Creating individual accessible area hypotheses improves stacked species distribution model performance
Aim: Stacked species distribution models (SDMs) are an important step towards estimating species richness, but frequently overpredict this metric and therefore erroneously predict which species comprise a given community. We test the idea that developing hypotheses about accessible area a priori can...
Saved in:
Published in | Global ecology and biogeography Vol. 27; no. 1/2; pp. 156 - 165 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
John Wiley & Sons Ltd
01.01.2018
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aim: Stacked species distribution models (SDMs) are an important step towards estimating species richness, but frequently overpredict this metric and therefore erroneously predict which species comprise a given community. We test the idea that developing hypotheses about accessible area a priori can greatly improve model performance. By integrating dispersal ability via accessible area into SDM creation, we address an often-overlooked facet of ecological niche modelling. Innovation: By limiting the training and transference areas to theoretically accessible areas, we are creating more accurate SDMs on the basis of a taxon's explorable environments. This limitation of space and environment is a more accurate reflection of a taxon's true dispersal properties and more accurately reflects the geographical and environmental space to which a taxon is exposed. Here, we compare the predictive performance of stacked SDMs derived from spatially constrained and unconstrained training areas. Main conclusions: Restricting a species' training and transference areas to a theoretically accessible area greatly improves model performance. Stacked SDMs drawn from spatially restricted training areas predicted species richness and community composition more accurately than non-restricted stacked SDMs. These accessible area-based restrictions mimic true dispersal barriers to species and limit training areas to the suite of environments to those which a species is exposed to in nature. Furthermore, these restrictions serve to 'clip' predictions in geographical space, thus removing overpredictions in adjacent geographical regions where the species is known to be absent. |
---|---|
AbstractList | AIM: Stacked species distribution models (SDMs) are an important step towards estimating species richness, but frequently overpredict this metric and therefore erroneously predict which species comprise a given community. We test the idea that developing hypotheses about accessible area a priori can greatly improve model performance. By integrating dispersal ability via accessible area into SDM creation, we address an often‐overlooked facet of ecological niche modelling. INNOVATION: By limiting the training and transference areas to theoretically accessible areas, we are creating more accurate SDMs on the basis of a taxon's explorable environments. This limitation of space and environment is a more accurate reflection of a taxon's true dispersal properties and more accurately reflects the geographical and environmental space to which a taxon is exposed. Here, we compare the predictive performance of stacked SDMs derived from spatially constrained and unconstrained training areas. MAIN CONCLUSIONS: Restricting a species’ training and transference areas to a theoretically accessible area greatly improves model performance. Stacked SDMs drawn from spatially restricted training areas predicted species richness and community composition more accurately than non‐restricted stacked SDMs. These accessible area‐based restrictions mimic true dispersal barriers to species and limit training areas to the suite of environments to those which a species is exposed to in nature. Furthermore, these restrictions serve to ‘clip’ predictions in geographical space, thus removing overpredictions in adjacent geographical regions where the species is known to be absent. Aim Stacked species distribution models (SDMs) are an important step towards estimating species richness, but frequently overpredict this metric and therefore erroneously predict which species comprise a given community. We test the idea that developing hypotheses about accessible area a priori can greatly improve model performance. By integrating dispersal ability via accessible area into SDM creation, we address an often‐overlooked facet of ecological niche modelling. Innovation By limiting the training and transference areas to theoretically accessible areas, we are creating more accurate SDMs on the basis of a taxon's explorable environments. This limitation of space and environment is a more accurate reflection of a taxon's true dispersal properties and more accurately reflects the geographical and environmental space to which a taxon is exposed. Here, we compare the predictive performance of stacked SDMs derived from spatially constrained and unconstrained training areas. Main conclusions Restricting a species’ training and transference areas to a theoretically accessible area greatly improves model performance. Stacked SDMs drawn from spatially restricted training areas predicted species richness and community composition more accurately than non‐restricted stacked SDMs. These accessible area‐based restrictions mimic true dispersal barriers to species and limit training areas to the suite of environments to those which a species is exposed to in nature. Furthermore, these restrictions serve to ‘clip’ predictions in geographical space, thus removing overpredictions in adjacent geographical regions where the species is known to be absent. |
Author | Soberón, Jorge Cooper, Jacob C. |
Author_xml | – sequence: 1 givenname: Jacob C. surname: Cooper fullname: Cooper, Jacob C. – sequence: 2 givenname: Jorge surname: Soberón fullname: Soberón, Jorge |
BookMark | eNp1kMtKxDAUhoMoqKMLH0AouNHFjLm0SbvUwRsIbhTchTQ90YxtU5NUmbc3OqML0WxyDuf_zuXfRZu96wGhA4JnJL3TJ6hnhHJRbqAdknM-LSkrN39i-riNdkNYYIyLvOA7yMw9qGj7p8z2jX2zzajaTGkNIdi6hUylcva8HFx8hgAhs93g3VsKQlT6BZosDKBtyhsborf1GK3rs8410GYDeON8p3oNe2jLqDbA_vqfoIfLi_v59fT27upmfnY71ayg5bRirGkY5Zw3VcEN4cIYYYq61AIbQ1WZY-A8Z7wuDeRFJUgOhAqDU8pLotkEHa_6pi1fRwhRdjZoaFvVgxuDpJjiiogqDZqgo1_ShRt9n7aTpBKc5iynPKlOVyrtXQgejNQ2qs8jo1e2lQTLT99l8l1--Z6Ik1_E4G2n_PJP7br7u21h-b9QXl2cfxOHK2IRovM_RLKMFUIU7APNTp61 |
CitedBy_id | crossref_primary_10_1002_ece3_10007 crossref_primary_10_1093_mollus_eyab003 crossref_primary_10_1016_j_jnc_2025_126850 crossref_primary_10_1186_s40249_023_01091_2 crossref_primary_10_1111_jbi_14704 crossref_primary_10_1007_s10393_022_01588_6 crossref_primary_10_1016_j_ecoinf_2023_102127 crossref_primary_10_1017_S0007485324000105 crossref_primary_10_1098_rstb_2019_0215 crossref_primary_10_1111_ecog_04563 crossref_primary_10_1111_jbi_14794 crossref_primary_10_3390_d14100813 crossref_primary_10_1007_s10841_023_00484_w crossref_primary_10_1016_j_ecoinf_2019_05_003 crossref_primary_10_1111_ddi_13252 crossref_primary_10_1038_s41437_024_00683_4 crossref_primary_10_1371_journal_pone_0256270 crossref_primary_10_1111_ddi_13145 crossref_primary_10_1016_j_biocon_2020_108822 crossref_primary_10_1111_jav_01771 crossref_primary_10_1111_geb_13149 crossref_primary_10_1086_705898 crossref_primary_10_1371_journal_pone_0237701 crossref_primary_10_1093_jme_tjaa063 crossref_primary_10_1093_ornithology_ukaa081 crossref_primary_10_1111_ecog_06852 crossref_primary_10_1111_ecog_04510 crossref_primary_10_1111_gcb_70040 crossref_primary_10_1016_j_actatropica_2024_107497 crossref_primary_10_1111_jbi_14587 crossref_primary_10_1111_jbi_14983 crossref_primary_10_1177_0309133319881104 crossref_primary_10_1002_ecs2_3134 crossref_primary_10_1016_j_dib_2023_110023 crossref_primary_10_1016_j_ecolmodel_2023_110454 crossref_primary_10_1111_gcb_15285 crossref_primary_10_1098_rsos_221603 crossref_primary_10_1038_s41597_020_00732_7 crossref_primary_10_1111_brv_13077 crossref_primary_10_1655_0018_0831_76_2_121 crossref_primary_10_1111_ddi_13837 crossref_primary_10_1080_23766808_2022_2087282 crossref_primary_10_1016_j_envsoft_2019_104615 crossref_primary_10_1645_21_96 crossref_primary_10_1016_j_ecolmodel_2021_109823 crossref_primary_10_1098_rspb_2020_1450 crossref_primary_10_1016_j_pecon_2019_11_002 crossref_primary_10_1111_jbi_15021 crossref_primary_10_1038_s41598_021_96047_7 crossref_primary_10_1111_geb_13450 crossref_primary_10_1111_maec_12706 crossref_primary_10_1016_j_ecolmodel_2020_109180 crossref_primary_10_1111_faf_12875 crossref_primary_10_1007_s10531_024_02844_7 crossref_primary_10_1002_ece3_70814 crossref_primary_10_1111_jbi_14834 crossref_primary_10_1080_23766808_2023_2204549 crossref_primary_10_1111_cobi_14084 crossref_primary_10_1038_s41559_019_0972_5 crossref_primary_10_7717_peerj_17345 crossref_primary_10_1007_s00704_024_05289_8 crossref_primary_10_1080_17550874_2020_1750721 crossref_primary_10_1126_science_adg8028 crossref_primary_10_1016_j_biocon_2023_110379 crossref_primary_10_1093_jpe_rtac099 crossref_primary_10_3389_fmars_2021_745501 crossref_primary_10_1007_s10531_019_01910_9 |
Cites_doi | 10.2307/40157573 10.1016/j.ecolmodel.2013.04.020 10.1111/j.1365-2699.2012.02684.x 10.1111/j.2006.0906-7590.04596.x 10.1890/1051-0761(2000)010[1456:DAEOPM]2.0.CO;2 10.1111/j.1365-2699.2011.02550.x 10.1016/j.ecolind.2013.10.024 10.1111/j.1366-9516.2005.00143.x 10.1111/j.1523-1739.2003.00233.x 10.1046/j.1523-1739.2001.015003648.x 10.1111/jbi.12225 10.1111/j.1600-0587.2009.06074.x 10.1515/9781400834099 10.1111/brv.12222 10.1002/joc.1276 10.1890/07-2153.1 10.23943/princeton/9780691136868.001.0001 10.1016/j.ecolmodel.2013.04.011 10.1111/j.1365-2486.2010.02330.x 10.17161/bi.v2i0.4 10.1016/j.ecolmodel.2011.02.011 10.1046/j.1472-4642.2002.00127.x 10.1046/j.1365-2699.2003.00946.x 10.1111/j.1365-2656.2008.01471.x 10.1242/jeb.205.16.2325 10.1016/j.ecolmodel.2007.08.010 10.1642/0004-8038(2004)121[0610:SNONMB]2.0.CO;2 10.1098/rspb.2003.2564 10.1111/j.1472-4642.2011.00792.x 10.2307/2845278 10.1016/j.ecolmodel.2008.11.010 10.1111/j.1600-0587.2010.06134.x 10.2307/1934961 10.1093/oso/9780198540137.001.0001 10.1111/j.1365-2664.2006.01164.x 10.1007/978-0-387-98141-3 10.1111/jbi.12058 10.1111/j.1466-8238.2006.00257.x 10.1111/j.1365-2699.2011.02663.x 10.1111/jbi.12485 10.1017/CBO9780511810602 10.1111/j.2041-210X.2011.00182.x 10.1111/j.1472-4642.2010.00725.x 10.1016/j.ecolmodel.2012.04.001 10.1145/1015330.1015412 10.1111/j.1365-2664.2005.01112.x 10.1111/j.1365-2699.2006.01594.x 10.1016/j.biocon.2009.05.006 10.1098/rsbl.2008.0210 10.1111/geb.12102 |
ContentType | Journal Article |
Copyright | Copyright © 2018 John Wiley & Sons Ltd. 2017 John Wiley & Sons Ltd 2018 John Wiley & Sons Ltd |
Copyright_xml | – notice: Copyright © 2018 John Wiley & Sons Ltd. – notice: 2017 John Wiley & Sons Ltd – notice: 2018 John Wiley & Sons Ltd |
DBID | AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 |
DOI | 10.1111/geb.12678 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
EISSN | 1466-8238 |
EndPage | 165 |
ExternalDocumentID | 10_1111_geb_12678 GEB12678 26635775 |
Genre | article |
GrantInformation_xml | – fundername: University of Kansas Biodiversity Institute – fundername: University of Kansas Ecology and Evolutionary Biology Department – fundername: National Science Foundation funderid: 1208472 |
GroupedDBID | -~X .3N .GA 0R~ 10A 1OC 29I 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHBH AAHKG AAHQN AAKGQ AAMMB AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACCZN ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF ATUGU AUFTA BFHJK BMNLL BMXJE BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD F00 F01 F04 G-S GODZA HGLYW HZI IHE IPSME IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A OIG P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT W99 WIH WIK WQJ WXSBR XG1 ZZTAW ~KM .Y3 31~ AAHHS AAISJ AANHP ACBWZ ACCFJ ACHIC ACRPL ACYXJ ADNMO ADULT ADZOD AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM ASPBG AVWKF AZFZN BDRZF CAG COF DOOOF EQZMY ESX FEDTE GTFYD HF~ HGD HQ2 HTVGU HVGLF JSODD VQP WRC AAYXX ABSQW AGQPQ AGUYK CITATION 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 |
ID | FETCH-LOGICAL-c3528-933dd32666d956f167ff7f5b8c70ff2a840e66436b8fe459714e127f08fe681c3 |
IEDL.DBID | DR2 |
ISSN | 1466-822X |
IngestDate | Fri Jul 11 18:29:54 EDT 2025 Fri Jul 25 06:36:48 EDT 2025 Tue Jul 01 02:37:32 EDT 2025 Thu Apr 24 23:03:27 EDT 2025 Wed Jan 22 17:01:37 EST 2025 Thu Jul 03 21:56:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3528-933dd32666d956f167ff7f5b8c70ff2a840e66436b8fe459714e127f08fe681c3 |
Notes | Funding information National Science Foundation, Grant/Award Number: 1208472; University of Kansas Biodiversity Institute; University of Kansas Ecology and Evolutionary Biology Department ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2160-4148 0000-0003-2182-3236 |
PQID | 1976243426 |
PQPubID | 1066347 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2020917993 proquest_journals_1976243426 crossref_citationtrail_10_1111_geb_12678 crossref_primary_10_1111_geb_12678 wiley_primary_10_1111_geb_12678_GEB12678 jstor_primary_26635775 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global ecology and biogeography |
PublicationYear | 2018 |
Publisher | John Wiley & Sons Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons Ltd – name: Wiley Subscription Services, Inc |
References | 2004; 121 2013; 23 1997; 48 1975; 56 2003; 17 2008; 4 2011; 14 2011; 17 2007; 34 2005; 25 2001 2015; 42 2000; 10 2006; 29 2001; 15 2009; 19 2010; 33 2012 2015; 92 2011 2010 2013; 40 1988; 15 2002; 8 2006; 15 2009 2008 2007 1995 2005 2011; 34 2012; 39 2004 2003 2013; 263 2014; 41 2011; 38 2003; 30 2012; 237–238 1999 2009; 78 2012; 3 2006; 43 2004; 271 2002; 205 2014; 38 2005; 5 2009; 220 2013; 133 2017 2015 2014 2013 2005; 2 2009; 142 2008; 210 2011; 222 2005; 11 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 Ridgely R. S. (e_1_2_7_61_1) 2001 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Vavrek M. J. (e_1_2_7_78_1) 2011; 14 Lees A. C. (e_1_2_7_42_1) 2013; 133 e_1_2_7_73_1 e_1_2_7_71_1 Arvin J. C. (e_1_2_7_4_1) 2001 Environmental Systems Research Institute (e_1_2_7_24_1) 2011 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 Raffaele H. (e_1_2_7_59_1) 2003 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 Schuchmann K. L. (e_1_2_7_67_1) 1999 e_1_2_7_79_1 Howell S. N. G. (e_1_2_7_39_1) 1995 e_1_2_7_6_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 eBird (e_1_2_7_21_1) 2012 Saupe E. E. (e_1_2_7_65_1) 2017 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 Schulenberg T. S. (e_1_2_7_68_1) 2007 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Pebesma E. J. (e_1_2_7_50_1) 2005; 5 |
References_xml | – year: 2011 – volume: 142 start-page: 2282 year: 2009 end-page: 2292 article-title: eBird: A citizen‐based bird observation network in the biological sciences publication-title: Biological Conservation – volume: 263 start-page: 103 year: 2013 end-page: 108 article-title: Evaluating the predictive performance of stacked species distribution models applied to plant species selection in ecological restoration publication-title: Ecological Modelling – year: 2009 – year: 2005 – volume: 121 start-page: 610 year: 2004 end-page: 618 article-title: Seasonal niches of Nearctic‐Neotropical migratory birds: Implications for the evolution of migration publication-title: The Auk – volume: 41 start-page: 736 year: 2014 end-page: 748 article-title: Remote sensing data can improve predictions of species richness by stacked species distribution models: A case study for Mexican pines publication-title: Journal of Biogeography – year: 2001 – volume: 17 start-page: 43 year: 2011 end-page: 57 article-title: A statistical explanation of MaxEnt for ecologists publication-title: Diversity and Distributions – volume: 8 start-page: 49 year: 2002 end-page: 56 article-title: Prediction of bird community composition based on point‐occurrence data and inferential algorithms: A valuable tool in biodiversity assessments publication-title: Diversity and Distributions – volume: 2 start-page: 1 year: 2005 end-page: 10 article-title: Interpretation of models of fundamental ecological niches and species’ distributional areas publication-title: Biodiversity Informatics – volume: 19 start-page: 181 year: 2009 end-page: 197 article-title: Sample selection bias and presence‐only distribution models: Implications for background and pseudo‐absence data publication-title: Ecological Applications – volume: 38 start-page: 1433 year: 2011 end-page: 1444 article-title: SESAM – a new framework integrating macroecological and species distribution models for predicting spatio‐temporal patterns of species assemblages publication-title: Journal of Biogeography – volume: 271 start-page: 1151 year: 2004 end-page: 1157 article-title: Evolution of seasonal ecological niches in the buntings (Aves: Cardinalidae) publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 14 year: 2011 article-title: fossil: Palaeoecological and palaeogeographical analysis tools publication-title: Palaeontologia Electronica – volume: 222 start-page: 1810 year: 2011 end-page: 1819 article-title: The crucial role of the accessible area in ecological niche modeling and species distribution modeling publication-title: Ecological Modelling – volume: 92 start-page: 169 year: 2015 end-page: 187 article-title: Spatial predictions at the community level: From current approaches to future frameworks publication-title: Biological Reviews – volume: 220 start-page: 589 year: 2009 end-page: 594 article-title: Selecting pseudo‐absence data for presence‐only distribution modeling: How far should you stray from what you know? publication-title: Ecological Modelling – year: 2014 – volume: 48 start-page: 887 year: 1997 end-page: 918 article-title: Survey of a southern Amazonian avifauna: The Alta Floresta region, Mato Grosso, Brazil publication-title: Ornithological Monographs – volume: 39 start-page: 627 year: 2012 end-page: 628 article-title: Integrating biogeographic processes and local community assembly publication-title: Journal of Biogeography – volume: 10 start-page: 1456 year: 2000 end-page: 1477 article-title: Development and evaluation of predictive models for measuring the biological integrity of streams publication-title: Ecological Applications – year: 2008 – year: 2004 – volume: 237–238 start-page: 11 year: 2012 end-page: 22 article-title: Variation in niche and distribution model performance: The need for assessment of key causal factors publication-title: Ecological Modelling – volume: 133 start-page: 178 year: 2013 end-page: 239 article-title: Alta Floresta revisited: An updated review of the avifauna of the most intensively surveyed locality in south‐central Amazonia publication-title: Bulletin of the British Ornithologists’ Club – year: 2015 – volume: 5 start-page: 9 year: 2005 end-page: 13 article-title: Classes and methods for spatial data in R publication-title: R News – volume: 43 start-page: 405 year: 2006 end-page: 412 article-title: Modelling distribution and abundance with presence‐only data publication-title: Journal of Applied Ecology – volume: 210 start-page: 478 year: 2008 end-page: 486 article-title: Assessing the effects of pseudo‐absences on predictive distribution model performance publication-title: Ecological Modelling – volume: 40 start-page: 778 year: 2013 end-page: 789 article-title: Selecting thresholds for the prediction of species occurrence with presence‐only data publication-title: Journal of Biogeography – volume: 205 start-page: 2325 year: 2002 end-page: 2336 article-title: The ecological and evolutionary interface of hummingbird flight physiology publication-title: Journal of Experimental Biology – volume: 34 start-page: 102 year: 2007 end-page: 117 article-title: Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar publication-title: Journal of Biogeography – volume: 38 start-page: 72 year: 2014 end-page: 80 article-title: Satellite‐derived vegetation indices contribute significantly to the prediction of epiphyllous liverworts publication-title: Ecological Indicators – volume: 33 start-page: 159 year: 2010 end-page: 167 article-title: Niche and area of distribution modeling: A population ecology perspective publication-title: Ecography – volume: 17 start-page: 1591 year: 2003 end-page: 1600 article-title: Avoiding pitfalls of using species distribution models in conservation planning publication-title: Conservation Biology – year: 2007 – volume: 15 start-page: 489 year: 1988 end-page: 505 article-title: Environmental factors associated with avian distributional boundaries publication-title: Journal of Biogeography – volume: 34 start-page: 31 year: 2011 end-page: 38 article-title: How well does presence‐only‐based species distribution modelling predict assemblage diversity? A case study of the Tenerife flora publication-title: Ecography – year: 2003 – volume: 17 start-page: 1671 year: 2011 end-page: 1680 article-title: Projected changes in elevational distribution and flight performance of montane Neotropical hummingbirds in response to climate change publication-title: Global Change Biology – volume: 39 start-page: 2163 year: 2012 end-page: 2178 article-title: Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents publication-title: Journal of Biogeography – volume: 4 start-page: 577 year: 2008 end-page: 580 article-title: Spatial analysis improves species distribution modelling during range expansion publication-title: Biology Letters – volume: 17 start-page: 1122 year: 2011 end-page: 1131 article-title: Predicting spatial patterns of plant species richness: A comparison of direct macroecological and species stacking modelling approaches publication-title: Diversity and Distributions – volume: 15 start-page: 648 year: 2001 end-page: 657 article-title: Evaluation of museum collection data for use in biodiversity assessment publication-title: Conservation Biology – volume: 263 start-page: 10 year: 2013 end-page: 18 article-title: Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas publication-title: Ecological Modelling – year: 2010 – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – year: 2012 – volume: 30 start-page: 1719 year: 2003 end-page: 1727 article-title: Geographical sampling bias and its implications for conservation priorities in Africa publication-title: Journal of Biogeography – volume: 56 start-page: 285 year: 1975 end-page: 301 article-title: Ecology, flowering phenology, and hummingbird pollination of some Costa Rican species publication-title: Ecology – volume: 42 start-page: 1255 year: 2015 end-page: 1266 article-title: Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models publication-title: Journal of Biogeography – year: 2017 article-title: Reconstructing ecological niche evolution when niches are incompletely characterized publication-title: Systematic Biology, accepted. – volume: 23 start-page: 99 year: 2013 end-page: 112 article-title: Stacking species distribution models and adjusting bias by linking them to macroecological models publication-title: Global Ecology and Biogeography – year: 1995 – volume: 43 start-page: 386 year: 2006 end-page: 392 article-title: Making better biogeographical predictions of species’ distributions publication-title: Journal of Applied Ecology – volume: 11 start-page: 3 year: 2005 end-page: 23 article-title: Conservation biogeography: Assessment and prospect publication-title: Diversity and Distributions – volume: 29 start-page: 129 year: 2006 end-page: 151 article-title: Novel methods improve prediction of species’ distributions from occurrence data publication-title: Ecography – volume: 78 start-page: 182 year: 2009 end-page: 190 article-title: Assessing the accuracy of species distribution models to predict amphibian species richness patterns publication-title: Journal of Animal Ecology – year: 2017 – volume: 3 start-page: 545 year: 2012 end-page: 554 article-title: Likelihood analysis of species occurrence probability from presence‐only data for modelling species distributions publication-title: Methods in Ecology and Evolution – volume: 15 start-page: 578 year: 2006 end-page: 587 article-title: A comparison of methods for mapping species ranges and species richness publication-title: Global Ecology and Biogeography – start-page: 468 year: 1999 end-page: 682) – year: 2013 – ident: e_1_2_7_34_1 – ident: e_1_2_7_83_1 doi: 10.2307/40157573 – ident: e_1_2_7_27_1 doi: 10.1016/j.ecolmodel.2013.04.020 – ident: e_1_2_7_38_1 doi: 10.1111/j.1365-2699.2012.02684.x – ident: e_1_2_7_22_1 doi: 10.1111/j.2006.0906-7590.04596.x – volume-title: ArcGIS desktop: release 10.2 year: 2011 ident: e_1_2_7_24_1 – ident: e_1_2_7_33_1 doi: 10.1890/1051-0761(2000)010[1456:DAEOPM]2.0.CO;2 – ident: e_1_2_7_31_1 doi: 10.1111/j.1365-2699.2011.02550.x – ident: e_1_2_7_40_1 doi: 10.1016/j.ecolind.2013.10.024 – volume: 14 year: 2011 ident: e_1_2_7_78_1 article-title: fossil: Palaeoecological and palaeogeographical analysis tools publication-title: Palaeontologia Electronica – volume-title: The birds of Ecuador year: 2001 ident: e_1_2_7_61_1 – ident: e_1_2_7_56_1 – ident: e_1_2_7_79_1 doi: 10.1111/j.1366-9516.2005.00143.x – start-page: 468 volume-title: Handbook of the birds of the world year: 1999 ident: e_1_2_7_67_1 – ident: e_1_2_7_44_1 doi: 10.1111/j.1523-1739.2003.00233.x – ident: e_1_2_7_82_1 – ident: e_1_2_7_55_1 doi: 10.1046/j.1523-1739.2001.015003648.x – ident: e_1_2_7_15_1 doi: 10.1111/jbi.12225 – ident: e_1_2_7_70_1 doi: 10.1111/j.1600-0587.2009.06074.x – ident: e_1_2_7_8_1 – ident: e_1_2_7_37_1 doi: 10.1515/9781400834099 – ident: e_1_2_7_5_1 – volume-title: eBird: An online database of bird distribution and abundance [web application] year: 2012 ident: e_1_2_7_21_1 – volume: 133 start-page: 178 year: 2013 ident: e_1_2_7_42_1 article-title: Alta Floresta revisited: An updated review of the avifauna of the most intensively surveyed locality in south‐central Amazonia publication-title: Bulletin of the British Ornithologists’ Club – ident: e_1_2_7_16_1 – ident: e_1_2_7_18_1 doi: 10.1111/brv.12222 – ident: e_1_2_7_35_1 doi: 10.1002/joc.1276 – ident: e_1_2_7_52_1 doi: 10.1890/07-2153.1 – ident: e_1_2_7_51_1 doi: 10.23943/princeton/9780691136868.001.0001 – ident: e_1_2_7_47_1 doi: 10.1016/j.ecolmodel.2013.04.011 – ident: e_1_2_7_10_1 doi: 10.1111/j.1365-2486.2010.02330.x – ident: e_1_2_7_71_1 doi: 10.17161/bi.v2i0.4 – year: 2017 ident: e_1_2_7_65_1 article-title: Reconstructing ecological niche evolution when niches are incompletely characterized publication-title: Systematic Biology, accepted. – ident: e_1_2_7_81_1 – ident: e_1_2_7_6_1 doi: 10.1016/j.ecolmodel.2011.02.011 – ident: e_1_2_7_25_1 doi: 10.1046/j.1472-4642.2002.00127.x – ident: e_1_2_7_60_1 doi: 10.1046/j.1365-2699.2003.00946.x – ident: e_1_2_7_54_1 doi: 10.1111/j.1365-2656.2008.01471.x – ident: e_1_2_7_57_1 – ident: e_1_2_7_2_1 doi: 10.1242/jeb.205.16.2325 – ident: e_1_2_7_13_1 doi: 10.1016/j.ecolmodel.2007.08.010 – ident: e_1_2_7_76_1 – ident: e_1_2_7_46_1 doi: 10.1642/0004-8038(2004)121[0610:SNONMB]2.0.CO;2 – ident: e_1_2_7_45_1 doi: 10.1098/rspb.2003.2564 – ident: e_1_2_7_62_1 – ident: e_1_2_7_29_1 – ident: e_1_2_7_14_1 – ident: e_1_2_7_20_1 doi: 10.1111/j.1472-4642.2011.00792.x – ident: e_1_2_7_63_1 doi: 10.2307/2845278 – ident: e_1_2_7_77_1 doi: 10.1016/j.ecolmodel.2008.11.010 – ident: e_1_2_7_3_1 doi: 10.1111/j.1600-0587.2010.06134.x – volume-title: An annotated checklist of the birds of the Gómez Farías region, southwestern Tamaulipas, Mexico year: 2001 ident: e_1_2_7_4_1 – ident: e_1_2_7_28_1 – ident: e_1_2_7_73_1 doi: 10.2307/1934961 – volume-title: A guide to the birds of Mexico and northern Central America year: 1995 ident: e_1_2_7_39_1 doi: 10.1093/oso/9780198540137.001.0001 – ident: e_1_2_7_32_1 doi: 10.1111/j.1365-2664.2006.01164.x – ident: e_1_2_7_80_1 doi: 10.1007/978-0-387-98141-3 – ident: e_1_2_7_7_1 – ident: e_1_2_7_43_1 doi: 10.1111/jbi.12058 – volume-title: Birds of Peru year: 2007 ident: e_1_2_7_68_1 – ident: e_1_2_7_30_1 doi: 10.1111/j.1466-8238.2006.00257.x – ident: e_1_2_7_36_1 – ident: e_1_2_7_41_1 doi: 10.1111/j.1365-2699.2011.02663.x – ident: e_1_2_7_17_1 doi: 10.1111/jbi.12485 – ident: e_1_2_7_26_1 doi: 10.1017/CBO9780511810602 – ident: e_1_2_7_64_1 doi: 10.1111/j.2041-210X.2011.00182.x – volume: 5 start-page: 9 year: 2005 ident: e_1_2_7_50_1 article-title: Classes and methods for spatial data in R publication-title: R News – ident: e_1_2_7_58_1 – ident: e_1_2_7_23_1 doi: 10.1111/j.1472-4642.2010.00725.x – ident: e_1_2_7_66_1 doi: 10.1016/j.ecolmodel.2012.04.001 – ident: e_1_2_7_75_1 – ident: e_1_2_7_69_1 – ident: e_1_2_7_72_1 – ident: e_1_2_7_53_1 doi: 10.1145/1015330.1015412 – ident: e_1_2_7_9_1 – ident: e_1_2_7_48_1 doi: 10.1111/j.1365-2664.2005.01112.x – ident: e_1_2_7_12_1 – ident: e_1_2_7_49_1 doi: 10.1111/j.1365-2699.2006.01594.x – volume-title: Birds of the West Indies year: 2003 ident: e_1_2_7_59_1 – ident: e_1_2_7_74_1 doi: 10.1016/j.biocon.2009.05.006 – ident: e_1_2_7_19_1 doi: 10.1098/rsbl.2008.0210 – ident: e_1_2_7_11_1 doi: 10.1111/geb.12102 |
SSID | ssj0005456 |
Score | 2.492695 |
Snippet | Aim: Stacked species distribution models (SDMs) are an important step towards estimating species richness, but frequently overpredict this metric and therefore... Aim Stacked species distribution models (SDMs) are an important step towards estimating species richness, but frequently overpredict this metric and therefore... Aim Stacked species distribution models (SDMs) are an important step towards estimating species richness, but frequently overpredict this metric and therefore... AIM: Stacked species distribution models (SDMs) are an important step towards estimating species richness, but frequently overpredict this metric and therefore... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 156 |
SubjectTerms | Accessibility accessible area biogeography Communities Community composition community structure Dispersal Dispersion ecological niche models Ecological niches hummingbirds Hypotheses Innovations MACROECOLOGICAL METHODS macroecological models model validation niches organisms Performance prediction prediction presence–absence matrix species diversity Species richness stacked niche models Training |
Title | Creating individual accessible area hypotheses improves stacked species distribution model performance |
URI | https://www.jstor.org/stable/26635775 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12678 https://www.proquest.com/docview/1976243426 https://www.proquest.com/docview/2020917993 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-QwEB5EEO7FO_UW904lig_30qVN06Thnk5ZlYO7BzlhHw5K0iTe4lKX6-6D_vVO0h-roiC-tWRK0yQz-Sad-Qbg2GUqyy3zRLdaRUzqOFJlaSLcfByic2Xj2OcO__rNL67Yz0k2WYPvXS5Mww_RH7h5zQj22iu40vUjJb-2epRQtLVof32slgdElyvqKI8Mmswi7Aelk5ZVyEfx9E8-2YuacMQnQPMxXA37zdlH-Nv1tAkzuRktF3pU3j8jcXznp3yCzRaHkh_NwtmCNVttw8Y4cFjfbcNgvEqAQ7HWAtQ74E4DyqyuybRP5SIqVF2c6pklCpvJv7u5T-yqbU2m4dACLxCFosEwxKd2ondOjGfsbYttkVCPh8xXSQyf4eps_Of0ImprNUSl54eJZJoag1CQc4MeF06zcE64TOeliJ2jCv1IyxH9cJ07y9CLSZhNqHAx3vI8KdMBrFe3ld0FwlSeS2q1dNywRHMpHculMKIUJuXSDOFbN2tF2RKZ-3oas6JzaHA8izCeQzjqRecNe8dLQoMw9b0E9ShMiGwIe91aKFrNrosE8RtlKQKbIRz2zaiT_keLquztsi4oYnDpqfZS7GuY-NffXpyPT8LFl7eLfoUPiNvy5iRoD9YX_5d2H7HRQh8EJXgA7zILUw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VogouPAorlhbqVhy4ZJU4jh1LvUDZsqWPA2qlvaDIju12RZWuyO6h_HrGzmNbBBLilsgTxfF47G8mnm8A3rlMZbllnuhWq4hJHUeqLE2Em49DdK5sHPvc4dMzPrlgX6bZdA32u1yYhh-iD7h5ywjrtTdwH5C-Y-WXVo8SiovtA3joK3p75vxPX1fkUR4bNLlF2BNKpy2vkD_H0z96bzdqDiTeg5p3AWvYcQ6fwreur81Bk--j5UKPyp-_0Tj-78c8gyctFCUfmrnzHNZstQkb40BjfbsJg_EqBw7F2kWgfgHuIADN6pLM-mwuokLhxZm-tkRhM7m6nfvcrtrWZBbiFniBQBTXDEN8dic66MR40t623hYJJXnIfJXH8BIuDsfnB5OoLdcQlZ4iJpJpagyiQc4NOl2oaeGccJnOSxE7RxW6kpYjAOI6d5ahI5Mwm1DhYrzleVKmA1ivbir7CghTeS6p1dJxwxLNpXQsl8KIUpiUSzOE953airLlMvclNa6LzqfB8SzCeA5hrxedNwQefxIaBN33EtQDMSGyIWx3k6FojbsuEoRwlKWIbYaw2zejWfp_LaqyN8u6oAjDpWfbS7GvQfN_f3vxefwxXLz-d9EdeDQ5Pz0pTo7OjrfgMcK4vAkMbcP64sfSvkGotNBvg0X8ApSHD28 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhCXAoUV2xYwVQ9cskocx47FCdpdyqMVqqi0B6TIju2yokpXze6h_fUdO49tEUiIWyJPFMfjGX_jeL4B2HOZynLLPNGtVhGTOo5UWZoIFx-H6FzZOPa5w0fH_PCUfZ5m0zV41-XCNPwQ_Yabt4zgr72Bz427ZeRnVo8Sir72HtxnPJa-bsPByYo7ykODJrUIO0LptKUV8sd4-kfvLEbNecQ7SPM2Xg0LzuQx_Oi62pwz-TVaLvSovP6NxfE_v-UJbLRAlLxvZs5TWLPVJjwYBxLrq00YjFcZcCjWuoD6Gbj9ADOrMzLrc7mICmUXZ_rcEoXN5OfV3Gd21bYms7BrgRcIQ9FjGOJzOzE8J8ZT9rbVtkgoyEPmqyyG53A6GX_fP4zaYg1R6QliIpmmxiAW5NxgyIV6Fs4Jl-m8FLFzVGEgaTnCH65zZxmGMQmzCRUuxlueJ2U6gPXqorIvgDCV55JaLR03LNFcSsdyKYwohUm5NEN422mtKFsmc19Q47zoIhoczyKM5xB2e9F5Q9_xJ6FBUH0vQT0MEyIbwk43F4rWtOsiQQBHWYrIZghv-mY0Sv-nRVX2YlkXFEG49Fx7KfY1KP7vby8-jj-Ei61_F30ND78dTIqvn46_bMMjxHB5syu0A-uLy6V9iThpoV8Fe7gBYQQOHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Creating+individual+accessible+area+hypotheses+improves+stacked+species+distribution+model+performance&rft.jtitle=Global+ecology+and+biogeography&rft.au=Cooper%2C+Jacob+C&rft.au=Soberon%2C+Jorge&rft.date=2018-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=27&rft.issue=1&rft.spage=156&rft_id=info:doi/10.1111%2Fgeb.12678&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |