The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review
Abstract The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an important role in the health of the host, as it has a positive impact on the immune system, the physiology of the GIT, and productivity. Also,...
Saved in:
Published in | Poultry science Vol. 97; no. 3; pp. 1006 - 1021 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an important role in the health of the host, as it has a positive impact on the immune system, the physiology of the GIT, and productivity. Also, the microbiota is involved in reducing and preventing colonization by enteric pathogens through the process of competitive exclusion and the production of bacteriostatic and bactericidal substances. The taxonomic composition of the microbiota is affected by different factors, such as the organ, the age of the animal, diet and the use of antimicrobials.
Different kinds of additives that regulate the microbial community in feed include probiotics (live microorganisms that when administered in adequate amounts confer a health benefit on the host), prebiotics (ingredients that stimulate increased beneficial microbial activity in the digestive system in order to improve the health of the host) and phytobiotics (primary or secondary components of plants that contain bioactive compounds that exert a positive effect on the growth and health of animals). Phages may potentially provide an integrated solution to modulate the intestinal microbiome of chicken intestines, as they reduce specific pathogenic microbial populations, permitting the proliferation of beneficial microbiota. Studies have shown that the use of cocktails of phages, especially in high concentrations and with short lapses of time between exposure to the bacteria and treatment with phages, optimize the reduction of Salmonella in chickens. Each of these technologies has demonstrable positive effects on the health of the host and the reduction of the pathogen load in controlled assays.
This paper presents a comprehensive summary of the role of the microbiota in the broiler chicken gastrointestinal tract, and discusses the usefulness of different strategies for its modulation to control pathogens, with a particular emphasis on bacteriophages. |
---|---|
AbstractList | The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an important role in the health of the host, as it has a positive impact on the immune system, the physiology of the GIT, and productivity. Also, the microbiota is involved in reducing and preventing colonization by enteric pathogens through the process of competitive exclusion and the production of bacteriostatic and bactericidal substances. The taxonomic composition of the microbiota is affected by different factors, such as the organ, the age of the animal, diet and the use of antimicrobials.Different kinds of additives that regulate the microbial community in feed include probiotics (live microorganisms that when administered in adequate amounts confer a health benefit on the host), prebiotics (ingredients that stimulate increased beneficial microbial activity in the digestive system in order to improve the health of the host) and phytobiotics (primary or secondary components of plants that contain bioactive compounds that exert a positive effect on the growth and health of animals). Phages may potentially provide an integrated solution to modulate the intestinal microbiome of chicken intestines, as they reduce specific pathogenic microbial populations, permitting the proliferation of beneficial microbiota. Studies have shown that the use of cocktails of phages, especially in high concentrations and with short lapses of time between exposure to the bacteria and treatment with phages, optimize the reduction of Salmonella in chickens. Each of these technologies has demonstrable positive effects on the health of the host and the reduction of the pathogen load in controlled assays.This paper presents a comprehensive summary of the role of the microbiota in the broiler chicken gastrointestinal tract, and discusses the usefulness of different strategies for its modulation to control pathogens, with a particular emphasis on bacteriophages. The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an important role in the health of the host, as it has a positive impact on the immune system, the physiology of the GIT, and productivity. Also, the microbiota is involved in reducing and preventing colonization by enteric pathogens through the process of competitive exclusion and the production of bacteriostatic and bactericidal substances. The taxonomic composition of the microbiota is affected by different factors, such as the organ, the age of the animal, diet and the use of antimicrobials.Different kinds of additives that regulate the microbial community in feed include probiotics (live microorganisms that when administered in adequate amounts confer a health benefit on the host), prebiotics (ingredients that stimulate increased beneficial microbial activity in the digestive system in order to improve the health of the host) and phytobiotics (primary or secondary components of plants that contain bioactive compounds that exert a positive effect on the growth and health of animals). Phages may potentially provide an integrated solution to modulate the intestinal microbiome of chicken intestines, as they reduce specific pathogenic microbial populations, permitting the proliferation of beneficial microbiota. Studies have shown that the use of cocktails of phages, especially in high concentrations and with short lapses of time between exposure to the bacteria and treatment with phages, optimize the reduction of Salmonella in chickens. Each of these technologies has demonstrable positive effects on the health of the host and the reduction of the pathogen load in controlled assays.This paper presents a comprehensive summary of the role of the microbiota in the broiler chicken gastrointestinal tract, and discusses the usefulness of different strategies for its modulation to control pathogens, with a particular emphasis on bacteriophages.The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an important role in the health of the host, as it has a positive impact on the immune system, the physiology of the GIT, and productivity. Also, the microbiota is involved in reducing and preventing colonization by enteric pathogens through the process of competitive exclusion and the production of bacteriostatic and bactericidal substances. The taxonomic composition of the microbiota is affected by different factors, such as the organ, the age of the animal, diet and the use of antimicrobials.Different kinds of additives that regulate the microbial community in feed include probiotics (live microorganisms that when administered in adequate amounts confer a health benefit on the host), prebiotics (ingredients that stimulate increased beneficial microbial activity in the digestive system in order to improve the health of the host) and phytobiotics (primary or secondary components of plants that contain bioactive compounds that exert a positive effect on the growth and health of animals). Phages may potentially provide an integrated solution to modulate the intestinal microbiome of chicken intestines, as they reduce specific pathogenic microbial populations, permitting the proliferation of beneficial microbiota. Studies have shown that the use of cocktails of phages, especially in high concentrations and with short lapses of time between exposure to the bacteria and treatment with phages, optimize the reduction of Salmonella in chickens. Each of these technologies has demonstrable positive effects on the health of the host and the reduction of the pathogen load in controlled assays.This paper presents a comprehensive summary of the role of the microbiota in the broiler chicken gastrointestinal tract, and discusses the usefulness of different strategies for its modulation to control pathogens, with a particular emphasis on bacteriophages. The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an important role in the health of the host, as it has a positive impact on the immune system, the physiology of the GIT, and productivity. Also, the microbiota is involved in reducing and preventing colonization by enteric pathogens through the process of competitive exclusion and the production of bacteriostatic and bactericidal substances. The taxonomic composition of the microbiota is affected by different factors, such as the organ, the age of the animal, diet and the use of antimicrobials. Different kinds of additives that regulate the microbial community in feed include probiotics (live microorganisms that when administered in adequate amounts confer a health benefit on the host), prebiotics (ingredients that stimulate increased beneficial microbial activity in the digestive system in order to improve the health of the host) and phytobiotics (primary or secondary components of plants that contain bioactive compounds that exert a positive effect on the growth and health of animals). Phages may potentially provide an integrated solution to modulate the intestinal microbiome of chicken intestines, as they reduce specific pathogenic microbial populations, permitting the proliferation of beneficial microbiota. Studies have shown that the use of cocktails of phages, especially in high concentrations and with short lapses of time between exposure to the bacteria and treatment with phages, optimize the reduction of Salmonella in chickens. Each of these technologies has demonstrable positive effects on the health of the host and the reduction of the pathogen load in controlled assays. This paper presents a comprehensive summary of the role of the microbiota in the broiler chicken gastrointestinal tract, and discusses the usefulness of different strategies for its modulation to control pathogens, with a particular emphasis on bacteriophages. Abstract The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an important role in the health of the host, as it has a positive impact on the immune system, the physiology of the GIT, and productivity. Also, the microbiota is involved in reducing and preventing colonization by enteric pathogens through the process of competitive exclusion and the production of bacteriostatic and bactericidal substances. The taxonomic composition of the microbiota is affected by different factors, such as the organ, the age of the animal, diet and the use of antimicrobials. Different kinds of additives that regulate the microbial community in feed include probiotics (live microorganisms that when administered in adequate amounts confer a health benefit on the host), prebiotics (ingredients that stimulate increased beneficial microbial activity in the digestive system in order to improve the health of the host) and phytobiotics (primary or secondary components of plants that contain bioactive compounds that exert a positive effect on the growth and health of animals). Phages may potentially provide an integrated solution to modulate the intestinal microbiome of chicken intestines, as they reduce specific pathogenic microbial populations, permitting the proliferation of beneficial microbiota. Studies have shown that the use of cocktails of phages, especially in high concentrations and with short lapses of time between exposure to the bacteria and treatment with phages, optimize the reduction of Salmonella in chickens. Each of these technologies has demonstrable positive effects on the health of the host and the reduction of the pathogen load in controlled assays. This paper presents a comprehensive summary of the role of the microbiota in the broiler chicken gastrointestinal tract, and discusses the usefulness of different strategies for its modulation to control pathogens, with a particular emphasis on bacteriophages. |
Author | Flórez, Martha Josefina Vives Clavijo, Viviana |
AuthorAffiliation | Department of Biological Sciences, Universidad de los Andes, Carrera 1 Este N° 19A–40, Bogotá, Colombia |
AuthorAffiliation_xml | – name: Department of Biological Sciences, Universidad de los Andes, Carrera 1 Este N° 19A–40, Bogotá, Colombia |
Author_xml | – sequence: 1 givenname: Viviana surname: Clavijo fullname: Clavijo, Viviana organization: Department of Biological Sciences, Universidad de los Andes, Carrera 1 Este N° 19A-40, Bogotá, Colombia – sequence: 2 givenname: Martha Josefina Vives orcidid: 0000-0001-7795-1494 surname: Flórez fullname: Flórez, Martha Josefina Vives email: mvives@uniandes.edu.co organization: Department of Biological Sciences, Universidad de los Andes, Carrera 1 Este N° 19A-40, Bogotá, Colombia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29253263$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS1URLeFA38A-cCBHtL12Osk5lCpqihUqsSlnC3HmWwMiR3spKX_HrdbKooQnCxrvvc0894B2fPBIyGvgR0LUfP1lNYT_hBSPSMrkFwWAirYIyvGBC9kpWCfHKT0lTEOZVm9IPtccSl4KVbk9qpHujVpjsH5GdPsvBno6GwMjQsjUuNb6uZETUrBOjO74OmNm3s6Z6ENPgsHGjo6mbkPW_SJOk-b7DZgpLZ39ht6OsXQLvZO-56e0ojXDm9ekuedGRK-engPyZfzD1dnn4rLzx8vzk4vCyskV8VGyAZgIxTaplUoWi5kJxUYled1lb8tbMqyq3hbA2sYCAaM16XhzFatYuKQnOx8p6UZsbWYVzaDnqIbTbzVwTj9dOJdr7fhWsta5sBUNnj3YBDD9yVHpEeXLA6D8RiWpLkQEoCXOdL_oaCqusodQJ3RN7-v9bjPr2oycLQDchUpReweEWD6rnY9Jb2rPbPrP1jr5vuu8kVu-Kvi7U4Rlukfxj8BxES-xQ |
CitedBy_id | crossref_primary_10_3390_nano12091534 crossref_primary_10_1139_cjm_2019_0469 crossref_primary_10_3382_ps_pez223 crossref_primary_10_3390_ani14192780 crossref_primary_10_1111_jpn_13929 crossref_primary_10_2141_jpsa_0180022 crossref_primary_10_1186_s12917_020_02688_7 crossref_primary_10_3390_pathogens12091168 crossref_primary_10_1016_j_psj_2025_105037 crossref_primary_10_3390_ani11030615 crossref_primary_10_1016_j_psj_2025_105038 crossref_primary_10_1093_femsre_fuab017 crossref_primary_10_1371_journal_pone_0234920 crossref_primary_10_3389_fmicb_2024_1422272 crossref_primary_10_3390_v10040158 crossref_primary_10_1016_j_psj_2025_104869 crossref_primary_10_3390_microorganisms8030322 crossref_primary_10_1016_j_psj_2024_104451 crossref_primary_10_1038_s41598_024_77017_1 crossref_primary_10_3390_biology12020304 crossref_primary_10_1139_cjas_2021_0015 crossref_primary_10_2141_jpsa_2023018 crossref_primary_10_1016_j_cis_2022_102781 crossref_primary_10_3390_ani11123482 crossref_primary_10_1080_09540105_2020_1788516 crossref_primary_10_3390_antibiotics12091356 crossref_primary_10_3390_ani12243474 crossref_primary_10_1016_j_psj_2020_06_016 crossref_primary_10_7717_peerj_10571 crossref_primary_10_14202_vetworld_2022_2986_2996 crossref_primary_10_2478_aoas_2023_0026 crossref_primary_10_1038_s41598_021_91387_w crossref_primary_10_31196_huvfd_1141341 crossref_primary_10_1016_j_psj_2023_102786 crossref_primary_10_3390_ijms21176152 crossref_primary_10_1016_j_psj_2022_102046 crossref_primary_10_1016_j_scitotenv_2023_165951 crossref_primary_10_3390_antiox13111375 crossref_primary_10_1007_s12088_019_00785_2 crossref_primary_10_3390_antibiotics12091461 crossref_primary_10_1071_AN23011 crossref_primary_10_1093_lambio_ovad140 crossref_primary_10_3389_fvets_2020_599337 crossref_primary_10_1146_annurev_animal_061220_023200 crossref_primary_10_1007_s00284_018_1602_1 crossref_primary_10_1186_s13059_020_1947_1 crossref_primary_10_3389_fmicb_2020_584380 crossref_primary_10_5536_KJPS_2022_49_2_125 crossref_primary_10_1016_j_psj_2021_101124 crossref_primary_10_3389_fphys_2018_01968 crossref_primary_10_1637_21_00068 crossref_primary_10_3389_fimmu_2022_849780 crossref_primary_10_3390_ani10040669 crossref_primary_10_3390_vaccines11061116 crossref_primary_10_5713_ab_22_0455 crossref_primary_10_1590_1519_6984_233523 crossref_primary_10_3390_ani9121085 crossref_primary_10_58803_jwps_v3i4_42 crossref_primary_10_1016_j_ijbiomac_2025_139938 crossref_primary_10_1186_s12917_018_1738_z crossref_primary_10_3390_microorganisms8081134 crossref_primary_10_1371_journal_pone_0225871 crossref_primary_10_1186_s40168_022_01348_2 crossref_primary_10_1016_j_fbio_2024_105803 crossref_primary_10_1590_0103_8478cr20230372 crossref_primary_10_3390_microbiolres14040113 crossref_primary_10_3390_ani13233672 crossref_primary_10_29059_cienciauat_v18i2_1795 crossref_primary_10_1186_s12866_020_01828_1 crossref_primary_10_17221_175_2023_CJAS crossref_primary_10_3390_ani11030840 crossref_primary_10_1016_j_psj_2021_01_030 crossref_primary_10_1186_s40104_021_00640_9 crossref_primary_10_1007_s12602_019_09558_1 crossref_primary_10_3390_microorganisms11040957 crossref_primary_10_1016_j_psj_2021_01_035 crossref_primary_10_1016_j_psj_2021_101118 crossref_primary_10_3389_fmicb_2021_703441 crossref_primary_10_1111_jpn_14103 crossref_primary_10_1016_j_psj_2022_102068 crossref_primary_10_3390_ani11071997 crossref_primary_10_1186_s42523_021_00128_x crossref_primary_10_3382_ps_pey578 crossref_primary_10_1016_j_micpath_2019_103671 crossref_primary_10_3389_frabi_2022_1003912 crossref_primary_10_1007_s11356_018_1991_5 crossref_primary_10_1590_1806_9061_2022_1640 crossref_primary_10_1186_s12917_022_03400_7 crossref_primary_10_1016_j_vetimm_2018_10_002 crossref_primary_10_3390_ani10091718 crossref_primary_10_3390_biology10090942 crossref_primary_10_3389_fimmu_2023_1329590 crossref_primary_10_1186_s12917_024_03881_8 crossref_primary_10_3390_microorganisms7120596 crossref_primary_10_1016_j_psj_2020_12_032 crossref_primary_10_1016_j_psj_2022_101788 crossref_primary_10_1016_j_psj_2020_05_002 crossref_primary_10_1016_j_psj_2022_101789 crossref_primary_10_1186_s44364_024_00001_y crossref_primary_10_3390_microorganisms10010121 crossref_primary_10_3390_pathogens13100899 crossref_primary_10_71320_bcs_0004 crossref_primary_10_1016_j_psj_2022_101786 crossref_primary_10_1089_jmf_2022_K_0144 crossref_primary_10_3389_fmicb_2019_01263 crossref_primary_10_1016_j_psj_2023_103169 crossref_primary_10_1016_j_psj_2025_104943 crossref_primary_10_3390_ani12091109 crossref_primary_10_1016_j_psj_2024_104548 crossref_primary_10_1016_j_envadv_2022_100304 crossref_primary_10_1051_e3sconf_202127302029 crossref_primary_10_3389_fmicb_2023_1041072 crossref_primary_10_1016_j_gene_2024_148137 crossref_primary_10_3390_ani14182705 crossref_primary_10_3389_fmicb_2023_1257819 crossref_primary_10_1139_cjas_2023_0125 crossref_primary_10_3389_fvets_2024_1430518 crossref_primary_10_1016_j_anifeedsci_2023_115856 crossref_primary_10_1016_j_scitotenv_2022_155300 crossref_primary_10_1292_jvms_23_0185 crossref_primary_10_1146_annurev_animal_091020_075907 crossref_primary_10_1016_j_psj_2023_102983 crossref_primary_10_3390_ani11082302 crossref_primary_10_15237_gida_GD19150 crossref_primary_10_1007_s11033_024_09858_y crossref_primary_10_1139_cjas_2022_0001 crossref_primary_10_5713_ajas_20_0314 crossref_primary_10_1016_j_psj_2023_102740 crossref_primary_10_1128_AEM_03137_18 crossref_primary_10_3389_fmicb_2019_02126 crossref_primary_10_1016_j_rvsc_2020_05_013 crossref_primary_10_1007_s12602_021_09901_5 crossref_primary_10_3390_microorganisms8101518 crossref_primary_10_5433_1679_0359_2024v45n5p1367 crossref_primary_10_1093_jas_skad370 crossref_primary_10_1590_1678_4162_13059 crossref_primary_10_1093_lambio_ovae071 crossref_primary_10_3920_BM2019_0059 crossref_primary_10_1007_s11250_020_02409_0 crossref_primary_10_1186_s12917_024_04439_4 crossref_primary_10_3389_fvets_2019_00114 crossref_primary_10_1038_s41598_022_18663_1 crossref_primary_10_1080_00071668_2022_2062220 crossref_primary_10_1108_BFJ_06_2020_0487 crossref_primary_10_3389_fimmu_2022_855426 crossref_primary_10_1016_j_psj_2023_102975 crossref_primary_10_24188_recia_v15_n2_2023_1019 crossref_primary_10_3390_ani12233375 crossref_primary_10_1016_j_tree_2021_01_008 crossref_primary_10_3390_ani14162352 crossref_primary_10_1186_s12263_024_00755_4 crossref_primary_10_3389_fphys_2022_1000144 crossref_primary_10_3390_pathogens9040293 crossref_primary_10_1016_j_psj_2020_11_047 crossref_primary_10_1007_s12602_022_09970_0 crossref_primary_10_1080_00439339_2024_2315461 crossref_primary_10_32417_1997_4868_2023_230_01_34_42 crossref_primary_10_3389_fmicb_2022_831882 crossref_primary_10_1080_10495398_2021_1883637 crossref_primary_10_3389_fcimb_2023_1191939 crossref_primary_10_4236_aim_2018_811058 crossref_primary_10_1080_1828051X_2024_2406517 crossref_primary_10_1016_j_psj_2020_06_078 crossref_primary_10_14202_vetworld_2024_1490_1496 crossref_primary_10_1007_s42770_024_01593_7 crossref_primary_10_3390_toxins14100665 crossref_primary_10_47836_pjtas_47_3_11 crossref_primary_10_1016_j_psj_2023_102840 crossref_primary_10_1016_j_animal_2023_100765 crossref_primary_10_1016_j_engmic_2025_100189 crossref_primary_10_1590_1806_9061_2019_1092 crossref_primary_10_3390_microorganisms11040876 crossref_primary_10_3389_fphys_2022_971255 crossref_primary_10_1128_spectrum_01005_22 crossref_primary_10_3389_fphys_2022_996654 crossref_primary_10_3390_poultry3030019 crossref_primary_10_1016_j_psj_2023_103130 crossref_primary_10_5433_1679_0359_2023v44n5p1859 crossref_primary_10_3923_ijps_2020_161_168 crossref_primary_10_3390_ani10071209 crossref_primary_10_1186_s40104_021_00570_6 crossref_primary_10_3382_ps_pey416 crossref_primary_10_3390_ijms242015201 crossref_primary_10_1111_lam_13629 crossref_primary_10_2478_aoas_2019_0007 crossref_primary_10_3382_ps_pey533 crossref_primary_10_1093_jas_skae086 crossref_primary_10_1186_s12866_022_02619_6 crossref_primary_10_1016_j_psj_2020_08_015 crossref_primary_10_1186_s12711_022_00699_6 crossref_primary_10_3390_ani11113043 crossref_primary_10_1186_s12887_021_03099_9 crossref_primary_10_1016_j_psj_2020_05_048 crossref_primary_10_1177_1535370219830075 crossref_primary_10_3389_fmicb_2019_02948 crossref_primary_10_3389_frmbi_2023_1301609 crossref_primary_10_1016_j_foodres_2024_114432 crossref_primary_10_1016_j_psj_2020_10_071 crossref_primary_10_14202_vetworld_2023_518_525 crossref_primary_10_3390_antibiotics10020146 crossref_primary_10_1038_s41598_021_04679_6 crossref_primary_10_1038_s41598_021_81984_0 crossref_primary_10_1186_s42523_024_00316_5 crossref_primary_10_1111_jpn_13515 crossref_primary_10_3389_fmicb_2020_585623 crossref_primary_10_1016_j_psj_2020_05_051 crossref_primary_10_3389_fnut_2022_907386 crossref_primary_10_3389_frmbi_2025_1539923 crossref_primary_10_1007_s11250_025_04291_0 crossref_primary_10_1016_j_psj_2023_102823 crossref_primary_10_3382_ps_pez053 crossref_primary_10_3390_antiox11112094 crossref_primary_10_14202_vetworld_2020_2484_2492 crossref_primary_10_3390_agriculture13051001 crossref_primary_10_1016_j_psj_2024_103894 crossref_primary_10_1016_j_psj_2024_103651 crossref_primary_10_1128_spectrum_04799_22 crossref_primary_10_1186_s12866_024_03467_2 crossref_primary_10_3389_fphys_2022_1057810 crossref_primary_10_1016_j_japr_2020_10_011 crossref_primary_10_3389_fvets_2022_891429 crossref_primary_10_1016_j_fm_2021_103823 crossref_primary_10_1111_jpn_13076 crossref_primary_10_1016_j_psj_2021_101174 crossref_primary_10_1071_MA20016 crossref_primary_10_1364_BOE_510543 crossref_primary_10_3390_molecules26144307 crossref_primary_10_1080_1828051X_2022_2149357 crossref_primary_10_1017_S0007485319000634 crossref_primary_10_3390_metabo12101000 crossref_primary_10_3390_microorganisms11030771 crossref_primary_10_1080_00439339_2022_1988804 crossref_primary_10_3390_microorganisms11071765 crossref_primary_10_1371_journal_pone_0225921 crossref_primary_10_3390_agriculture12010024 crossref_primary_10_3390_ani14233435 crossref_primary_10_3390_ani13182824 crossref_primary_10_3390_app132312748 crossref_primary_10_3390_antibiotics11121703 crossref_primary_10_1080_03079457_2021_1955826 crossref_primary_10_1515_psr_2021_0123 crossref_primary_10_1128_Spectrum_00834_21 crossref_primary_10_1093_femsec_fiz182 crossref_primary_10_1146_annurev_food_100121_050244 crossref_primary_10_3389_fvets_2023_1157683 crossref_primary_10_1128_msphere_00614_22 crossref_primary_10_1016_j_animal_2022_100532 crossref_primary_10_1016_j_micres_2022_127052 crossref_primary_10_1016_j_psj_2022_101922 crossref_primary_10_1016_j_psj_2024_103505 crossref_primary_10_1016_j_psj_2022_102454 crossref_primary_10_3389_fphys_2021_809341 crossref_primary_10_3390_agriculture15050476 crossref_primary_10_1016_j_psj_2024_104394 crossref_primary_10_3390_ani11102819 crossref_primary_10_1186_s40104_021_00545_7 crossref_primary_10_1186_s12917_020_02430_3 crossref_primary_10_3389_fcimb_2022_871293 crossref_primary_10_3923_ijps_2020_294_302 crossref_primary_10_3389_fmicb_2023_1175858 crossref_primary_10_1007_s13205_019_1970_7 crossref_primary_10_1111_jpn_13532 crossref_primary_10_3390_microorganisms7120684 crossref_primary_10_1186_s40104_023_00979_1 crossref_primary_10_5433_1679_0359_2024v45n4p1251 crossref_primary_10_1051_e3sconf_202236303063 crossref_primary_10_1128_msystems_00381_21 crossref_primary_10_1051_e3sconf_202337101052 crossref_primary_10_3389_fimmu_2024_1414869 crossref_primary_10_3389_fmicb_2025_1504264 crossref_primary_10_1186_s40104_020_00459_w crossref_primary_10_3389_fmicb_2022_930289 crossref_primary_10_1016_j_aninu_2021_04_003 crossref_primary_10_14202_vetworld_2019_2046_2051 crossref_primary_10_1371_journal_pone_0242108 crossref_primary_10_1007_s13205_019_1834_1 crossref_primary_10_3390_ani13152510 crossref_primary_10_3390_ijms21228821 crossref_primary_10_3389_fmicb_2023_1147579 crossref_primary_10_1007_s10517_024_06225_6 crossref_primary_10_1038_s41598_024_61299_6 crossref_primary_10_1016_j_psj_2021_101541 crossref_primary_10_1016_j_psj_2021_101668 crossref_primary_10_1093_femsle_fnac055 crossref_primary_10_1007_s12602_024_10316_1 crossref_primary_10_1016_j_psj_2019_12_018 crossref_primary_10_1016_j_psj_2023_102595 crossref_primary_10_3389_fvets_2024_1492545 crossref_primary_10_1016_j_psj_2023_102596 crossref_primary_10_1016_j_psj_2024_104135 crossref_primary_10_3390_ijms24033045 crossref_primary_10_1051_bioconf_20213607007 crossref_primary_10_1051_parasite_2021047 crossref_primary_10_54203_scil_2024_wvj34 crossref_primary_10_1016_j_fm_2022_103998 crossref_primary_10_1080_1828051X_2021_2025161 crossref_primary_10_3389_fimmu_2024_1354040 crossref_primary_10_3390_biom14081017 crossref_primary_10_3390_ani14233528 crossref_primary_10_1016_j_psj_2025_105088 crossref_primary_10_1016_j_ijbiomac_2024_133009 crossref_primary_10_1016_j_psj_2025_105089 crossref_primary_10_3390_ani11113197 crossref_primary_10_3382_ps_pez251 crossref_primary_10_1016_j_japr_2024_100490 crossref_primary_10_1016_j_psj_2023_103316 crossref_primary_10_1155_2022_6240711 crossref_primary_10_3923_ajbs_2025_55_67 crossref_primary_10_1016_j_psj_2022_102242 crossref_primary_10_1016_j_psj_2023_103312 crossref_primary_10_1111_asj_13619 crossref_primary_10_3389_fmicb_2021_719877 crossref_primary_10_3390_microorganisms11071724 crossref_primary_10_3389_fvets_2023_1309151 crossref_primary_10_3390_antibiotics10060651 crossref_primary_10_3390_ani14233515 crossref_primary_10_1016_j_anifeedsci_2020_114730 crossref_primary_10_1016_j_psj_2022_101844 crossref_primary_10_3389_fvets_2024_1286152 crossref_primary_10_3390_plants12020297 crossref_primary_10_1016_j_psj_2023_103304 crossref_primary_10_1038_s41598_023_38791_6 crossref_primary_10_1016_j_psj_2019_12_046 crossref_primary_10_1016_j_psj_2022_101960 crossref_primary_10_1016_j_psj_2024_103943 crossref_primary_10_1016_j_psj_2022_102373 crossref_primary_10_1128_msystems_01124_20 crossref_primary_10_1016_j_psj_2024_104235 crossref_primary_10_5713_ajas_18_0009 crossref_primary_10_1016_j_aninu_2019_11_004 crossref_primary_10_3389_fmicb_2022_885862 crossref_primary_10_3390_ani11071941 crossref_primary_10_1016_j_micpath_2018_03_001 crossref_primary_10_1038_s41598_020_60304_y crossref_primary_10_3390_microorganisms8050718 crossref_primary_10_3390_ani12020169 crossref_primary_10_3389_fmicb_2019_02292 crossref_primary_10_3390_microorganisms7100374 crossref_primary_10_1590_1806_9061_2021_1608 crossref_primary_10_3389_frym_2022_727426 crossref_primary_10_3390_ani10081401 crossref_primary_10_3389_fimmu_2020_628374 crossref_primary_10_3390_fermentation9110947 crossref_primary_10_1016_j_rvsc_2022_01_004 crossref_primary_10_3389_fphys_2022_934381 crossref_primary_10_1016_j_psj_2022_102021 crossref_primary_10_1007_s12602_022_10029_3 crossref_primary_10_1016_j_psj_2022_102266 crossref_primary_10_3389_fgene_2022_1060713 crossref_primary_10_1007_s12088_021_00993_9 crossref_primary_10_3390_ani13162633 crossref_primary_10_52419_issn2782_6252_2023_1_104 crossref_primary_10_3389_fmicb_2022_1009945 crossref_primary_10_3389_fvets_2023_1124007 crossref_primary_10_3389_fmicb_2019_03030 crossref_primary_10_3390_microorganisms11092308 crossref_primary_10_1007_s00284_022_02836_2 crossref_primary_10_1038_s41598_023_43123_9 crossref_primary_10_1016_j_livsci_2024_105585 |
Cites_doi | 10.1128/AEM.00049-07 10.1016/j.fm.2015.09.008 10.1093/jn/130.7.1857S 10.1073/pnas.1219451110 10.1128/CVI.00161-06 10.1016/j.copbio.2012.08.005 10.1186/s12917-014-0282-8 10.1017/S1751731110001266 10.1111/1462-2920.13363 10.3109/03009734.2014.902878 10.1016/j.tifs.2012.06.016 10.1093/ps/86.9.1904 10.1128/AAC.00259-06 10.1111/j.1365-2672.2008.04116.x 10.1637/7286-100404R 10.1017/S0043933909000063 10.1080/03079450400013162 10.1016/0300-9629(94)90193-7 10.3382/ps.0740366 10.1038/241210a0 10.1128/CVI.05100-11 10.1111/j.1574-6941.2002.tb00978.x 10.3923/ijps.2007.393.396 10.1111/j.1574-6968.2002.tb11467.x 10.3920/BM2008.1002 10.1016/j.ijfoodmicro.2013.11.034 10.1186/s12985-017-0849-7 10.1016/j.dci.2009.11.009 10.3201/eid0907.030024 10.1128/AEM.00786-09 10.3382/ps.2013-03360 10.1128/AEM.68.11.5311-5317.2002 10.1637/8288-031808-Reg.1 10.1016/j.mimet.2016.07.027 10.1046/j.1365-2672.2000.00969.x 10.1007/s12011-016-0672-9 10.1017/S146625230800145X 10.1111/1574-6968.12608 10.1016/j.foodres.2011.08.017 10.1079/BJN19830149 10.1016/S1521-6918(03)00052-0 10.3382/ps.2011-01637 10.3382/ps.2007-00222 10.1016/j.vetmic.2007.06.026 10.1371/journal.pone.0027949 10.1002/jez.1402520517 10.4161/bact.1.2.15845 10.1016/j.csbj.2014.12.005 10.1080/00071660500191056 10.4161/gmic.26945 10.1016/j.anifeedsci.2003.09.007 10.1007/s00253-014-5646-2 10.4161/bact.1.2.14590 10.1128/AEM.01384-07 10.1081/ABIO-120005768 10.1371/journal.pbio.1002533 10.1186/1471-2180-10-232 10.3382/ps/pev014 10.1093/ps/83.4.669 10.1128/AEM.02703-13 10.2307/1591467 10.1128/AEM.01257-12 10.1080/00071660701463221 10.1093/ps/85.8.1383 10.1146/annurev.nutr.22.011602.092259 10.1038/nature06244 10.1128/CVI.00143-10 10.4315/0362-028X-68.12.2672 10.1016/j.exppara.2014.04.016 10.21608/epsj.2014.5306 10.1637/8091-082007-Reg 10.1111/j.1472-765X.2009.02674.x 10.1002/jsfa.6222 10.1186/s40064-016-2604-8 10.1093/jn/134.9.2450S 10.1637/11580-010517-ResNoteR 10.1007/s13197-015-2011-0 10.3382/japr.2013-00742 10.3390/ijms10083531 10.1016/j.fm.2012.05.002 10.1080/00071668.2011.587183 10.1093/jn/134.2.465 10.1093/ps/78.2.215 10.1080/0007166031000085445 10.1016/j.vetmic.2013.01.030 10.1007/s13205-012-0044-x 10.1080/01445340500112157 10.1637/7474-111605R.1 10.1007/s00248-002-2015-y 10.1146/annurev-micro-091213-113052 10.1080/713654979 10.1647/2012-031 10.1079/WPS20020036 10.1073/pnas.0306466101 10.3382/ps.2012-02822 10.1079/WPS200445 10.1016/j.tim.2008.09.005 10.22358/jafs/66297/2010 10.1371/journal.pone.0091941 10.1002/jez.1402520508 10.1002/jez.1402520519 10.1111/j.1574-6976.2009.00176.x 10.1093/japr/15.1.136 10.1371/journal.pone.0170777 10.4161/bact.20757 |
ContentType | Journal Article |
Copyright | The Author(s) 2017. Published by Oxford University Press on behalf of Poultry Science Association. 2018 |
Copyright_xml | – notice: The Author(s) 2017. Published by Oxford University Press on behalf of Poultry Science Association. 2018 |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.3382/ps/pex359 |
DatabaseName | Oxford Journals Open Access (Activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection (WRLC) url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1525-3171 |
EndPage | 1021 |
ExternalDocumentID | PMC5850219 29253263 10_3382_ps_pex359 10.3382/ps/pex359 |
Genre | Journal Article Review |
GroupedDBID | --- 0R~ 0SF 123 18M 2WC 4.4 48X 53G 5RE 5VS 6I. AAEDW AAHBH AAIMJ AAJQQ AALRI AAMDB AAMVS AAOGV AAXUO ABCQX ABEUO ABIXL ABJNI ABQLI ACGFO ACGFS ACIWK ACLIJ ACUFI ADBBV ADHKW ADHZD ADRIX ADRTK ADVLN ADYVW AEGPL AEGXH AEJOX AEKSI AEMDU AENEX AENZO AEPUE AEWNT AEXQZ AFIYH AFOFC AFRAH AFXEN AGINJ AGKRT AGSYK AHMBA AIAGR AITUG AKRWK AKWXX ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC AMRAJ APIBT ARIXL AVWKF AXUDD AYOIW BAWUL BAYMD BHONS BQDIO BSWAC CDBKE CKLRP CS3 DAKXR DIK DILTD DU5 E3Z EBS EJD F5P F9R FDB GJXCC GROUPED_DOAJ HAR HF~ INIJC J21 KQ8 KSI KSN L7B NCXOZ NLBLG O9- OAWHX ODMLO OJQWA OK1 OVD P2P PAFKI PEELM Q5Y ROL ROX ROZ RPM RXO SJN TEORI TLC TOX TPS TR2 TWZ W8F WOQ Y6R YAYTL YKOAZ ~KM .GJ 1TH 29O 7X2 7X7 7XC 88E 8FE 8FG 8FH 8FI 8FJ 8FW 8R4 8R5 AAUQX AAYWO AAYXX ABJCF ABSMQ ABUWG ACVFH ADCNI AEUPX AEUYN AFJKZ AFKRA AFPUW AIGII AKBMS AKYEP APXCP ASAOO ATCPS ATDFG BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION CXTWN DFGAJ FYUFA H13 HCIFZ HMCUK H~9 L6V M0K M1P M7S MBTAY NVLIB OHT PATMY PHGZM PHGZT PQQKQ PROAC PSQYO PTHSS PYCSY Q2X S0X UKHRP XOL ZXP AHVMP CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c3529-435b11439ecbd9e3d235f591a9c3587d23d1466f72d810b013010286a20c7d903 |
ISSN | 0032-5791 1525-3171 |
IngestDate | Thu Aug 21 18:09:38 EDT 2025 Fri Jul 11 05:09:37 EDT 2025 Fri Jul 11 10:21:38 EDT 2025 Wed Feb 19 02:31:30 EST 2025 Tue Jul 01 03:55:22 EDT 2025 Thu Apr 24 22:53:10 EDT 2025 Wed Aug 28 03:19:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | broiler microbiota pathogen control phage-therapy bacteriophage |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com. https://www.elsevier.com/tdm/userlicense/1.0 http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3529-435b11439ecbd9e3d235f591a9c3587d23d1466f72d810b013010286a20c7d903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7795-1494 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5850219 |
PMID | 29253263 |
PQID | 1978716618 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5850219 proquest_miscellaneous_2335112625 proquest_miscellaneous_1978716618 pubmed_primary_29253263 crossref_primary_10_3382_ps_pex359 crossref_citationtrail_10_3382_ps_pex359 oup_primary_10_3382_ps_pex359 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Poultry science |
PublicationTitleAlternate | Poult Sci |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Nakphaichit (10.3382/ps/pex359_bib64) 2011; 90 Sanderson (10.3382/ps/pex359_bib84) 2004; 134 Sulakvelidze (10.3382/ps/pex359_bib93) 2013; 93 Mitsch (10.3382/ps/pex359_bib61) 2004; 83 Oakley (10.3382/ps/pex359_bib70) 2014; 10 Gonzalez-Gil (10.3382/ps/pex359_bib38) 2014; 119 Hooper (10.3382/ps/pex359_bib44) 2002; 22 Uni (10.3382/ps/pex359_bib103) 1999; 78 Mwangi (10.3382/ps/pex359_bib63) 2010; 34 Oliveira (10.3382/ps/pex359_bib73) 2012; 28 Rougière (10.3382/ps/pex359_bib83) 2010; 4 Clench (10.3382/ps/pex359_bib17) 1995; 107 van Immerseel (10.3382/ps/pex359_bib104) 2009; 17 Kittler (10.3382/ps/pex359_bib50) 2013; 79 Fiorentin (10.3382/ps/pex359_bib28) 2005; 34 Atterbury (10.3382/ps/pex359_bib5) 2007; 73 LeBlanc (10.3382/ps/pex359_bib52) 2013; 24 Zoetendal (10.3382/ps/pex359_bib115) 2004; 134 Torok (10.3382/ps/pex359_bib101) 2008; 74 Kalavathy (10.3382/ps/pex359_bib49) 2003; 44 Mead (10.3382/ps/pex359_bib57) 1989; 252 10.3382/ps/pex359_bib79 Carter (10.3382/ps/pex359_bib12) 2009; 5 Stern (10.3382/ps/pex359_bib91) 2006; 50 Bardina (10.3382/ps/pex359_bib6) 2012; 78 Hurley (10.3382/ps/pex359_bib45) 2008; 52 Cooper (10.3382/ps/pex359_bib19) 2016; 130 Wei (10.3382/ps/pex359_bib110) 2013; 92 Brisbin (10.3382/ps/pex359_bib11) 2008; 9 Józefiak (10.3382/ps/pex359_bib47) 2004; 113 Obst (10.3382/ps/pex359_bib72) 1989; 252 Chambers (10.3382/ps/pex359_bib15) 2011; 44 Haghighi (10.3382/ps/pex359_bib42) 2006; 13 Toro (10.3382/ps/pex359_bib100) 2005; 49 Metges (10.3382/ps/pex359_bib60) 2000; 130 Jamroz (10.3382/ps/pex359_bib46) 2005; 46 van Immerseel (10.3382/ps/pex359_bib105) 2004; 33 Cross (10.3382/ps/pex359_bib20) 2007; 48 Kabir (10.3382/ps/pex359_bib48) 2009; 10 Stanley (10.3382/ps/pex359_bib90) 2013; 164 Wernicki (10.3382/ps/pex359_bib111) 2017; 14 Everard (10.3382/ps/pex359_bib27) 2013; 110 Turnbaugh (10.3382/ps/pex359_bib102) 2007; 449 Tellez (10.3382/ps/pex359_bib97) 2006; 15 Mitsuhiro (10.3382/ps/pex359_bib62) 1994; 109 Stern (10.3382/ps/pex359_bib92) 1995; 74 Noy (10.3382/ps/pex359_bib67) 1995; 74 Gaskins (10.3382/ps/pex359_bib32) 2002; 13 Brisbin (10.3382/ps/pex359_bib9) 2011; 18 Diaz-Sanchez (10.3382/ps/pex359_bib25) 2015; 94 Pryde (10.3382/ps/pex359_bib77) 2002; 217 Goldstein (10.3382/ps/pex359_bib35) 1989; 252 Meimandipour (10.3382/ps/pex359_bib58) 2009; 49 Van Der Wielen (10.3382/ps/pex359_bib112) 2002; 44 Lee (10.3382/ps/pex359_bib53) 2006; 50 Sergeant (10.3382/ps/pex359_bib86) 2014; 9 Tellez (10.3382/ps/pex359_bib98) 1993; 37 Wong (10.3382/ps/pex359_bib113) 2014; 172 Golder (10.3382/ps/pex359_bib34) 2011; 52 Zulkifli (10.3382/ps/pex359_bib116) 2000; 41 Servin (10.3382/ps/pex359_bib87) 2003; 17 van Immerseel (10.3382/ps/pex359_bib106) 2002; 58 Oakley (10.3382/ps/pex359_bib71) 2014; 360 Chaucheyras-Durand (10.3382/ps/pex359_bib16) 2010; 1 Dho-Moulin (10.3382/ps/pex359_bib24) 1999; 30 Messaoudi (10.3382/ps/pex359_bib59) 2012; 32 Nilsson (10.3382/ps/pex359_bib66) 2014; 119 Summers (10.3382/ps/pex359_bib95) 2012; 2 Smith (10.3382/ps/pex359_bib88) 2014; 28 Denbow (10.3382/ps/pex359_bib22) 2014 Grashorn (10.3382/ps/pex359_bib40) 2010; 19 Syngai (10.3382/ps/pex359_bib96) 2016; 53 Danzeisen (10.3382/ps/pex359_bib21) 2011; 6 Haghighi (10.3382/ps/pex359_bib41) 2008; 126 Vicente (10.3382/ps/pex359_bib107) 2007; 6 Luo (10.3382/ps/pex359_bib55) 2016; 173 Dorman (10.3382/ps/pex359_bib26) 2000; 88 Pan (10.3382/ps/pex359_bib75) 2014; 5 Deusch (10.3382/ps/pex359_bib23) 2015; 13 Lan (10.3382/ps/pex359_bib51) 2005; 61 Blajman (10.3382/ps/pex359_bib7) 2015; 47 Nurmi (10.3382/ps/pex359_bib68) 1973; 241 Grant (10.3382/ps/pex359_bib39) 2016; 53 Castellanos (10.3382/ps/pex359_bib14) 2017; 12 Nandi (10.3382/ps/pex359_bib65) 2004; 101 Ren (10.3382/ps/pex359_bib81) 2014; 143 Carvalho (10.3382/ps/pex359_bib13) 2010; 10 O’Flaherty (10.3382/ps/pex359_bib69) 2009; 33 Ali (10.3382/ps/pex359_bib2) 2014; 34 Gonçalves (10.3382/ps/pex359_bib37) 2014; 93 Abedon (10.3382/ps/pex359_bib1) 2011; 1 Vispo (10.3382/ps/pex359_bib108) 1997 Wegener (10.3382/ps/pex359_bib109) 2003; 9 Loc-Carrillo (10.3382/ps/pex359_bib54) 2011; 1 Rinttilä (10.3382/ps/pex359_bib82) 2013; 22 Razmyar (10.3382/ps/pex359_bib78) 2017; 61 Han (10.3382/ps/pex359_bib43) 2016; 5 Palmer (10.3382/ps/pex359_bib74) 1983; 50 Borie (10.3382/ps/pex359_bib8) 2008; 52 Geier (10.3382/ps/pex359_bib33) 2009; 106 Fricke (10.3382/ps/pex359_bib30) 2009; 75 Gabriel (10.3382/ps/pex359_bib31) 2006; 62 Brisbin (10.3382/ps/pex359_bib10) 2010; 17 Rehman (10.3382/ps/pex359_bib80) 2009; 65 Sulakvelidze (10.3382/ps/pex359_bib94) 2011; 6 Stanley (10.3382/ps/pex359_bib89) 2014; 98 Zimmer (10.3382/ps/pex359_bib114) 2002; 68 Gong (10.3382/ps/pex359_bib36) 2002; 41 Timmerman (10.3382/ps/pex359_bib99) 2006; 85 Forder (10.3382/ps/pex359_bib29) 2007; 86 Patel (10.3382/ps/pex359_bib76) 2012; 2 Allen (10.3382/ps/pex359_bib3) 2014; 68 Andreatti Filho (10.3382/ps/pex359_bib4) 2007; 86 Collado (10.3382/ps/pex359_bib18) 2005; 68 Mancabelli (10.3382/ps/pex359_bib56) 2016; 18 Sender (10.3382/ps/pex359_bib85) 2016; 14 |
References_xml | – volume: 73 start-page: 4543 year: 2007 ident: 10.3382/ps/pex359_bib5 article-title: Bacteriophage therapy to reduce Salmonella colonization of broiler chickens publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00049-07 – volume: 53 start-page: 104 year: 2016 ident: 10.3382/ps/pex359_bib39 article-title: Salmonella and Campylobacter: Antimicrobial resistance and bacteriophage control in poultry publication-title: Food Microbiol. doi: 10.1016/j.fm.2015.09.008 – volume: 130 start-page: 1857S year: 2000 ident: 10.3382/ps/pex359_bib60 article-title: Contribution of microbial amino acids to amino acid homeostasis of the host publication-title: J. Nutr. doi: 10.1093/jn/130.7.1857S – volume: 5 start-page: 103 year: 2009 ident: 10.3382/ps/pex359_bib12 article-title: Control strategies for Salmonella colonization of poultry: The probiotic perspective publication-title: J. Food Sci. Technol. – volume: 110 start-page: 9066 year: 2013 ident: 10.3382/ps/pex359_bib27 article-title: Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1219451110 – volume: 13 start-page: 975 year: 2006 ident: 10.3382/ps/pex359_bib42 article-title: Probiotics stimulate production of natural antibodies in chickens publication-title: Clin. Vaccine Immunol. doi: 10.1128/CVI.00161-06 – volume: 24 start-page: 160 year: 2013 ident: 10.3382/ps/pex359_bib52 article-title: Bacteria as vitamin suppliers to their host: A gut microbiota perspective publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2012.08.005 – volume: 10 start-page: 282 year: 2014 ident: 10.3382/ps/pex359_bib70 article-title: Successional changes in the chicken cecal microbiome during 42 days of growth are independent of organic acid feed additives publication-title: BMC Vet. Res. doi: 10.1186/s12917-014-0282-8 – volume: 4 start-page: 1861 year: 2010 ident: 10.3382/ps/pex359_bib83 article-title: Comparison of gastrointestinal transit times between chickens from D+ and D- genetic lines selected for divergent digestion efficiency publication-title: Animal. doi: 10.1017/S1751731110001266 – volume: 18 start-page: 4727 year: 2016 ident: 10.3382/ps/pex359_bib56 article-title: Insights into the biodiversity of the gut microbiota of broiler chickens publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13363 – volume: 119 start-page: 192 year: 2014 ident: 10.3382/ps/pex359_bib66 article-title: Phage therapy—constraints and possibilities publication-title: Ups. J. Med. Sci. doi: 10.3109/03009734.2014.902878 – volume: 28 start-page: 103 year: 2012 ident: 10.3382/ps/pex359_bib73 article-title: Bacteriophage endolysins as a response to emerging foodborne pathogens publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2012.06.016 – volume: 86 start-page: 1904 year: 2007 ident: 10.3382/ps/pex359_bib4 article-title: Ability of bacteriophages isolated from different sources to reduce Salmonella enterica serovar Enteritidis in vitro and in vivo publication-title: Poult. Sci. doi: 10.1093/ps/86.9.1904 – volume: 50 start-page: 3111 year: 2006 ident: 10.3382/ps/pex359_bib91 article-title: Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00259-06 – volume: 74 start-page: 937 year: 1995 ident: 10.3382/ps/pex359_bib92 article-title: Campylobacter spp publication-title: in broilers on the farm and after transport. Poult. Sci. – volume: 106 start-page: 1540 year: 2009 ident: 10.3382/ps/pex359_bib33 article-title: Indigestible carbohydrates alter the intestinal microbiota but do not influence the performance of broiler chickens publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2008.04116.x – volume: 49 start-page: 118 year: 2005 ident: 10.3382/ps/pex359_bib100 article-title: Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens publication-title: Avian Dis. doi: 10.1637/7286-100404R – volume: 30 start-page: 299 year: 1999 ident: 10.3382/ps/pex359_bib24 article-title: Avian pathogenic Escherichia coli (APEC) publication-title: Vet. Res. – volume: 65 start-page: 75 year: 2009 ident: 10.3382/ps/pex359_bib80 article-title: Influence of fermentable carbohydrates on the intestinal bacteria and enteropathogens in broilers publication-title: World. Poult. Sci. J. doi: 10.1017/S0043933909000063 – volume: 33 start-page: 537 year: 2004 ident: 10.3382/ps/pex359_bib105 article-title: Clostridium perfringens in poultry: An emerging threat for animal and public health publication-title: Avian Pathol. doi: 10.1080/03079450400013162 – volume: 109 start-page: 547 year: 1994 ident: 10.3382/ps/pex359_bib62 article-title: Nutritional and physiological characteristics in germ-free chickens publication-title: Comp. Biochem. Physiol. - Pt. A Physiol. doi: 10.1016/0300-9629(94)90193-7 – volume: 74 start-page: 366 year: 1995 ident: 10.3382/ps/pex359_bib67 article-title: Digestion and absorption in the young chick publication-title: Poult. Sci. doi: 10.3382/ps.0740366 – volume: 241 start-page: 210 year: 1973 ident: 10.3382/ps/pex359_bib68 article-title: New aspects of Salmonella infection in broiler production publication-title: Nature. doi: 10.1038/241210a0 – volume: 18 start-page: 1447 year: 2011 ident: 10.3382/ps/pex359_bib9 article-title: Oral treatment of chickens with lactobacilli influences elicitation of immune responses publication-title: Clin. Vaccine Immunol. doi: 10.1128/CVI.05100-11 – volume: 41 start-page: 171 year: 2002 ident: 10.3382/ps/pex359_bib36 article-title: Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2002.tb00978.x – volume: 6 start-page: 393 year: 2007 ident: 10.3382/ps/pex359_bib107 article-title: Effect of dietary natural capsaicin on experimental Salmonella Enteritidis infection and yolk pigmentation in laying hens publication-title: Int. J. Poult. Sci. doi: 10.3923/ijps.2007.393.396 – volume: 217 start-page: 133 year: 2002 ident: 10.3382/ps/pex359_bib77 article-title: The microbiology of butyrate formation in the human colon publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2002.tb11467.x – volume: 1 start-page: 3 year: 2010 ident: 10.3382/ps/pex359_bib16 article-title: Probiotics in animal nutrition and health publication-title: Benef. Microbes doi: 10.3920/BM2008.1002 – volume: 172 start-page: 92 year: 2014 ident: 10.3382/ps/pex359_bib113 article-title: Evaluation of a lytic bacteriophage, F st1, for biocontrol of Salmonella enterica serovar Typhimurium in chickens publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2013.11.034 – volume: 14 start-page: 179 year: 2017 ident: 10.3382/ps/pex359_bib111 article-title: Bacteriophage therapy to combat bacterial infections in poultry publication-title: Virol. J. doi: 10.1186/s12985-017-0849-7 – volume: 34 start-page: 406 year: 2010 ident: 10.3382/ps/pex359_bib63 article-title: Regional and global changes in TCRaß T cell repertoires in the gut are dependent upon the complexity of the enteric microflora publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2009.11.009 – volume: 9 start-page: 774 year: 2003 ident: 10.3382/ps/pex359_bib109 article-title: Salmonella control programs in Denmark publication-title: Emerg. Infect. Dis. doi: 10.3201/eid0907.030024 – volume: 75 start-page: 5963 year: 2009 ident: 10.3382/ps/pex359_bib30 article-title: Antimicrobial resistance-conferring plasmids with similarity to virulence plasmids from avian pathogenic Escherichia coli strains in Salmonella enterica serovar Kentucky isolates from poultry publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00786-09 – volume: 93 start-page: 216 year: 2014 ident: 10.3382/ps/pex359_bib37 article-title: Bacteriophage-induced reduction in Salmonella Enteritidis counts in the crop of broiler chickens undergoing preslaughter feed withdrawal publication-title: Poult. Sci. doi: 10.3382/ps.2013-03360 – volume: 68 start-page: 5311 year: 2002 ident: 10.3382/ps/pex359_bib114 article-title: The murein hydrolase of the bacteriophage f3626 dual lysis system is active against all tested Clostridium perfringens strains publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.11.5311-5317.2002 – volume: 52 start-page: 599 year: 2008 ident: 10.3382/ps/pex359_bib45 article-title: Using bacteriophages to modulate Salmonella colonization of the chicken’s gastrointestinal tract: lessons learned from in silico and in vivo modeling publication-title: Avian Dis. doi: 10.1637/8288-031808-Reg.1 – volume: 130 start-page: 38 year: 2016 ident: 10.3382/ps/pex359_bib19 article-title: A review of current methods using bacteriophages in live animals, food and animal products intended for human consumption publication-title: J. Microbiol. Methods. doi: 10.1016/j.mimet.2016.07.027 – volume: 88 start-page: 308 year: 2000 ident: 10.3382/ps/pex359_bib26 article-title: Antimicrobial agents from plants: antibacterial activity of plant volatile oils publication-title: J. Appl. Microbiol. doi: 10.1046/j.1365-2672.2000.00969.x – volume: 173 start-page: 483 year: 2016 ident: 10.3382/ps/pex359_bib55 article-title: Dietary high fluorine alters intestinal microbiota in broiler chickens publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-016-0672-9 – volume: 9 start-page: 101 year: 2008 ident: 10.3382/ps/pex359_bib11 article-title: Interactions between commensal bacteria and the gut-associated immune system of the chicken publication-title: Anim. Health Res. Rev. doi: 10.1017/S146625230800145X – volume: 360 start-page: 100 year: 2014 ident: 10.3382/ps/pex359_bib71 article-title: The chicken gastrointestinal microbiome publication-title: FEMS Microbiol. Lett. doi: 10.1111/1574-6968.12608 – volume: 119 start-page: 434 year: 2014 ident: 10.3382/ps/pex359_bib38 article-title: Yerba mate enhances probiotic bacteria growth in vitro but as a feed additive does not reduce Salmonella Enteritidis colonization in vivo publication-title: Am. Hist. Rev. – volume: 44 start-page: 3149 year: 2011 ident: 10.3382/ps/pex359_bib15 article-title: The intestinal microbiota and its modulation for Salmonella control in chickens publication-title: Food Res. Int. doi: 10.1016/j.foodres.2011.08.017 – volume: 50 start-page: 783 year: 1983 ident: 10.3382/ps/pex359_bib74 article-title: The activities of some metabolic enzymes in the intestines of germ-free and conventional chicks publication-title: Br. J. Nutr. doi: 10.1079/BJN19830149 – volume: 17 start-page: 741 year: 2003 ident: 10.3382/ps/pex359_bib87 article-title: Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens publication-title: Bailliere’s Best Pract. Res. Clin. Gastroenterol. doi: 10.1016/S1521-6918(03)00052-0 – volume: 90 start-page: 2753 year: 2011 ident: 10.3382/ps/pex359_bib64 article-title: The effect of including Lactobacillus reuteri KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens publication-title: Poult. Sci. doi: 10.3382/ps.2011-01637 – volume: 86 start-page: 2396 year: 2007 ident: 10.3382/ps/pex359_bib29 article-title: Bacterial modulation of small intestinal goblet cells and mucin composition during early posthatch development of poultry publication-title: Poult. Sci. doi: 10.3382/ps.2007-00222 – volume: 126 start-page: 225 year: 2008 ident: 10.3382/ps/pex359_bib41 article-title: Cytokine gene expression in chicken cecal tonsils following treatment with probiotics and Salmonella infection publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2007.06.026 – volume: 6 start-page: e27949 issue: 11 year: 2011 ident: 10.3382/ps/pex359_bib21 article-title: Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment publication-title: PLoS One. doi: 10.1371/journal.pone.0027949 – volume: 252 start-page: 103 year: 1989 ident: 10.3382/ps/pex359_bib35 article-title: Absorption by the cecum of wild birds: Is there interspecific variation? publication-title: J. Exp. Zool. doi: 10.1002/jez.1402520517 – volume: 1 start-page: 66 year: 2011 ident: 10.3382/ps/pex359_bib1 article-title: Phage treatment of human infections publication-title: Bacteriophage. doi: 10.4161/bact.1.2.15845 – volume: 6 start-page: 122 year: 2011 ident: 10.3382/ps/pex359_bib94 article-title: Safety by nature: Potential bacteriophage applications publication-title: Microbe. – volume: 13 start-page: 55 year: 2015 ident: 10.3382/ps/pex359_bib23 article-title: News in livestock research - Use of omics-technologies to study the microbiota in the gastrointestinal tract of farm animals publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2014.12.005 – volume: 46 start-page: 485 year: 2005 ident: 10.3382/ps/pex359_bib46 article-title: Use of active substances of plant origin in chicken diets based on maize and locally grown cereals publication-title: Br. Poult. Sci. doi: 10.1080/00071660500191056 – volume: 5 start-page: 108 year: 2014 ident: 10.3382/ps/pex359_bib75 article-title: Intestinal microbiome of poultry and its interaction with host and diet publication-title: Gut Microbes. doi: 10.4161/gmic.26945 – volume: 113 start-page: 1 year: 2004 ident: 10.3382/ps/pex359_bib47 article-title: Carbohydrate fermentation in the avian ceca: A review publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2003.09.007 – volume: 98 start-page: 4301 year: 2014 ident: 10.3382/ps/pex359_bib89 article-title: Microbiota of the chicken gastrointestinal tract: Influence on health, productivity and disease publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-5646-2 – volume: 1 start-page: 111 year: 2011 ident: 10.3382/ps/pex359_bib54 article-title: Pros and cons of phage therapy publication-title: Bacteriophage. doi: 10.4161/bact.1.2.14590 – volume: 74 start-page: 783 year: 2008 ident: 10.3382/ps/pex359_bib101 article-title: Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01384-07 – volume: 13 start-page: 29 year: 2002 ident: 10.3382/ps/pex359_bib32 article-title: Antibiotics as growth promotants: mode of action publication-title: Anim. Biotechnol. doi: 10.1081/ABIO-120005768 – volume: 14 start-page: e1002533 year: 2016 ident: 10.3382/ps/pex359_bib85 article-title: Revised estimates for the number of human and bacteria cells in the body publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002533 – volume: 10 start-page: 232 year: 2010 ident: 10.3382/ps/pex359_bib13 article-title: The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens publication-title: BMC Microbiol. doi: 10.1186/1471-2180-10-232 – volume: 94 start-page: 1419 year: 2015 ident: 10.3382/ps/pex359_bib25 article-title: Botanical alternatives to antibiotics for use in organic poultry production publication-title: Poult. Sci. doi: 10.3382/ps/pev014 – volume: 83 start-page: 669 year: 2004 ident: 10.3382/ps/pex359_bib61 article-title: The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler chickens publication-title: Poult. Sci. doi: 10.1093/ps/83.4.669 – volume: 79 start-page: 7525 year: 2013 ident: 10.3382/ps/pex359_bib50 article-title: Effect of bacteriophage application on Campylobacter jejuni loads in commercial broiler flocks publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02703-13 – volume: 37 start-page: 143 year: 1993 ident: 10.3382/ps/pex359_bib98 article-title: Effect of prolonged administration of dietary capsaicin on Salmonella enteritidis infection in leghorn chicks publication-title: Avian Dis. doi: 10.2307/1591467 – volume: 78 start-page: 6600 year: 2012 ident: 10.3382/ps/pex359_bib6 article-title: Significance of the bacteriophage treatment schedule in reducing Salmonella colonization of poultry publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01257-12 – volume: 107 start-page: 93 year: 1995 ident: 10.3382/ps/pex359_bib17 article-title: The avian cecum: a review publication-title: Wilson Bull. – volume: 48 start-page: 496 year: 2007 ident: 10.3382/ps/pex359_bib20 article-title: The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age publication-title: Br. Poult. Sci. doi: 10.1080/00071660701463221 – ident: 10.3382/ps/pex359_bib79 – volume: 85 start-page: 1383 year: 2006 ident: 10.3382/ps/pex359_bib99 article-title: Mortality and growth performance of broilers given drinking water supplemented with chicken-specific probiotics publication-title: Poult. Sci. doi: 10.1093/ps/85.8.1383 – volume: 22 start-page: 283 year: 2002 ident: 10.3382/ps/pex359_bib44 article-title: How host-microbial interactions shape the nutrient environment of the mammalian intestine publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev.nutr.22.011602.092259 – volume: 449 start-page: 804 year: 2007 ident: 10.3382/ps/pex359_bib102 article-title: The human microbiome project publication-title: Nature. doi: 10.1038/nature06244 – volume: 17 start-page: 1337 year: 2010 ident: 10.3382/ps/pex359_bib10 article-title: Effects of lactobacilli on cytokine expression by chicken spleen and cecal tonsil cells publication-title: Clin. Vaccine Immunol. doi: 10.1128/CVI.00143-10 – volume: 68 start-page: 2672 year: 2005 ident: 10.3382/ps/pex359_bib18 article-title: Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion publication-title: J. Food Prot. doi: 10.4315/0362-028X-68.12.2672 – volume: 143 start-page: 1 year: 2014 ident: 10.3382/ps/pex359_bib81 article-title: CDR3 analysis of TCR Vß repertoire of CD8+ T cells from chickens infected with Eimeria maxima publication-title: Exp. Parasitol. doi: 10.1016/j.exppara.2014.04.016 – volume: 34 start-page: 57 year: 2014 ident: 10.3382/ps/pex359_bib2 article-title: Productive performance and immune response of broiler chicks as affected by dietary marjoram leaves powder publication-title: Egypt. Poult. Sci. J. doi: 10.21608/epsj.2014.5306 – volume: 52 start-page: 64 year: 2008 ident: 10.3382/ps/pex359_bib8 article-title: Bacteriophage treatment reduces Salmonella colonization of infected chickens publication-title: Avian Dis. doi: 10.1637/8091-082007-Reg – volume: 49 start-page: 415 year: 2009 ident: 10.3382/ps/pex359_bib58 article-title: In vitro fermentation of broiler cecal content: The role of lactobacilli and pH value on the composition of microbiota and end products fermentation publication-title: Lett. Appl. Microbiol. doi: 10.1111/j.1472-765X.2009.02674.x – volume: 93 start-page: 3137 year: 2013 ident: 10.3382/ps/pex359_bib93 article-title: Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.6222 – volume: 5 start-page: 911 year: 2016 ident: 10.3382/ps/pex359_bib43 article-title: Relationship between the microbiota in different sections of the gastrointestinal tract, and the body weight of broiler chickens publication-title: Springerplus. doi: 10.1186/s40064-016-2604-8 – volume: 134 start-page: 2450S year: 2004 ident: 10.3382/ps/pex359_bib84 article-title: Short chain fatty acid regulation of signaling genes expressed by the intestinal epithelium publication-title: J. Nutr. doi: 10.1093/jn/134.9.2450S – volume: 61 start-page: 387 year: 2017 ident: 10.3382/ps/pex359_bib78 article-title: Detection of a newly described bacteriocin, perfrin, among Clostridium perfringens isolates from healthy and diseased ostriches and broiler chickens in Iran publication-title: Avian Dis. doi: 10.1637/11580-010517-ResNoteR – volume: 53 start-page: 921 year: 2016 ident: 10.3382/ps/pex359_bib96 article-title: Probiotics - the versatile functional food ingredients publication-title: J. Food Sci. Technol. doi: 10.1007/s13197-015-2011-0 – volume: 22 start-page: 647 year: 2013 ident: 10.3382/ps/pex359_bib82 article-title: Intestinal microbiota and metabolites — Implications for broiler chicken health and performance publication-title: J. Appl. Poult. Res. doi: 10.3382/japr.2013-00742 – volume: 10 start-page: 3531 year: 2009 ident: 10.3382/ps/pex359_bib48 article-title: The role of probiotics in the poultry industry publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms10083531 – volume: 32 start-page: 129 year: 2012 ident: 10.3382/ps/pex359_bib59 article-title: Purification and characterization of a new bacteriocin active against Campylobacter produced by Lactobacillus salivarius SMXD51 publication-title: Food Microbiol. doi: 10.1016/j.fm.2012.05.002 – start-page: 116 year: 1997 ident: 10.3382/ps/pex359_bib108 article-title: The interaction of avian gut microbes and their host: an elusive symbiosis – volume: 52 start-page: 500 year: 2011 ident: 10.3382/ps/pex359_bib34 article-title: Effects of necrotic enteritis challenge on intestinal micro-architecture and mucin profile publication-title: Br. Poult. Sci. doi: 10.1080/00071668.2011.587183 – volume: 134 start-page: 465 year: 2004 ident: 10.3382/ps/pex359_bib115 article-title: Molecular ecological analysis of the gastrointestinal microbiota: A review publication-title: J. Nutr. doi: 10.1093/jn/134.2.465 – volume: 78 start-page: 215 year: 1999 ident: 10.3382/ps/pex359_bib103 article-title: Posthatch development of small intestinal function in the poult publication-title: Poult. Sci. doi: 10.1093/ps/78.2.215 – volume: 44 start-page: 139 year: 2003 ident: 10.3382/ps/pex359_bib49 article-title: Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens publication-title: Br. Poult. Sci. doi: 10.1080/0007166031000085445 – volume: 164 start-page: 85 year: 2013 ident: 10.3382/ps/pex359_bib90 article-title: Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2013.01.030 – volume: 2 start-page: 115 year: 2012 ident: 10.3382/ps/pex359_bib76 article-title: The current trends and future perspectives of prebiotics research: a review publication-title: 3 Biotech. doi: 10.1007/s13205-012-0044-x – volume: 34 start-page: 258 year: 2005 ident: 10.3382/ps/pex359_bib28 article-title: Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers publication-title: Avian Pathol. doi: 10.1080/01445340500112157 – volume: 50 start-page: 1 year: 2006 ident: 10.3382/ps/pex359_bib53 article-title: Campylobacter in Poultry: Filling an Ecological Niche publication-title: Avian Dis. doi: 10.1637/7474-111605R.1 – volume: 44 start-page: 286 year: 2002 ident: 10.3382/ps/pex359_bib112 article-title: Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth publication-title: Microb. Ecol. doi: 10.1007/s00248-002-2015-y – volume: 68 start-page: 297 year: 2014 ident: 10.3382/ps/pex359_bib3 article-title: Altered egos: Antibiotic effects on food animal microbiomes publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-091213-113052 – volume: 41 start-page: 593 year: 2000 ident: 10.3382/ps/pex359_bib116 article-title: Growth performance and immune response of two commercial broiler strains fed diets containing Lactobacillus cultures and oxytetracycline under heat stress conditions publication-title: Br. Poult. Sci. doi: 10.1080/713654979 – volume: 28 start-page: 87 year: 2014 ident: 10.3382/ps/pex359_bib88 article-title: A review of avian probiotics publication-title: J. Avian Med. Surg. doi: 10.1647/2012-031 – volume: 58 start-page: 501 year: 2002 ident: 10.3382/ps/pex359_bib106 article-title: Feed additives to control Salmonella in poultry publication-title: World. Poult. Sci. J. doi: 10.1079/WPS20020036 – start-page: 337 year: 2014 ident: 10.3382/ps/pex359_bib22 article-title: Gastrointestinal anatomy and physiology – volume: 101 start-page: 7118 year: 2004 ident: 10.3382/ps/pex359_bib65 article-title: Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0306466101 – volume: 62 start-page: 499 year: 2006 ident: 10.3382/ps/pex359_bib31 article-title: Microflora of the digestive tract: critical factors and consequences for poultry publication-title: World. Poult. Sci. J. – volume: 47 start-page: 360 year: 2015 ident: 10.3382/ps/pex359_bib7 article-title: Probióticos en pollos parrilleros: Una estrategia para los modelos productivos intensivos publication-title: Rev. Argent. Microbiol. – volume: 92 start-page: 671 year: 2013 ident: 10.3382/ps/pex359_bib110 article-title: Bacterial census of poultry intestinal microbiome publication-title: Poult. Sci. doi: 10.3382/ps.2012-02822 – volume: 61 start-page: 95 year: 2005 ident: 10.3382/ps/pex359_bib51 article-title: The role of the commensal gut microbial community in broiler chickens publication-title: World. Poult. Sci. J. doi: 10.1079/WPS200445 – volume: 17 start-page: 32 year: 2009 ident: 10.3382/ps/pex359_bib104 article-title: Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens publication-title: Trends Microbiol. doi: 10.1016/j.tim.2008.09.005 – volume: 19 start-page: 338 year: 2010 ident: 10.3382/ps/pex359_bib40 article-title: Use of phytobiotics in broiler nutrition - an alternative to infeed antibiotics? publication-title: J. Anim. Feed Sci. doi: 10.22358/jafs/66297/2010 – volume: 9 start-page: e91941 year: 2014 ident: 10.3382/ps/pex359_bib86 article-title: Extensive microbial and functional diversity within the chicken cecal microbiome publication-title: PLoS One. doi: 10.1371/journal.pone.0091941 – volume: 252 start-page: 48 year: 1989 ident: 10.3382/ps/pex359_bib57 article-title: Microbes of the avian cecum: Types present and substrates utilized publication-title: J. Exp. Zool. doi: 10.1002/jez.1402520508 – volume: 252 start-page: 117 year: 1989 ident: 10.3382/ps/pex359_bib72 article-title: Interspecific variation in sugar and amino acid transport by the avian cecum publication-title: J. Exp. Zool. doi: 10.1002/jez.1402520519 – volume: 33 start-page: 801 year: 2009 ident: 10.3382/ps/pex359_bib69 article-title: Bacteriophage and their lysins for elimination of infectious bacteria: Review article publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2009.00176.x – volume: 15 start-page: 136 year: 2006 ident: 10.3382/ps/pex359_bib97 article-title: Digestive physiology and the role of microorganisms publication-title: J. Appl. Poult. Res. doi: 10.1093/japr/15.1.136 – volume: 12 start-page: e0170777 issue: 1 year: 2017 ident: 10.3382/ps/pex359_bib14 article-title: High heterogeneity of Escherichia coli sequence types harbouring ESBL/AmpC genes on IncI1 plasmids in the Colombian poultry chain publication-title: PLoS One. doi: 10.1371/journal.pone.0170777 – volume: 2 start-page: 130 year: 2012 ident: 10.3382/ps/pex359_bib95 article-title: The strange history of phage therapy publication-title: Bacteriophage. doi: 10.4161/bact.20757 |
SSID | ssj0021667 |
Score | 2.6474311 |
SecondaryResourceType | review_article |
Snippet | Abstract
The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an... The microbiome of the broiler chicken gastrointestinal tract (GIT) has been extensively studied, and it has been amply demonstrated that it plays an important... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1006 |
SubjectTerms | additives animal health Animals Anti-Bacterial Agents - pharmacology anti-infective agents antibacterial properties bacteria bacteriophages Bacteriophages - physiology bioactive compounds broiler chickens Chickens competitive exclusion enteropathogens Gastrointestinal Microbiome Gastrointestinal Tract - microbiology immune system ingredients intestinal microorganisms intestines microbial activity microbial communities microbial load Microbiology and Food Safety microbiome physiology Plant Extracts - pharmacology Poultry Diseases - microbiology Poultry Diseases - prevention & control poultry production prebiotics Prebiotics - analysis probiotics Probiotics - pharmacology Salmonella taxonomy |
Title | The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29253263 https://www.proquest.com/docview/1978716618 https://www.proquest.com/docview/2335112625 https://pubmed.ncbi.nlm.nih.gov/PMC5850219 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIEHNK4rMGQQD0goW2PnZt4KWjWhMZBoUd8iO3HWoC2t0nYa_HrOid1cRkGDl6i1LSft-WKf62dCXsOuIz03UY6vRAgGSpI40tOJk4Y8Y16oYAvDQuFPp8HxxPs49ae93tdW1tJ6pQ6Sn1vrSv5HqtAGcsUq2X-QbD0pNMBnkC9cQcJwvbGMz-RyVc6R9QFeVlQtL3LDrXTRBAZkIwPreJ01SeqY8gxq4BzuUuXGKpjtXJdY5g1veJXBlRqKWVPFXjbRBKvUfsGzqcsfb-1u2kr9ucy_V67Yb_klwFA2YMH4_HteGvc1UhnMZBWMyOAn4GjdcUe4UZOPtVlBGYbWzbkqB3pLm112TVquhRdvraHuoOIg-G1xB2MayWIxPjJa6CtumcQ7FNqnn-PR5OQkHh9Nx7fIbQa2A9-4cKwV7gbVscL1Mxm6KZz8cLE8NBN3lJRO4WPL_rieRtvSS8a75J41KOjQoOM-6eniAbk7PCstqYp-SPBwQnodJ7TBCQWcUMAJbeGEIk4o4IRanNB5Rmuc0LygFifU4oQ2OHlHh9Sg5BGZjI7GH44de-SGk4AmLhxQnhVYyFzoRKVC85RxP_OFKwX0RyF8TWFrDbKQpZFb-dCRkzAKJBskYSoG_DHZKeaF3iM0YlmWDSKhfaE8L-QyiZQfpJJHSgc68vrkzeY_jhPLR4_HopzHYJeiOOLFMjbi6JNX9dCFIWHZNmgfBPW3_pcbEcawhGJcTBZ6vl7GrgjRbRC40Z_HMI4RdxYwv0-eGLHXt2KC-WAF8T4JO4CoByCFe7enyGcVlTsY64BI8fQGz_aM3Gnet-dkZ1Wu9T4oxCv1ogL4LxZwv94 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+gastrointestinal+microbiome+and+its+association+with+the+control+of+pathogens+in+broiler+chicken+production%3A+A+review&rft.jtitle=Poultry+science&rft.au=Clavijo%2C+Viviana&rft.au=Fl%C3%B3rez%2C+Martha+Josefina+Vives&rft.date=2018-03-01&rft.issn=1525-3171&rft.eissn=1525-3171&rft.volume=97&rft.issue=3&rft.spage=1006&rft_id=info:doi/10.3382%2Fps%2Fpex359&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5791&client=summon |