Macroecological patterns and correlates of ant–tree interaction networks in Neotropical savannas
Aim Similar to species richness, ecological interactions can vary across latitudinal and environmental gradients. Knowing the patterns and drivers of such variation could help us to better understand the role of species interactions in maintaining biodiversity. In this study, we analysed the macroec...
Saved in:
Published in | Global ecology and biogeography Vol. 28; no. 9; pp. 1283 - 1294 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Wiley
01.09.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aim
Similar to species richness, ecological interactions can vary across latitudinal and environmental gradients. Knowing the patterns and drivers of such variation could help us to better understand the role of species interactions in maintaining biodiversity. In this study, we analysed the macroecological patterns of the structure and interaction beta diversity of interaction networks involving trees and ants.
Location
Twenty‐nine sites encompassing 20 degrees of latitude throughout the Neotropical savanna.
Time period
2010–2015.
Major taxa studied
Trees and arboreal nesting ants.
Methods
For each site, we built an interaction network and calculated network size, interaction diversity (Shannon diversity of interactions), specialization, modularity, nestedness, and interaction dissimilarity (contribution of each network to the regional pool of possible interactions). We also determined how interaction beta diversity varied among all sampling sites. Net primary productivity (NPP), temperature and rainfall were evaluated as potential correlates of the observed changes in network descriptors and interaction beta diversity.
Results
We found no latitudinal gradient in network specialization, nestedness or modularity. However, sites at higher latitudes had larger networks, higher interaction diversity and higher interaction dissimilarity, and this was correlated mainly with the latitudinal variation in NPP. Interaction rewiring generated by the reassembly of the interactions between the same species in different sites was the main contributor to the total interaction beta diversity. However, the level of interaction rewiring was independent of the geographical and environmental distance between sampling sites.
Main conclusions
Ant–tree network structure remained relatively invariant across the latitudinal and environmental gradient possibly due to high interaction rewiring among the partners. Moreover, our findings show that more productive sites, located at higher latitudes, have high dissimilarity to the regional pool of possible interactions (i.e., strong interaction filtering), indicating that these sites significantly contribute to the maintenance of interaction biodiversity in Neotropical savannas. |
---|---|
AbstractList | AimSimilar to species richness, ecological interactions can vary across latitudinal and environmental gradients. Knowing the patterns and drivers of such variation could help us to better understand the role of species interactions in maintaining biodiversity. In this study, we analysed the macroecological patterns of the structure and interaction beta diversity of interaction networks involving trees and ants.LocationTwenty‐nine sites encompassing 20 degrees of latitude throughout the Neotropical savanna.Time period2010–2015.Major taxa studiedTrees and arboreal nesting ants.MethodsFor each site, we built an interaction network and calculated network size, interaction diversity (Shannon diversity of interactions), specialization, modularity, nestedness, and interaction dissimilarity (contribution of each network to the regional pool of possible interactions). We also determined how interaction beta diversity varied among all sampling sites. Net primary productivity (NPP), temperature and rainfall were evaluated as potential correlates of the observed changes in network descriptors and interaction beta diversity.ResultsWe found no latitudinal gradient in network specialization, nestedness or modularity. However, sites at higher latitudes had larger networks, higher interaction diversity and higher interaction dissimilarity, and this was correlated mainly with the latitudinal variation in NPP. Interaction rewiring generated by the reassembly of the interactions between the same species in different sites was the main contributor to the total interaction beta diversity. However, the level of interaction rewiring was independent of the geographical and environmental distance between sampling sites.Main conclusionsAnt–tree network structure remained relatively invariant across the latitudinal and environmental gradient possibly due to high interaction rewiring among the partners. Moreover, our findings show that more productive sites, located at higher latitudes, have high dissimilarity to the regional pool of possible interactions (i.e., strong interaction filtering), indicating that these sites significantly contribute to the maintenance of interaction biodiversity in Neotropical savannas. AIM: Similar to species richness, ecological interactions can vary across latitudinal and environmental gradients. Knowing the patterns and drivers of such variation could help us to better understand the role of species interactions in maintaining biodiversity. In this study, we analysed the macroecological patterns of the structure and interaction beta diversity of interaction networks involving trees and ants. LOCATION: Twenty‐nine sites encompassing 20 degrees of latitude throughout the Neotropical savanna. TIME PERIOD: 2010–2015. MAJOR TAXA STUDIED: Trees and arboreal nesting ants. METHODS: For each site, we built an interaction network and calculated network size, interaction diversity (Shannon diversity of interactions), specialization, modularity, nestedness, and interaction dissimilarity (contribution of each network to the regional pool of possible interactions). We also determined how interaction beta diversity varied among all sampling sites. Net primary productivity (NPP), temperature and rainfall were evaluated as potential correlates of the observed changes in network descriptors and interaction beta diversity. RESULTS: We found no latitudinal gradient in network specialization, nestedness or modularity. However, sites at higher latitudes had larger networks, higher interaction diversity and higher interaction dissimilarity, and this was correlated mainly with the latitudinal variation in NPP. Interaction rewiring generated by the reassembly of the interactions between the same species in different sites was the main contributor to the total interaction beta diversity. However, the level of interaction rewiring was independent of the geographical and environmental distance between sampling sites. MAIN CONCLUSIONS: Ant–tree network structure remained relatively invariant across the latitudinal and environmental gradient possibly due to high interaction rewiring among the partners. Moreover, our findings show that more productive sites, located at higher latitudes, have high dissimilarity to the regional pool of possible interactions (i.e., strong interaction filtering), indicating that these sites significantly contribute to the maintenance of interaction biodiversity in Neotropical savannas. Aim Similar to species richness, ecological interactions can vary across latitudinal and environmental gradients. Knowing the patterns and drivers of such variation could help us to better understand the role of species interactions in maintaining biodiversity. In this study, we analysed the macroecological patterns of the structure and interaction beta diversity of interaction networks involving trees and ants. Location Twenty‐nine sites encompassing 20 degrees of latitude throughout the Neotropical savanna. Time period 2010–2015. Major taxa studied Trees and arboreal nesting ants. Methods For each site, we built an interaction network and calculated network size, interaction diversity (Shannon diversity of interactions), specialization, modularity, nestedness, and interaction dissimilarity (contribution of each network to the regional pool of possible interactions). We also determined how interaction beta diversity varied among all sampling sites. Net primary productivity (NPP), temperature and rainfall were evaluated as potential correlates of the observed changes in network descriptors and interaction beta diversity. Results We found no latitudinal gradient in network specialization, nestedness or modularity. However, sites at higher latitudes had larger networks, higher interaction diversity and higher interaction dissimilarity, and this was correlated mainly with the latitudinal variation in NPP. Interaction rewiring generated by the reassembly of the interactions between the same species in different sites was the main contributor to the total interaction beta diversity. However, the level of interaction rewiring was independent of the geographical and environmental distance between sampling sites. Main conclusions Ant–tree network structure remained relatively invariant across the latitudinal and environmental gradient possibly due to high interaction rewiring among the partners. Moreover, our findings show that more productive sites, located at higher latitudes, have high dissimilarity to the regional pool of possible interactions (i.e., strong interaction filtering), indicating that these sites significantly contribute to the maintenance of interaction biodiversity in Neotropical savannas. |
Author | Dáttilo, Wesley Vasconcelos, Heraldo L. |
Author_xml | – sequence: 1 givenname: Wesley surname: Dáttilo fullname: Dáttilo, Wesley – sequence: 2 givenname: Heraldo L. surname: Vasconcelos fullname: Vasconcelos, Heraldo L. |
BookMark | eNp1kM1OAyEURompiba68AFMJnGji7YMMDOwVKPVpOpGE3eEoXeaqSNUoDbd-Q6-oU8i_dFFo2wgN-d8uXxt1DLWAEJHKe6l8fTHUPZSIijZQfspy_MuJ5S3ft_keQ-1vZ9gjDOW5fuovFPaWdC2seNaqyaZqhDAGZ8oM0q0dQ4aFcAntoqT8PXxGRxAUpsIKR1qaxIDYW7di4_D5B5scHa6SvLqXRmj_AHarVTj4XBzd9DT9dXj5U13-DC4vTwfdjXNCOnSEdUCeKpLVmIQuipKAYxDTkXBGIMyY0JRXpS8FISNeEVZIZQogIxwjoHTDjpd506dfZuBD_K19hqaRhmwMy8JpVlKeZbTiJ5soRM7cyZuJwkpCI4FUhKp_pqKDXnvoJK6Dmr55-BU3cgUy2XnMnYuV51H42zLmLr6VbnFn-wmfV43sPgflIOrix_jeG1MfLDu1yB5IQTBgn4DNXad-A |
CitedBy_id | crossref_primary_10_1111_btp_12773 crossref_primary_10_1111_een_13227 crossref_primary_10_1111_ele_13910 crossref_primary_10_1080_11956860_2021_2007644 crossref_primary_10_1002_ece3_6158 crossref_primary_10_1002_ecy_3716 crossref_primary_10_1007_s00442_024_05637_5 crossref_primary_10_1007_s11252_024_01556_8 crossref_primary_10_1007_s00040_020_00804_2 crossref_primary_10_1111_icad_12605 crossref_primary_10_1111_1365_2656_14116 crossref_primary_10_1007_s00442_020_04727_4 crossref_primary_10_1111_ecog_06763 crossref_primary_10_1111_jbi_14684 crossref_primary_10_1007_s11829_024_10118_w crossref_primary_10_1111_2041_210X_14358 crossref_primary_10_1111_icad_12495 crossref_primary_10_1007_s10531_024_02974_y crossref_primary_10_1111_jbi_15012 crossref_primary_10_1111_btp_12804 crossref_primary_10_1007_s42974_024_00222_5 |
Cites_doi | 10.1111/j.0030-1299.2007.15828.x 10.1111/jbi.13045 10.1111/btp.12157 10.1111/ele.12002 10.1017/S0960428603000064 10.7208/chicago/9780226713540.001.0001 10.1111/ecog.03514 10.1111/een.12036 10.1016/j.envsoft.2010.08.003 10.1093/biolinnean/blx059 10.1016/j.cub.2012.08.015 10.1146/annurev-ecolsys-110316-022821 10.1073/pnas.1633576100 10.1111/j.1752-4598.2008.00035.x 10.1111/jbi.12453 10.2307/1943563 10.1111/geb.12355 10.7312/oliv12042-007 10.1111/geb.12270 10.1111/j.1600-0706.2013.00562.x 10.1111/jbi.13113 10.1111/j.1461-0248.2005.00792.x 10.1002/joc.1276 10.1007/s10531-019-01708-9 10.1093/aob/mcp057 10.1007/978-3-319-68228-0 10.1111/j.1365-2656.2010.01779.x 10.1371/journal.pone.0112903 10.1007/s11829-016-9428-x 10.1186/1472-6785-6-9 10.1007/s00040-016-0466-2 10.1890/12-1647.1 10.1086/284665 10.1163/187498310X487785 10.1111/j.1472-4642.2007.00341.x 10.1111/geb.12602 10.1111/j.1466-8238.2012.00777.x 10.1111/ele.12740 10.1590/0102-33062015abb0244 10.1111/ele.12235 10.2174/1874213000902010007 10.1111/2041-210X.12139 10.1111/ele.12245 10.1002/ece3.2606 10.1098/rspb.2013.1201 10.1111/btp.12281 10.1016/j.baae.2010.01.001 10.1371/journal.pone.0025891 10.1111/j.1600-0706.2008.16540.x 10.1890/07-0978.1 10.1016/j.jaridenv.2010.05.015 10.1890/10-0340.1 10.1111/oik.01719 10.1111/j.1600-0587.2013.00201.x 10.1073/pnas.0706375104 10.1007/978-3-319-68228-0_5 10.1111/1365-2656.12459 10.1046/j.1365-2699.1999.00305.x 10.1890/14-0264.1 10.1007/s11829-011-9170-3 10.1111/ecog.02604 10.1038/nature07950 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2019 John Wiley & Sons Ltd |
DBID | AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 |
DOI | 10.1111/geb.12932 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
EISSN | 1466-8238 |
EndPage | 1294 |
ExternalDocumentID | 10_1111_geb_12932 GEB12932 26799209 |
Genre | article |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: 457407/2012 – fundername: Foundation for Scientific Development of the Federal District funderid: PRONEX 563/2009 |
GroupedDBID | -~X .3N .GA 0R~ 10A 1OC 29I 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHBH AAHKG AAHQN AAKGQ AAMMB AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABLJU ABPLY ABPPZ ABPVW ABTLG ACAHQ ACCZN ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA BFHJK BMNLL BMXJE BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD F00 F01 F04 G-S GODZA HGLYW HZI IHE IX1 JBS JENOY JLS JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A OIG P2W P4D Q11 QB0 ROL RX1 SUPJJ TN5 UB1 UPT W99 WIH WIK WQJ WXSBR XG1 ZZTAW ~KM .Y3 31~ AAHHS AAISJ AANHP ABBHK ABXSQ ACBWZ ACCFJ ACHIC ACRPL ACYXJ ADNMO ADULT ADZOD AEEZP AEQDE AEUPB AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE ANHSF AQVQM ASPBG AVWKF AZFZN BDRZF CAG CBGCD COF CUYZI DEVKO DOOOF EQZMY ESX FEDTE GTFYD HF~ HGD HQ2 HTVGU HVGLF IPSME JAAYA JBMMH JEB JHFFW JKQEH JLXEF JPM JSODD LW6 SA0 VQP WRC AAYXX ABSQW AGQPQ AGUYK CITATION 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 |
ID | FETCH-LOGICAL-c3522-3d3c9e81cb4b0e9cf7b9e48e6397444eb549a387b8b924d8f3479a97e2d060e83 |
IEDL.DBID | DR2 |
ISSN | 1466-822X |
IngestDate | Fri Jul 11 18:25:52 EDT 2025 Sun Jul 13 03:56:37 EDT 2025 Tue Jul 01 02:37:33 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 Wed Jan 22 16:40:23 EST 2025 Thu Jul 03 21:34:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3522-3d3c9e81cb4b0e9cf7b9e48e6397444eb549a387b8b924d8f3479a97e2d060e83 |
Notes | Data Availability Statement The data from this study are archived in the Figshare data repository. All response and predictor variables are available at http://doi.org/10.6084/m9.figshare.6998486 Ant–plant interaction networks are available at https://doi.org/10.6084/m9.figshare.5950306 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4758-4379 0000-0001-6969-7131 |
PQID | 2272029332 |
PQPubID | 1066347 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2335138563 proquest_journals_2272029332 crossref_citationtrail_10_1111_geb_12932 crossref_primary_10_1111_geb_12932 wiley_primary_10_1111_geb_12932_GEB12932 jstor_primary_26799209 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2019 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global ecology and biogeography |
PublicationYear | 2019 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2017; 40 2010; 11 2007; 104 1960; 30 2013; 22 2017; 48 2017; 44 2013; 122 2016; 30 2018; 41 2012; 15 2013; 280 2018; 45 2005; 25 2014; 5 2001 2015; 42 2009; 90 2016; 85 2008; 117 2011; 26 2014; 17 2014; 9 2017; 122 2010; 3 2014; 95 2016; 48 2012; 22 2010; 74 2017; 20 2017; 26 2015; 124 2011; 80 2015; 96 1987; 129 1999; 26 2016; 10 2007 2006; 6 2014; 46 2002 2011; 6 2007; 13 2009; 458 2015; 24 2016; 6 2013; 36 2007; 116 2013; 38 2005; 8 2011; 92 2019 2018 2016; 63 2017 2016 2003; 60 2012; 6 2009; 2 2003; 100 2009; 103 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 Burnham K. P. (e_1_2_7_7_1) 2002 e_1_2_7_39_1 Hubbell S. P. (e_1_2_7_31_1) 2001 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 24 start-page: 1212 year: 2015 end-page: 1224 article-title: The macroecology of phylogenetically structured hummingbird–plant networks publication-title: Global Ecology and Biogeography – volume: 20 start-page: 385 year: 2017 end-page: 394 article-title: Interaction rewiring and the rapid turnover of plant–pollinator networks publication-title: Ecology Letters – volume: 2 start-page: 7 year: 2009 end-page: 24 article-title: Indices, graphs and null models: Analyzing bipartite ecological networks publication-title: The Open Ecology Journal – year: 2001 – volume: 104 start-page: 19891 year: 2007 end-page: 19896 article-title: The modularity of pollination networks publication-title: Proceedings of the National Academy of Sciences USA – volume: 458 start-page: 1018 year: 2009 end-page: 1021 article-title: The architecture of mutualistic networks minimizes competition and increases biodiversity publication-title: Nature – volume: 26 start-page: 173 year: 2011 end-page: 178 article-title: A straightforward computational approach for measuring nestedness using quantitative matrices publication-title: Environmental Modelling and Software – volume: 100 start-page: 9383 year: 2003 end-page: 9387 article-title: The nested assembly of plant–animal mutualistic networks publication-title: Proceedings of the National Academy of Sciences USA – volume: 41 start-page: 1534 year: 2018 end-page: 1542 article-title: Compositional turnover in host and parasite communities does not change network structure publication-title: Ecography – year: 2018 – volume: 26 start-page: 867 year: 1999 end-page: 878 article-title: The distance decay of similarity in biogeography and ecology publication-title: Journal of Biogeography – volume: 11 start-page: 185 year: 2010 end-page: 195 article-title: Why network analysis is often disconnected from community ecology: A critique and an ecologist's guide publication-title: Basic and Applied Ecology – volume: 17 start-page: 454 year: 2014 end-page: 463 article-title: Ecological, historical and evolutionary determinants of modularity in weighted seed‐dispersal networks publication-title: Ecology Letters – volume: 280 start-page: id20131201 year: 2013 article-title: Environmental and historical imprints on beta diversity: Insights from variation in rates of species turnover along gradients publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 22 start-page: 1925 year: 2012 end-page: 1931 article-title: Specialization of mutualistic interaction networks decreases toward tropical latitudes publication-title: Current Biology – volume: 122 start-page: 71 year: 2017 end-page: 83 article-title: Differences between ant species in plant protection are influenced by the production of extrafloral nectar and related to the degree of leaf herbivory publication-title: Biological Journal of the Linnean Society – volume: 38 start-page: 463 year: 2013 end-page: 469 article-title: Influence of extrafloral nectary phenology on ant‐plant mutualistic networks in a Neotropical Savanna publication-title: Ecological Entomology – volume: 10 start-page: 207 year: 2016 end-page: 220 article-title: Food sources availability and interspecific dominance as structural mechanisms of ant‐plant‐hemipteran multitrophic networks publication-title: Arthropod‐Plant Interactions – volume: 85 start-page: 262 year: 2016 end-page: 272 article-title: Influences of sampling effort on detected patterns and structuring processes of a Neotropical plant–hummingbird network publication-title: Journal of Animal Ecology – volume: 8 start-page: 993 year: 2005 end-page: 1009 article-title: Predicting species distribution: Offering more than simple habitat models publication-title: Ecology Letters – volume: 48 start-page: 25 year: 2017 end-page: 48 article-title: Ecological networks across environmental gradients publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 103 start-page: 1445 year: 2009 end-page: 1457 article-title: Uniting pattern and process in plant–animal mutualistic networks: A review publication-title: Annals of Botany – volume: 45 start-page: 248 year: 2018 end-page: 258 article-title: Neotropical savanna ants show a reversed latitudinal gradient of species richness, with climatic drivers reflecting the forest origin of the fauna publication-title: Journal of Biogeography – volume: 42 start-page: 652 year: 2015 end-page: 661 article-title: Unrivalled specialization in a pollination network from South Africa reveals that specialization increases with latitude only in the Southern Hemisphere publication-title: Journal Biogeography – volume: 90 start-page: 278 year: 2009 end-page: 282 article-title: Major dimensions in food‐web structure properties publication-title: Ecology – volume: 116 start-page: 1120 year: 2007 end-page: 1127 article-title: Species abundance and asymmetric interaction strength in ecological networks publication-title: Oikos – volume: 24 start-page: 293 year: 2015 end-page: 303 article-title: Macroecological trends in nestedness and modularity of seed‐dispersal networks: Human impact matters publication-title: Global Ecology and Biogeography – volume: 30 start-page: 280 year: 1960 end-page: 338 article-title: Vegetation of the Siskiyou Mountains, Oregon and California publication-title: Ecological Monographs – volume: 6 start-page: 8907 year: 2016 end-page: 8918 article-title: Co‐occurrence patterns in a diverse arboreal ant community are explained more by competition than habitat requirements publication-title: Ecology and Evolution – volume: 6 start-page: 289 year: 2012 end-page: 295 article-title: Abiotic factors shape temporal variation in the structure of an ant–plant network publication-title: Arthropod‐Plant Interactions – volume: 9 start-page: e112903 year: 2014 article-title: Beta diversity of plant‐pollinator networks and the spatial turnover of pairwise interactions publication-title: PLoS ONE – volume: 2 start-page: 5 year: 2009 end-page: 9 article-title: Beta diversity of plant–insect food webs in tropical forests: A conceptual framework publication-title: Insect Conservation and Diversity – start-page: 91 year: 2002 end-page: 129 – volume: 6 start-page: id9 year: 2006 article-title: Measuring specialization in species interaction networks publication-title: BMC Ecology – volume: 48 start-page: 141 year: 2016 end-page: 145 article-title: Is the notion that species interactions are stronger and more specialized in the tropics a zombie idea? publication-title: Biotropica – volume: 44 start-page: 1891 year: 2017 end-page: 1910 article-title: Global patterns of interaction specialization in bird–flower networks publication-title: Journal of Biogeography – volume: 36 start-page: 1331 year: 2013 end-page: 1340 article-title: Historical climate‐change influences modularity and nestedness of pollination networks publication-title: Ecography – volume: 5 start-page: 90 year: 2014 end-page: 98 article-title: A method for detecting modules in quantitative bipartite networks publication-title: Methods in Ecology and Evolution – volume: 74 start-page: 1418 year: 2010 end-page: 1426 article-title: Spatial patterns of terrestrial vertebrates richness in Brazilian semirarid, Northeastern Brazil: Selecting hypothesis and revealing constraints publication-title: Journal of Arid Environments – volume: 80 start-page: 352 year: 2011 end-page: 360 article-title: Canopy connectivity and the availability of diverse nesting resources affect species coexistence in arboreal ants publication-title: Journal of Animal Ecology – year: 2007 – volume: 96 start-page: 231 year: 2015 end-page: 240 article-title: Extrafloral nectaries have a limited effect on the structure of arboreal ant communities in a Neotropical savanna publication-title: Ecology – volume: 30 start-page: 78 year: 2016 end-page: 86 article-title: Tree species of South America central savanna: Endemism, marginal areas and the relationship with other biomes publication-title: Acta Botanica Brasilica – volume: 6 start-page: e25891 year: 2011 article-title: Specialization in plant‐hummingbird networks is associated with species richness, contemporary precipitation and quaternary climate‐change velocity publication-title: PLoS ONE – start-page: 185 year: 2018 end-page: 196 – volume: 92 start-page: 3 year: 2011 end-page: 10 article-title: The arcsine is asinine: The analysis of proportions in ecology publication-title: Ecology – volume: 117 start-page: 1609 year: 2008 end-page: 1618 article-title: A neutral‐niche theory of nestedness in mutualistic networks publication-title: Oikos – volume: 46 start-page: 712 year: 2014 end-page: 719 article-title: Canopy openness enhances diversity of ant–plant interactions in the Brazilian Amazon rainforest publication-title: Biotropica – year: 2016 – volume: 129 start-page: 657 year: 1987 end-page: 677 article-title: Patterns of mutualistic interactions in pollination and seed dispersal: Connectance, dependence asymmetries, and coevolution publication-title: The American Naturalist – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 124 start-page: 243 year: 2015 end-page: 251 article-title: Beyond species: Why ecological interaction networks vary through space and time publication-title: Oikos – volume: 3 start-page: 3 year: 2010 end-page: 27 article-title: The arboreal ant community visiting extrafloral nectaries in the Neotropical cerrado savanna publication-title: Terrestrial Arthropod Reviews – volume: 22 start-page: 149 year: 2013 end-page: 162 article-title: Macroecology of pollination networks publication-title: Global Ecology and Biogeography – volume: 17 start-page: 340 year: 2014 end-page: 349 article-title: Antagonistic interaction networks are structured independently of latitude and host guild publication-title: Ecology Letters – volume: 40 start-page: 1395 year: 2017 end-page: 1401 article-title: Opposed latitudinal patterns of network‐derived and dietary specialization in avian plant–frugivore interaction systems publication-title: Ecography – year: 2002 – year: 2019 article-title: Congruent spatial patterns of ant and tree diversity in Neotropical savannas publication-title: Biodiversity and Conservation – volume: 122 start-page: 1643 year: 2013 end-page: 1648 article-title: Spatial structure of ant‐plant mutualistic networks publication-title: Oikos – volume: 26 start-page: 942 year: 2017 end-page: 951 article-title: Hosts, parasites and their interactions respond to different climatic variables publication-title: Global Ecology and Biogeography – volume: 13 start-page: 252 year: 2007 end-page: 264 article-title: Using generalized dissimilarity modelling to analyze and predict patterns of beta diversity in regional biodiversity assessment publication-title: Diversity and Distributions – year: 2017 – volume: 95 start-page: 475 year: 2014 end-page: 485 article-title: The structure of ant-plant ecological networks: is abundance enough? publication-title: Ecology – volume: 15 start-page: 1353 year: 2012 end-page: 1361 article-title: The dissimilarity of species interaction networks publication-title: Ecology Letters – volume: 63 start-page: 207 year: 2016 end-page: 221 article-title: Loss and gains in ant‐plant interactions mediated by extrafloral nectar: Fidelity, cheats, and lies publication-title: Insectes Sociaux – volume: 60 start-page: 57 year: 2003 end-page: 109 article-title: Analysis of the floristic composition of the Brazilian Cerrado vegetation III. Comparison of the woody vegetation of 376 areas publication-title: Edinburgh Journal of Botany – ident: e_1_2_7_62_1 doi: 10.1111/j.0030-1299.2007.15828.x – ident: e_1_2_7_67_1 doi: 10.1111/jbi.13045 – ident: e_1_2_7_16_1 doi: 10.1111/btp.12157 – ident: e_1_2_7_46_1 doi: 10.1111/ele.12002 – ident: e_1_2_7_50_1 doi: 10.1017/S0960428603000064 – ident: e_1_2_7_51_1 doi: 10.7208/chicago/9780226713540.001.0001 – ident: e_1_2_7_12_1 doi: 10.1111/ecog.03514 – ident: e_1_2_7_34_1 doi: 10.1111/een.12036 – ident: e_1_2_7_2_1 doi: 10.1016/j.envsoft.2010.08.003 – ident: e_1_2_7_25_1 doi: 10.1093/biolinnean/blx059 – ident: e_1_2_7_53_1 doi: 10.1016/j.cub.2012.08.015 – ident: e_1_2_7_58_1 doi: 10.1146/annurev-ecolsys-110316-022821 – ident: e_1_2_7_3_1 doi: 10.1073/pnas.1633576100 – ident: e_1_2_7_40_1 doi: 10.1111/j.1752-4598.2008.00035.x – ident: e_1_2_7_44_1 doi: 10.1111/jbi.12453 – ident: e_1_2_7_66_1 doi: 10.2307/1943563 – ident: e_1_2_7_36_1 doi: 10.1111/geb.12355 – ident: e_1_2_7_43_1 doi: 10.7312/oliv12042-007 – ident: e_1_2_7_56_1 doi: 10.1111/geb.12270 – ident: e_1_2_7_17_1 doi: 10.1111/j.1600-0706.2013.00562.x – ident: e_1_2_7_59_1 doi: 10.1111/jbi.13113 – ident: e_1_2_7_29_1 doi: 10.1111/j.1461-0248.2005.00792.x – ident: e_1_2_7_30_1 doi: 10.1002/joc.1276 – ident: e_1_2_7_60_1 doi: 10.1007/s10531-019-01708-9 – ident: e_1_2_7_61_1 doi: 10.1093/aob/mcp057 – ident: e_1_2_7_19_1 doi: 10.1007/978-3-319-68228-0 – ident: e_1_2_7_35_1 – ident: e_1_2_7_49_1 doi: 10.1111/j.1365-2656.2010.01779.x – ident: e_1_2_7_11_1 doi: 10.1371/journal.pone.0112903 – ident: e_1_2_7_24_1 doi: 10.1007/s11829-016-9428-x – ident: e_1_2_7_6_1 doi: 10.1186/1472-6785-6-9 – ident: e_1_2_7_21_1 doi: 10.1007/s00040-016-0466-2 – ident: e_1_2_7_18_1 doi: 10.1890/12-1647.1 – ident: e_1_2_7_32_1 doi: 10.1086/284665 – ident: e_1_2_7_55_1 doi: 10.1163/187498310X487785 – ident: e_1_2_7_26_1 doi: 10.1111/j.1472-4642.2007.00341.x – ident: e_1_2_7_47_1 doi: 10.1111/geb.12602 – ident: e_1_2_7_57_1 doi: 10.1111/j.1466-8238.2012.00777.x – ident: e_1_2_7_10_1 doi: 10.1111/ele.12740 – ident: e_1_2_7_28_1 doi: 10.1590/0102-33062015abb0244 – ident: e_1_2_7_45_1 – ident: e_1_2_7_38_1 doi: 10.1111/ele.12235 – ident: e_1_2_7_22_1 doi: 10.2174/1874213000902010007 – ident: e_1_2_7_23_1 doi: 10.1111/2041-210X.12139 – ident: e_1_2_7_54_1 doi: 10.1111/ele.12245 – ident: e_1_2_7_8_1 doi: 10.1002/ece3.2606 – ident: e_1_2_7_27_1 doi: 10.1098/rspb.2013.1201 – ident: e_1_2_7_37_1 doi: 10.1111/btp.12281 – ident: e_1_2_7_5_1 doi: 10.1016/j.baae.2010.01.001 – ident: e_1_2_7_13_1 doi: 10.1371/journal.pone.0025891 – ident: e_1_2_7_33_1 doi: 10.1111/j.1600-0706.2008.16540.x – volume-title: The unified neutral theory of biodiversity and biogeography year: 2001 ident: e_1_2_7_31_1 – ident: e_1_2_7_63_1 doi: 10.1890/07-0978.1 – ident: e_1_2_7_42_1 doi: 10.1016/j.jaridenv.2010.05.015 – ident: e_1_2_7_65_1 doi: 10.1890/10-0340.1 – ident: e_1_2_7_48_1 doi: 10.1111/oik.01719 – ident: e_1_2_7_15_1 doi: 10.1111/j.1600-0587.2013.00201.x – ident: e_1_2_7_41_1 doi: 10.1073/pnas.0706375104 – ident: e_1_2_7_20_1 doi: 10.1007/978-3-319-68228-0_5 – ident: e_1_2_7_64_1 doi: 10.1111/1365-2656.12459 – ident: e_1_2_7_39_1 doi: 10.1046/j.1365-2699.1999.00305.x – ident: e_1_2_7_9_1 doi: 10.1890/14-0264.1 – ident: e_1_2_7_52_1 doi: 10.1007/s11829-011-9170-3 – ident: e_1_2_7_14_1 doi: 10.1111/ecog.02604 – volume-title: Model selection and multimodel inference: A practical information‐theoretic approach year: 2002 ident: e_1_2_7_7_1 – ident: e_1_2_7_4_1 doi: 10.1038/nature07950 |
SSID | ssj0005456 |
Score | 2.402423 |
Snippet | Aim
Similar to species richness, ecological interactions can vary across latitudinal and environmental gradients. Knowing the patterns and drivers of such... AimSimilar to species richness, ecological interactions can vary across latitudinal and environmental gradients. Knowing the patterns and drivers of such... AIM: Similar to species richness, ecological interactions can vary across latitudinal and environmental gradients. Knowing the patterns and drivers of such... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1283 |
SubjectTerms | Ants Biodiversity Correlation ecological competition ecological networks environmental distance Environmental gradient Formicidae geographical distance interaction rewiring interaction turnover latitude latitudinal gradient Modularity Neotropical savanna Neotropics nestedness Nesting Net Primary Productivity network dissimilarity Networks Plant diversity rain Rainfall Research Papers Rewiring Sampling Savannahs savannas Specialization Species richness Strong interactions (field theory) temperature Trees |
Title | Macroecological patterns and correlates of ant–tree interaction networks in Neotropical savannas |
URI | https://www.jstor.org/stable/26799209 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12932 https://www.proquest.com/docview/2272029332 https://www.proquest.com/docview/2335138563 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CoNBLH2mWbJoWNeTQixev5fVa9NSWTUMgOYQG9hAwGnncQ4O9rL2H9pT_kH_YX9IZ-ZGkNFB6M_LIes7okzXzCeAIo9AZpykgFFJt5-KAQawE5-BM2I6cNhKcfHaenFzGp8vZcgs-9LEwLT_E8MNNNMPba1Fwi_U9Jf9GOJHFSuyv-GoJILq4o44SZNBGFiVcerTsWIXEi2fI-WAtat0RHwDN-3DVrzfHz-Gqr2nrZvJ9smlw4n7-QeL4n015Ac86HKo-thPnJWxRuQNPFp7D-scOjBZ3AXAs1lmA-hXgmeXGkOttplp5gs6yVrbMlZO7Pq4Fvqqq4JTm182tHHsrYaVYtzEUqmw9z2tOVOdUNetq5b9UW0b1pa134fJ48fXzSdDd0xA4gW-BzrUzlE4dxhiSccUcDcUpyZlhHMeEvAe1Op1jirzby9NColetmVOUh0lIqR7BdlmVtAfKWsynJs01ahfnhq2LNgUWBWFocpxGY3jfj1jmOhJzuUvjOus3M9yXme_LMRwOoquWueNvQiM_7INElMyNiUIzhoN-HmSdVtdZJIfWnE3yvRtesz7KIYstqdqwjNazqU5niea6-kF_vPTsy-KTf9j_d9HX8JQxW-fmdgDbzXpDbxgXNfjWK8BvYKQK8w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRahcoLSsWNqCQRx6ySobZ7OxxAXQlqXt7gG10l6qyOM4PVAlq032AKe-A2_IkzDj_LRFRaq4Rc448d-MP9sznwHeY-AbZaT1LDKptjGhRyCWg3NwxGxHRioOTp7No-l5eLwYLTbgQxsLU_NDdBturBnOXrOC84b0LS2_tDjg2YoM8CO-0dstqL7dkEcxNqhjiyL6f7BoeIXYj6fLemc2qh0S70DN24DVzThHz-CiLWvtaPJ9sK5wYH7-ReP4v5XZhqcNFBUf67HzHDZsvgOPJ47G-scO9CY3MXAk1hiBchdwpqk21rRmUywdR2deCp2nwvB1H1eMYEWRUUr1-_oXn3wLJqZY1WEUIq-dz0tKFHNbVKti6b5UagL2uS5fwPnR5Ozz1GuuavAMIzhPptIoGw8NhuhbZbIxKhvGlo8NwzC0SMtQLeMxxkgLvjTOOIBVq7ENUj_ybSx7sJkXuX0JQmtMhypOJUoTpooMjFQZZplFX6U4DPpw2HZZYhoec75O4ypp1zPUlolryz6860SXNXnHfUI91--dRBCNlQp81Yf9diAkjWKXScDn1pSN873tXpNK8jmLzm2xJhkpaTTGo0hSWV2v__vvyZfJJ_fw6uGib2BrejY7TU6_zk_24AlBuMbrbR82q9XaHhBMqvC104Y_-AcPDg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRSAuPAortrRgEAcuWWVjb9YWp5buUh5dIUSlPSBFfoUDVbLaZA_lxH_gH_JLOuM82iKQELfIGcfPGX-OZz4DvDBJbJXlPvKGSLWtFRGCWArOMRNiO7JcUXDyySI9PhXvlpPlFrzqYmEafoj-hxtpRrDXpOArl19R8q_ejGixQvt7Q6SxpCl99OmSO4qgQRNalGLxybKlFSI3nj7rtcWo8Ue8hjSv4tWw4Mzvwpeuqo2fybfRpjYj-_03Fsf_bMs9uNMCUXbQzJz7sOWLHbg5CyTW5zswmF1GwKFYawKqB2BONDbG285oslVg6CwqpgvHLF32cUb4lZU5ptS_fvykc29GtBTrJoiCFY3reYWJbOHLel2uwpcqjbC-0NVDOJ3PPr8-jtqLGiJL-C3ijlvl5dgaYWKvbD41ygvp6dBQCOENbkI1l1MjDW73nMwpfFWrqU9cnMZe8gFsF2XhHwHT2rixko4bboVTaF64yk2eexMrZ8bJEF52I5bZlsWcLtM4y7rdDPZlFvpyCM970VVD3fEnoUEY9l4iSadKJbEawl43D7JWrassoVNrzEb5nvWvUSHplEUXvtygDOeTMZeTlGNdw6D_vfTszewwPOz-u-hTuPXxaJ59eLt4_xhuI35rXd72YLteb_w-YqTaPAm6cAHlKQ3G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macroecological+patterns+and+correlates+of+ant%E2%80%93tree+interaction+networks+in+Neotropical+savannas&rft.jtitle=Global+ecology+and+biogeography&rft.au=D%C3%A1ttilo%2C+Wesley&rft.au=Vasconcelos%2C+Heraldo+L&rft.date=2019-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=28&rft.issue=9&rft.spage=1283&rft.epage=1294&rft_id=info:doi/10.1111%2Fgeb.12932&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |