What makes the Sino-Himalayan mountains the major diversity hotspots for pheasants?

Aim: The Sino-Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological constraints, energetic constraints, diversification rate (DivRate) variation, time-for-speciation effect and multiple colonizations, have be...

Full description

Saved in:
Bibliographic Details
Published inJournal of biogeography Vol. 45; no. 3; pp. 640 - 651
Main Authors Cai, Tianlong, Fjeldså, Jon, Wu, Yongjie, Shao, Shimiao, Chen, Youhua, Quan, Qing, Li, Xinhai, Song, Gang, Qu, Yanhua, Qiao, Gexia, Lei, Fumin
Format Journal Article
LanguageEnglish
Published Oxford John Wiley & Sons Ltd 01.03.2018
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aim: The Sino-Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological constraints, energetic constraints, diversification rate (DivRate) variation, time-for-speciation effect and multiple colonizations, have been posited to explain this pattern. We used pheasants (Aves: Phasianidae) as a model group to test these hypotheses and to understand the ecological and evolutionary processes that have generated the extraordinary diversity in these mountains. Location: Sino-Himalayas and adjacent regions. Taxon: Pheasants. Methods: Using distribution maps predicted by species distribution models (SDMs) and a time-calibrated phylogeny for pheasants, we examined the relationships between species richness and predictors including net primary productivity (NPP), niche diversity (NicheDiv), DivRate, evolutionary time (EvolTime) and colonization frequency using Pearson's correlations and structural equation modelling (SEM). We reconstructed ancestral ranges at nodes and examined basal/derived species patterns to reveal the mechanisms underlying species richness gradients in the Sino-Himalayas. Results: We found that ancestral pheasants originated in Africa in the early Oligocene (∼33 Ma), and then colonized the Sino-Himalayan mountains and other regions. In the Sino-Himalayas, species richness was strongly related to DivRate, NPP, NicheDiv and colonization frequency, but weakly correlated with EvolTime. The direct effects of NicheDiv and DivRate on richness were stronger than NPP and EvolTime. NPP indirectly influenced species richness via DivRate, but its effect on richness via NicheDiv was relatively weak. Main conclusions: Higher species diversity in the Sino-Himalayas was generated by both ecological and evolutionary mechanisms. An increase in available niches, rapid diversifications and multiple colonizations was found to be key direct processes for the build-up of the diversity hotspots of pheasants in the Sino-Himalayan mountains. Productivity had an important but indirect effect on species richness, which worked through increased DivRate. Our study offers new insights on species accumulation in the Sino-Himalayas and provides a useful model for understanding other biodiversity hotspots.
AbstractList Aim: The Sino-Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological constraints, energetic constraints, diversification rate (DivRate) variation, time-for-speciation effect and multiple colonizations, have been posited to explain this pattern. We used pheasants (Aves: Phasianidae) as a model group to test these hypotheses and to understand the ecological and evolutionary processes that have generated the extraordinary diversity in these mountains. Location: Sino-Himalayas and adjacent regions. Taxon: Pheasants. Methods: Using distribution maps predicted by species distribution models (SDMs) and a time-calibrated phylogeny for pheasants, we examined the relationships between species richness and predictors including net primary productivity (NPP), niche diversity (NicheDiv), DivRate, evolutionary time (EvolTime) and colonization frequency using Pearson's correlations and structural equation modelling (SEM). We reconstructed ancestral ranges at nodes and examined basal/derived species patterns to reveal the mechanisms underlying species richness gradients in the Sino-Himalayas. Results: We found that ancestral pheasants originated in Africa in the early Oligocene (∼33 Ma), and then colonized the Sino-Himalayan mountains and other regions. In the Sino-Himalayas, species richness was strongly related to DivRate, NPP, NicheDiv and colonization frequency, but weakly correlated with EvolTime. The direct effects of NicheDiv and DivRate on richness were stronger than NPP and EvolTime. NPP indirectly influenced species richness via DivRate, but its effect on richness via NicheDiv was relatively weak. Main conclusions: Higher species diversity in the Sino-Himalayas was generated by both ecological and evolutionary mechanisms. An increase in available niches, rapid diversifications and multiple colonizations was found to be key direct processes for the build-up of the diversity hotspots of pheasants in the Sino-Himalayan mountains. Productivity had an important but indirect effect on species richness, which worked through increased DivRate. Our study offers new insights on species accumulation in the Sino-Himalayas and provides a useful model for understanding other biodiversity hotspots.
AimThe Sino‐Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological constraints, energetic constraints, diversification rate (DivRate) variation, time‐for‐speciation effect and multiple colonizations, have been posited to explain this pattern. We used pheasants (Aves: Phasianidae) as a model group to test these hypotheses and to understand the ecological and evolutionary processes that have generated the extraordinary diversity in these mountains.LocationSino‐Himalayas and adjacent regions.TaxonPheasants.MethodsUsing distribution maps predicted by species distribution models (SDMs) and a time‐calibrated phylogeny for pheasants, we examined the relationships between species richness and predictors including net primary productivity (NPP), niche diversity (NicheDiv), DivRate, evolutionary time (EvolTime) and colonization frequency using Pearson's correlations and structural equation modelling (SEM). We reconstructed ancestral ranges at nodes and examined basal/derived species patterns to reveal the mechanisms underlying species richness gradients in the Sino‐Himalayas.ResultsWe found that ancestral pheasants originated in Africa in the early Oligocene (~33 Ma), and then colonized the Sino‐Himalayan mountains and other regions. In the Sino‐Himalayas, species richness was strongly related to DivRate, NPP, NicheDiv and colonization frequency, but weakly correlated with EvolTime. The direct effects of NicheDiv and DivRate on richness were stronger than NPP and EvolTime. NPP indirectly influenced species richness via DivRate, but its effect on richness via NicheDiv was relatively weak.Main conclusionsHigher species diversity in the Sino‐Himalayas was generated by both ecological and evolutionary mechanisms. An increase in available niches, rapid diversifications and multiple colonizations was found to be key direct processes for the build‐up of the diversity hotspots of pheasants in the Sino‐Himalayan mountains. Productivity had an important but indirect effect on species richness, which worked through increased DivRate. Our study offers new insights on species accumulation in the Sino‐Himalayas and provides a useful model for understanding other biodiversity hotspots.
Aim The Sino‐Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological constraints, energetic constraints, diversification rate (DivRate) variation, time‐for‐speciation effect and multiple colonizations, have been posited to explain this pattern. We used pheasants (Aves: Phasianidae) as a model group to test these hypotheses and to understand the ecological and evolutionary processes that have generated the extraordinary diversity in these mountains. Location Sino‐Himalayas and adjacent regions. Taxon Pheasants. Methods Using distribution maps predicted by species distribution models (SDMs) and a time‐calibrated phylogeny for pheasants, we examined the relationships between species richness and predictors including net primary productivity (NPP), niche diversity (NicheDiv), DivRate, evolutionary time (EvolTime) and colonization frequency using Pearson's correlations and structural equation modelling (SEM). We reconstructed ancestral ranges at nodes and examined basal/derived species patterns to reveal the mechanisms underlying species richness gradients in the Sino‐Himalayas. Results We found that ancestral pheasants originated in Africa in the early Oligocene (~33 Ma), and then colonized the Sino‐Himalayan mountains and other regions. In the Sino‐Himalayas, species richness was strongly related to DivRate, NPP, NicheDiv and colonization frequency, but weakly correlated with EvolTime. The direct effects of NicheDiv and DivRate on richness were stronger than NPP and EvolTime. NPP indirectly influenced species richness via DivRate, but its effect on richness via NicheDiv was relatively weak. Main conclusions Higher species diversity in the Sino‐Himalayas was generated by both ecological and evolutionary mechanisms. An increase in available niches, rapid diversifications and multiple colonizations was found to be key direct processes for the build‐up of the diversity hotspots of pheasants in the Sino‐Himalayan mountains. Productivity had an important but indirect effect on species richness, which worked through increased DivRate. Our study offers new insights on species accumulation in the Sino‐Himalayas and provides a useful model for understanding other biodiversity hotspots.
AIM: The Sino‐Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological constraints, energetic constraints, diversification rate (DivRate) variation, time‐for‐speciation effect and multiple colonizations, have been posited to explain this pattern. We used pheasants (Aves: Phasianidae) as a model group to test these hypotheses and to understand the ecological and evolutionary processes that have generated the extraordinary diversity in these mountains. LOCATION: Sino‐Himalayas and adjacent regions. TAXON: Pheasants. METHODS: Using distribution maps predicted by species distribution models (SDMs) and a time‐calibrated phylogeny for pheasants, we examined the relationships between species richness and predictors including net primary productivity (NPP), niche diversity (NicheDiv), DivRate, evolutionary time (EvolTime) and colonization frequency using Pearson's correlations and structural equation modelling (SEM). We reconstructed ancestral ranges at nodes and examined basal/derived species patterns to reveal the mechanisms underlying species richness gradients in the Sino‐Himalayas. RESULTS: We found that ancestral pheasants originated in Africa in the early Oligocene (~33 Ma), and then colonized the Sino‐Himalayan mountains and other regions. In the Sino‐Himalayas, species richness was strongly related to DivRate, NPP, NicheDiv and colonization frequency, but weakly correlated with EvolTime. The direct effects of NicheDiv and DivRate on richness were stronger than NPP and EvolTime. NPP indirectly influenced species richness via DivRate, but its effect on richness via NicheDiv was relatively weak. MAIN CONCLUSIONS: Higher species diversity in the Sino‐Himalayas was generated by both ecological and evolutionary mechanisms. An increase in available niches, rapid diversifications and multiple colonizations was found to be key direct processes for the build‐up of the diversity hotspots of pheasants in the Sino‐Himalayan mountains. Productivity had an important but indirect effect on species richness, which worked through increased DivRate. Our study offers new insights on species accumulation in the Sino‐Himalayas and provides a useful model for understanding other biodiversity hotspots.
Author Wu, Yongjie
Cai, Tianlong
Shao, Shimiao
Chen, Youhua
Song, Gang
Quan, Qing
Lei, Fumin
Qiao, Gexia
Fjeldså, Jon
Li, Xinhai
Qu, Yanhua
Author_xml – sequence: 1
  givenname: Tianlong
  surname: Cai
  fullname: Cai, Tianlong
– sequence: 2
  givenname: Jon
  surname: Fjeldså
  fullname: Fjeldså, Jon
– sequence: 3
  givenname: Yongjie
  surname: Wu
  fullname: Wu, Yongjie
– sequence: 4
  givenname: Shimiao
  surname: Shao
  fullname: Shao, Shimiao
– sequence: 5
  givenname: Youhua
  surname: Chen
  fullname: Chen, Youhua
– sequence: 6
  givenname: Qing
  surname: Quan
  fullname: Quan, Qing
– sequence: 7
  givenname: Xinhai
  surname: Li
  fullname: Li, Xinhai
– sequence: 8
  givenname: Gang
  surname: Song
  fullname: Song, Gang
– sequence: 9
  givenname: Yanhua
  surname: Qu
  fullname: Qu, Yanhua
– sequence: 10
  givenname: Gexia
  surname: Qiao
  fullname: Qiao, Gexia
– sequence: 11
  givenname: Fumin
  surname: Lei
  fullname: Lei, Fumin
BookMark eNp1kc1q3DAUhUWYQCZJF32AgKGbdOGJfizJWoU0tPlhoIu0dGmubJmRa0sTSdMyb1-lk2QxJAIhkL7vcDk6RjPnnUHoI8ELktfFoO2CMMLFAZoTJnhJhVIzNMcM8xJTiY_QcYwDxlhxVs3Rw68VpGKC3yYWaWWKB-t8eWsnGGELrpj8xiWwbvc4weBD0dk_JkSbtsXKp7jOu-jz9XplIIJL8fIUHfYwRvPh-TxBP799_XF9Wy6_39xdXy3LlnEqSi6J0IIpDETpmhktQFGiKsZ4rUVVaeg0wxK6vu56UWkJLe2ZFFR3guCWsxN0vstdB_-4MTE1k42tGUdwxm9iQzHP6VSqOqOf9tDBb4LL02UKy1pxxWSmLnZUG3yMwfRNaxMk610KYMeG4Oap5CaX3PwvORuf94x1yOWF7Zvsc_pfO5rt-2Bz_-XuxTjbGUNMPrwaVIj8q1Kyfz0qloU
CitedBy_id crossref_primary_10_1093_molbev_msae027
crossref_primary_10_3389_fgene_2018_00392
crossref_primary_10_1016_j_ympev_2022_107580
crossref_primary_10_1111_ddi_13970
crossref_primary_10_1016_j_ympev_2020_107062
crossref_primary_10_1016_j_avrs_2022_100041
crossref_primary_10_1186_s12862_021_01935_1
crossref_primary_10_1002_ece3_6615
crossref_primary_10_1016_j_avrs_2022_100043
crossref_primary_10_1093_gigascience_giac018
crossref_primary_10_1016_j_ympev_2020_106895
crossref_primary_10_2989_00306525_2019_1632954
crossref_primary_10_3897_zse_101_141741
crossref_primary_10_1111_2041_210X_13153
crossref_primary_10_1111_ddi_13667
crossref_primary_10_1128_msphere_00071_23
crossref_primary_10_25226_bboc_v139i3_2019_a3
crossref_primary_10_1111_jbi_14736
crossref_primary_10_3897_BDJ_10_e75303
crossref_primary_10_1016_j_gecco_2025_e03414
crossref_primary_10_1016_j_gecco_2021_e01790
crossref_primary_10_1111_ecog_05044
crossref_primary_10_1134_S0031030124700084
crossref_primary_10_1016_j_gecco_2022_e02068
crossref_primary_10_1134_S0031030124010106
crossref_primary_10_1088_1748_9326_abc6d0
crossref_primary_10_1134_S0031030119020138
crossref_primary_10_1093_cz_zoaa075
crossref_primary_10_1093_evlett_qrae048
crossref_primary_10_1134_S0031030124600902
crossref_primary_10_1111_jbi_14328
crossref_primary_10_1111_jbi_13878
crossref_primary_10_1111_jbi_14974
crossref_primary_10_1134_S0031030124600860
crossref_primary_10_1111_jbi_13964
crossref_primary_10_1088_1748_9326_ab55aa
crossref_primary_10_1098_rsos_231695
crossref_primary_10_3389_fpls_2023_1268546
crossref_primary_10_3161_00016454AO2019_54_1_003
crossref_primary_10_1016_j_ympev_2018_10_010
crossref_primary_10_3161_00016454AO2022_57_1_002
crossref_primary_10_1007_s10531_020_02024_3
crossref_primary_10_1038_s41559_021_01515_y
crossref_primary_10_1111_mec_15448
crossref_primary_10_1007_s12595_024_00530_8
crossref_primary_10_1016_j_gecco_2020_e01155
crossref_primary_10_1002_ece3_8424
crossref_primary_10_1111_jfb_15296
crossref_primary_10_1111_jbi_13823
crossref_primary_10_1134_S0031030124600896
crossref_primary_10_31857_S0031031X24010118
crossref_primary_10_1016_j_gecco_2019_e00786
crossref_primary_10_1111_csp2_13104
crossref_primary_10_1093_ornithology_ukae019
crossref_primary_10_1111_ibi_12842
crossref_primary_10_2989_00306525_2019_1584925
crossref_primary_10_3897_phytokeys_153_52920
crossref_primary_10_31857_S0031031X24030104
Cites_doi 10.1111/j.1095-8312.2009.01208.x
10.1098/rspb.2006.0301
10.1111/brv.12107
10.1038/nature13272
10.1146/annurev-ecolsys-102710-145113
10.1111/j.1365-2699.2006.01419.x
10.1017/S1464793104006517
10.1642/0004-8038(2000)117[1003:MDPASI]2.0.CO;2
10.1007/s10336-015-1188-3
10.1073/pnas.1008415107
10.1016/j.gecco.2014.12.008
10.1111/ele.12438
10.1111/j.1461-0248.2004.00678.x
10.1093/icb/icj009
10.1111/geb.12197
10.1126/science.1072779
10.1016/j.ympev.2015.06.005
10.1098/rspb.2006.3700
10.1111/j.1558-5646.2007.00085.x
10.1371/journal.pone.0064312
10.1086/345091
10.1073/pnas.1616063114
10.1111/j.1365-2699.2011.02606.x
10.1111/j.1558-5646.2012.01618.x
10.1002/joc.1276
10.1111/j.1461-0248.2008.01260.x
10.1111/mec.12619
10.1111/ecog.00623
10.1111/j.1558-5646.2007.00024.x
10.1016/j.tree.2014.01.010
10.14344/IOC.ML.5.4
10.1111/j.2006.0906-7590.04272.x
10.1093/sysbio/syr006
10.1111/j.1461-0248.2004.00671.x
10.1007/s00035-011-0094-4
10.1111/j.1600-0587.2009.06299.x
10.1111/ecog.00952
10.1111/jbi.12782
10.1038/nature11631
10.1111/2041-210X.12512
10.1093/sysbio/syu056
10.1086/511334
10.1016/j.tree.2004.09.011
10.1111/j.1096-0031.2006.00120.x
10.1111/j.1466-8238.2008.00430.x
10.1111/j.0906-7590.2008.05333.x
10.1111/j.0906-7590.2008.5203.x
10.1126/science.1228282
10.1086/597378
10.1890/08-2244.1
10.1111/geb.12539
10.1111/jbi.12177
10.2307/3544109
10.1016/S0277-3791(01)00104-4
10.1146/annurev.ecolsys.31.1.343
10.1111/jbi.12755
10.1093/biomet/53.3-4.325
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons Ltd.
2017 John Wiley & Sons Ltd
Copyright © 2018 John Wiley & Sons Ltd
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons Ltd.
– notice: 2017 John Wiley & Sons Ltd
– notice: Copyright © 2018 John Wiley & Sons Ltd
DBID AAYXX
CITATION
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
DOI 10.1111/jbi.13156
DatabaseName CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Entomology Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Biology
Ecology
EISSN 1365-2699
EndPage 651
ExternalDocumentID 10_1111_jbi_13156
JBI13156
26626977
Genre article
GeographicLocations Himalaya Mountains
Africa
GeographicLocations_xml – name: Himalaya Mountains
– name: Africa
GrantInformation_xml – fundername: Chinese Academy of Sciences
  funderid: XDB13020300
– fundername: National Natural Science Foundation of China
  funderid: 31330073; J1210002; 31501851
– fundername: Ministry of Science and Technology of China
  funderid: 2014FY210200
– fundername: China Scholarship Council
  funderid: [2016]7988
– fundername: Danish National Research Foundation
  funderid: DNRF96
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1OC
29J
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABJNI
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACGFS
ACPOU
ACPRK
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
W8V
W99
WBKPD
WIH
WIK
WMRSR
WOHZO
WQJ
WSUWO
WXSBR
XG1
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
1OB
31~
AAHHS
AAISJ
AANHP
ABEML
ACBWZ
ACCFJ
ACHIC
ACRPL
ACSCC
ACYXJ
ADNMO
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AI.
AILXY
AIWBW
AJBDE
AQVQM
ASPBG
AVWKF
AZFZN
BDRZF
CAG
COF
DOOOF
EQZMY
ESX
FEDTE
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
H~9
JSODD
SAMSI
VH1
VOH
VQP
WRC
AAYXX
ABSQW
AGQPQ
AGUYK
CITATION
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c3526-5716b6390a19b83eb6a921943358b644badb307adf8df64b7ac2f3762bd610c53
IEDL.DBID DR2
ISSN 0305-0270
IngestDate Fri Jul 11 18:30:36 EDT 2025
Fri Jul 25 12:10:04 EDT 2025
Tue Jul 01 01:14:14 EDT 2025
Thu Apr 24 22:51:35 EDT 2025
Wed Jan 22 16:19:23 EST 2025
Thu Jul 03 21:56:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3526-5716b6390a19b83eb6a921943358b644badb307adf8df64b7ac2f3762bd610c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0190-8315
0000-0002-0297-2319
0000-0001-9920-8167
PQID 2007895937
PQPubID 1086398
PageCount 12
ParticipantIDs proquest_miscellaneous_2053902798
proquest_journals_2007895937
crossref_citationtrail_10_1111_jbi_13156
crossref_primary_10_1111_jbi_13156
wiley_primary_10_1111_jbi_13156_JBI13156
jstor_primary_26626977
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180301
March 2018
2018-03-00
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 3
  year: 2018
  text: 20180301
  day: 1
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of biogeography
PublicationYear 2018
Publisher John Wiley & Sons Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons Ltd
– name: Wiley Subscription Services, Inc
References 2015; 38
2010; 107
2006; 33
2011; 60
2017; 44
2004; 7
2014; 29
2008; 31
2014; 63
2011; 272
2013; 8
2017; 114
2014; 23
1966; 53
2005; 25
2009; 12
2012; 491
2009; 97
2001
2006; 22
2016; 43
2003; 161
2007; 61
2015; 90
2012; 66
2011; 121
2009; 18
2007; 169
2010; 33
2015; 18
2015; 3
2017; 26
2002; 297
2015; 92
2000; 117
2013; 40
1995
1994
2005; 80
2004
2012; 39
2009; 173
2016; 7
2006; 46
2013; 339
2004; 19
2014; 509
2015; 156
2002; 21
2000; 31
2007; 274
2014; 37
2016; 63
1983; 41
2016
2015
2014
2010; 91
2012; 43
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
Collar N. J. (e_1_2_6_7_1) 2001
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
Imhoff M. (e_1_2_6_22_1) 2004
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Cadena C. D. (e_1_2_6_4_1) 2011; 272
Hoyo J. (e_1_2_6_11_1) 1994
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_21_1
R Core Team (e_1_2_6_44_1) 2016
e_1_2_6_40_1
e_1_2_6_61_1
Zhang C. (e_1_2_6_65_1) 2016; 63
e_1_2_6_8_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 117
  start-page: 1003
  year: 2000
  end-page: 1015
  article-title: Mitochondrial DNA phylogeny and speciation in the Tragopans
  publication-title: Auk
– volume: 339
  start-page: 74
  year: 2013
  end-page: 78
  article-title: An update of Wallace's zoogeographic regions of the world
  publication-title: Science
– volume: 61
  start-page: 1188
  year: 2007
  end-page: 1207
  article-title: A phylogenetic perspective on elevational species richness patterns in Middle American treefrogs: Why so few species in lowland tropical rainforests?
  publication-title: Evolution
– volume: 297
  start-page: 1548
  year: 2002
  end-page: 1551
  article-title: Geographic range size and determinants of avian species richness
  publication-title: Science
– volume: 3
  start-page: 297
  year: 2015
  end-page: 309
  article-title: Biodiversity hotspots: A shortcut for a more complicated concept
  publication-title: Global Ecology and Conservation
– volume: 491
  start-page: 444
  year: 2012
  end-page: 448
  article-title: The global diversity of birds in space and time
  publication-title: Nature
– year: 2001
– volume: 63
  start-page: 951
  year: 2014
  end-page: 970
  article-title: Model selection in historical biogeography reveals that founder‐event speciation is a crucial process in Island Clades
  publication-title: Systematic Biology
– volume: 43
  start-page: 249
  year: 2012
  end-page: 265
  article-title: The role of mountain ranges in the diversification of birds
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 80
  start-page: 1
  year: 2005
  end-page: 25
  article-title: Species‐energy relationships at the macroecological scale: A review of the mechanisms
  publication-title: Biological Reviews
– volume: 156
  start-page: 91
  year: 2015
  end-page: 113
  article-title: Return to the Malay Archipelago: The biogeography of Sundaic rainforest birds
  publication-title: Journal of Ornithology
– volume: 18
  start-page: 264
  year: 2009
  end-page: 272
  article-title: Climate and history explain the species richness peak at mid‐elevation for fishes (Cypriniformes: Cyprinidae) distributed in the Tibetan Plateau and its adjacent regions
  publication-title: Global Ecology and Biogeography
– volume: 26
  start-page: 243
  year: 2017
  end-page: 258
  article-title: Integrating occurrence data and expert maps for improved species range predictions
  publication-title: Global Ecology and Biogeography
– volume: 91
  start-page: 299
  year: 2010
  end-page: 305
  article-title: A distance‐based framework for measuring functional diversity from multiple traits
  publication-title: Ecology
– volume: 92
  start-page: 155
  year: 2015
  end-page: 164
  article-title: A molecular genetic time scale demonstrates Cretaceous origins and multiple diversification rate shifts within the order Galliformes (Aves)
  publication-title: Molecular Phylogenetics and Evolution
– volume: 12
  start-page: 57
  year: 2009
  end-page: 65
  article-title: Evolutionary constraints on regional faunas: Whom, but not how many
  publication-title: Ecology Letters
– year: 1994
– year: 2014
– volume: 39
  start-page: 556
  year: 2012
  end-page: 573
  article-title: Horizontal and elevational phylogeographic patterns of Himalayan and Southeast Asian forest passerines (Aves: Passeriformes)
  publication-title: Journal of Biogeography
– volume: 107
  start-page: 13765
  year: 2010
  end-page: 13770
  article-title: Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia
  publication-title: Proceedings of the National Academy of Sciences
– volume: 33
  start-page: 683
  year: 2006
  end-page: 693
  article-title: Macro‐scale bird species richness patterns of the East Asian mainland and islands: Energy, area and isolation
  publication-title: Journal of Biogeography
– volume: 31
  start-page: 306
  year: 2008
  end-page: 315
  article-title: Why do mountains support so many species of birds?
  publication-title: Ecography
– year: 2004
– volume: 21
  start-page: 147
  year: 2002
  end-page: 157
  article-title: A note on the extent of glaciation throughout the Himalaya during the global Last Glacial Maximum
  publication-title: Quaternary Science Reviews
– volume: 23
  start-page: 705
  year: 2014
  end-page: 720
  article-title: Long‐term isolation and stability explain high genetic diversity in the Eastern Himalaya
  publication-title: Molecular Ecology
– volume: 60
  start-page: 343
  year: 2011
  end-page: 357
  article-title: Causes of plant diversification in the Cape biodiversity hotspot of South Africa
  publication-title: Systematic Biology
– volume: 7
  start-page: 1180
  year: 2004
  end-page: 1191
  article-title: The coincidence of rarity and richness and the potential signature of history in centres of endemism
  publication-title: Ecology Letters
– volume: 161
  start-page: 112
  year: 2003
  end-page: 128
  article-title: Explaining species richness from continents to communities: The time‐for‐speciation effect in emydid turtles
  publication-title: The American Naturalist
– volume: 40
  start-page: 2310
  year: 2013
  end-page: 2323
  article-title: Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains
  publication-title: Journal of Biogeography
– year: 2015
– volume: 46
  start-page: 72
  year: 2006
  end-page: 81
  article-title: Diversification of tanagers, a species rich bird group, from lowlands to montane regions of South America
  publication-title: Integrative and Comparative Biology
– volume: 169
  start-page: E68
  year: 2007
  end-page: E83
  article-title: Phylogenetic measures of biodiversity
  publication-title: The American Naturalist
– volume: 31
  start-page: 343
  year: 2000
  end-page: 366
  article-title: Mechanisms of maintenance of species diversity
  publication-title: Annual Review of Ecology and Systematics
– volume: 8
  start-page: e64312
  year: 2013
  article-title: Assessing phylogenetic relationships among galliformes: A multigene phylogeny with expanded taxon sampling in Phasianidae
  publication-title: PLoS ONE
– volume: 41
  start-page: 496
  year: 1983
  end-page: 506
  article-title: Species‐energy theory: An extension of species‐area theory
  publication-title: Oikos
– volume: 61
  start-page: 324
  year: 2007
  end-page: 333
  article-title: Build‐up of the Himalayan avifauna through immigration: A biogeographical analysis of the and Warblers
  publication-title: Evolution
– volume: 274
  start-page: 165
  year: 2007
  end-page: 174
  article-title: Predicting continental‐scale patterns of bird species richness with spatially explicit models
  publication-title: Proceedings of the Royal Society of London B: Biological Sciences
– volume: 121
  start-page: 73
  year: 2011
  end-page: 78
  article-title: A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data
  publication-title: Alpine Botany
– year: 2016
– volume: 272
  start-page: 194
  year: 2011
  end-page: 201
  article-title: Latitude, elevational climatic zonation and speciation in New World vertebrates
  publication-title: Proceedings of the Royal Society of London B: Biological Sciences
– volume: 38
  start-page: 241
  year: 2015
  end-page: 250
  article-title: Evolutionary and ecological causes of species richness patterns in North American angiosperm trees
  publication-title: Ecography
– volume: 19
  start-page: 639
  year: 2004
  end-page: 644
  article-title: Historical biogeography, ecology and species richness
  publication-title: Trends in Ecology & Evolution
– volume: 274
  start-page: 919
  year: 2007
  end-page: 928
  article-title: Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 63
  start-page: 131
  year: 2016
  end-page: 137
  article-title: Topographic heterogeneity and temperature amplitude explain species richness patterns of birds in the Qinghai‐Tibetan Plateau
  publication-title: Current Zoology
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 44
  start-page: 122
  year: 2017
  end-page: 135
  article-title: Ancestral range reconstruction of Galliformes: The effects of topology and taxon sampling
  publication-title: Journal of Biogeography
– volume: 33
  start-page: 46
  year: 2010
  end-page: 50
  article-title: SAM: A comprehensive application for spatial analysis in macroecology
  publication-title: Ecography
– volume: 7
  start-page: 1121
  year: 2004
  end-page: 1134
  article-title: Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness
  publication-title: Ecology Letters
– volume: 22
  start-page: 495
  year: 2006
  end-page: 532
  article-title: Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): Effects of character exclusion, data partitioning and missing data
  publication-title: Cladistics
– volume: 43
  start-page: 1479
  year: 2016
  end-page: 1487
  article-title: Available data point to a 4‐km‐high Tibetan Plateau by 40 Ma, but 100 molecular‐clock papers have linked supposed recent uplift to young node ages
  publication-title: Journal of Biogeography
– volume: 53
  start-page: 325
  year: 1966
  end-page: 338
  article-title: Some distance properties of latent root and vector methods used in multivariate analysis
  publication-title: Biometrika
– volume: 97
  start-page: 346
  year: 2009
  end-page: 361
  article-title: Varying rates of diversification in the genus (Lepidoptera: Nymphalidae) during the past 20 million years
  publication-title: Biological Journal of the Linnean Society
– volume: 509
  start-page: 222
  year: 2014
  end-page: 225
  article-title: Niche filling slows the diversification of Himalayan songbirds
  publication-title: Nature
– volume: 66
  start-page: 2599
  year: 2012
  end-page: 2613
  article-title: Ecological limits on diversification of the Himalayan core Corvoidea
  publication-title: Evolution
– volume: 37
  start-page: 1047
  year: 2014
  end-page: 1055
  article-title: Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes
  publication-title: Ecography
– volume: 31
  start-page: 161
  year: 2008
  end-page: 175
  article-title: Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation
  publication-title: Ecography
– year: 1995
– volume: 18
  start-page: 563
  year: 2015
  end-page: 571
  article-title: Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients
  publication-title: Ecology Letters
– volume: 114
  start-page: E3444
  year: 2017
  end-page: E3451
  article-title: Uplift‐driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot
  publication-title: Proceedings of the National Academy of Sciences
– volume: 90
  start-page: 236
  year: 2015
  end-page: 253
  article-title: The role of the uplift of the Qinghai‐Tibetan Plateau for the evolution of Tibetan biotas
  publication-title: Biological Reviews
– volume: 173
  start-page: 662
  year: 2009
  end-page: 674
  article-title: Ecological limits on clade diversification in higher taxa
  publication-title: The American Naturalist
– volume: 29
  start-page: 190
  year: 2014
  end-page: 197
  article-title: Why does diversification slow down?
  publication-title: Trends in Ecology & Evolution
– volume: 23
  start-page: 1167
  year: 2014
  end-page: 1176
  article-title: Understanding historical and current patterns of species richness of babblers along a 5000‐m subtropical elevational gradient
  publication-title: Global Ecology and Biogeography
– volume: 7
  start-page: 573
  year: 2016
  end-page: 579
  article-title: piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics
  publication-title: Methods in Ecology and Evolution
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1095-8312.2009.01208.x
– ident: e_1_2_6_60_1
  doi: 10.1098/rspb.2006.0301
– ident: e_1_2_6_14_1
  doi: 10.1111/brv.12107
– ident: e_1_2_6_41_1
  doi: 10.1038/nature13272
– ident: e_1_2_6_15_1
  doi: 10.1146/annurev-ecolsys-102710-145113
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1365-2699.2006.01419.x
– ident: e_1_2_6_13_1
  doi: 10.1017/S1464793104006517
– ident: e_1_2_6_47_1
  doi: 10.1642/0004-8038(2000)117[1003:MDPASI]2.0.CO;2
– ident: e_1_2_6_53_1
  doi: 10.1007/s10336-015-1188-3
– ident: e_1_2_6_5_1
  doi: 10.1073/pnas.1008415107
– ident: e_1_2_6_34_1
  doi: 10.1016/j.gecco.2014.12.008
– ident: e_1_2_6_3_1
  doi: 10.1111/ele.12438
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1461-0248.2004.00678.x
– ident: e_1_2_6_16_1
  doi: 10.1093/icb/icj009
– ident: e_1_2_6_62_1
  doi: 10.1111/geb.12197
– volume: 63
  start-page: 131
  year: 2016
  ident: e_1_2_6_65_1
  article-title: Topographic heterogeneity and temperature amplitude explain species richness patterns of birds in the Qinghai‐Tibetan Plateau
  publication-title: Current Zoology
– volume: 272
  start-page: 194
  year: 2011
  ident: e_1_2_6_4_1
  article-title: Latitude, elevational climatic zonation and speciation in New World vertebrates
  publication-title: Proceedings of the Royal Society of London B: Biological Sciences
– ident: e_1_2_6_23_1
  doi: 10.1126/science.1072779
– ident: e_1_2_6_55_1
  doi: 10.1016/j.ympev.2015.06.005
– ident: e_1_2_6_46_1
  doi: 10.1098/rspb.2006.3700
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1558-5646.2007.00085.x
– ident: e_1_2_6_57_1
  doi: 10.1371/journal.pone.0064312
– ident: e_1_2_6_56_1
  doi: 10.1086/345091
– ident: e_1_2_6_64_1
  doi: 10.1073/pnas.1616063114
– ident: e_1_2_6_39_1
  doi: 10.1111/j.1365-2699.2011.02606.x
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1558-5646.2012.01618.x
– ident: e_1_2_6_20_1
  doi: 10.1002/joc.1276
– ident: e_1_2_6_2_1
  doi: 10.1111/j.1461-0248.2008.01260.x
– ident: e_1_2_6_43_1
  doi: 10.1111/mec.12619
– ident: e_1_2_6_10_1
  doi: 10.1111/ecog.00623
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1558-5646.2007.00024.x
– ident: e_1_2_6_37_1
  doi: 10.1016/j.tree.2014.01.010
– volume-title: Threatened birds of Asia: The BirdLife International red data book
  year: 2001
  ident: e_1_2_6_7_1
– ident: e_1_2_6_17_1
  doi: 10.14344/IOC.ML.5.4
– ident: e_1_2_6_50_1
  doi: 10.1111/j.2006.0906-7590.04272.x
– ident: e_1_2_6_52_1
  doi: 10.1093/sysbio/syr006
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1461-0248.2004.00671.x
– ident: e_1_2_6_28_1
  doi: 10.1007/s00035-011-0094-4
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1600-0587.2009.06299.x
– ident: e_1_2_6_42_1
  doi: 10.1111/ecog.00952
– ident: e_1_2_6_58_1
  doi: 10.1111/jbi.12782
– ident: e_1_2_6_25_1
  doi: 10.1038/nature11631
– ident: e_1_2_6_31_1
  doi: 10.1111/2041-210X.12512
– ident: e_1_2_6_35_1
  doi: 10.1093/sysbio/syu056
– ident: e_1_2_6_19_1
  doi: 10.1086/511334
– ident: e_1_2_6_59_1
  doi: 10.1016/j.tree.2004.09.011
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1096-0031.2006.00120.x
– volume-title: HANPP collection: Global patterns in net primary productivity (NPP)
  year: 2004
  ident: e_1_2_6_22_1
– ident: e_1_2_6_30_1
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1466-8238.2008.00430.x
– volume-title: R: A language and environment for statistical computing
  year: 2016
  ident: e_1_2_6_44_1
– ident: e_1_2_6_51_1
  doi: 10.1111/j.0906-7590.2008.05333.x
– ident: e_1_2_6_40_1
  doi: 10.1111/j.0906-7590.2008.5203.x
– volume-title: Handbook of the birds of the world
  year: 1994
  ident: e_1_2_6_11_1
– ident: e_1_2_6_21_1
  doi: 10.1126/science.1228282
– ident: e_1_2_6_45_1
  doi: 10.1086/597378
– ident: e_1_2_6_29_1
  doi: 10.1890/08-2244.1
– ident: e_1_2_6_36_1
  doi: 10.1111/geb.12539
– ident: e_1_2_6_63_1
  doi: 10.1111/jbi.12177
– ident: e_1_2_6_61_1
  doi: 10.2307/3544109
– ident: e_1_2_6_38_1
  doi: 10.1016/S0277-3791(01)00104-4
– ident: e_1_2_6_6_1
  doi: 10.1146/annurev.ecolsys.31.1.343
– ident: e_1_2_6_49_1
  doi: 10.1111/jbi.12755
– ident: e_1_2_6_18_1
  doi: 10.1093/biomet/53.3-4.325
SSID ssj0009534
Score 2.4615808
Snippet Aim: The Sino-Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological...
Aim The Sino‐Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological...
AimThe Sino‐Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological...
AIM: The Sino‐Himalayas have higher species richness than adjacent regions, making them a global biodiversity hotspot. Various mechanisms, including ecological...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 640
SubjectTerms Africa
Biodiversity
Biodiversity hot spots
biogeography
Colonization
diversification rate
Diversity drivers
Ecology
energetic constraints
Evolution
Mathematical models
Model testing
Mountains
multiple colonizations
Net Primary Productivity
niche diversity
Niches
Oligocene
Oligocene epoch
Phasianidae
pheasants
Phylogeny
primary productivity
Productivity
Sino‐Himalayas
Speciation
Species diversity
Species richness
structural equation modeling
time‐for‐speciation effect
Title What makes the Sino-Himalayan mountains the major diversity hotspots for pheasants?
URI https://www.jstor.org/stable/26626977
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbi.13156
https://www.proquest.com/docview/2007895937
https://www.proquest.com/docview/2053902798
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA0iiF78Ftcvonjw0mW3bdoUD6KirIIe1AUPQsm0KVbdVmz3sJ78Cf5Gf4mTpC2rKIi3QKa0TTozb9rXN4TsBsyVmCU8y_a4wALF9yxgibRcjMdcYj5zNdv94tLr9d3zW3Y7Qfbrf2GMPkTzwk15ho7XysEFFONODmm762D5gfFXcbUUILqyxwR3HSMdpchptt-pVIU0i6c-8ksuMnTEL0BzHK7qfHM6R-7qKzU0k8f2sIR29PpNxPGftzJPZiscSg_Ng7NAJmS2SKZMZ8oRjk6iajRdtUm_Hy2RvhL6pgPxKAuKwJFep1n-8fbeSwfiSYxERgeq84RIMzM9EA_5C41r5ge9z0ssosuCIlCmz5gFCkXCOVgm_dOTm-OeVfVlsCKlpm8xrLEAkU1HdAPgjgRPBBj4XMdhHBBfgYgBQ4eIEx4nngu-iOwEA5kNMYK1iDkrZDLLM7lKKKLFCEvQBBgPXOZ3QCACxIMS2XHiroQW2at3KIwq0XLVO-MpbIoXSEO9di2y05g-G6WOn4xW9DY3FohPbA8xcIts1PseVl5cqBadPlfKzTi93Uyj_6mPKiKT-VDZMFwJ2w84Xqve5N_PHp4fnenB2t9N18kMYjRuaG8bZLJ8GcpNxEElbOkH_hNAjQHr
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTttAFL1CIASbQlsQaYEOFZXYOErGr_GiQpSHEl6LlkjszIw9Fi7EjnCiKl31E_gQfoWf4Et6Z8a2AgKpGxZdRBppbhRnfB_nOifnAmwGriOxSngW9RjHBsX3LOEm0nIwHzOJ9czRbPeTU6_Tcw7P3fMpuKv-C2P0IeoHbioydL5WAa4eSE9GuUibbRv7j5JSeSTHv7BhK7529_DufqH0YP9st2OVMwWsSCnBWy72BwKrcou3A8FsKTweYNA6tu0ygdhA8Fig2_M4YXHiOcLnEU0wCKmIEWhEakYEJvwZNUFcKfXvfacTEr-2EatSdDjqt0odI80bqi71UfUzBMhH0HYSIOsKd7AA99XZGGLLVXM0FM3o9xPZyP_l8BbhTQm1yY6JjbcwJbN3MGuGb45xtR-Vq7lyEvzl-D30lJY56fMrWRDExuRHmuUPf247aZ9f8zHPSF8N1-BpZrb7_Gd-Q-KK3EIu82ExwBfBXoAMsNAVime0vQS9V_mmyzCd5ZlcAYKAOMIuOxEuCxzXbwmOIBfflMiWHbelaMBW5RJhVOqyq_Eg12Hdn4k01PeqAZ9r04ERI3nOaFn7VW2BEIx6CPMbsFo5WlgmqkJNIfWZEqfG7Y16G1OM-t2IZzIfKRsXT4L6AcNr1V718qeHh9-6evHh300_wVzn7OQ4PO6eHn2EeYSkzLD8VmF6eDOSawj7hmJdRxuBi9f20L8k916G
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qWtGyKfQlUgoMCKRuHDnj13iBEJBGSQsVoo3UnTtjj1W3jR3ViVBY8Qn8B7_CV_Al3JmxrbSiUjddsIg00twozvg-znVOzgV4HXquxCrhW9RnHBuUwLeEl0rLxXzMJNYzV7PdPx_6_aG7f-KdLMCv-r8wRh-ieeCmIkPnaxXg4ySdD3KRtTsOth8Vo_JAzr5hv1a-HXTx5r6htLd3_LFvVSMFrFgJwVsetgcCi7LNO6FgjhQ-DzFmXcfxmEBoIHgi0Ot5krIk9V0R8JimGINUJIgzYjUiAvP9kuvboZoT0f1K5xR-HaNVpdhwNLArGSNNG6ov9VrxM_zHa8h2Hh_rAtd7BL_rozG8lov2dCLa8fcbqpH_ydk9htUKaJP3JjLWYEHm6_DAjN6c4WovrlYr1Rz4s9kGDJWSORnxC1kSRMbkKMuLPz9-9rMRv-QznpORGq3Bs9xsj_h5cUWSmtpCzopJOcYXwU6AjLHMlYpl9G4ThvfyTbdgMS9y-QQIwuEYe-xUeCx0vcAWHCEuvimVtpN0pGjBbu0RUVypsqvhIJdR052JLNL3qgWvGtOxkSL5l9GWdqvGAgEY9RHkt2Cn9rOoSlOlmkEaMCVNjdsvm21MMOpXI57LYqpsPDwJGoQMr1U71e2fHu1_GOjF9t1NX8Dyl24v-jQ4PHgKDxGPMkPx24HFydVUPkPMNxHPdawROL1vB_0LjTtdNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+makes+the+Sino%E2%80%90Himalayan+mountains+the+major+diversity+hotspots+for+pheasants%3F&rft.jtitle=Journal+of+biogeography&rft.au=Cai%2C+Tianlong&rft.au=Fjelds%C3%A5%2C+Jon&rft.au=Wu%2C+Yongjie&rft.au=Shao%2C+Shimiao&rft.date=2018-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0305-0270&rft.eissn=1365-2699&rft.volume=45&rft.issue=3&rft.spage=640&rft.epage=651&rft_id=info:doi/10.1111%2Fjbi.13156&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon