What makes the Sino-Himalayan mountains the major diversity hotspots for pheasants?
Aim: The Sino-Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological constraints, energetic constraints, diversification rate (DivRate) variation, time-for-speciation effect and multiple colonizations, have be...
Saved in:
Published in | Journal of biogeography Vol. 45; no. 3; pp. 640 - 651 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
John Wiley & Sons Ltd
01.03.2018
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aim: The Sino-Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological constraints, energetic constraints, diversification rate (DivRate) variation, time-for-speciation effect and multiple colonizations, have been posited to explain this pattern. We used pheasants (Aves: Phasianidae) as a model group to test these hypotheses and to understand the ecological and evolutionary processes that have generated the extraordinary diversity in these mountains. Location: Sino-Himalayas and adjacent regions. Taxon: Pheasants. Methods: Using distribution maps predicted by species distribution models (SDMs) and a time-calibrated phylogeny for pheasants, we examined the relationships between species richness and predictors including net primary productivity (NPP), niche diversity (NicheDiv), DivRate, evolutionary time (EvolTime) and colonization frequency using Pearson's correlations and structural equation modelling (SEM). We reconstructed ancestral ranges at nodes and examined basal/derived species patterns to reveal the mechanisms underlying species richness gradients in the Sino-Himalayas. Results: We found that ancestral pheasants originated in Africa in the early Oligocene (∼33 Ma), and then colonized the Sino-Himalayan mountains and other regions. In the Sino-Himalayas, species richness was strongly related to DivRate, NPP, NicheDiv and colonization frequency, but weakly correlated with EvolTime. The direct effects of NicheDiv and DivRate on richness were stronger than NPP and EvolTime. NPP indirectly influenced species richness via DivRate, but its effect on richness via NicheDiv was relatively weak. Main conclusions: Higher species diversity in the Sino-Himalayas was generated by both ecological and evolutionary mechanisms. An increase in available niches, rapid diversifications and multiple colonizations was found to be key direct processes for the build-up of the diversity hotspots of pheasants in the Sino-Himalayan mountains. Productivity had an important but indirect effect on species richness, which worked through increased DivRate. Our study offers new insights on species accumulation in the Sino-Himalayas and provides a useful model for understanding other biodiversity hotspots. |
---|---|
AbstractList | Aim: The Sino-Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological constraints, energetic constraints, diversification rate (DivRate) variation, time-for-speciation effect and multiple colonizations, have been posited to explain this pattern. We used pheasants (Aves: Phasianidae) as a model group to test these hypotheses and to understand the ecological and evolutionary processes that have generated the extraordinary diversity in these mountains. Location: Sino-Himalayas and adjacent regions. Taxon: Pheasants. Methods: Using distribution maps predicted by species distribution models (SDMs) and a time-calibrated phylogeny for pheasants, we examined the relationships between species richness and predictors including net primary productivity (NPP), niche diversity (NicheDiv), DivRate, evolutionary time (EvolTime) and colonization frequency using Pearson's correlations and structural equation modelling (SEM). We reconstructed ancestral ranges at nodes and examined basal/derived species patterns to reveal the mechanisms underlying species richness gradients in the Sino-Himalayas. Results: We found that ancestral pheasants originated in Africa in the early Oligocene (∼33 Ma), and then colonized the Sino-Himalayan mountains and other regions. In the Sino-Himalayas, species richness was strongly related to DivRate, NPP, NicheDiv and colonization frequency, but weakly correlated with EvolTime. The direct effects of NicheDiv and DivRate on richness were stronger than NPP and EvolTime. NPP indirectly influenced species richness via DivRate, but its effect on richness via NicheDiv was relatively weak. Main conclusions: Higher species diversity in the Sino-Himalayas was generated by both ecological and evolutionary mechanisms. An increase in available niches, rapid diversifications and multiple colonizations was found to be key direct processes for the build-up of the diversity hotspots of pheasants in the Sino-Himalayan mountains. Productivity had an important but indirect effect on species richness, which worked through increased DivRate. Our study offers new insights on species accumulation in the Sino-Himalayas and provides a useful model for understanding other biodiversity hotspots. AimThe Sino‐Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological constraints, energetic constraints, diversification rate (DivRate) variation, time‐for‐speciation effect and multiple colonizations, have been posited to explain this pattern. We used pheasants (Aves: Phasianidae) as a model group to test these hypotheses and to understand the ecological and evolutionary processes that have generated the extraordinary diversity in these mountains.LocationSino‐Himalayas and adjacent regions.TaxonPheasants.MethodsUsing distribution maps predicted by species distribution models (SDMs) and a time‐calibrated phylogeny for pheasants, we examined the relationships between species richness and predictors including net primary productivity (NPP), niche diversity (NicheDiv), DivRate, evolutionary time (EvolTime) and colonization frequency using Pearson's correlations and structural equation modelling (SEM). We reconstructed ancestral ranges at nodes and examined basal/derived species patterns to reveal the mechanisms underlying species richness gradients in the Sino‐Himalayas.ResultsWe found that ancestral pheasants originated in Africa in the early Oligocene (~33 Ma), and then colonized the Sino‐Himalayan mountains and other regions. In the Sino‐Himalayas, species richness was strongly related to DivRate, NPP, NicheDiv and colonization frequency, but weakly correlated with EvolTime. The direct effects of NicheDiv and DivRate on richness were stronger than NPP and EvolTime. NPP indirectly influenced species richness via DivRate, but its effect on richness via NicheDiv was relatively weak.Main conclusionsHigher species diversity in the Sino‐Himalayas was generated by both ecological and evolutionary mechanisms. An increase in available niches, rapid diversifications and multiple colonizations was found to be key direct processes for the build‐up of the diversity hotspots of pheasants in the Sino‐Himalayan mountains. Productivity had an important but indirect effect on species richness, which worked through increased DivRate. Our study offers new insights on species accumulation in the Sino‐Himalayas and provides a useful model for understanding other biodiversity hotspots. Aim The Sino‐Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological constraints, energetic constraints, diversification rate (DivRate) variation, time‐for‐speciation effect and multiple colonizations, have been posited to explain this pattern. We used pheasants (Aves: Phasianidae) as a model group to test these hypotheses and to understand the ecological and evolutionary processes that have generated the extraordinary diversity in these mountains. Location Sino‐Himalayas and adjacent regions. Taxon Pheasants. Methods Using distribution maps predicted by species distribution models (SDMs) and a time‐calibrated phylogeny for pheasants, we examined the relationships between species richness and predictors including net primary productivity (NPP), niche diversity (NicheDiv), DivRate, evolutionary time (EvolTime) and colonization frequency using Pearson's correlations and structural equation modelling (SEM). We reconstructed ancestral ranges at nodes and examined basal/derived species patterns to reveal the mechanisms underlying species richness gradients in the Sino‐Himalayas. Results We found that ancestral pheasants originated in Africa in the early Oligocene (~33 Ma), and then colonized the Sino‐Himalayan mountains and other regions. In the Sino‐Himalayas, species richness was strongly related to DivRate, NPP, NicheDiv and colonization frequency, but weakly correlated with EvolTime. The direct effects of NicheDiv and DivRate on richness were stronger than NPP and EvolTime. NPP indirectly influenced species richness via DivRate, but its effect on richness via NicheDiv was relatively weak. Main conclusions Higher species diversity in the Sino‐Himalayas was generated by both ecological and evolutionary mechanisms. An increase in available niches, rapid diversifications and multiple colonizations was found to be key direct processes for the build‐up of the diversity hotspots of pheasants in the Sino‐Himalayan mountains. Productivity had an important but indirect effect on species richness, which worked through increased DivRate. Our study offers new insights on species accumulation in the Sino‐Himalayas and provides a useful model for understanding other biodiversity hotspots. AIM: The Sino‐Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological constraints, energetic constraints, diversification rate (DivRate) variation, time‐for‐speciation effect and multiple colonizations, have been posited to explain this pattern. We used pheasants (Aves: Phasianidae) as a model group to test these hypotheses and to understand the ecological and evolutionary processes that have generated the extraordinary diversity in these mountains. LOCATION: Sino‐Himalayas and adjacent regions. TAXON: Pheasants. METHODS: Using distribution maps predicted by species distribution models (SDMs) and a time‐calibrated phylogeny for pheasants, we examined the relationships between species richness and predictors including net primary productivity (NPP), niche diversity (NicheDiv), DivRate, evolutionary time (EvolTime) and colonization frequency using Pearson's correlations and structural equation modelling (SEM). We reconstructed ancestral ranges at nodes and examined basal/derived species patterns to reveal the mechanisms underlying species richness gradients in the Sino‐Himalayas. RESULTS: We found that ancestral pheasants originated in Africa in the early Oligocene (~33 Ma), and then colonized the Sino‐Himalayan mountains and other regions. In the Sino‐Himalayas, species richness was strongly related to DivRate, NPP, NicheDiv and colonization frequency, but weakly correlated with EvolTime. The direct effects of NicheDiv and DivRate on richness were stronger than NPP and EvolTime. NPP indirectly influenced species richness via DivRate, but its effect on richness via NicheDiv was relatively weak. MAIN CONCLUSIONS: Higher species diversity in the Sino‐Himalayas was generated by both ecological and evolutionary mechanisms. An increase in available niches, rapid diversifications and multiple colonizations was found to be key direct processes for the build‐up of the diversity hotspots of pheasants in the Sino‐Himalayan mountains. Productivity had an important but indirect effect on species richness, which worked through increased DivRate. Our study offers new insights on species accumulation in the Sino‐Himalayas and provides a useful model for understanding other biodiversity hotspots. |
Author | Wu, Yongjie Cai, Tianlong Shao, Shimiao Chen, Youhua Song, Gang Quan, Qing Lei, Fumin Qiao, Gexia Fjeldså, Jon Li, Xinhai Qu, Yanhua |
Author_xml | – sequence: 1 givenname: Tianlong surname: Cai fullname: Cai, Tianlong – sequence: 2 givenname: Jon surname: Fjeldså fullname: Fjeldså, Jon – sequence: 3 givenname: Yongjie surname: Wu fullname: Wu, Yongjie – sequence: 4 givenname: Shimiao surname: Shao fullname: Shao, Shimiao – sequence: 5 givenname: Youhua surname: Chen fullname: Chen, Youhua – sequence: 6 givenname: Qing surname: Quan fullname: Quan, Qing – sequence: 7 givenname: Xinhai surname: Li fullname: Li, Xinhai – sequence: 8 givenname: Gang surname: Song fullname: Song, Gang – sequence: 9 givenname: Yanhua surname: Qu fullname: Qu, Yanhua – sequence: 10 givenname: Gexia surname: Qiao fullname: Qiao, Gexia – sequence: 11 givenname: Fumin surname: Lei fullname: Lei, Fumin |
BookMark | eNp1kc1q3DAUhUWYQCZJF32AgKGbdOGJfizJWoU0tPlhoIu0dGmubJmRa0sTSdMyb1-lk2QxJAIhkL7vcDk6RjPnnUHoI8ELktfFoO2CMMLFAZoTJnhJhVIzNMcM8xJTiY_QcYwDxlhxVs3Rw68VpGKC3yYWaWWKB-t8eWsnGGELrpj8xiWwbvc4weBD0dk_JkSbtsXKp7jOu-jz9XplIIJL8fIUHfYwRvPh-TxBP799_XF9Wy6_39xdXy3LlnEqSi6J0IIpDETpmhktQFGiKsZ4rUVVaeg0wxK6vu56UWkJLe2ZFFR3guCWsxN0vstdB_-4MTE1k42tGUdwxm9iQzHP6VSqOqOf9tDBb4LL02UKy1pxxWSmLnZUG3yMwfRNaxMk610KYMeG4Oap5CaX3PwvORuf94x1yOWF7Zvsc_pfO5rt-2Bz_-XuxTjbGUNMPrwaVIj8q1Kyfz0qloU |
CitedBy_id | crossref_primary_10_1093_molbev_msae027 crossref_primary_10_3389_fgene_2018_00392 crossref_primary_10_1016_j_ympev_2022_107580 crossref_primary_10_1111_ddi_13970 crossref_primary_10_1016_j_ympev_2020_107062 crossref_primary_10_1016_j_avrs_2022_100041 crossref_primary_10_1186_s12862_021_01935_1 crossref_primary_10_1002_ece3_6615 crossref_primary_10_1016_j_avrs_2022_100043 crossref_primary_10_1093_gigascience_giac018 crossref_primary_10_1016_j_ympev_2020_106895 crossref_primary_10_2989_00306525_2019_1632954 crossref_primary_10_3897_zse_101_141741 crossref_primary_10_1111_2041_210X_13153 crossref_primary_10_1111_ddi_13667 crossref_primary_10_1128_msphere_00071_23 crossref_primary_10_25226_bboc_v139i3_2019_a3 crossref_primary_10_1111_jbi_14736 crossref_primary_10_3897_BDJ_10_e75303 crossref_primary_10_1016_j_gecco_2025_e03414 crossref_primary_10_1016_j_gecco_2021_e01790 crossref_primary_10_1111_ecog_05044 crossref_primary_10_1134_S0031030124700084 crossref_primary_10_1016_j_gecco_2022_e02068 crossref_primary_10_1134_S0031030124010106 crossref_primary_10_1088_1748_9326_abc6d0 crossref_primary_10_1134_S0031030119020138 crossref_primary_10_1093_cz_zoaa075 crossref_primary_10_1093_evlett_qrae048 crossref_primary_10_1134_S0031030124600902 crossref_primary_10_1111_jbi_14328 crossref_primary_10_1111_jbi_13878 crossref_primary_10_1111_jbi_14974 crossref_primary_10_1134_S0031030124600860 crossref_primary_10_1111_jbi_13964 crossref_primary_10_1088_1748_9326_ab55aa crossref_primary_10_1098_rsos_231695 crossref_primary_10_3389_fpls_2023_1268546 crossref_primary_10_3161_00016454AO2019_54_1_003 crossref_primary_10_1016_j_ympev_2018_10_010 crossref_primary_10_3161_00016454AO2022_57_1_002 crossref_primary_10_1007_s10531_020_02024_3 crossref_primary_10_1038_s41559_021_01515_y crossref_primary_10_1111_mec_15448 crossref_primary_10_1007_s12595_024_00530_8 crossref_primary_10_1016_j_gecco_2020_e01155 crossref_primary_10_1002_ece3_8424 crossref_primary_10_1111_jfb_15296 crossref_primary_10_1111_jbi_13823 crossref_primary_10_1134_S0031030124600896 crossref_primary_10_31857_S0031031X24010118 crossref_primary_10_1016_j_gecco_2019_e00786 crossref_primary_10_1111_csp2_13104 crossref_primary_10_1093_ornithology_ukae019 crossref_primary_10_1111_ibi_12842 crossref_primary_10_2989_00306525_2019_1584925 crossref_primary_10_3897_phytokeys_153_52920 crossref_primary_10_31857_S0031031X24030104 |
Cites_doi | 10.1111/j.1095-8312.2009.01208.x 10.1098/rspb.2006.0301 10.1111/brv.12107 10.1038/nature13272 10.1146/annurev-ecolsys-102710-145113 10.1111/j.1365-2699.2006.01419.x 10.1017/S1464793104006517 10.1642/0004-8038(2000)117[1003:MDPASI]2.0.CO;2 10.1007/s10336-015-1188-3 10.1073/pnas.1008415107 10.1016/j.gecco.2014.12.008 10.1111/ele.12438 10.1111/j.1461-0248.2004.00678.x 10.1093/icb/icj009 10.1111/geb.12197 10.1126/science.1072779 10.1016/j.ympev.2015.06.005 10.1098/rspb.2006.3700 10.1111/j.1558-5646.2007.00085.x 10.1371/journal.pone.0064312 10.1086/345091 10.1073/pnas.1616063114 10.1111/j.1365-2699.2011.02606.x 10.1111/j.1558-5646.2012.01618.x 10.1002/joc.1276 10.1111/j.1461-0248.2008.01260.x 10.1111/mec.12619 10.1111/ecog.00623 10.1111/j.1558-5646.2007.00024.x 10.1016/j.tree.2014.01.010 10.14344/IOC.ML.5.4 10.1111/j.2006.0906-7590.04272.x 10.1093/sysbio/syr006 10.1111/j.1461-0248.2004.00671.x 10.1007/s00035-011-0094-4 10.1111/j.1600-0587.2009.06299.x 10.1111/ecog.00952 10.1111/jbi.12782 10.1038/nature11631 10.1111/2041-210X.12512 10.1093/sysbio/syu056 10.1086/511334 10.1016/j.tree.2004.09.011 10.1111/j.1096-0031.2006.00120.x 10.1111/j.1466-8238.2008.00430.x 10.1111/j.0906-7590.2008.05333.x 10.1111/j.0906-7590.2008.5203.x 10.1126/science.1228282 10.1086/597378 10.1890/08-2244.1 10.1111/geb.12539 10.1111/jbi.12177 10.2307/3544109 10.1016/S0277-3791(01)00104-4 10.1146/annurev.ecolsys.31.1.343 10.1111/jbi.12755 10.1093/biomet/53.3-4.325 |
ContentType | Journal Article |
Copyright | Copyright © 2017 John Wiley & Sons Ltd. 2017 John Wiley & Sons Ltd Copyright © 2018 John Wiley & Sons Ltd |
Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons Ltd. – notice: 2017 John Wiley & Sons Ltd – notice: Copyright © 2018 John Wiley & Sons Ltd |
DBID | AAYXX CITATION 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/jbi.13156 |
DatabaseName | CrossRef Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Biology Ecology |
EISSN | 1365-2699 |
EndPage | 651 |
ExternalDocumentID | 10_1111_jbi_13156 JBI13156 26626977 |
Genre | article |
GeographicLocations | Himalaya Mountains Africa |
GeographicLocations_xml | – name: Himalaya Mountains – name: Africa |
GrantInformation_xml | – fundername: Chinese Academy of Sciences funderid: XDB13020300 – fundername: National Natural Science Foundation of China funderid: 31330073; J1210002; 31501851 – fundername: Ministry of Science and Technology of China funderid: 2014FY210200 – fundername: China Scholarship Council funderid: [2016]7988 – fundername: Danish National Research Foundation funderid: DNRF96 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1OC 29J 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABJNI ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACCZN ACGFS ACPOU ACPRK ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 W8V W99 WBKPD WIH WIK WMRSR WOHZO WQJ WSUWO WXSBR XG1 YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 1OB 31~ AAHHS AAISJ AANHP ABEML ACBWZ ACCFJ ACHIC ACRPL ACSCC ACYXJ ADNMO ADULT ADZOD AEEZP AEQDE AEUQT AFPWT AHXOZ AI. AILXY AIWBW AJBDE AQVQM ASPBG AVWKF AZFZN BDRZF CAG COF DOOOF EQZMY ESX FEDTE GTFYD HF~ HGD HQ2 HTVGU HVGLF H~9 JSODD SAMSI VH1 VOH VQP WRC AAYXX ABSQW AGQPQ AGUYK CITATION 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c3526-5716b6390a19b83eb6a921943358b644badb307adf8df64b7ac2f3762bd610c53 |
IEDL.DBID | DR2 |
ISSN | 0305-0270 |
IngestDate | Fri Jul 11 18:30:36 EDT 2025 Fri Jul 25 12:10:04 EDT 2025 Tue Jul 01 01:14:14 EDT 2025 Thu Apr 24 22:51:35 EDT 2025 Wed Jan 22 16:19:23 EST 2025 Thu Jul 03 21:56:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3526-5716b6390a19b83eb6a921943358b644badb307adf8df64b7ac2f3762bd610c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0190-8315 0000-0002-0297-2319 0000-0001-9920-8167 |
PQID | 2007895937 |
PQPubID | 1086398 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2053902798 proquest_journals_2007895937 crossref_citationtrail_10_1111_jbi_13156 crossref_primary_10_1111_jbi_13156 wiley_primary_10_1111_jbi_13156_JBI13156 jstor_primary_26626977 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180301 March 2018 2018-03-00 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 3 year: 2018 text: 20180301 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Journal of biogeography |
PublicationYear | 2018 |
Publisher | John Wiley & Sons Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons Ltd – name: Wiley Subscription Services, Inc |
References | 2015; 38 2010; 107 2006; 33 2011; 60 2017; 44 2004; 7 2014; 29 2008; 31 2014; 63 2011; 272 2013; 8 2017; 114 2014; 23 1966; 53 2005; 25 2009; 12 2012; 491 2009; 97 2001 2006; 22 2016; 43 2003; 161 2007; 61 2015; 90 2012; 66 2011; 121 2009; 18 2007; 169 2010; 33 2015; 18 2015; 3 2017; 26 2002; 297 2015; 92 2000; 117 2013; 40 1995 1994 2005; 80 2004 2012; 39 2009; 173 2016; 7 2006; 46 2013; 339 2004; 19 2014; 509 2015; 156 2002; 21 2000; 31 2007; 274 2014; 37 2016; 63 1983; 41 2016 2015 2014 2010; 91 2012; 43 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 Collar N. J. (e_1_2_6_7_1) 2001 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 Imhoff M. (e_1_2_6_22_1) 2004 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Cadena C. D. (e_1_2_6_4_1) 2011; 272 Hoyo J. (e_1_2_6_11_1) 1994 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_21_1 R Core Team (e_1_2_6_44_1) 2016 e_1_2_6_40_1 e_1_2_6_61_1 Zhang C. (e_1_2_6_65_1) 2016; 63 e_1_2_6_8_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 117 start-page: 1003 year: 2000 end-page: 1015 article-title: Mitochondrial DNA phylogeny and speciation in the Tragopans publication-title: Auk – volume: 339 start-page: 74 year: 2013 end-page: 78 article-title: An update of Wallace's zoogeographic regions of the world publication-title: Science – volume: 61 start-page: 1188 year: 2007 end-page: 1207 article-title: A phylogenetic perspective on elevational species richness patterns in Middle American treefrogs: Why so few species in lowland tropical rainforests? publication-title: Evolution – volume: 297 start-page: 1548 year: 2002 end-page: 1551 article-title: Geographic range size and determinants of avian species richness publication-title: Science – volume: 3 start-page: 297 year: 2015 end-page: 309 article-title: Biodiversity hotspots: A shortcut for a more complicated concept publication-title: Global Ecology and Conservation – volume: 491 start-page: 444 year: 2012 end-page: 448 article-title: The global diversity of birds in space and time publication-title: Nature – year: 2001 – volume: 63 start-page: 951 year: 2014 end-page: 970 article-title: Model selection in historical biogeography reveals that founder‐event speciation is a crucial process in Island Clades publication-title: Systematic Biology – volume: 43 start-page: 249 year: 2012 end-page: 265 article-title: The role of mountain ranges in the diversification of birds publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 80 start-page: 1 year: 2005 end-page: 25 article-title: Species‐energy relationships at the macroecological scale: A review of the mechanisms publication-title: Biological Reviews – volume: 156 start-page: 91 year: 2015 end-page: 113 article-title: Return to the Malay Archipelago: The biogeography of Sundaic rainforest birds publication-title: Journal of Ornithology – volume: 18 start-page: 264 year: 2009 end-page: 272 article-title: Climate and history explain the species richness peak at mid‐elevation for fishes (Cypriniformes: Cyprinidae) distributed in the Tibetan Plateau and its adjacent regions publication-title: Global Ecology and Biogeography – volume: 26 start-page: 243 year: 2017 end-page: 258 article-title: Integrating occurrence data and expert maps for improved species range predictions publication-title: Global Ecology and Biogeography – volume: 91 start-page: 299 year: 2010 end-page: 305 article-title: A distance‐based framework for measuring functional diversity from multiple traits publication-title: Ecology – volume: 92 start-page: 155 year: 2015 end-page: 164 article-title: A molecular genetic time scale demonstrates Cretaceous origins and multiple diversification rate shifts within the order Galliformes (Aves) publication-title: Molecular Phylogenetics and Evolution – volume: 12 start-page: 57 year: 2009 end-page: 65 article-title: Evolutionary constraints on regional faunas: Whom, but not how many publication-title: Ecology Letters – year: 1994 – year: 2014 – volume: 39 start-page: 556 year: 2012 end-page: 573 article-title: Horizontal and elevational phylogeographic patterns of Himalayan and Southeast Asian forest passerines (Aves: Passeriformes) publication-title: Journal of Biogeography – volume: 107 start-page: 13765 year: 2010 end-page: 13770 article-title: Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia publication-title: Proceedings of the National Academy of Sciences – volume: 33 start-page: 683 year: 2006 end-page: 693 article-title: Macro‐scale bird species richness patterns of the East Asian mainland and islands: Energy, area and isolation publication-title: Journal of Biogeography – volume: 31 start-page: 306 year: 2008 end-page: 315 article-title: Why do mountains support so many species of birds? publication-title: Ecography – year: 2004 – volume: 21 start-page: 147 year: 2002 end-page: 157 article-title: A note on the extent of glaciation throughout the Himalaya during the global Last Glacial Maximum publication-title: Quaternary Science Reviews – volume: 23 start-page: 705 year: 2014 end-page: 720 article-title: Long‐term isolation and stability explain high genetic diversity in the Eastern Himalaya publication-title: Molecular Ecology – volume: 60 start-page: 343 year: 2011 end-page: 357 article-title: Causes of plant diversification in the Cape biodiversity hotspot of South Africa publication-title: Systematic Biology – volume: 7 start-page: 1180 year: 2004 end-page: 1191 article-title: The coincidence of rarity and richness and the potential signature of history in centres of endemism publication-title: Ecology Letters – volume: 161 start-page: 112 year: 2003 end-page: 128 article-title: Explaining species richness from continents to communities: The time‐for‐speciation effect in emydid turtles publication-title: The American Naturalist – volume: 40 start-page: 2310 year: 2013 end-page: 2323 article-title: Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains publication-title: Journal of Biogeography – year: 2015 – volume: 46 start-page: 72 year: 2006 end-page: 81 article-title: Diversification of tanagers, a species rich bird group, from lowlands to montane regions of South America publication-title: Integrative and Comparative Biology – volume: 169 start-page: E68 year: 2007 end-page: E83 article-title: Phylogenetic measures of biodiversity publication-title: The American Naturalist – volume: 31 start-page: 343 year: 2000 end-page: 366 article-title: Mechanisms of maintenance of species diversity publication-title: Annual Review of Ecology and Systematics – volume: 8 start-page: e64312 year: 2013 article-title: Assessing phylogenetic relationships among galliformes: A multigene phylogeny with expanded taxon sampling in Phasianidae publication-title: PLoS ONE – volume: 41 start-page: 496 year: 1983 end-page: 506 article-title: Species‐energy theory: An extension of species‐area theory publication-title: Oikos – volume: 61 start-page: 324 year: 2007 end-page: 333 article-title: Build‐up of the Himalayan avifauna through immigration: A biogeographical analysis of the and Warblers publication-title: Evolution – volume: 274 start-page: 165 year: 2007 end-page: 174 article-title: Predicting continental‐scale patterns of bird species richness with spatially explicit models publication-title: Proceedings of the Royal Society of London B: Biological Sciences – volume: 121 start-page: 73 year: 2011 end-page: 78 article-title: A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data publication-title: Alpine Botany – year: 2016 – volume: 272 start-page: 194 year: 2011 end-page: 201 article-title: Latitude, elevational climatic zonation and speciation in New World vertebrates publication-title: Proceedings of the Royal Society of London B: Biological Sciences – volume: 38 start-page: 241 year: 2015 end-page: 250 article-title: Evolutionary and ecological causes of species richness patterns in North American angiosperm trees publication-title: Ecography – volume: 19 start-page: 639 year: 2004 end-page: 644 article-title: Historical biogeography, ecology and species richness publication-title: Trends in Ecology & Evolution – volume: 274 start-page: 919 year: 2007 end-page: 928 article-title: Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 63 start-page: 131 year: 2016 end-page: 137 article-title: Topographic heterogeneity and temperature amplitude explain species richness patterns of birds in the Qinghai‐Tibetan Plateau publication-title: Current Zoology – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 44 start-page: 122 year: 2017 end-page: 135 article-title: Ancestral range reconstruction of Galliformes: The effects of topology and taxon sampling publication-title: Journal of Biogeography – volume: 33 start-page: 46 year: 2010 end-page: 50 article-title: SAM: A comprehensive application for spatial analysis in macroecology publication-title: Ecography – volume: 7 start-page: 1121 year: 2004 end-page: 1134 article-title: Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness publication-title: Ecology Letters – volume: 22 start-page: 495 year: 2006 end-page: 532 article-title: Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): Effects of character exclusion, data partitioning and missing data publication-title: Cladistics – volume: 43 start-page: 1479 year: 2016 end-page: 1487 article-title: Available data point to a 4‐km‐high Tibetan Plateau by 40 Ma, but 100 molecular‐clock papers have linked supposed recent uplift to young node ages publication-title: Journal of Biogeography – volume: 53 start-page: 325 year: 1966 end-page: 338 article-title: Some distance properties of latent root and vector methods used in multivariate analysis publication-title: Biometrika – volume: 97 start-page: 346 year: 2009 end-page: 361 article-title: Varying rates of diversification in the genus (Lepidoptera: Nymphalidae) during the past 20 million years publication-title: Biological Journal of the Linnean Society – volume: 509 start-page: 222 year: 2014 end-page: 225 article-title: Niche filling slows the diversification of Himalayan songbirds publication-title: Nature – volume: 66 start-page: 2599 year: 2012 end-page: 2613 article-title: Ecological limits on diversification of the Himalayan core Corvoidea publication-title: Evolution – volume: 37 start-page: 1047 year: 2014 end-page: 1055 article-title: Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes publication-title: Ecography – volume: 31 start-page: 161 year: 2008 end-page: 175 article-title: Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation publication-title: Ecography – year: 1995 – volume: 18 start-page: 563 year: 2015 end-page: 571 article-title: Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients publication-title: Ecology Letters – volume: 114 start-page: E3444 year: 2017 end-page: E3451 article-title: Uplift‐driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot publication-title: Proceedings of the National Academy of Sciences – volume: 90 start-page: 236 year: 2015 end-page: 253 article-title: The role of the uplift of the Qinghai‐Tibetan Plateau for the evolution of Tibetan biotas publication-title: Biological Reviews – volume: 173 start-page: 662 year: 2009 end-page: 674 article-title: Ecological limits on clade diversification in higher taxa publication-title: The American Naturalist – volume: 29 start-page: 190 year: 2014 end-page: 197 article-title: Why does diversification slow down? publication-title: Trends in Ecology & Evolution – volume: 23 start-page: 1167 year: 2014 end-page: 1176 article-title: Understanding historical and current patterns of species richness of babblers along a 5000‐m subtropical elevational gradient publication-title: Global Ecology and Biogeography – volume: 7 start-page: 573 year: 2016 end-page: 579 article-title: piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics publication-title: Methods in Ecology and Evolution – ident: e_1_2_6_32_1 doi: 10.1111/j.1095-8312.2009.01208.x – ident: e_1_2_6_60_1 doi: 10.1098/rspb.2006.0301 – ident: e_1_2_6_14_1 doi: 10.1111/brv.12107 – ident: e_1_2_6_41_1 doi: 10.1038/nature13272 – ident: e_1_2_6_15_1 doi: 10.1146/annurev-ecolsys-102710-145113 – ident: e_1_2_6_12_1 doi: 10.1111/j.1365-2699.2006.01419.x – ident: e_1_2_6_13_1 doi: 10.1017/S1464793104006517 – ident: e_1_2_6_47_1 doi: 10.1642/0004-8038(2000)117[1003:MDPASI]2.0.CO;2 – ident: e_1_2_6_53_1 doi: 10.1007/s10336-015-1188-3 – ident: e_1_2_6_5_1 doi: 10.1073/pnas.1008415107 – ident: e_1_2_6_34_1 doi: 10.1016/j.gecco.2014.12.008 – ident: e_1_2_6_3_1 doi: 10.1111/ele.12438 – ident: e_1_2_6_24_1 doi: 10.1111/j.1461-0248.2004.00678.x – ident: e_1_2_6_16_1 doi: 10.1093/icb/icj009 – ident: e_1_2_6_62_1 doi: 10.1111/geb.12197 – volume: 63 start-page: 131 year: 2016 ident: e_1_2_6_65_1 article-title: Topographic heterogeneity and temperature amplitude explain species richness patterns of birds in the Qinghai‐Tibetan Plateau publication-title: Current Zoology – volume: 272 start-page: 194 year: 2011 ident: e_1_2_6_4_1 article-title: Latitude, elevational climatic zonation and speciation in New World vertebrates publication-title: Proceedings of the Royal Society of London B: Biological Sciences – ident: e_1_2_6_23_1 doi: 10.1126/science.1072779 – ident: e_1_2_6_55_1 doi: 10.1016/j.ympev.2015.06.005 – ident: e_1_2_6_46_1 doi: 10.1098/rspb.2006.3700 – ident: e_1_2_6_54_1 doi: 10.1111/j.1558-5646.2007.00085.x – ident: e_1_2_6_57_1 doi: 10.1371/journal.pone.0064312 – ident: e_1_2_6_56_1 doi: 10.1086/345091 – ident: e_1_2_6_64_1 doi: 10.1073/pnas.1616063114 – ident: e_1_2_6_39_1 doi: 10.1111/j.1365-2699.2011.02606.x – ident: e_1_2_6_27_1 doi: 10.1111/j.1558-5646.2012.01618.x – ident: e_1_2_6_20_1 doi: 10.1002/joc.1276 – ident: e_1_2_6_2_1 doi: 10.1111/j.1461-0248.2008.01260.x – ident: e_1_2_6_43_1 doi: 10.1111/mec.12619 – ident: e_1_2_6_10_1 doi: 10.1111/ecog.00623 – ident: e_1_2_6_26_1 doi: 10.1111/j.1558-5646.2007.00024.x – ident: e_1_2_6_37_1 doi: 10.1016/j.tree.2014.01.010 – volume-title: Threatened birds of Asia: The BirdLife International red data book year: 2001 ident: e_1_2_6_7_1 – ident: e_1_2_6_17_1 doi: 10.14344/IOC.ML.5.4 – ident: e_1_2_6_50_1 doi: 10.1111/j.2006.0906-7590.04272.x – ident: e_1_2_6_52_1 doi: 10.1093/sysbio/syr006 – ident: e_1_2_6_9_1 doi: 10.1111/j.1461-0248.2004.00671.x – ident: e_1_2_6_28_1 doi: 10.1007/s00035-011-0094-4 – ident: e_1_2_6_48_1 doi: 10.1111/j.1600-0587.2009.06299.x – ident: e_1_2_6_42_1 doi: 10.1111/ecog.00952 – ident: e_1_2_6_58_1 doi: 10.1111/jbi.12782 – ident: e_1_2_6_25_1 doi: 10.1038/nature11631 – ident: e_1_2_6_31_1 doi: 10.1111/2041-210X.12512 – ident: e_1_2_6_35_1 doi: 10.1093/sysbio/syu056 – ident: e_1_2_6_19_1 doi: 10.1086/511334 – ident: e_1_2_6_59_1 doi: 10.1016/j.tree.2004.09.011 – ident: e_1_2_6_8_1 doi: 10.1111/j.1096-0031.2006.00120.x – volume-title: HANPP collection: Global patterns in net primary productivity (NPP) year: 2004 ident: e_1_2_6_22_1 – ident: e_1_2_6_30_1 – ident: e_1_2_6_33_1 doi: 10.1111/j.1466-8238.2008.00430.x – volume-title: R: A language and environment for statistical computing year: 2016 ident: e_1_2_6_44_1 – ident: e_1_2_6_51_1 doi: 10.1111/j.0906-7590.2008.05333.x – ident: e_1_2_6_40_1 doi: 10.1111/j.0906-7590.2008.5203.x – volume-title: Handbook of the birds of the world year: 1994 ident: e_1_2_6_11_1 – ident: e_1_2_6_21_1 doi: 10.1126/science.1228282 – ident: e_1_2_6_45_1 doi: 10.1086/597378 – ident: e_1_2_6_29_1 doi: 10.1890/08-2244.1 – ident: e_1_2_6_36_1 doi: 10.1111/geb.12539 – ident: e_1_2_6_63_1 doi: 10.1111/jbi.12177 – ident: e_1_2_6_61_1 doi: 10.2307/3544109 – ident: e_1_2_6_38_1 doi: 10.1016/S0277-3791(01)00104-4 – ident: e_1_2_6_6_1 doi: 10.1146/annurev.ecolsys.31.1.343 – ident: e_1_2_6_49_1 doi: 10.1111/jbi.12755 – ident: e_1_2_6_18_1 doi: 10.1093/biomet/53.3-4.325 |
SSID | ssj0009534 |
Score | 2.4615808 |
Snippet | Aim: The Sino-Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological... Aim The Sino‐Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological... AimThe Sino‐Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological... AIM: The Sino‐Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 640 |
SubjectTerms | Africa Biodiversity Biodiversity hot spots biogeography Colonization diversification rate Diversity drivers Ecology energetic constraints Evolution Mathematical models Model testing Mountains multiple colonizations Net Primary Productivity niche diversity Niches Oligocene Oligocene epoch Phasianidae pheasants Phylogeny primary productivity Productivity Sino‐Himalayas Speciation Species diversity Species richness structural equation modeling time‐for‐speciation effect |
Title | What makes the Sino-Himalayan mountains the major diversity hotspots for pheasants? |
URI | https://www.jstor.org/stable/26626977 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbi.13156 https://www.proquest.com/docview/2007895937 https://www.proquest.com/docview/2053902798 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA0iiF78Ftcvonjw0mW3bdoUD6KirIIe1AUPQsm0KVbdVmz3sJ78Cf5Gf4mTpC2rKIi3QKa0TTozb9rXN4TsBsyVmCU8y_a4wALF9yxgibRcjMdcYj5zNdv94tLr9d3zW3Y7Qfbrf2GMPkTzwk15ho7XysEFFONODmm762D5gfFXcbUUILqyxwR3HSMdpchptt-pVIU0i6c-8ksuMnTEL0BzHK7qfHM6R-7qKzU0k8f2sIR29PpNxPGftzJPZiscSg_Ng7NAJmS2SKZMZ8oRjk6iajRdtUm_Hy2RvhL6pgPxKAuKwJFep1n-8fbeSwfiSYxERgeq84RIMzM9EA_5C41r5ge9z0ssosuCIlCmz5gFCkXCOVgm_dOTm-OeVfVlsCKlpm8xrLEAkU1HdAPgjgRPBBj4XMdhHBBfgYgBQ4eIEx4nngu-iOwEA5kNMYK1iDkrZDLLM7lKKKLFCEvQBBgPXOZ3QCACxIMS2XHiroQW2at3KIwq0XLVO-MpbIoXSEO9di2y05g-G6WOn4xW9DY3FohPbA8xcIts1PseVl5cqBadPlfKzTi93Uyj_6mPKiKT-VDZMFwJ2w84Xqve5N_PHp4fnenB2t9N18kMYjRuaG8bZLJ8GcpNxEElbOkH_hNAjQHr |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTttAFL1CIASbQlsQaYEOFZXYOErGr_GiQpSHEl6LlkjszIw9Fi7EjnCiKl31E_gQfoWf4Et6Z8a2AgKpGxZdRBppbhRnfB_nOifnAmwGriOxSngW9RjHBsX3LOEm0nIwHzOJ9czRbPeTU6_Tcw7P3fMpuKv-C2P0IeoHbioydL5WAa4eSE9GuUibbRv7j5JSeSTHv7BhK7529_DufqH0YP9st2OVMwWsSCnBWy72BwKrcou3A8FsKTweYNA6tu0ygdhA8Fig2_M4YXHiOcLnEU0wCKmIEWhEakYEJvwZNUFcKfXvfacTEr-2EatSdDjqt0odI80bqi71UfUzBMhH0HYSIOsKd7AA99XZGGLLVXM0FM3o9xPZyP_l8BbhTQm1yY6JjbcwJbN3MGuGb45xtR-Vq7lyEvzl-D30lJY56fMrWRDExuRHmuUPf247aZ9f8zHPSF8N1-BpZrb7_Gd-Q-KK3EIu82ExwBfBXoAMsNAVime0vQS9V_mmyzCd5ZlcAYKAOMIuOxEuCxzXbwmOIBfflMiWHbelaMBW5RJhVOqyq_Eg12Hdn4k01PeqAZ9r04ERI3nOaFn7VW2BEIx6CPMbsFo5WlgmqkJNIfWZEqfG7Y16G1OM-t2IZzIfKRsXT4L6AcNr1V718qeHh9-6evHh300_wVzn7OQ4PO6eHn2EeYSkzLD8VmF6eDOSawj7hmJdRxuBi9f20L8k916G |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qWtGyKfQlUgoMCKRuHDnj13iBEJBGSQsVoo3UnTtjj1W3jR3ViVBY8Qn8B7_CV_Al3JmxrbSiUjddsIg00twozvg-znVOzgV4HXquxCrhW9RnHBuUwLeEl0rLxXzMJNYzV7PdPx_6_aG7f-KdLMCv-r8wRh-ieeCmIkPnaxXg4ySdD3KRtTsOth8Vo_JAzr5hv1a-HXTx5r6htLd3_LFvVSMFrFgJwVsetgcCi7LNO6FgjhQ-DzFmXcfxmEBoIHgi0Ot5krIk9V0R8JimGINUJIgzYjUiAvP9kuvboZoT0f1K5xR-HaNVpdhwNLArGSNNG6ov9VrxM_zHa8h2Hh_rAtd7BL_rozG8lov2dCLa8fcbqpH_ydk9htUKaJP3JjLWYEHm6_DAjN6c4WovrlYr1Rz4s9kGDJWSORnxC1kSRMbkKMuLPz9-9rMRv-QznpORGq3Bs9xsj_h5cUWSmtpCzopJOcYXwU6AjLHMlYpl9G4ThvfyTbdgMS9y-QQIwuEYe-xUeCx0vcAWHCEuvimVtpN0pGjBbu0RUVypsqvhIJdR052JLNL3qgWvGtOxkSL5l9GWdqvGAgEY9RHkt2Cn9rOoSlOlmkEaMCVNjdsvm21MMOpXI57LYqpsPDwJGoQMr1U71e2fHu1_GOjF9t1NX8Dyl24v-jQ4PHgKDxGPMkPx24HFydVUPkPMNxHPdawROL1vB_0LjTtdNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+makes+the+Sino%E2%80%90Himalayan+mountains+the+major+diversity+hotspots+for+pheasants%3F&rft.jtitle=Journal+of+biogeography&rft.au=Cai%2C+Tianlong&rft.au=Fjelds%C3%A5%2C+Jon&rft.au=Wu%2C+Yongjie&rft.au=Shao%2C+Shimiao&rft.date=2018-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0305-0270&rft.eissn=1365-2699&rft.volume=45&rft.issue=3&rft.spage=640&rft.epage=651&rft_id=info:doi/10.1111%2Fjbi.13156&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon |