Nonlinear static analysis of masonry structures with mortar joints and cracking units by optimization‐based rigid block models
A rigid block model with elasto‐plastic softening interfaces is developed for nonlinear static analysis of masonry structures subject to monotonic loading. Cracking, crushing, and shear failures are taken into account at interfaces, following a simple micro‐modeling approach. An optimization‐based f...
Saved in:
Published in | Earthquake engineering & structural dynamics Vol. 53; no. 13; pp. 3963 - 3982 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
25.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A rigid block model with elasto‐plastic softening interfaces is developed for nonlinear static analysis of masonry structures subject to monotonic loading. Cracking, crushing, and shear failures are taken into account at interfaces, following a simple micro‐modeling approach. An optimization‐based formulation is used for the solution of the equation systems governing the behavior of the rigid block assemblage. A simple incremental solution procedure is implemented to take into account the material softening behavior and the effects of large displacements on equilibrium conditions. The interface models are validated against tension and shear tests on bi‐block prisms from the literature. Applications to numerical and experimental out‐of‐plane loaded masonry walls as well as to circular arches with mortar joints are presented to evaluate the effects of tensile strength and the accuracy of the developed model against responses involving P‐Δ effects. Comparisons with experimental tests on shear walls also involving cracking of the units in the failure mechanisms are finally reported to discuss the potentialities and limitations of the proposed modeling approach. |
---|---|
AbstractList | A rigid block model with elasto‐plastic softening interfaces is developed for nonlinear static analysis of masonry structures subject to monotonic loading. Cracking, crushing, and shear failures are taken into account at interfaces, following a simple micro‐modeling approach. An optimization‐based formulation is used for the solution of the equation systems governing the behavior of the rigid block assemblage. A simple incremental solution procedure is implemented to take into account the material softening behavior and the effects of large displacements on equilibrium conditions. The interface models are validated against tension and shear tests on bi‐block prisms from the literature. Applications to numerical and experimental out‐of‐plane loaded masonry walls as well as to circular arches with mortar joints are presented to evaluate the effects of tensile strength and the accuracy of the developed model against responses involving P‐Δ effects. Comparisons with experimental tests on shear walls also involving cracking of the units in the failure mechanisms are finally reported to discuss the potentialities and limitations of the proposed modeling approach. |
Author | Portioli, Francesco P. A. Lourenço, Paulo B. |
Author_xml | – sequence: 1 givenname: Francesco P. A. orcidid: 0000-0003-2711-3366 surname: Portioli fullname: Portioli, Francesco P. A. email: fportiol@unina.it organization: University of Naples Federico II – sequence: 2 givenname: Paulo B. orcidid: 0000-0001-8459-0199 surname: Lourenço fullname: Lourenço, Paulo B. organization: ISISE, University of Minho |
BookMark | eNp1kMtKAzEUhoMoWKvgIwTcuJmaZG7JUkq9gCiCrofTJK2p06RNMsi48hF8Rp_EtHUlujpwzvf9cP4jtG-d1QidUjKihLALvdajgpFqDw0oEVUmeFHuowEhgmecF_UhOgphQQjJK1IP0Me9s62xGjwOEaKRGCy0fTABuxleQnDW9-nkOxk7rwN-M_EFL52PyVg4Y2NIhsLSg3w1do47a9Jq2mO3imZp3lOms18fn1MIWmFv5kbhaevkawpRug3H6GAGbdAnP3OInq8mT-Ob7O7h-nZ8eZfJvGRVRpmmdVHUVUE1SCUZz0tVl4QKyBmQSuR1pUtRSK1EKXipQQAv2EwRgLxSkA_R2S535d260yE2C9f59Gtocsoo4ymaJ2q0o6R3IXg9a6SJ2xeiB9M2lDSblpvUcrNpOQnnv4SVN0vw_V9otkPfTKv7f7lm8jjZ8t8nLpDl |
CitedBy_id | crossref_primary_10_1016_j_istruc_2024_107954 crossref_primary_10_1016_j_ijmecsci_2025_110055 |
Cites_doi | 10.1080/19648189.2018.1552897 10.1002/eqe.719 10.3390/infrastructures7030031 10.1002/eqe.3867 10.1007/978-3-030-39391-5_9 10.1002/eqe.2671 10.1016/j.engstruct.2022.114050 10.1016/j.engstruct.2022.115236 10.1016/j.compstruc.2018.06.007 10.1617/s11527‐011‐9814‐x 10.1504/IJMRI.2021.118818 10.1016/j.advengsoft.2016.02.009 10.1007/978-3-031-12873-8_7 10.1007/s10518‐019‐00722‐0 10.1080/15583050601176868 10.1002/nme.7124 10.1061/(ASCE)CC.1943‐5614.0000086 10.1016/j.engstruct.2021.112620 10.1080/15583058.2019.1616004 10.1016/j.engstruct.2020.111626 10.1016/j.ijsolstr.2015.05.025 10.1016/j.engstruct.2023.116897 10.1002/nme.1358 10.1016/j.crme.2017.12.009 10.1016/j.ijmecsci.2019.105078 10.1002/eqe.2929 10.1007/s10518‐021‐01263‐1 10.1016/j.istruc.2020.08.026 10.1016/j.istruc.2024.106108 10.1061/(ASCE)0733‐9445(2003)129:10(1367) 10.1002/nme.7162 10.1007/978-3-7091-2618-9 10.1016/j.compstruc.2018.06.003 10.1002/eqe.3445 10.1002/eqe.4037 10.1007/s00466‐021‐02118‐x 10.12989/sem.2000.10.2.181 10.1016/j.soildyn.2023.107760 10.2140/jomms.2019.14.663 10.1002/eqe.3512 10.1007/s11831‐019‐09351‐x 10.4028/www.scientific.net/KEM.624.502 10.1007/s11831‐010‐9046‐1 10.1016/S0020‐7403(99)00111‐3 10.1061/(ASCE)0733‐9399(1997)123:7(660) 10.1002/eqe.126 10.1016/j.engstruct.2012.08.029 10.1007/s11012‐021‐01414‐3 10.1016/j.compstruc.2022.106769 10.1007/978-1-4613-3449-1_6 10.1007/s11012‐017‐0688‐z 10.1016/j.engstruct.2013.09.029 10.1016/j.engstruct.2017.01.020 10.1061/(ASCE)0733‐9445(2005)131:11(1665) 10.1016/j.ijsolstr.2005.02.010 10.1617/s11527‐008‐9405‐7 10.1016/j.ijsolstr.2017.12.012 10.1002/eqe.3444 10.1016/j.compstruc.2023.106987 10.1061/(ASCE)0733‐9445(2004)130:3(423) 10.1002/eqe.3277 10.1098/rspa.2017.0740 10.1007/s10035‐012‐0360‐1 10.1016/j.engfailanal.2023.107441 10.1016/j.compstruc.2020.106372 10.1007/s10107‐002‐0349‐3 10.1007/978-3-030-29227-0_31 10.1002/eqe.2335 10.1080/15583058.2018.1492647 10.1016/j.engstruct.2020.110298 10.1007/s10518‐023‐01744‐5 10.1504/IJMRI.2024.135236 10.1002/eqe.3144 10.1002/pse.120 10.1002/eqe.3591 10.1016/j.compgeo.2012.02.006 10.1016/j.ijsolstr.2024.112770 10.1016/j.advengsoft.2023.103514 10.1016/j.compstruc.2011.05.004 10.1016/j.ijsolstr.2023.112633 10.1002/eqe.2594 10.1016/j.engfailanal.2021.105744 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
DOI | 10.1002/eqe.4206 |
DatabaseName | Wiley Online Library Open Access CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-9845 |
EndPage | 3982 |
ExternalDocumentID | 10_1002_eqe_4206 EQE4206 |
Genre | article |
GrantInformation_xml | – fundername: Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri, DPC‐ReLUIS Project |
GroupedDBID | -~X .3N .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AABCJ AAESR AAEVG AAHHS AAHQN AAIKC AAMNL AAMNW AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WLBEL WOHZO WQJ WRC WWC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT .Y3 31~ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACKIV ACRPL ACSCC ACYXJ ADNMO AEYWJ AGHNM AGQPQ AGYGG AI. ARCSS ASPBG AVWKF AZFZN CITATION CKXBT EJD FEDTE HF~ HVGLF LW6 M58 PALCI RIWAO RJQFR RNS SAMSI TUS VH1 ZY4 7ST 7TG 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KL. KR7 L.G SOI |
ID | FETCH-LOGICAL-c3526-12e17447641eacdc2835d75019a32a069376e594ced95985ea9a842fd0aa36da3 |
IEDL.DBID | DR2 |
ISSN | 0098-8847 |
IngestDate | Sat Jul 26 00:36:21 EDT 2025 Thu Apr 24 23:06:26 EDT 2025 Tue Jul 01 02:22:00 EDT 2025 Wed Jan 22 17:13:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3526-12e17447641eacdc2835d75019a32a069376e594ced95985ea9a842fd0aa36da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2711-3366 0000-0001-8459-0199 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.4206 |
PQID | 3121287648 |
PQPubID | 866380 |
PageCount | 20 |
ParticipantIDs | proquest_journals_3121287648 crossref_citationtrail_10_1002_eqe_4206 crossref_primary_10_1002_eqe_4206 wiley_primary_10_1002_eqe_4206_EQE4206 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 25 October 2024 |
PublicationDateYYYYMMDD | 2024-10-25 |
PublicationDate_xml | – month: 10 year: 2024 text: 25 October 2024 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Earthquake engineering & structural dynamics |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 25 2010; 14 2009; 42 2005; 131 2023; 185 2018; 206 2010; 17 2023; 9 2017; 46 2019; 14 2005; 64 2022; 69 2020; 14 2022; 20 2020; 11 2015; 624 2021; 242 2012; 14 2003; 95 2007; 36 2022; 257 2020; 209 2001; 43 2020; 18 2023; 21 2018; 136‐137 2015; 69‐70 2003; 129 2023; 296 1990 2001 2000 2013; 57 2000; 10 2004; 130 2015; 44 2020; 49 2024; 62 2021; 230 2007; 1 1994; 72 2022a; 265 2016; 45 2021; 6 2023; 52 2013; 48 2023; 280 2002; 31 2022; 51 2023; 124 2018; 346 2023; 166 2016; 97 2019; 161‐162 1996 2005; 42 2002; 4 2024; 53 1993 2024; 289 1992 2021; 50 2017; 136 2014; 43 2018; 474 2023; 152 2022 2020 2022; 7 2019; 48 2023; 275 1997; 123 2024; 294 2020; 27 2022; 57 2011; 89 2021; 130 2012; 45 2018; 53 2012; 43 e_1_2_11_70_1 e_1_2_11_72_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 Doherty K (e_1_2_11_82_1) 2000 e_1_2_11_60_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 Lourenço PB (e_1_2_11_83_1) 2001 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_87_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 Gilbert M (e_1_2_11_50_1) 1994; 72 e_1_2_11_19_1 e_1_2_11_71_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 289 year: 2024 article-title: A limit analysis‐based CASS approach for the in‐plane seismic capacity of masonry façades publication-title: Int J Solids Struct – volume: 152 year: 2023 article-title: Analysis of the out‐of‐plane buckling collapse of a masonry wall: a case study publication-title: Eng Fail Anal – volume: 17 start-page: 299 year: 2010 end-page: 325 article-title: Structural analysis of masonry historical constructions. Classical and advanced approaches publication-title: Arch Comput Methods Eng – volume: 6 start-page: 405 year: 2021 end-page: 421 article-title: Experimental and numerical analysis of a scaled dry‐joint arch on moving supports publication-title: Int J Mason Res Innov – volume: 14 start-page: 1 year: 2020 end-page: 22 article-title: A novel numerical tool for seismic vulnerability analysis of ruins in archaeological sites publication-title: Int J Archit Herit – volume: 45 start-page: 1019 year: 2012 end-page: 1034 article-title: In‐plane behavior of perforated brick masonry walls publication-title: Mater Struct Constr – volume: 346 start-page: 247 year: 2018 end-page: 262 article-title: The Contact Dynamics method: a nonsmooth story | La méthode de la dynamique des contacts, histoire d'une mécanique non régulière publication-title: Comptes Rendus—Mec – volume: 53 start-page: 1629 year: 2018 end-page: 1643 article-title: Effects of the dilatancy of joints and of the size of the building blocks on the mechanical behavior of masonry structures publication-title: Meccanica – volume: 20 start-page: 1939 year: 2022 end-page: 1997 article-title: Nonlinear modeling of the seismic response of masonry structures: critical review and open issues towards engineering practice publication-title: Bull Earthq Eng – volume: 43 start-page: 209 year: 2001 end-page: 224 article-title: Limit analysis of frictional block assemblies as a mathematical program with complementarity constraints publication-title: Int J Mech Sci – year: 1990 – volume: 50 start-page: 2212 year: 2021 end-page: 2232 article-title: A novel macroelement model for the nonlinear analysis of masonry buildings. Part 2: shear behavior publication-title: Earthq Eng Struct Dyn – volume: 130 year: 2021 article-title: Macroscale modelling of the orthotropic shear damage in the dynamics of masonry towers by RBSM publication-title: Eng Fail Anal – volume: 43 start-page: 165 year: 2012 end-page: 176 article-title: Granular contact dynamics using mathematical programming methods publication-title: Comput Geotech – start-page: 169 year: 2022 end-page: 203 – volume: 97 start-page: 40 year: 2016 end-page: 59 article-title: 3D macro‐element modelling approach for seismic assessment of historical masonry churches publication-title: Adv Eng Softw – volume: 161‐162 year: 2019 article-title: A variational‐based fixed‐point algorithm for the limit analysis of dry‐masonry block structures with non‐associative Coulomb friction publication-title: Int J Mech Sci – volume: 72 start-page: 356 year: 1994 end-page: 361 article-title: Rigid‐block analysis of masonry structures publication-title: Struct Eng – volume: 11 start-page: 307 year: 2020 end-page: 314 – volume: 27 start-page: 1153 year: 2020 end-page: 1185 article-title: Modeling strategies for the computational analysis of unreinforced masonry structures: review and classification publication-title: Arch Comput Methods Eng – volume: 48 start-page: 454 year: 2019 end-page: 475 article-title: Evaluation of force‐based and displacement‐based out‐of‐plane seismic assessment methods for unreinforced masonry walls through refined model simulations publication-title: Earthq Eng Struct Dyn – volume: 27 start-page: 2274 year: 2020 end-page: 2287 article-title: Simulation of the in‐plane structural behavior of unreinforced masonry walls and buildings using DEM publication-title: Structures – volume: 51 start-page: 793 year: 2022 end-page: 811 article-title: A Macro‐Distinct Element Model (M‐DEM) for simulating in‐plane/out‐of‐plane interaction and combined failure mechanisms of unreinforced masonry structures publication-title: Earthq Eng Struct Dyn – volume: 230 year: 2021 article-title: Discontinuous approaches for nonlinear dynamic analyses of an ancient masonry tower publication-title: Eng Struct – volume: 69‐70 start-page: 252 year: 2015 end-page: 266 article-title: An efficient solution procedure for crushing failure in 3D limit analysis of masonry block structures with non‐associative frictional joints publication-title: Int J Solids Struct – volume: 129 start-page: 1367 year: 2003 end-page: 1375 article-title: Cap Model for Limit analysis and strengthening of masonry structures publication-title: J Struct Eng – volume: 62 year: 2024 article-title: Discontinuum models for the structural and seismic assessment of unreinforced masonry structures: a critical appraisal publication-title: Structures – volume: 136 start-page: 277 year: 2017 end-page: 294 article-title: Discrete element modelling of the in‐plane and out‐of‐plane behaviour of dry‐joint masonry wall constructions publication-title: Eng Struct – volume: 206 start-page: 66 year: 2018 end-page: 81 article-title: A detailed micro‐modelling approach for the structural analysis of masonry assemblages publication-title: Comput Struct – volume: 53 start-page: 622 year: 2024 end-page: 645 article-title: Pragmatic seismic collapse meso‐scale analysis of old Dutch masonry churches publication-title: Earthq Eng Struct Dyn – volume: 52 start-page: 2047 year: 2023 end-page: 2066 article-title: A discrete‐element approach accounting for P‐Delta effects publication-title: Earthq Eng Struct Dyn – volume: 206 start-page: 18 year: 2018 end-page: 30 article-title: A 3D detailed micro‐model for the in‐plane and out‐of‐plane numerical analysis of masonry panels publication-title: Comput Struct – volume: 123 start-page: 660 year: 1997 end-page: 668 article-title: Multisurface interface model for analysis of masonry structures publication-title: J Eng Mech – volume: 296 year: 2023 article-title: Spatial stochastic D‐RBA and limit equilibrium analysis of unreinforced masonry pier‐spandrel structures publication-title: Eng Struct – volume: 275 year: 2023 article-title: Effect of joint deformability on the experimental and numerical response of dry‐joint masonry arches subjected to large support displacements publication-title: Eng Struct – volume: 10 start-page: 181 year: 2000 end-page: 195 article-title: Collapse behaviour of three‐dimensional brick‐block systems using non‐linear programming publication-title: Struct Eng Mech – volume: 18 start-page: 211 year: 2020 end-page: 239 article-title: Rigid block modelling of historic masonry structures using mathematical programming: a unified formulation for non‐linear time history, static pushover and limit equilibrium analysis publication-title: Bull Earthq Eng – year: 1993 – volume: 242 year: 2021 article-title: In‐plane structural performance of dry‐joint stone masonry Walls: a spatial and non‐spatial stochastic discontinuum analysis publication-title: Eng Struct – volume: 64 start-page: 65 year: 2005 end-page: 94 article-title: NSCD discrete element method for modelling masonry structures publication-title: Int J Numer Methods Eng – volume: 130 start-page: 423 year: 2004 end-page: 432 article-title: Experimental investigation of unreinforced brick masonry walls in flexure publication-title: J Struct Eng – volume: 36 start-page: 2119 year: 2007 end-page: 2136 article-title: Failure of masonry arches under impulse base motion publication-title: Earthq Eng Struct Dyn – volume: 42 start-page: 5140 year: 2005 end-page: 5160 article-title: Three‐dimensional limit analysis of rigid blocks assemblages. Part I: torsion failure on frictional interfaces and limit analysis formulation publication-title: Int J Solids Struct – volume: 50 start-page: 2233 year: 2021 end-page: 2252 article-title: A novel macroelement model for the nonlinear analysis of masonry buildings. Part 1: axial and flexural behavior publication-title: Earthq Eng Struct Dyn – volume: 31 start-page: 833 year: 2002 end-page: 850 article-title: Displacement‐based seismic analysis for out‐of‐plane bending of unreinforced masonry walls publication-title: Earthq Eng Struct Dyn – volume: 69 start-page: 865 year: 2022 end-page: 890 article-title: A two‐level macroscale continuum description with embedded discontinuities for nonlinear analysis of brick/block masonry publication-title: Comput Mech – volume: 124 start-page: 1253 year: 2023 end-page: 1279 article-title: An anisotropic plastic‐damage model for 3D nonlinear simulation of masonry structures publication-title: Int J Numer Methods Eng – volume: 185 year: 2023 article-title: Parametric nonlinear modelling of 3D masonry arch bridges publication-title: Adv Eng Softw – volume: 9 start-page: 80 year: 2023 end-page: 95 article-title: Masonry arches simulations using cohesion parameter as code enrichment for limit analysis approach publication-title: Int J Mason Res Innov – volume: 166 year: 2023 article-title: An optimization‐based rigid block modeling approach to seismic assessment of dry‐joint masonry structures subjected to settlements publication-title: Soil Dyn Earthq Eng – year: 2000 – volume: 294 year: 2024 article-title: A Hybrid Discrete‐Finite Element method for continuous and discontinuous beam‐like members including nonlinear geometric and material effects publication-title: Int J Solids Struct – volume: 624 start-page: 502 year: 2015 end-page: 509 article-title: Numerical and experimental analysis of full scale arches reinforced with GFRP materials publication-title: Key Eng Mater – volume: 49 start-page: 1365 year: 2020 end-page: 1387 article-title: A three‐dimensional macroelement for modelling the in‐plane and out‐of‐plane response of masonry walls publication-title: Earthq Eng Struct Dyn – volume: 265 year: 2022a article-title: A hybrid macro‐modelling strategy with multi‐objective calibration for accurate simulation of multi‐ring masonry arches and bridges publication-title: Comput Struct – volume: 14 start-page: 1484 year: 2020 end-page: 1501 article-title: Applied element modelling of the dynamic response of a full‐scale clay brick masonry building specimen with flexible diaphragms publication-title: Int J Archit Herit – volume: 7 start-page: 31 year: 2022 article-title: Discrete element bonded‐block models for detailed analysis of masonry publication-title: Infrastructures – volume: 136‐137 start-page: 150 year: 2018 end-page: 167 article-title: Numerical analysis of 3D dry‐stone masonry structures by combined finite‐discrete element method publication-title: Int J Solids Struct – volume: 257 year: 2022 article-title: AnMas: anisotropic strength domain for masonry publication-title: Eng Struct – volume: 4 start-page: 301 year: 2002 end-page: 319 article-title: Computations on historic masonry structures publication-title: Prog Struct Engng Mater – start-page: 189 year: 1996 end-page: 252 – volume: 280 year: 2023 article-title: Simple modeling of reinforced masonry arches for associated and non‐associated heterogeneous limit analysis publication-title: Comput Struct – volume: 57 start-page: 121 year: 2022 end-page: 141 article-title: A finite difference method for the static limit analysis of masonry domes under seismic loads publication-title: Meccanica – volume: 50 start-page: 3332 year: 2021 end-page: 3354 article-title: A variational rigid‐block modeling approach to nonlinear elastic and kinematic analysis of failure mechanisms in historic masonry structures subjected to lateral loads publication-title: Earthq Eng Struct Dyn – volume: 57 start-page: 232 year: 2013 end-page: 247 article-title: Limit analysis of masonry walls by rigid block modelling with cracking units and cohesive joints using linear programming publication-title: Eng Struct – volume: 124 start-page: 358 year: 2023 end-page: 381 article-title: Limit analysis of masonry walls using discontinuity layout optimization and homogenization publication-title: Int J Numer Methods Eng – volume: 44 start-page: 2489 year: 2015 end-page: 2506 article-title: Advanced frame element for seismic analysis of masonry structures: model formulation and validation publication-title: Earthq Eng Struct Dyn – volume: 48 start-page: 98 year: 2013 end-page: 120 article-title: Simple numerical model with second order effects for out‐of‐plane loaded masonry walls publication-title: Eng Struct – volume: 14 start-page: 607 year: 2012 end-page: 619 article-title: Granular contact dynamics with particle elasticity publication-title: Granul Matter – volume: 209 year: 2020 article-title: Numerical modelling of the out‐of‐plane response of full‐scale brick masonry prototypes subjected to incremental dynamic shake‐table tests publication-title: Eng Struct – year: 1992 article-title: Material properties of masonry and its components under tension and shear – volume: 131 start-page: 1665 year: 2005 end-page: 1673 article-title: Dry joint stone masonry walls subjected to in‐plane combined loading publication-title: J Struct Eng – volume: 46 start-page: 2757 year: 2017 end-page: 2776 article-title: Analytical model for the out‐of‐plane response of vertically spanning unreinforced masonry walls publication-title: Earthq Eng Struct Dyn – volume: 95 start-page: 249 year: 2003 end-page: 277 article-title: On implementing a primal‐dual interior‐point method for conic quadratic optimization publication-title: Math Program Ser B – volume: 14 start-page: 663 year: 2019 end-page: 682 article-title: Failure pattern prediction in masonry publication-title: J Mech Mater Struct – volume: 242 year: 2021 article-title: Numerical limit analysis‐based modelling of masonry structures subjected to large displacements publication-title: Comput Struct – volume: 25 start-page: 876 year: 2021 end-page: 892 article-title: Failure analysis of masonry wall panels subjected to in‐plane and out‐of‐plane loading using the discrete element method publication-title: Eur J Environ Civ Eng – year: 2020 – volume: 21 start-page: 5573 year: 2023 end-page: 5596 article-title: Seismic assessment of URM pier spandrel systems via efficient computational modeling strategies publication-title: Bull Earthq Eng – volume: 474 year: 2018 article-title: The role of frictional contact of constituent blocks on the stability of masonry domes publication-title: Proc R Soc A Math Phys Eng Sci – volume: 14 start-page: 312 year: 2010 end-page: 322 article-title: Experimental behavior of FRP strengthened masonry arches publication-title: J Compos Constr – start-page: 91 year: 2001 end-page: 116 – volume: 42 start-page: 279 year: 2009 end-page: 300 article-title: Coupling effect between masonry spandrels and piers publication-title: Mater Struct Constr – volume: 43 start-page: 159 year: 2014 end-page: 179 article-title: A nonlinear macroelement model for the seismic analysis of masonry buildings publication-title: Earthq Eng Struct Dyn – volume: 89 start-page: 1586 year: 2011 end-page: 1601 article-title: Simple homogenization model for the non‐linear analysis of in‐plane loaded masonry walls publication-title: Comput Struct – volume: 45 start-page: 563 year: 2016 end-page: 580 article-title: Out‐of‐plane seismic response of vertically spanning URM walls connected to flexible diaphragms publication-title: Earthq Eng Struct Dyn – volume: 1 start-page: 190 year: 2007 end-page: 213 article-title: Discrete element modeling of masonry structures publication-title: Int J Archit Herit – start-page: 91 volume-title: Historical Constructions year: 2001 ident: e_1_2_11_83_1 – ident: e_1_2_11_22_1 doi: 10.1080/19648189.2018.1552897 – ident: e_1_2_11_24_1 doi: 10.1002/eqe.719 – ident: e_1_2_11_29_1 doi: 10.3390/infrastructures7030031 – ident: e_1_2_11_79_1 doi: 10.1002/eqe.3867 – ident: e_1_2_11_56_1 doi: 10.1007/978-3-030-39391-5_9 – ident: e_1_2_11_2_1 doi: 10.1002/eqe.2671 – ident: e_1_2_11_7_1 doi: 10.1016/j.engstruct.2022.114050 – ident: e_1_2_11_12_1 doi: 10.1016/j.engstruct.2022.115236 – ident: e_1_2_11_11_1 doi: 10.1016/j.compstruc.2018.06.007 – ident: e_1_2_11_88_1 doi: 10.1617/s11527‐011‐9814‐x – ident: e_1_2_11_13_1 doi: 10.1504/IJMRI.2021.118818 – ident: e_1_2_11_36_1 doi: 10.1016/j.advengsoft.2016.02.009 – ident: e_1_2_11_52_1 doi: 10.1007/978-3-031-12873-8_7 – ident: e_1_2_11_67_1 doi: 10.1007/s10518‐019‐00722‐0 – ident: e_1_2_11_21_1 doi: 10.1080/15583050601176868 – ident: e_1_2_11_58_1 doi: 10.1002/nme.7124 – ident: e_1_2_11_84_1 doi: 10.1061/(ASCE)CC.1943‐5614.0000086 – ident: e_1_2_11_87_1 doi: 10.1016/j.engstruct.2021.112620 – ident: e_1_2_11_17_1 doi: 10.1080/15583058.2019.1616004 – ident: e_1_2_11_63_1 doi: 10.1016/j.engstruct.2020.111626 – ident: e_1_2_11_81_1 doi: 10.1016/j.ijsolstr.2015.05.025 – ident: e_1_2_11_27_1 doi: 10.1016/j.engstruct.2023.116897 – ident: e_1_2_11_19_1 doi: 10.1002/nme.1358 – ident: e_1_2_11_20_1 doi: 10.1016/j.crme.2017.12.009 – ident: e_1_2_11_54_1 doi: 10.1016/j.ijmecsci.2019.105078 – ident: e_1_2_11_3_1 doi: 10.1002/eqe.2929 – ident: e_1_2_11_42_1 doi: 10.1007/s10518‐021‐01263‐1 – ident: e_1_2_11_76_1 – ident: e_1_2_11_28_1 doi: 10.1016/j.istruc.2020.08.026 – ident: e_1_2_11_44_1 doi: 10.1016/j.istruc.2024.106108 – ident: e_1_2_11_68_1 doi: 10.1061/(ASCE)0733‐9445(2003)129:10(1367) – ident: e_1_2_11_5_1 doi: 10.1002/nme.7162 – ident: e_1_2_11_66_1 doi: 10.1007/978-3-7091-2618-9 – ident: e_1_2_11_30_1 doi: 10.1016/j.compstruc.2018.06.003 – ident: e_1_2_11_39_1 doi: 10.1002/eqe.3445 – ident: e_1_2_11_16_1 doi: 10.1002/eqe.4037 – ident: e_1_2_11_78_1 doi: 10.1007/s00466‐021‐02118‐x – ident: e_1_2_11_48_1 doi: 10.12989/sem.2000.10.2.181 – ident: e_1_2_11_71_1 doi: 10.1016/j.soildyn.2023.107760 – ident: e_1_2_11_6_1 doi: 10.2140/jomms.2019.14.663 – ident: e_1_2_11_72_1 doi: 10.1002/eqe.3512 – ident: e_1_2_11_43_1 doi: 10.1007/s11831‐019‐09351‐x – ident: e_1_2_11_85_1 doi: 10.4028/www.scientific.net/KEM.624.502 – ident: e_1_2_11_45_1 doi: 10.1007/s11831‐010‐9046‐1 – ident: e_1_2_11_49_1 doi: 10.1016/S0020‐7403(99)00111‐3 – ident: e_1_2_11_77_1 doi: 10.1061/(ASCE)0733‐9399(1997)123:7(660) – ident: e_1_2_11_73_1 doi: 10.1002/eqe.126 – ident: e_1_2_11_9_1 doi: 10.1016/j.engstruct.2012.08.029 – ident: e_1_2_11_60_1 doi: 10.1007/s11012‐021‐01414‐3 – ident: e_1_2_11_15_1 doi: 10.1016/j.compstruc.2022.106769 – ident: e_1_2_11_46_1 doi: 10.1007/978-1-4613-3449-1_6 – ident: e_1_2_11_25_1 doi: 10.1007/s11012‐017‐0688‐z – ident: e_1_2_11_69_1 doi: 10.1016/j.engstruct.2013.09.029 – ident: e_1_2_11_23_1 doi: 10.1016/j.engstruct.2017.01.020 – ident: e_1_2_11_86_1 doi: 10.1061/(ASCE)0733‐9445(2005)131:11(1665) – ident: e_1_2_11_55_1 doi: 10.1016/j.ijsolstr.2005.02.010 – ident: e_1_2_11_70_1 doi: 10.1617/s11527‐008‐9405‐7 – ident: e_1_2_11_32_1 doi: 10.1016/j.ijsolstr.2017.12.012 – ident: e_1_2_11_40_1 doi: 10.1002/eqe.3444 – ident: e_1_2_11_51_1 doi: 10.1016/j.compstruc.2023.106987 – ident: e_1_2_11_80_1 doi: 10.1061/(ASCE)0733‐9445(2004)130:3(423) – ident: e_1_2_11_37_1 doi: 10.1002/eqe.3277 – ident: e_1_2_11_62_1 doi: 10.1098/rspa.2017.0740 – ident: e_1_2_11_65_1 doi: 10.1007/s10035‐012‐0360‐1 – ident: e_1_2_11_4_1 doi: 10.1016/j.engfailanal.2023.107441 – ident: e_1_2_11_61_1 doi: 10.1016/j.compstruc.2020.106372 – ident: e_1_2_11_47_1 doi: 10.1007/s10107‐002‐0349‐3 – ident: e_1_2_11_57_1 doi: 10.1007/978-3-030-29227-0_31 – ident: e_1_2_11_41_1 doi: 10.1002/eqe.2335 – ident: e_1_2_11_34_1 doi: 10.1080/15583058.2018.1492647 – ident: e_1_2_11_18_1 doi: 10.1016/j.engstruct.2020.110298 – ident: e_1_2_11_26_1 doi: 10.1007/s10518‐023‐01744‐5 – ident: e_1_2_11_53_1 doi: 10.1504/IJMRI.2024.135236 – ident: e_1_2_11_74_1 doi: 10.1002/eqe.3144 – ident: e_1_2_11_10_1 doi: 10.1002/pse.120 – ident: e_1_2_11_35_1 doi: 10.1002/eqe.3591 – ident: e_1_2_11_64_1 doi: 10.1016/j.compgeo.2012.02.006 – ident: e_1_2_11_31_1 doi: 10.1016/j.ijsolstr.2024.112770 – ident: e_1_2_11_14_1 doi: 10.1016/j.advengsoft.2023.103514 – volume-title: An Investigation of the Weak Links in the Seismic Load Path of Unreinforced Masonary Buildings year: 2000 ident: e_1_2_11_82_1 – ident: e_1_2_11_8_1 doi: 10.1016/j.compstruc.2011.05.004 – ident: e_1_2_11_59_1 doi: 10.1016/j.ijsolstr.2023.112633 – ident: e_1_2_11_38_1 doi: 10.1002/eqe.2594 – volume: 72 start-page: 356 year: 1994 ident: e_1_2_11_50_1 article-title: Rigid‐block analysis of masonry structures publication-title: Struct Eng – ident: e_1_2_11_33_1 doi: 10.1016/j.engfailanal.2021.105744 – ident: e_1_2_11_75_1 |
SSID | ssj0003607 |
Score | 2.460215 |
Snippet | A rigid block model with elasto‐plastic softening interfaces is developed for nonlinear static analysis of masonry structures subject to monotonic loading.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3963 |
SubjectTerms | Arches cohesive strength cracking units Equilibrium conditions Failure mechanisms incremental solution procedure Interfaces Masonry Modelling mortar joints Mortars (material) non‐linear static analysis Optimization optimization‐based formulation Prisms rigid block modeling Rigid blocks Shear Shear tests Shear walls Softening softening behavior Tensile strength |
Title | Nonlinear static analysis of masonry structures with mortar joints and cracking units by optimization‐based rigid block models |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.4206 https://www.proquest.com/docview/3121287648 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMcX7UkPvsVqlRFET6nJZhO7R5FKERQVBcFD2FfBR1tt2oOe_Ah-Rj-JM3m0VRTEUy67Icnszvx3s_MbxnaENoKrwHkiFNwT1klPouzwjDHuwEjnoiy36vQsbl2Lk5vopjhVSbkwOR9itOFGMyPz1zTBlU73x9BQ9-zqgme0bTqqRXrockyOCmN_hMtsoAcuubM-3y87fo1EY3k5KVKzKHM8z27L58sPlzzUhwNdN6_f0I3_e4EFNleITzjMR8sim3LdJTY7gSRcZm9n-a1VHyjX6M6AKrAl0GtDR6E8779ATp0d4lIdaCMXOiTi-3Dfu-sOUuxhwfSVoV14GKLPSEG_QA-dU6fI-vx4e6fwaYHKclnQGFEfICvKk66w6-Pm1VHLK6o0eIbY-l7AHa5qxEEsAnTi1hDAzaIOCaQKufJj1D-xi6QwzspINiKnpGoI3ra-UmFsVbjKKt1e160xoF-2IUfFptu-0M5JZXlsDUoeGwZxpKtsr7RYYgqEOVXSeExy-DJP8Jsm9E2rbHvU8inHdvzQplYaPSkmbpqEAcZyjBCiUWW7mfV-7Z80L5p0Xf9rww02w1ESUeTjUY1V0FRuEyXNQG-xaS7Ot7Ih_An26_c_ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NTttAEMdHiB6ghxZKK9LyMZUqODmx12uTVU8IBYU2idQKpByQrPXuRqI0SWsnB3riEfqMfZLO-CMBBFLVky-7lr2zO_Pftec3AB9kaqTQgfNkKIUnrVOeItnhGWPckVHORUVuVX8Qdy_kp2E0XIGPdS5MyYdYHLjxyij8NS9wPpBuLamh7qdrSsG47Wdc0LvYT31dsqPC2F8AM9vkg2vyrC9adc_7sWgpMO_K1CLOnL6Ey_oJy99LrpvzWdo0vx7AG__zFTbgRaU_8bicMJuw4iav4PkdKuEW3A7Ke-sMOd3oyqCuyCU4HeFYk0LPbrAEz85pt458lotj1vEZfpteTWY59bBoMm34IB7n5DZyTG9wSv5pXCV-_rn9zRHUIlfmsphSUL3Goi5P_houTjvnJ12vKtTgGcbre4FwtLGRR7EMyI9bwww3S1IkUDoU2o9JAsUuUtI4qyLVjpxWui3FyPpah7HV4RtYnUwnbhuQv9qGgkRbOvJl6pzSVsTWkOqxYRBHaQMOa5MlpqKYczGN70nJXxYJjWnCY9qA94uWP0pyxyNtdmqrJ9XazZMwoHBOQUK2G3BQmO_J_knnS4evb_-14T6sdc_7vaR3Nvj8DtYFKSQOhCLagVUym9slhTNL94qZ_BeBCfqD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LTxsxEMctBBKCA7Q81PBop1JFTxt2vV6zPlaQiEeJCiJSJA4rr-1IaUgCeRzgxEfoZ-wn6cw-EkBFQpz2Yq92d-yZv72e3zD2TaRGcB04T4SCe8I65SmUHZ4xxh0Y5VyU5VadN-RxU5y2olZxqpJyYXI-xHTDjWZG5q9pgt_a9v4MGuruXFVwom0vCOnHNKKPLmfoqFD6U15mjC64BM_6fL_s-TwUzfTlU5WahZn6KrsuHzA_XdKtTsZp1Ty8YDe-7w0-sJVCfcKPfLh8ZHOuv8aWnzAJ19ljI7-1HgIlG3UM6IJbAoM29DTq8-E95NjZCa7VgXZyoUcqfgi_B53-eIQ9LJihNrQNDxN0GiNI72GA3qlXpH3-ffxD8dMC1eWykGJI7UJWlWe0wZr12tXhsVeUafAMwfW9gDtc1ogDKQL04tYQwc2iEAmUDrn2JQog6SIljLMqUnHktNKx4G3rax1Kq8NNNt8f9N0nBvTPNuQo2dK2L1LnlLZcWoOax4aBjNIK-15aLDEFw5xKadwkOX2ZJ_hNE_qmFfZ12vI253b8p81OafSkmLmjJAwwmGOIEHGF7WXWe7V_Uruo0XXrrQ2_sMVfR_Xk50njbJstcZRHFAV5tMPm0WpuF-XNOP2cjeN_v8r5Ow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+static+analysis+of+masonry+structures+with+mortar+joints+and+cracking+units+by+optimization%E2%80%90based+rigid+block+models&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Portioli%2C+Francesco+P+A&rft.au=Louren%C3%A7o%2C+Paulo+B&rft.date=2024-10-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=53&rft.issue=13&rft.spage=3963&rft.epage=3982&rft_id=info:doi/10.1002%2Feqe.4206&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon |