Nonlinear static analysis of masonry structures with mortar joints and cracking units by optimization‐based rigid block models

A rigid block model with elasto‐plastic softening interfaces is developed for nonlinear static analysis of masonry structures subject to monotonic loading. Cracking, crushing, and shear failures are taken into account at interfaces, following a simple micro‐modeling approach. An optimization‐based f...

Full description

Saved in:
Bibliographic Details
Published inEarthquake engineering & structural dynamics Vol. 53; no. 13; pp. 3963 - 3982
Main Authors Portioli, Francesco P. A., Lourenço, Paulo B.
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 25.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A rigid block model with elasto‐plastic softening interfaces is developed for nonlinear static analysis of masonry structures subject to monotonic loading. Cracking, crushing, and shear failures are taken into account at interfaces, following a simple micro‐modeling approach. An optimization‐based formulation is used for the solution of the equation systems governing the behavior of the rigid block assemblage. A simple incremental solution procedure is implemented to take into account the material softening behavior and the effects of large displacements on equilibrium conditions. The interface models are validated against tension and shear tests on bi‐block prisms from the literature. Applications to numerical and experimental out‐of‐plane loaded masonry walls as well as to circular arches with mortar joints are presented to evaluate the effects of tensile strength and the accuracy of the developed model against responses involving P‐Δ effects. Comparisons with experimental tests on shear walls also involving cracking of the units in the failure mechanisms are finally reported to discuss the potentialities and limitations of the proposed modeling approach.
AbstractList A rigid block model with elasto‐plastic softening interfaces is developed for nonlinear static analysis of masonry structures subject to monotonic loading. Cracking, crushing, and shear failures are taken into account at interfaces, following a simple micro‐modeling approach. An optimization‐based formulation is used for the solution of the equation systems governing the behavior of the rigid block assemblage. A simple incremental solution procedure is implemented to take into account the material softening behavior and the effects of large displacements on equilibrium conditions. The interface models are validated against tension and shear tests on bi‐block prisms from the literature. Applications to numerical and experimental out‐of‐plane loaded masonry walls as well as to circular arches with mortar joints are presented to evaluate the effects of tensile strength and the accuracy of the developed model against responses involving P‐Δ effects. Comparisons with experimental tests on shear walls also involving cracking of the units in the failure mechanisms are finally reported to discuss the potentialities and limitations of the proposed modeling approach.
Author Portioli, Francesco P. A.
Lourenço, Paulo B.
Author_xml – sequence: 1
  givenname: Francesco P. A.
  orcidid: 0000-0003-2711-3366
  surname: Portioli
  fullname: Portioli, Francesco P. A.
  email: fportiol@unina.it
  organization: University of Naples Federico II
– sequence: 2
  givenname: Paulo B.
  orcidid: 0000-0001-8459-0199
  surname: Lourenço
  fullname: Lourenço, Paulo B.
  organization: ISISE, University of Minho
BookMark eNp1kMtKAzEUhoMoWKvgIwTcuJmaZG7JUkq9gCiCrofTJK2p06RNMsi48hF8Rp_EtHUlujpwzvf9cP4jtG-d1QidUjKihLALvdajgpFqDw0oEVUmeFHuowEhgmecF_UhOgphQQjJK1IP0Me9s62xGjwOEaKRGCy0fTABuxleQnDW9-nkOxk7rwN-M_EFL52PyVg4Y2NIhsLSg3w1do47a9Jq2mO3imZp3lOms18fn1MIWmFv5kbhaevkawpRug3H6GAGbdAnP3OInq8mT-Ob7O7h-nZ8eZfJvGRVRpmmdVHUVUE1SCUZz0tVl4QKyBmQSuR1pUtRSK1EKXipQQAv2EwRgLxSkA_R2S535d260yE2C9f59Gtocsoo4ymaJ2q0o6R3IXg9a6SJ2xeiB9M2lDSblpvUcrNpOQnnv4SVN0vw_V9otkPfTKv7f7lm8jjZ8t8nLpDl
CitedBy_id crossref_primary_10_1016_j_istruc_2024_107954
crossref_primary_10_1016_j_ijmecsci_2025_110055
Cites_doi 10.1080/19648189.2018.1552897
10.1002/eqe.719
10.3390/infrastructures7030031
10.1002/eqe.3867
10.1007/978-3-030-39391-5_9
10.1002/eqe.2671
10.1016/j.engstruct.2022.114050
10.1016/j.engstruct.2022.115236
10.1016/j.compstruc.2018.06.007
10.1617/s11527‐011‐9814‐x
10.1504/IJMRI.2021.118818
10.1016/j.advengsoft.2016.02.009
10.1007/978-3-031-12873-8_7
10.1007/s10518‐019‐00722‐0
10.1080/15583050601176868
10.1002/nme.7124
10.1061/(ASCE)CC.1943‐5614.0000086
10.1016/j.engstruct.2021.112620
10.1080/15583058.2019.1616004
10.1016/j.engstruct.2020.111626
10.1016/j.ijsolstr.2015.05.025
10.1016/j.engstruct.2023.116897
10.1002/nme.1358
10.1016/j.crme.2017.12.009
10.1016/j.ijmecsci.2019.105078
10.1002/eqe.2929
10.1007/s10518‐021‐01263‐1
10.1016/j.istruc.2020.08.026
10.1016/j.istruc.2024.106108
10.1061/(ASCE)0733‐9445(2003)129:10(1367)
10.1002/nme.7162
10.1007/978-3-7091-2618-9
10.1016/j.compstruc.2018.06.003
10.1002/eqe.3445
10.1002/eqe.4037
10.1007/s00466‐021‐02118‐x
10.12989/sem.2000.10.2.181
10.1016/j.soildyn.2023.107760
10.2140/jomms.2019.14.663
10.1002/eqe.3512
10.1007/s11831‐019‐09351‐x
10.4028/www.scientific.net/KEM.624.502
10.1007/s11831‐010‐9046‐1
10.1016/S0020‐7403(99)00111‐3
10.1061/(ASCE)0733‐9399(1997)123:7(660)
10.1002/eqe.126
10.1016/j.engstruct.2012.08.029
10.1007/s11012‐021‐01414‐3
10.1016/j.compstruc.2022.106769
10.1007/978-1-4613-3449-1_6
10.1007/s11012‐017‐0688‐z
10.1016/j.engstruct.2013.09.029
10.1016/j.engstruct.2017.01.020
10.1061/(ASCE)0733‐9445(2005)131:11(1665)
10.1016/j.ijsolstr.2005.02.010
10.1617/s11527‐008‐9405‐7
10.1016/j.ijsolstr.2017.12.012
10.1002/eqe.3444
10.1016/j.compstruc.2023.106987
10.1061/(ASCE)0733‐9445(2004)130:3(423)
10.1002/eqe.3277
10.1098/rspa.2017.0740
10.1007/s10035‐012‐0360‐1
10.1016/j.engfailanal.2023.107441
10.1016/j.compstruc.2020.106372
10.1007/s10107‐002‐0349‐3
10.1007/978-3-030-29227-0_31
10.1002/eqe.2335
10.1080/15583058.2018.1492647
10.1016/j.engstruct.2020.110298
10.1007/s10518‐023‐01744‐5
10.1504/IJMRI.2024.135236
10.1002/eqe.3144
10.1002/pse.120
10.1002/eqe.3591
10.1016/j.compgeo.2012.02.006
10.1016/j.ijsolstr.2024.112770
10.1016/j.advengsoft.2023.103514
10.1016/j.compstruc.2011.05.004
10.1016/j.ijsolstr.2023.112633
10.1002/eqe.2594
10.1016/j.engfailanal.2021.105744
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1002/eqe.4206
DatabaseName Wiley Online Library Open Access
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9845
EndPage 3982
ExternalDocumentID 10_1002_eqe_4206
EQE4206
Genre article
GrantInformation_xml – fundername: Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri, DPC‐ReLUIS Project
GroupedDBID -~X
.3N
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHHS
AAHQN
AAIKC
AAMNL
AAMNW
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
.Y3
31~
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACKIV
ACRPL
ACSCC
ACYXJ
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
AI.
ARCSS
ASPBG
AVWKF
AZFZN
CITATION
CKXBT
EJD
FEDTE
HF~
HVGLF
LW6
M58
PALCI
RIWAO
RJQFR
RNS
SAMSI
TUS
VH1
ZY4
7ST
7TG
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
ID FETCH-LOGICAL-c3526-12e17447641eacdc2835d75019a32a069376e594ced95985ea9a842fd0aa36da3
IEDL.DBID DR2
ISSN 0098-8847
IngestDate Sat Jul 26 00:36:21 EDT 2025
Thu Apr 24 23:06:26 EDT 2025
Tue Jul 01 02:22:00 EDT 2025
Wed Jan 22 17:13:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3526-12e17447641eacdc2835d75019a32a069376e594ced95985ea9a842fd0aa36da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2711-3366
0000-0001-8459-0199
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.4206
PQID 3121287648
PQPubID 866380
PageCount 20
ParticipantIDs proquest_journals_3121287648
crossref_citationtrail_10_1002_eqe_4206
crossref_primary_10_1002_eqe_4206
wiley_primary_10_1002_eqe_4206_EQE4206
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 October 2024
PublicationDateYYYYMMDD 2024-10-25
PublicationDate_xml – month: 10
  year: 2024
  text: 25 October 2024
  day: 25
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earthquake engineering & structural dynamics
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 25
2010; 14
2009; 42
2005; 131
2023; 185
2018; 206
2010; 17
2023; 9
2017; 46
2019; 14
2005; 64
2022; 69
2020; 14
2022; 20
2020; 11
2015; 624
2021; 242
2012; 14
2003; 95
2007; 36
2022; 257
2020; 209
2001; 43
2020; 18
2023; 21
2018; 136‐137
2015; 69‐70
2003; 129
2023; 296
1990
2001
2000
2013; 57
2000; 10
2004; 130
2015; 44
2020; 49
2024; 62
2021; 230
2007; 1
1994; 72
2022a; 265
2016; 45
2021; 6
2023; 52
2013; 48
2023; 280
2002; 31
2022; 51
2023; 124
2018; 346
2023; 166
2016; 97
2019; 161‐162
1996
2005; 42
2002; 4
2024; 53
1993
2024; 289
1992
2021; 50
2017; 136
2014; 43
2018; 474
2023; 152
2022
2020
2022; 7
2019; 48
2023; 275
1997; 123
2024; 294
2020; 27
2022; 57
2011; 89
2021; 130
2012; 45
2018; 53
2012; 43
e_1_2_11_70_1
e_1_2_11_72_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Doherty K (e_1_2_11_82_1) 2000
e_1_2_11_60_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
Lourenço PB (e_1_2_11_83_1) 2001
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_87_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
Gilbert M (e_1_2_11_50_1) 1994; 72
e_1_2_11_19_1
e_1_2_11_71_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 289
  year: 2024
  article-title: A limit analysis‐based CASS approach for the in‐plane seismic capacity of masonry façades
  publication-title: Int J Solids Struct
– volume: 152
  year: 2023
  article-title: Analysis of the out‐of‐plane buckling collapse of a masonry wall: a case study
  publication-title: Eng Fail Anal
– volume: 17
  start-page: 299
  year: 2010
  end-page: 325
  article-title: Structural analysis of masonry historical constructions. Classical and advanced approaches
  publication-title: Arch Comput Methods Eng
– volume: 6
  start-page: 405
  year: 2021
  end-page: 421
  article-title: Experimental and numerical analysis of a scaled dry‐joint arch on moving supports
  publication-title: Int J Mason Res Innov
– volume: 14
  start-page: 1
  year: 2020
  end-page: 22
  article-title: A novel numerical tool for seismic vulnerability analysis of ruins in archaeological sites
  publication-title: Int J Archit Herit
– volume: 45
  start-page: 1019
  year: 2012
  end-page: 1034
  article-title: In‐plane behavior of perforated brick masonry walls
  publication-title: Mater Struct Constr
– volume: 346
  start-page: 247
  year: 2018
  end-page: 262
  article-title: The Contact Dynamics method: a nonsmooth story | La méthode de la dynamique des contacts, histoire d'une mécanique non régulière
  publication-title: Comptes Rendus—Mec
– volume: 53
  start-page: 1629
  year: 2018
  end-page: 1643
  article-title: Effects of the dilatancy of joints and of the size of the building blocks on the mechanical behavior of masonry structures
  publication-title: Meccanica
– volume: 20
  start-page: 1939
  year: 2022
  end-page: 1997
  article-title: Nonlinear modeling of the seismic response of masonry structures: critical review and open issues towards engineering practice
  publication-title: Bull Earthq Eng
– volume: 43
  start-page: 209
  year: 2001
  end-page: 224
  article-title: Limit analysis of frictional block assemblies as a mathematical program with complementarity constraints
  publication-title: Int J Mech Sci
– year: 1990
– volume: 50
  start-page: 2212
  year: 2021
  end-page: 2232
  article-title: A novel macroelement model for the nonlinear analysis of masonry buildings. Part 2: shear behavior
  publication-title: Earthq Eng Struct Dyn
– volume: 130
  year: 2021
  article-title: Macroscale modelling of the orthotropic shear damage in the dynamics of masonry towers by RBSM
  publication-title: Eng Fail Anal
– volume: 43
  start-page: 165
  year: 2012
  end-page: 176
  article-title: Granular contact dynamics using mathematical programming methods
  publication-title: Comput Geotech
– start-page: 169
  year: 2022
  end-page: 203
– volume: 97
  start-page: 40
  year: 2016
  end-page: 59
  article-title: 3D macro‐element modelling approach for seismic assessment of historical masonry churches
  publication-title: Adv Eng Softw
– volume: 161‐162
  year: 2019
  article-title: A variational‐based fixed‐point algorithm for the limit analysis of dry‐masonry block structures with non‐associative Coulomb friction
  publication-title: Int J Mech Sci
– volume: 72
  start-page: 356
  year: 1994
  end-page: 361
  article-title: Rigid‐block analysis of masonry structures
  publication-title: Struct Eng
– volume: 11
  start-page: 307
  year: 2020
  end-page: 314
– volume: 27
  start-page: 1153
  year: 2020
  end-page: 1185
  article-title: Modeling strategies for the computational analysis of unreinforced masonry structures: review and classification
  publication-title: Arch Comput Methods Eng
– volume: 48
  start-page: 454
  year: 2019
  end-page: 475
  article-title: Evaluation of force‐based and displacement‐based out‐of‐plane seismic assessment methods for unreinforced masonry walls through refined model simulations
  publication-title: Earthq Eng Struct Dyn
– volume: 27
  start-page: 2274
  year: 2020
  end-page: 2287
  article-title: Simulation of the in‐plane structural behavior of unreinforced masonry walls and buildings using DEM
  publication-title: Structures
– volume: 51
  start-page: 793
  year: 2022
  end-page: 811
  article-title: A Macro‐Distinct Element Model (M‐DEM) for simulating in‐plane/out‐of‐plane interaction and combined failure mechanisms of unreinforced masonry structures
  publication-title: Earthq Eng Struct Dyn
– volume: 230
  year: 2021
  article-title: Discontinuous approaches for nonlinear dynamic analyses of an ancient masonry tower
  publication-title: Eng Struct
– volume: 69‐70
  start-page: 252
  year: 2015
  end-page: 266
  article-title: An efficient solution procedure for crushing failure in 3D limit analysis of masonry block structures with non‐associative frictional joints
  publication-title: Int J Solids Struct
– volume: 129
  start-page: 1367
  year: 2003
  end-page: 1375
  article-title: Cap Model for Limit analysis and strengthening of masonry structures
  publication-title: J Struct Eng
– volume: 62
  year: 2024
  article-title: Discontinuum models for the structural and seismic assessment of unreinforced masonry structures: a critical appraisal
  publication-title: Structures
– volume: 136
  start-page: 277
  year: 2017
  end-page: 294
  article-title: Discrete element modelling of the in‐plane and out‐of‐plane behaviour of dry‐joint masonry wall constructions
  publication-title: Eng Struct
– volume: 206
  start-page: 66
  year: 2018
  end-page: 81
  article-title: A detailed micro‐modelling approach for the structural analysis of masonry assemblages
  publication-title: Comput Struct
– volume: 53
  start-page: 622
  year: 2024
  end-page: 645
  article-title: Pragmatic seismic collapse meso‐scale analysis of old Dutch masonry churches
  publication-title: Earthq Eng Struct Dyn
– volume: 52
  start-page: 2047
  year: 2023
  end-page: 2066
  article-title: A discrete‐element approach accounting for P‐Delta effects
  publication-title: Earthq Eng Struct Dyn
– volume: 206
  start-page: 18
  year: 2018
  end-page: 30
  article-title: A 3D detailed micro‐model for the in‐plane and out‐of‐plane numerical analysis of masonry panels
  publication-title: Comput Struct
– volume: 123
  start-page: 660
  year: 1997
  end-page: 668
  article-title: Multisurface interface model for analysis of masonry structures
  publication-title: J Eng Mech
– volume: 296
  year: 2023
  article-title: Spatial stochastic D‐RBA and limit equilibrium analysis of unreinforced masonry pier‐spandrel structures
  publication-title: Eng Struct
– volume: 275
  year: 2023
  article-title: Effect of joint deformability on the experimental and numerical response of dry‐joint masonry arches subjected to large support displacements
  publication-title: Eng Struct
– volume: 10
  start-page: 181
  year: 2000
  end-page: 195
  article-title: Collapse behaviour of three‐dimensional brick‐block systems using non‐linear programming
  publication-title: Struct Eng Mech
– volume: 18
  start-page: 211
  year: 2020
  end-page: 239
  article-title: Rigid block modelling of historic masonry structures using mathematical programming: a unified formulation for non‐linear time history, static pushover and limit equilibrium analysis
  publication-title: Bull Earthq Eng
– year: 1993
– volume: 242
  year: 2021
  article-title: In‐plane structural performance of dry‐joint stone masonry Walls: a spatial and non‐spatial stochastic discontinuum analysis
  publication-title: Eng Struct
– volume: 64
  start-page: 65
  year: 2005
  end-page: 94
  article-title: NSCD discrete element method for modelling masonry structures
  publication-title: Int J Numer Methods Eng
– volume: 130
  start-page: 423
  year: 2004
  end-page: 432
  article-title: Experimental investigation of unreinforced brick masonry walls in flexure
  publication-title: J Struct Eng
– volume: 36
  start-page: 2119
  year: 2007
  end-page: 2136
  article-title: Failure of masonry arches under impulse base motion
  publication-title: Earthq Eng Struct Dyn
– volume: 42
  start-page: 5140
  year: 2005
  end-page: 5160
  article-title: Three‐dimensional limit analysis of rigid blocks assemblages. Part I: torsion failure on frictional interfaces and limit analysis formulation
  publication-title: Int J Solids Struct
– volume: 50
  start-page: 2233
  year: 2021
  end-page: 2252
  article-title: A novel macroelement model for the nonlinear analysis of masonry buildings. Part 1: axial and flexural behavior
  publication-title: Earthq Eng Struct Dyn
– volume: 31
  start-page: 833
  year: 2002
  end-page: 850
  article-title: Displacement‐based seismic analysis for out‐of‐plane bending of unreinforced masonry walls
  publication-title: Earthq Eng Struct Dyn
– volume: 69
  start-page: 865
  year: 2022
  end-page: 890
  article-title: A two‐level macroscale continuum description with embedded discontinuities for nonlinear analysis of brick/block masonry
  publication-title: Comput Mech
– volume: 124
  start-page: 1253
  year: 2023
  end-page: 1279
  article-title: An anisotropic plastic‐damage model for 3D nonlinear simulation of masonry structures
  publication-title: Int J Numer Methods Eng
– volume: 185
  year: 2023
  article-title: Parametric nonlinear modelling of 3D masonry arch bridges
  publication-title: Adv Eng Softw
– volume: 9
  start-page: 80
  year: 2023
  end-page: 95
  article-title: Masonry arches simulations using cohesion parameter as code enrichment for limit analysis approach
  publication-title: Int J Mason Res Innov
– volume: 166
  year: 2023
  article-title: An optimization‐based rigid block modeling approach to seismic assessment of dry‐joint masonry structures subjected to settlements
  publication-title: Soil Dyn Earthq Eng
– year: 2000
– volume: 294
  year: 2024
  article-title: A Hybrid Discrete‐Finite Element method for continuous and discontinuous beam‐like members including nonlinear geometric and material effects
  publication-title: Int J Solids Struct
– volume: 624
  start-page: 502
  year: 2015
  end-page: 509
  article-title: Numerical and experimental analysis of full scale arches reinforced with GFRP materials
  publication-title: Key Eng Mater
– volume: 49
  start-page: 1365
  year: 2020
  end-page: 1387
  article-title: A three‐dimensional macroelement for modelling the in‐plane and out‐of‐plane response of masonry walls
  publication-title: Earthq Eng Struct Dyn
– volume: 265
  year: 2022a
  article-title: A hybrid macro‐modelling strategy with multi‐objective calibration for accurate simulation of multi‐ring masonry arches and bridges
  publication-title: Comput Struct
– volume: 14
  start-page: 1484
  year: 2020
  end-page: 1501
  article-title: Applied element modelling of the dynamic response of a full‐scale clay brick masonry building specimen with flexible diaphragms
  publication-title: Int J Archit Herit
– volume: 7
  start-page: 31
  year: 2022
  article-title: Discrete element bonded‐block models for detailed analysis of masonry
  publication-title: Infrastructures
– volume: 136‐137
  start-page: 150
  year: 2018
  end-page: 167
  article-title: Numerical analysis of 3D dry‐stone masonry structures by combined finite‐discrete element method
  publication-title: Int J Solids Struct
– volume: 257
  year: 2022
  article-title: AnMas: anisotropic strength domain for masonry
  publication-title: Eng Struct
– volume: 4
  start-page: 301
  year: 2002
  end-page: 319
  article-title: Computations on historic masonry structures
  publication-title: Prog Struct Engng Mater
– start-page: 189
  year: 1996
  end-page: 252
– volume: 280
  year: 2023
  article-title: Simple modeling of reinforced masonry arches for associated and non‐associated heterogeneous limit analysis
  publication-title: Comput Struct
– volume: 57
  start-page: 121
  year: 2022
  end-page: 141
  article-title: A finite difference method for the static limit analysis of masonry domes under seismic loads
  publication-title: Meccanica
– volume: 50
  start-page: 3332
  year: 2021
  end-page: 3354
  article-title: A variational rigid‐block modeling approach to nonlinear elastic and kinematic analysis of failure mechanisms in historic masonry structures subjected to lateral loads
  publication-title: Earthq Eng Struct Dyn
– volume: 57
  start-page: 232
  year: 2013
  end-page: 247
  article-title: Limit analysis of masonry walls by rigid block modelling with cracking units and cohesive joints using linear programming
  publication-title: Eng Struct
– volume: 124
  start-page: 358
  year: 2023
  end-page: 381
  article-title: Limit analysis of masonry walls using discontinuity layout optimization and homogenization
  publication-title: Int J Numer Methods Eng
– volume: 44
  start-page: 2489
  year: 2015
  end-page: 2506
  article-title: Advanced frame element for seismic analysis of masonry structures: model formulation and validation
  publication-title: Earthq Eng Struct Dyn
– volume: 48
  start-page: 98
  year: 2013
  end-page: 120
  article-title: Simple numerical model with second order effects for out‐of‐plane loaded masonry walls
  publication-title: Eng Struct
– volume: 14
  start-page: 607
  year: 2012
  end-page: 619
  article-title: Granular contact dynamics with particle elasticity
  publication-title: Granul Matter
– volume: 209
  year: 2020
  article-title: Numerical modelling of the out‐of‐plane response of full‐scale brick masonry prototypes subjected to incremental dynamic shake‐table tests
  publication-title: Eng Struct
– year: 1992
  article-title: Material properties of masonry and its components under tension and shear
– volume: 131
  start-page: 1665
  year: 2005
  end-page: 1673
  article-title: Dry joint stone masonry walls subjected to in‐plane combined loading
  publication-title: J Struct Eng
– volume: 46
  start-page: 2757
  year: 2017
  end-page: 2776
  article-title: Analytical model for the out‐of‐plane response of vertically spanning unreinforced masonry walls
  publication-title: Earthq Eng Struct Dyn
– volume: 95
  start-page: 249
  year: 2003
  end-page: 277
  article-title: On implementing a primal‐dual interior‐point method for conic quadratic optimization
  publication-title: Math Program Ser B
– volume: 14
  start-page: 663
  year: 2019
  end-page: 682
  article-title: Failure pattern prediction in masonry
  publication-title: J Mech Mater Struct
– volume: 242
  year: 2021
  article-title: Numerical limit analysis‐based modelling of masonry structures subjected to large displacements
  publication-title: Comput Struct
– volume: 25
  start-page: 876
  year: 2021
  end-page: 892
  article-title: Failure analysis of masonry wall panels subjected to in‐plane and out‐of‐plane loading using the discrete element method
  publication-title: Eur J Environ Civ Eng
– year: 2020
– volume: 21
  start-page: 5573
  year: 2023
  end-page: 5596
  article-title: Seismic assessment of URM pier spandrel systems via efficient computational modeling strategies
  publication-title: Bull Earthq Eng
– volume: 474
  year: 2018
  article-title: The role of frictional contact of constituent blocks on the stability of masonry domes
  publication-title: Proc R Soc A Math Phys Eng Sci
– volume: 14
  start-page: 312
  year: 2010
  end-page: 322
  article-title: Experimental behavior of FRP strengthened masonry arches
  publication-title: J Compos Constr
– start-page: 91
  year: 2001
  end-page: 116
– volume: 42
  start-page: 279
  year: 2009
  end-page: 300
  article-title: Coupling effect between masonry spandrels and piers
  publication-title: Mater Struct Constr
– volume: 43
  start-page: 159
  year: 2014
  end-page: 179
  article-title: A nonlinear macroelement model for the seismic analysis of masonry buildings
  publication-title: Earthq Eng Struct Dyn
– volume: 89
  start-page: 1586
  year: 2011
  end-page: 1601
  article-title: Simple homogenization model for the non‐linear analysis of in‐plane loaded masonry walls
  publication-title: Comput Struct
– volume: 45
  start-page: 563
  year: 2016
  end-page: 580
  article-title: Out‐of‐plane seismic response of vertically spanning URM walls connected to flexible diaphragms
  publication-title: Earthq Eng Struct Dyn
– volume: 1
  start-page: 190
  year: 2007
  end-page: 213
  article-title: Discrete element modeling of masonry structures
  publication-title: Int J Archit Herit
– start-page: 91
  volume-title: Historical Constructions
  year: 2001
  ident: e_1_2_11_83_1
– ident: e_1_2_11_22_1
  doi: 10.1080/19648189.2018.1552897
– ident: e_1_2_11_24_1
  doi: 10.1002/eqe.719
– ident: e_1_2_11_29_1
  doi: 10.3390/infrastructures7030031
– ident: e_1_2_11_79_1
  doi: 10.1002/eqe.3867
– ident: e_1_2_11_56_1
  doi: 10.1007/978-3-030-39391-5_9
– ident: e_1_2_11_2_1
  doi: 10.1002/eqe.2671
– ident: e_1_2_11_7_1
  doi: 10.1016/j.engstruct.2022.114050
– ident: e_1_2_11_12_1
  doi: 10.1016/j.engstruct.2022.115236
– ident: e_1_2_11_11_1
  doi: 10.1016/j.compstruc.2018.06.007
– ident: e_1_2_11_88_1
  doi: 10.1617/s11527‐011‐9814‐x
– ident: e_1_2_11_13_1
  doi: 10.1504/IJMRI.2021.118818
– ident: e_1_2_11_36_1
  doi: 10.1016/j.advengsoft.2016.02.009
– ident: e_1_2_11_52_1
  doi: 10.1007/978-3-031-12873-8_7
– ident: e_1_2_11_67_1
  doi: 10.1007/s10518‐019‐00722‐0
– ident: e_1_2_11_21_1
  doi: 10.1080/15583050601176868
– ident: e_1_2_11_58_1
  doi: 10.1002/nme.7124
– ident: e_1_2_11_84_1
  doi: 10.1061/(ASCE)CC.1943‐5614.0000086
– ident: e_1_2_11_87_1
  doi: 10.1016/j.engstruct.2021.112620
– ident: e_1_2_11_17_1
  doi: 10.1080/15583058.2019.1616004
– ident: e_1_2_11_63_1
  doi: 10.1016/j.engstruct.2020.111626
– ident: e_1_2_11_81_1
  doi: 10.1016/j.ijsolstr.2015.05.025
– ident: e_1_2_11_27_1
  doi: 10.1016/j.engstruct.2023.116897
– ident: e_1_2_11_19_1
  doi: 10.1002/nme.1358
– ident: e_1_2_11_20_1
  doi: 10.1016/j.crme.2017.12.009
– ident: e_1_2_11_54_1
  doi: 10.1016/j.ijmecsci.2019.105078
– ident: e_1_2_11_3_1
  doi: 10.1002/eqe.2929
– ident: e_1_2_11_42_1
  doi: 10.1007/s10518‐021‐01263‐1
– ident: e_1_2_11_76_1
– ident: e_1_2_11_28_1
  doi: 10.1016/j.istruc.2020.08.026
– ident: e_1_2_11_44_1
  doi: 10.1016/j.istruc.2024.106108
– ident: e_1_2_11_68_1
  doi: 10.1061/(ASCE)0733‐9445(2003)129:10(1367)
– ident: e_1_2_11_5_1
  doi: 10.1002/nme.7162
– ident: e_1_2_11_66_1
  doi: 10.1007/978-3-7091-2618-9
– ident: e_1_2_11_30_1
  doi: 10.1016/j.compstruc.2018.06.003
– ident: e_1_2_11_39_1
  doi: 10.1002/eqe.3445
– ident: e_1_2_11_16_1
  doi: 10.1002/eqe.4037
– ident: e_1_2_11_78_1
  doi: 10.1007/s00466‐021‐02118‐x
– ident: e_1_2_11_48_1
  doi: 10.12989/sem.2000.10.2.181
– ident: e_1_2_11_71_1
  doi: 10.1016/j.soildyn.2023.107760
– ident: e_1_2_11_6_1
  doi: 10.2140/jomms.2019.14.663
– ident: e_1_2_11_72_1
  doi: 10.1002/eqe.3512
– ident: e_1_2_11_43_1
  doi: 10.1007/s11831‐019‐09351‐x
– ident: e_1_2_11_85_1
  doi: 10.4028/www.scientific.net/KEM.624.502
– ident: e_1_2_11_45_1
  doi: 10.1007/s11831‐010‐9046‐1
– ident: e_1_2_11_49_1
  doi: 10.1016/S0020‐7403(99)00111‐3
– ident: e_1_2_11_77_1
  doi: 10.1061/(ASCE)0733‐9399(1997)123:7(660)
– ident: e_1_2_11_73_1
  doi: 10.1002/eqe.126
– ident: e_1_2_11_9_1
  doi: 10.1016/j.engstruct.2012.08.029
– ident: e_1_2_11_60_1
  doi: 10.1007/s11012‐021‐01414‐3
– ident: e_1_2_11_15_1
  doi: 10.1016/j.compstruc.2022.106769
– ident: e_1_2_11_46_1
  doi: 10.1007/978-1-4613-3449-1_6
– ident: e_1_2_11_25_1
  doi: 10.1007/s11012‐017‐0688‐z
– ident: e_1_2_11_69_1
  doi: 10.1016/j.engstruct.2013.09.029
– ident: e_1_2_11_23_1
  doi: 10.1016/j.engstruct.2017.01.020
– ident: e_1_2_11_86_1
  doi: 10.1061/(ASCE)0733‐9445(2005)131:11(1665)
– ident: e_1_2_11_55_1
  doi: 10.1016/j.ijsolstr.2005.02.010
– ident: e_1_2_11_70_1
  doi: 10.1617/s11527‐008‐9405‐7
– ident: e_1_2_11_32_1
  doi: 10.1016/j.ijsolstr.2017.12.012
– ident: e_1_2_11_40_1
  doi: 10.1002/eqe.3444
– ident: e_1_2_11_51_1
  doi: 10.1016/j.compstruc.2023.106987
– ident: e_1_2_11_80_1
  doi: 10.1061/(ASCE)0733‐9445(2004)130:3(423)
– ident: e_1_2_11_37_1
  doi: 10.1002/eqe.3277
– ident: e_1_2_11_62_1
  doi: 10.1098/rspa.2017.0740
– ident: e_1_2_11_65_1
  doi: 10.1007/s10035‐012‐0360‐1
– ident: e_1_2_11_4_1
  doi: 10.1016/j.engfailanal.2023.107441
– ident: e_1_2_11_61_1
  doi: 10.1016/j.compstruc.2020.106372
– ident: e_1_2_11_47_1
  doi: 10.1007/s10107‐002‐0349‐3
– ident: e_1_2_11_57_1
  doi: 10.1007/978-3-030-29227-0_31
– ident: e_1_2_11_41_1
  doi: 10.1002/eqe.2335
– ident: e_1_2_11_34_1
  doi: 10.1080/15583058.2018.1492647
– ident: e_1_2_11_18_1
  doi: 10.1016/j.engstruct.2020.110298
– ident: e_1_2_11_26_1
  doi: 10.1007/s10518‐023‐01744‐5
– ident: e_1_2_11_53_1
  doi: 10.1504/IJMRI.2024.135236
– ident: e_1_2_11_74_1
  doi: 10.1002/eqe.3144
– ident: e_1_2_11_10_1
  doi: 10.1002/pse.120
– ident: e_1_2_11_35_1
  doi: 10.1002/eqe.3591
– ident: e_1_2_11_64_1
  doi: 10.1016/j.compgeo.2012.02.006
– ident: e_1_2_11_31_1
  doi: 10.1016/j.ijsolstr.2024.112770
– ident: e_1_2_11_14_1
  doi: 10.1016/j.advengsoft.2023.103514
– volume-title: An Investigation of the Weak Links in the Seismic Load Path of Unreinforced Masonary Buildings
  year: 2000
  ident: e_1_2_11_82_1
– ident: e_1_2_11_8_1
  doi: 10.1016/j.compstruc.2011.05.004
– ident: e_1_2_11_59_1
  doi: 10.1016/j.ijsolstr.2023.112633
– ident: e_1_2_11_38_1
  doi: 10.1002/eqe.2594
– volume: 72
  start-page: 356
  year: 1994
  ident: e_1_2_11_50_1
  article-title: Rigid‐block analysis of masonry structures
  publication-title: Struct Eng
– ident: e_1_2_11_33_1
  doi: 10.1016/j.engfailanal.2021.105744
– ident: e_1_2_11_75_1
SSID ssj0003607
Score 2.460215
Snippet A rigid block model with elasto‐plastic softening interfaces is developed for nonlinear static analysis of masonry structures subject to monotonic loading....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3963
SubjectTerms Arches
cohesive strength
cracking units
Equilibrium conditions
Failure mechanisms
incremental solution procedure
Interfaces
Masonry
Modelling
mortar joints
Mortars (material)
non‐linear static analysis
Optimization
optimization‐based formulation
Prisms
rigid block modeling
Rigid blocks
Shear
Shear tests
Shear walls
Softening
softening behavior
Tensile strength
Title Nonlinear static analysis of masonry structures with mortar joints and cracking units by optimization‐based rigid block models
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.4206
https://www.proquest.com/docview/3121287648
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMcX7UkPvsVqlRFET6nJZhO7R5FKERQVBcFD2FfBR1tt2oOe_Ah-Rj-JM3m0VRTEUy67Icnszvx3s_MbxnaENoKrwHkiFNwT1klPouzwjDHuwEjnoiy36vQsbl2Lk5vopjhVSbkwOR9itOFGMyPz1zTBlU73x9BQ9-zqgme0bTqqRXrockyOCmN_hMtsoAcuubM-3y87fo1EY3k5KVKzKHM8z27L58sPlzzUhwNdN6_f0I3_e4EFNleITzjMR8sim3LdJTY7gSRcZm9n-a1VHyjX6M6AKrAl0GtDR6E8779ATp0d4lIdaCMXOiTi-3Dfu-sOUuxhwfSVoV14GKLPSEG_QA-dU6fI-vx4e6fwaYHKclnQGFEfICvKk66w6-Pm1VHLK6o0eIbY-l7AHa5qxEEsAnTi1hDAzaIOCaQKufJj1D-xi6QwzspINiKnpGoI3ra-UmFsVbjKKt1e160xoF-2IUfFptu-0M5JZXlsDUoeGwZxpKtsr7RYYgqEOVXSeExy-DJP8Jsm9E2rbHvU8inHdvzQplYaPSkmbpqEAcZyjBCiUWW7mfV-7Z80L5p0Xf9rww02w1ESUeTjUY1V0FRuEyXNQG-xaS7Ot7Ih_An26_c_
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NTttAEMdHiB6ghxZKK9LyMZUqODmx12uTVU8IBYU2idQKpByQrPXuRqI0SWsnB3riEfqMfZLO-CMBBFLVky-7lr2zO_Pftec3AB9kaqTQgfNkKIUnrVOeItnhGWPckVHORUVuVX8Qdy_kp2E0XIGPdS5MyYdYHLjxyij8NS9wPpBuLamh7qdrSsG47Wdc0LvYT31dsqPC2F8AM9vkg2vyrC9adc_7sWgpMO_K1CLOnL6Ey_oJy99LrpvzWdo0vx7AG__zFTbgRaU_8bicMJuw4iav4PkdKuEW3A7Ke-sMOd3oyqCuyCU4HeFYk0LPbrAEz85pt458lotj1vEZfpteTWY59bBoMm34IB7n5DZyTG9wSv5pXCV-_rn9zRHUIlfmsphSUL3Goi5P_houTjvnJ12vKtTgGcbre4FwtLGRR7EMyI9bwww3S1IkUDoU2o9JAsUuUtI4qyLVjpxWui3FyPpah7HV4RtYnUwnbhuQv9qGgkRbOvJl6pzSVsTWkOqxYRBHaQMOa5MlpqKYczGN70nJXxYJjWnCY9qA94uWP0pyxyNtdmqrJ9XazZMwoHBOQUK2G3BQmO_J_knnS4evb_-14T6sdc_7vaR3Nvj8DtYFKSQOhCLagVUym9slhTNL94qZ_BeBCfqD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LTxsxEMctBBKCA7Q81PBop1JFTxt2vV6zPlaQiEeJCiJSJA4rr-1IaUgCeRzgxEfoZ-wn6cw-EkBFQpz2Yq92d-yZv72e3zD2TaRGcB04T4SCe8I65SmUHZ4xxh0Y5VyU5VadN-RxU5y2olZxqpJyYXI-xHTDjWZG5q9pgt_a9v4MGuruXFVwom0vCOnHNKKPLmfoqFD6U15mjC64BM_6fL_s-TwUzfTlU5WahZn6KrsuHzA_XdKtTsZp1Ty8YDe-7w0-sJVCfcKPfLh8ZHOuv8aWnzAJ19ljI7-1HgIlG3UM6IJbAoM29DTq8-E95NjZCa7VgXZyoUcqfgi_B53-eIQ9LJihNrQNDxN0GiNI72GA3qlXpH3-ffxD8dMC1eWykGJI7UJWlWe0wZr12tXhsVeUafAMwfW9gDtc1ogDKQL04tYQwc2iEAmUDrn2JQog6SIljLMqUnHktNKx4G3rax1Kq8NNNt8f9N0nBvTPNuQo2dK2L1LnlLZcWoOax4aBjNIK-15aLDEFw5xKadwkOX2ZJ_hNE_qmFfZ12vI253b8p81OafSkmLmjJAwwmGOIEHGF7WXWe7V_Uruo0XXrrQ2_sMVfR_Xk50njbJstcZRHFAV5tMPm0WpuF-XNOP2cjeN_v8r5Ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+static+analysis+of+masonry+structures+with+mortar+joints+and+cracking+units+by+optimization%E2%80%90based+rigid+block+models&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Portioli%2C+Francesco+P+A&rft.au=Louren%C3%A7o%2C+Paulo+B&rft.date=2024-10-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=53&rft.issue=13&rft.spage=3963&rft.epage=3982&rft_id=info:doi/10.1002%2Feqe.4206&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon