359_bib44
  article-title: How host-microbial interactions shape the nutrient environment of the mammalian intestine
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev.nutr.22.011602.092259
– volume: 449
  start-page: 804
  year: 2007
  ident: 10.3382/ps/pex359_bib102
  article-title: The human microbiome project
  publication-title: Nature.
  doi: 10.1038/nature06244
– volume: 17
  start-page: 1337
  year: 2010
  ident: 10.3382/ps/pex359_bib10
  article-title: Effects of lactobacilli on cytokine expression by chicken spleen and cecal tonsil cells
  publication-title: Clin. Vaccine Immunol.
  doi: 10.1128/CVI.00143-10
– volume: 68
  start-page: 2672
  year: 2005
  ident: 10.3382/ps/pex359_bib18
  article-title: Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion
  publication-title: J. Food Prot.
  doi: 10.4315/0362-028X-68.12.2672
– volume: 143
  start-page: 1
  year: 2014
  ident: 10.3382/ps/pex359_bib81
  article-title: CDR3 analysis of TCR Vß repertoire of CD8+ T cells from chickens infected with Eimeria maxima
  publication-title: Exp. Parasitol.
  doi: 10.1016/j.exppara.2014.04.016
– volume: 34
  start-page: 57
  year: 2014
  ident: 10.3382/ps/pex359_bib2
  article-title: Productive performance and immune response of broiler chicks as affected by dietary marjoram leaves powder
  publication-title: Egypt. Poult. Sci. J.
  doi: 10.21608/epsj.2014.5306
– volume: 52
  start-page: 64
  year: 2008
  ident: 10.3382/ps/pex359_bib8
  article-title: Bacteriophage treatment reduces Salmonella colonization of infected chickens
  publication-title: Avian Dis.
  doi: 10.1637/8091-082007-Reg
– volume: 49
  start-page: 415
  year: 2009
  ident: 10.3382/ps/pex359_bib58
  article-title: In vitro fermentation of broiler cecal content: The role of lactobacilli and pH value on the composition of microbiota and end products fermentation
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/j.1472-765X.2009.02674.x
– volume: 93
  start-page: 3137
  year: 2013
  ident: 10.3382/ps/pex359_bib93
  article-title: Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.6222
– volume: 5
  start-page: 911
  year: 2016
  ident: 10.3382/ps/pex359_bib43
  article-title: Relationship between the microbiota in different sections of the gastrointestinal tract, and the body weight of broiler chickens
  publication-title: Springerplus.
  doi: 10.1186/s40064-016-2604-8
– volume: 134
  start-page: 2450S
  year: 2004
  ident: 10.3382/ps/pex359_bib84
  article-title: Short chain fatty acid regulation of signaling genes expressed by the intestinal epithelium
  publication-title: J. Nutr.
  doi: 10.1093/jn/134.9.2450S
– volume: 61
  start-page: 387
  year: 2017
  ident: 10.3382/ps/pex359_bib78
  article-title: Detection of a newly described bacteriocin, perfrin, among Clostridium perfringens isolates from healthy and diseased ostriches and broiler chickens in Iran
  publication-title: Avian Dis.
  doi: 10.1637/11580-010517-ResNoteR
– volume: 53
  start-page: 921
  year: 2016
  ident: 10.3382/ps/pex359_bib96
  article-title: Probiotics - the versatile functional food ingredients
  publication-title: J. Food Sci. Technol.
  doi: 10.1007/s13197-015-2011-0
– volume: 22
  start-page: 647
  year: 2013
  ident: 10.3382/ps/pex359_bib82
  article-title: Intestinal microbiota and metabolites — Implications for broiler chicken health and performance
  publication-title: J. Appl. Poult. Res.
  doi: 10.3382/japr.2013-00742
– volume: 10
  start-page: 3531
  year: 2009
  ident: 10.3382/ps/pex359_bib48
  article-title: The role of probiotics in the poultry industry
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms10083531
– volume: 32
  start-page: 129
  year: 2012
  ident: 10.3382/ps/pex359_bib59
  article-title: Purification and characterization of a new bacteriocin active against Campylobacter produced by Lactobacillus salivarius SMXD51
  publication-title: Food Microbiol.
  doi: 10.1016/j.fm.2012.05.002
– start-page: 116
  year: 1997
  ident: 10.3382/ps/pex359_bib108
  article-title: The interaction of avian gut microbes and their host: an elusive symbiosis
– volume: 52
  start-page: 500
  year: 2011
  ident: 10.3382/ps/pex359_bib34
  article-title: Effects of necrotic enteritis challenge on intestinal micro-architecture and mucin profile
  publication-title: Br. Poult. Sci.
  doi: 10.1080/00071668.2011.587183
– volume: 134
  start-page: 465
  year: 2004
  ident: 10.3382/ps/pex359_bib115
  article-title: Molecular ecological analysis of the gastrointestinal microbiota: A review
  publication-title: J. Nutr.
  doi: 10.1093/jn/134.2.465
– volume: 78
  start-page: 215
  year: 1999
  ident: 10.3382/ps/pex359_bib103
  article-title: Posthatch development of small intestinal function in the poult
  publication-title: Poult. Sci.
  doi: 10.1093/ps/78.2.215
– volume: 44
  start-page: 139
  year: 2003
  ident: 10.3382/ps/pex359_bib49
  article-title: Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens
  publication-title: Br. Poult. Sci.
  doi: 10.1080/0007166031000085445
– volume: 164
  start-page: 85
  year: 2013
  ident: 10.3382/ps/pex359_bib90
  article-title: Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2013.01.030
– volume: 2
  start-page: 115
  year: 2012
  ident: 10.3382/ps/pex359_bib76
  article-title: The current trends and future perspectives of prebiotics research: a review
  publication-title: 3 Biotech.
  doi: 10.1007/s13205-012-0044-x
– volume: 34
  start-page: 258
  year: 2005
  ident: 10.3382/ps/pex359_bib28
  article-title: Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers
  publication-title: Avian Pathol.
  doi: 10.1080/01445340500112157
– volume: 50
  start-page: 1
  year: 2006
  ident: 10.3382/ps/pex359_bib53
  article-title: Campylobacter in Poultry: Filling an Ecological Niche
  publication-title: Avian Dis.
  doi: 10.1637/7474-111605R.1
– volume: 44
  start-page: 286
  year: 2002
  ident: 10.3382/ps/pex359_bib112
  article-title: Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-002-2015-y
– volume: 68
  start-page: 297
  year: 2014
  ident: 10.3382/ps/pex359_bib3
  article-title: Altered egos: Antibiotic effects on food animal microbiomes
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-091213-113052
– volume: 41
  start-page: 593
  year: 2000
  ident: 10.3382/ps/pex359_bib116
  article-title: Growth performance and immune response of two commercial broiler strains fed diets containing Lactobacillus cultures and oxytetracycline under heat stress conditions
  publication-title: Br. Poult. Sci.
  doi: 10.1080/713654979
– volume: 28
  start-page: 87
  year: 2014
  ident: 10.3382/ps/pex359_bib88
  article-title: A review of avian probiotics
  publication-title: J. Avian Med. Surg.
  doi: 10.1647/2012-031
– volume: 58
  start-page: 501
  year: 2002
  ident: 10.3382/ps/pex359_bib106
  article-title: Feed additives to control Salmonella in poultry
  publication-title: World. Poult. Sci. J.
  doi: 10.1079/WPS20020036
– start-page: 337
  year: 2014
  ident: 10.3382/ps/pex359_bib22
  article-title: Gastrointestinal anatomy and physiology
– volume: 101
  start-page: 7118
  year: 2004
  ident: 10.3382/ps/pex359_bib65
  article-title: Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0306466101
– volume: 62
  start-page: 499
  year: 2006
  ident: 10.3382/ps/pex359_bib31
  article-title: Microflora of the digestive tract: critical factors and consequences for poultry
  publication-title: World. Poult. Sci. J.
– volume: 47
  start-page: 360
  year: 2015
  ident: 10.3382/ps/pex359_bib7
  article-title: Probióticos en pollos parrilleros: Una estrategia para los modelos productivos intensivos
  publication-title: Rev. Argent. Microbiol.
– volume: 92
  start-page: 671
  year: 2013
  ident: 10.3382/ps/pex359_bib110
  article-title: Bacterial census of poultry intestinal microbiome
  publication-title: Poult. Sci.
  doi: 10.3382/ps.2012-02822
– volume: 61
  start-page: 95
  year: 2005
  ident: 10.3382/ps/pex359_bib51
  article-title: The role of the commensal gut microbial community in broiler chickens
  publication-title: World. Poult. Sci. J.
  doi: 10.1079/WPS200445
– volume: 17
  start-page: 32
  year: 2009
  ident: 10.3382/ps/pex359_bib104
  article-title: Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2008.09.005
– volume: 19
  start-page: 338
  year: 2010
  ident: 10.3382/ps/pex359_bib40
  article-title: Use of phytobiotics in broiler nutrition - an alternative to infeed antibiotics?
  publication-title: J. Anim. Feed Sci.
  doi: 10.22358/jafs/66297/2010
– volume: 9
  start-page: e91941
  year: 2014
  ident: 10.3382/ps/pex359_bib86
  article-title: Extensive microbial and functional diversity within the chicken cecal microbiome
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0091941
– volume: 252
  start-page: 48
  year: 1989
  ident: 10.3382/ps/pex359_bib57
  article-title: Microbes of the avian cecum: Types present and substrates utilized
  publication-title: J. Exp. Zool.
  doi: 10.1002/jez.1402520508
– volume: 252
  start-page: 117
  year: 1989
  ident: 10.3382/ps/pex359_bib72
  article-title: Interspecific variation in sugar and amino acid transport by the avian cecum
  publication-title: J. Exp. Zool.
  doi: 10.1002/jez.1402520519
– volume: 33
  start-page: 801
  year: 2009
  ident: 10.3382/ps/pex359_bib69
  article-title: Bacteriophage and their lysins for elimination of infectious bacteria: Review article
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2009.00176.x
– volume: 15
  start-page: 136
  year: 2006
  ident: 10.3382/ps/pex359_bib97
  article-title: Digestive physiology and the role of microorganisms
  publication-title: J. Appl. Poult. Res.
  doi: 10.1093/japr/15.1.136
– volume: 12
  start-page: e0170777
  issue: 1
  year: 2017
  ident: 10.3382/ps/pex359_bib14
  article-title: High heterogeneity of Escherichia coli sequence types harbouring ESBL/AmpC genes on IncI1 plasmids in the Colombian poultry chain
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0170777
– volume: 2
  start-page: 130
  year: 2012
  ident: 10.3382/ps/pex359_bib95
  article-title: The strange history of phage therapy
  publication-title: Bacteriophage.
  doi: 10.4161/bact.20757
SSID ssj0021667
Score 2.6474311
SecondaryResourceType review_article
Snippet Abstract The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an...
The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an important...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1006
SubjectTerms additives
animal health
Animals
Anti-Bacterial Agents - pharmacology
anti-infective agents
antibacterial properties
bacteria
bacteriophages
Bacteriophages - physiology
bioactive compounds
broiler chickens
Chickens
competitive exclusion
enteropathogens
Gastrointestinal Microbiome
Gastrointestinal Tract - microbiology
immune system
ingredients
intestinal microorganisms
intestines
microbial activity
microbial communities
microbial load
Microbiology and Food Safety
microbiome
physiology
Plant Extracts - pharmacology
Poultry Diseases - microbiology
Poultry Diseases - prevention & control
poultry production
prebiotics
Prebiotics - analysis
probiotics
Probiotics - pharmacology
Salmonella
taxonomy
Title The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review
URI https://www.ncbi.nlm.nih.gov/pubmed/29253263
https://www.proquest.com/docview/1978716618
https://www.proquest.com/docview/2335112625
https://pubmed.ncbi.nlm.nih.gov/PMC5850219
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIEHNK4rMGQQD0goW2PnZt4KWjWhMZBoUd8iO3HWoC2t0nYa_HrOid1cRkGDl6i1LSft-WKf62dCXsOuIz03UY6vRAgGSpI40tOJk4Y8Y16oYAvDQuFPp8HxxPs49ae93tdW1tJ6pQ6Sn1vrSv5HqtAGcsUq2X-QbD0pNMBnkC9cQcJwvbGMz-RyVc6R9QFeVlQtL3LDrXTRBAZkIwPreJ01SeqY8gxq4BzuUuXGKpjtXJdY5g1veJXBlRqKWVPFXjbRBKvUfsGzqcsfb-1u2kr9ucy_V67Yb_klwFA2YMH4_HteGvc1UhnMZBWMyOAn4GjdcUe4UZOPtVlBGYbWzbkqB3pLm112TVquhRdvraHuoOIg-G1xB2MayWIxPjJa6CtumcQ7FNqnn-PR5OQkHh9Nx7fIbQa2A9-4cKwV7gbVscL1Mxm6KZz8cLE8NBN3lJRO4WPL_rieRtvSS8a75J41KOjQoOM-6eniAbk7PCstqYp-SPBwQnodJ7TBCQWcUMAJbeGEIk4o4IRanNB5Rmuc0LygFifU4oQ2OHlHh9Sg5BGZjI7GH44de-SGk4AmLhxQnhVYyFzoRKVC85RxP_OFKwX0RyF8TWFrDbKQpZFb-dCRkzAKJBskYSoG_DHZKeaF3iM0YlmWDSKhfaE8L-QyiZQfpJJHSgc68vrkzeY_jhPLR4_HopzHYJeiOOLFMjbi6JNX9dCFIWHZNmgfBPW3_pcbEcawhGJcTBZ6vl7GrgjRbRC40Z_HMI4RdxYwv0-eGLHXt2KC-WAF8T4JO4CoByCFe7enyGcVlTsY64BI8fQGz_aM3Gnet-dkZ1Wu9T4oxCv1ogL4LxZwv94
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+gastrointestinal+microbiome+and+its+association+with+the+control+of+pathogens+in+broiler+chicken+production%3A+A+review&rft.jtitle=Poultry+science&rft.au=Clavijo%2C+Viviana&rft.au=Fl%C3%B3rez%2C+Martha+Josefina+Vives&rft.date=2018-03-01&rft.issn=1525-3171&rft.eissn=1525-3171&rft.volume=97&rft.issue=3&rft.spage=1006&rft_id=info:doi/10.3382%2Fps%2Fpex359&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5791&client=summon