Quantitative Estimation of Iron and Fat Content in Prostate Cancer by Multiparametric MRI and Its Application in Optimizing D'Amico Score

Background The risk of biochemical recurrence (BCR) in prostate cancer (PCa) is typically assessed using D'Amico score. However, iron and fat content in PCa are closely related to tumor cell proliferation and the risk of BCR may be estimated using multiparametric MRI (mpMRI). Purpose To noninva...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 61; no. 5; pp. 2223 - 2233
Main Authors Zhao, Yunshu, Li, Guangzheng, Tian, Zhen, Zhu, Mengying, Han, Shuting, Jin, Minmin, Huang, Yuhua, Li, Yonggang
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background The risk of biochemical recurrence (BCR) in prostate cancer (PCa) is typically assessed using D'Amico score. However, iron and fat content in PCa are closely related to tumor cell proliferation and the risk of BCR may be estimated using multiparametric MRI (mpMRI). Purpose To noninvasively estimate fat and iron content in PCa and to evaluate their utility in enhancing D'Amico scores for predicting BCR in PCa patients. Study Type Prospective. Subjects Forty‐eight male patients in the BCR group (age 71.31 ± 5.74 years) and 27 male patients in the non‐BCR group (age 70.3 ± 6.04 years). Field Strength/Sequence 3.0 T, Turbo‐spin echo T2‐weighted imaging, diffusion‐weighted imaging (DWI), dynamic contrast‐enhanced (DCE) imaging, Gradient echo Q‐Dixon sequence. Assessment The mean fat fraction (FF) and T2* values of lesions were extracted from the FF map and the T2* map. Additionally, prostate volume, mean apparent diffusion coefficient (ADC) value, periprostatic fat thickness (PPFT), subcutaneous fat thickness (SFT), blood lipid content, pre‐ and post‐operative prostate‐specific antigen (PSA) values were collected. Statistical Tests Stepwise‐COX regression analysis was employed to identify the significant predictors of BCR, which led to the construction of an improvement‐adjusted (IA) model. Then the IA model as well as the D'Amico score were evaluated using C‐index and time‐dependent AUC, decision‐curve analysis, and Kaplan–Meier curve. P < 0.05 was statistically significant. Results Significant differences were observed in PSA, D'Amico score, ISUP grade, T2*, FF, and ADC values of the lesions in the BCR group compared with the non‐BCR group. Mean T2*, FF, and ADC values of the lesions were screened to construct the IA model incorporated into the D'Amico score (IA Model: C‐index = 0.749; AUC = 0.812; D'Amico score: C‐index = 0.672; AUC = 0.723). Data Conclusion This study demonstrated that mpMRI can quantitatively estimate fat and iron within PCa lesions. By integrating ADC, FF, and T2* values into the D'Amico score, the preoperative‐risk assessment for BCR can be improved. Evidence Level 2 Technical Efficacy Stage 2
AbstractList Background The risk of biochemical recurrence (BCR) in prostate cancer (PCa) is typically assessed using D'Amico score. However, iron and fat content in PCa are closely related to tumor cell proliferation and the risk of BCR may be estimated using multiparametric MRI (mpMRI). Purpose To noninvasively estimate fat and iron content in PCa and to evaluate their utility in enhancing D'Amico scores for predicting BCR in PCa patients. Study Type Prospective. Subjects Forty‐eight male patients in the BCR group (age 71.31 ± 5.74 years) and 27 male patients in the non‐BCR group (age 70.3 ± 6.04 years). Field Strength/Sequence 3.0 T, Turbo‐spin echo T2‐weighted imaging, diffusion‐weighted imaging (DWI), dynamic contrast‐enhanced (DCE) imaging, Gradient echo Q‐Dixon sequence. Assessment The mean fat fraction (FF) and T2* values of lesions were extracted from the FF map and the T2* map. Additionally, prostate volume, mean apparent diffusion coefficient (ADC) value, periprostatic fat thickness (PPFT), subcutaneous fat thickness (SFT), blood lipid content, pre‐ and post‐operative prostate‐specific antigen (PSA) values were collected. Statistical Tests Stepwise‐COX regression analysis was employed to identify the significant predictors of BCR, which led to the construction of an improvement‐adjusted (IA) model. Then the IA model as well as the D'Amico score were evaluated using C‐index and time‐dependent AUC, decision‐curve analysis, and Kaplan–Meier curve. P < 0.05 was statistically significant. Results Significant differences were observed in PSA, D'Amico score, ISUP grade, T2*, FF, and ADC values of the lesions in the BCR group compared with the non‐BCR group. Mean T2*, FF, and ADC values of the lesions were screened to construct the IA model incorporated into the D'Amico score (IA Model: C‐index = 0.749; AUC = 0.812; D'Amico score: C‐index = 0.672; AUC = 0.723). Data Conclusion This study demonstrated that mpMRI can quantitatively estimate fat and iron within PCa lesions. By integrating ADC, FF, and T2* values into the D'Amico score, the preoperative‐risk assessment for BCR can be improved. Evidence Level 2 Technical Efficacy Stage 2
The risk of biochemical recurrence (BCR) in prostate cancer (PCa) is typically assessed using D'Amico score. However, iron and fat content in PCa are closely related to tumor cell proliferation and the risk of BCR may be estimated using multiparametric MRI (mpMRI).BACKGROUNDThe risk of biochemical recurrence (BCR) in prostate cancer (PCa) is typically assessed using D'Amico score. However, iron and fat content in PCa are closely related to tumor cell proliferation and the risk of BCR may be estimated using multiparametric MRI (mpMRI).To noninvasively estimate fat and iron content in PCa and to evaluate their utility in enhancing D'Amico scores for predicting BCR in PCa patients.PURPOSETo noninvasively estimate fat and iron content in PCa and to evaluate their utility in enhancing D'Amico scores for predicting BCR in PCa patients.Prospective.STUDY TYPEProspective.Forty-eight male patients in the BCR group (age 71.31 ± 5.74 years) and 27 male patients in the non-BCR group (age 70.3 ± 6.04 years).SUBJECTSForty-eight male patients in the BCR group (age 71.31 ± 5.74 years) and 27 male patients in the non-BCR group (age 70.3 ± 6.04 years).3.0 T, Turbo-spin echo T2-weighted imaging, diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) imaging, Gradient echo Q-Dixon sequence.FIELD STRENGTH/SEQUENCE3.0 T, Turbo-spin echo T2-weighted imaging, diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) imaging, Gradient echo Q-Dixon sequence.The mean fat fraction (FF) and T2* values of lesions were extracted from the FF map and the T2* map. Additionally, prostate volume, mean apparent diffusion coefficient (ADC) value, periprostatic fat thickness (PPFT), subcutaneous fat thickness (SFT), blood lipid content, pre- and post-operative prostate-specific antigen (PSA) values were collected.ASSESSMENTThe mean fat fraction (FF) and T2* values of lesions were extracted from the FF map and the T2* map. Additionally, prostate volume, mean apparent diffusion coefficient (ADC) value, periprostatic fat thickness (PPFT), subcutaneous fat thickness (SFT), blood lipid content, pre- and post-operative prostate-specific antigen (PSA) values were collected.Stepwise-COX regression analysis was employed to identify the significant predictors of BCR, which led to the construction of an improvement-adjusted (IA) model. Then the IA model as well as the D'Amico score were evaluated using C-index and time-dependent AUC, decision-curve analysis, and Kaplan-Meier curve. P < 0.05 was statistically significant.STATISTICAL TESTSStepwise-COX regression analysis was employed to identify the significant predictors of BCR, which led to the construction of an improvement-adjusted (IA) model. Then the IA model as well as the D'Amico score were evaluated using C-index and time-dependent AUC, decision-curve analysis, and Kaplan-Meier curve. P < 0.05 was statistically significant.Significant differences were observed in PSA, D'Amico score, ISUP grade, T2*, FF, and ADC values of the lesions in the BCR group compared with the non-BCR group. Mean T2*, FF, and ADC values of the lesions were screened to construct the IA model incorporated into the D'Amico score (IA Model: C-index = 0.749; AUC = 0.812; D'Amico score: C-index = 0.672; AUC = 0.723).RESULTSSignificant differences were observed in PSA, D'Amico score, ISUP grade, T2*, FF, and ADC values of the lesions in the BCR group compared with the non-BCR group. Mean T2*, FF, and ADC values of the lesions were screened to construct the IA model incorporated into the D'Amico score (IA Model: C-index = 0.749; AUC = 0.812; D'Amico score: C-index = 0.672; AUC = 0.723).This study demonstrated that mpMRI can quantitatively estimate fat and iron within PCa lesions. By integrating ADC, FF, and T2* values into the D'Amico score, the preoperative-risk assessment for BCR can be improved.DATA CONCLUSIONThis study demonstrated that mpMRI can quantitatively estimate fat and iron within PCa lesions. By integrating ADC, FF, and T2* values into the D'Amico score, the preoperative-risk assessment for BCR can be improved.2 TECHNICAL EFFICACY: Stage 2.EVIDENCE LEVEL2 TECHNICAL EFFICACY: Stage 2.
BackgroundThe risk of biochemical recurrence (BCR) in prostate cancer (PCa) is typically assessed using D'Amico score. However, iron and fat content in PCa are closely related to tumor cell proliferation and the risk of BCR may be estimated using multiparametric MRI (mpMRI).PurposeTo noninvasively estimate fat and iron content in PCa and to evaluate their utility in enhancing D'Amico scores for predicting BCR in PCa patients.Study TypeProspective.SubjectsForty‐eight male patients in the BCR group (age 71.31 ± 5.74 years) and 27 male patients in the non‐BCR group (age 70.3 ± 6.04 years).Field Strength/Sequence3.0 T, Turbo‐spin echo T2‐weighted imaging, diffusion‐weighted imaging (DWI), dynamic contrast‐enhanced (DCE) imaging, Gradient echo Q‐Dixon sequence.AssessmentThe mean fat fraction (FF) and T2* values of lesions were extracted from the FF map and the T2* map. Additionally, prostate volume, mean apparent diffusion coefficient (ADC) value, periprostatic fat thickness (PPFT), subcutaneous fat thickness (SFT), blood lipid content, pre‐ and post‐operative prostate‐specific antigen (PSA) values were collected.Statistical TestsStepwise‐COX regression analysis was employed to identify the significant predictors of BCR, which led to the construction of an improvement‐adjusted (IA) model. Then the IA model as well as the D'Amico score were evaluated using C‐index and time‐dependent AUC, decision‐curve analysis, and Kaplan–Meier curve. P < 0.05 was statistically significant.ResultsSignificant differences were observed in PSA, D'Amico score, ISUP grade, T2*, FF, and ADC values of the lesions in the BCR group compared with the non‐BCR group. Mean T2*, FF, and ADC values of the lesions were screened to construct the IA model incorporated into the D'Amico score (IA Model: C‐index = 0.749; AUC = 0.812; D'Amico score: C‐index = 0.672; AUC = 0.723).Data ConclusionThis study demonstrated that mpMRI can quantitatively estimate fat and iron within PCa lesions. By integrating ADC, FF, and T2* values into the D'Amico score, the preoperative‐risk assessment for BCR can be improved.Evidence Level2Technical EfficacyStage 2
The risk of biochemical recurrence (BCR) in prostate cancer (PCa) is typically assessed using D'Amico score. However, iron and fat content in PCa are closely related to tumor cell proliferation and the risk of BCR may be estimated using multiparametric MRI (mpMRI). To noninvasively estimate fat and iron content in PCa and to evaluate their utility in enhancing D'Amico scores for predicting BCR in PCa patients. Prospective. Forty-eight male patients in the BCR group (age 71.31 ± 5.74 years) and 27 male patients in the non-BCR group (age 70.3 ± 6.04 years). 3.0 T, Turbo-spin echo T2-weighted imaging, diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) imaging, Gradient echo Q-Dixon sequence. The mean fat fraction (FF) and T2* values of lesions were extracted from the FF map and the T2* map. Additionally, prostate volume, mean apparent diffusion coefficient (ADC) value, periprostatic fat thickness (PPFT), subcutaneous fat thickness (SFT), blood lipid content, pre- and post-operative prostate-specific antigen (PSA) values were collected. Stepwise-COX regression analysis was employed to identify the significant predictors of BCR, which led to the construction of an improvement-adjusted (IA) model. Then the IA model as well as the D'Amico score were evaluated using C-index and time-dependent AUC, decision-curve analysis, and Kaplan-Meier curve. P < 0.05 was statistically significant. Significant differences were observed in PSA, D'Amico score, ISUP grade, T2*, FF, and ADC values of the lesions in the BCR group compared with the non-BCR group. Mean T2*, FF, and ADC values of the lesions were screened to construct the IA model incorporated into the D'Amico score (IA Model: C-index = 0.749; AUC = 0.812; D'Amico score: C-index = 0.672; AUC = 0.723). This study demonstrated that mpMRI can quantitatively estimate fat and iron within PCa lesions. By integrating ADC, FF, and T2* values into the D'Amico score, the preoperative-risk assessment for BCR can be improved. 2 TECHNICAL EFFICACY: Stage 2.
Author Li, Guangzheng
Tian, Zhen
Zhu, Mengying
Zhao, Yunshu
Li, Yonggang
Han, Shuting
Huang, Yuhua
Jin, Minmin
Author_xml – sequence: 1
  givenname: Yunshu
  orcidid: 0009-0002-1166-6441
  surname: Zhao
  fullname: Zhao, Yunshu
  organization: The First Affiliated Hospital of Soochow University
– sequence: 2
  givenname: Guangzheng
  surname: Li
  fullname: Li, Guangzheng
  organization: The First Affiliated Hospital of Soochow University
– sequence: 3
  givenname: Zhen
  orcidid: 0000-0002-8793-4644
  surname: Tian
  fullname: Tian, Zhen
  organization: The First Affiliated Hospital of Soochow University
– sequence: 4
  givenname: Mengying
  surname: Zhu
  fullname: Zhu, Mengying
  organization: The First Affiliated Hospital of Soochow University
– sequence: 5
  givenname: Shuting
  surname: Han
  fullname: Han, Shuting
  organization: The First Affiliated Hospital of Soochow University
– sequence: 6
  givenname: Minmin
  surname: Jin
  fullname: Jin, Minmin
  email: 742998666@qq.com
  organization: The First Affiliated Hospital of Soochow University
– sequence: 7
  givenname: Yuhua
  surname: Huang
  fullname: Huang, Yuhua
  email: sdfyy_hyh@163.com
  organization: The First Affiliated Hospital of Soochow University
– sequence: 8
  givenname: Yonggang
  orcidid: 0000-0001-8974-3094
  surname: Li
  fullname: Li, Yonggang
  email: liyonggang224@163.com
  organization: Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39529304$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1U1P8ND4AssQAhpbWdOGMvR0MLg1q1hXYdOfYN8iixU9sBDW_AW-NpCgsWrO5dfOf-nHOE9px3gNArSs4oIex8MwR7xmRd0xfokHLGCsZFvZd7wsuCCrI4QEcxbgghUlZ8Hx2UkjNZkuoQ_bqblEs2qWS_A76IyQ659Q77Dq9DrsoZfKkSXnmXwCVsHb4NPmYB4JVyGgJut_h66pMdVVADpGA1vv6yflKuU8TLceytnqdm9c2Yd9if1n3DH94uB6s9_qp9gBP0slN9hNPneoweLi_uV5-Kq5uP69XyqtAlZ7QwogTeKmCa1NIsKkEMyX8yqLq2ajtSay07s_uOCiMNqyvoCJhKC0nEom3LY_RunjsG_zhBTM1go4a-Vw78FJuSMrHgoirrjL75B934Kbh8XaZEpiSXLFOvn6mpHcA0Y8gehm3zx-QMvJ8BnY2LAbq_CCXNLsFml2DzlGCG6Qz_sD1s_0M2n7PJs-Y3J3adZg
Cites_doi 10.1002/pros.23262
10.1158/1078-0432.CCR-04-0713
10.1158/0008-5472.CAN-21-1392
10.1016/j.eururo.2019.08.005
10.1097/RLI.0000000000000496
10.1111/j.1464-410X.2008.07534.x
10.1016/j.diii.2023.07.005
10.1097/PAS.0000000000000530
10.1007/s00330-017-5031-5
10.1200/JCO.2003.01.075
10.1016/S0009-9260(05)83287-8
10.1182/blood-2008-12-191643
10.1158/1541-7786.MCR-18-1057
10.1016/j.eururo.2014.06.025
10.1007/s11547-024-01857-0
10.1016/j.juro.2006.10.097
10.1007/s00330-018-5631-8
10.1016/j.clgc.2019.03.022
10.1148/radiol.14140754
10.1016/j.euo.2020.07.008
10.4103/UROS.UROS_28_19
10.1007/s40618-020-01294-6
10.1002/hep.25731
10.2214/AJR.14.12689
10.1002/jmri.24813
10.1002/path.5754
10.1002/jmri.25441
10.4103/aja2021116
10.1200/JCO.2005.03.3134
10.1002/cncr.23158
10.1038/ncomms10230
10.1002/jmri.27292
10.1148/radiol.2461070057
10.1002/jmri.26586
10.1093/annonc/mdr603
10.1158/0008-5472.CAN-14-2465
10.1002/jmri.24171
10.1016/j.critrevonc.2021.103543
10.1016/j.cmet.2014.01.019
ContentType Journal Article
Copyright 2024 International Society for Magnetic Resonance in Medicine.
2025 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2024 International Society for Magnetic Resonance in Medicine.
– notice: 2025 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.29661
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 2233
ExternalDocumentID 39529304
10_1002_jmri_29661
JMRI29661
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: The Translational Research Grant of NCRCH
  funderid: 2020WSB06
– fundername: The program for Gusu Medical Talent of Suzhou City
  funderid: GSWS2020009
– fundername: The Translational Research Grant of NCRCH
  grantid: 2020WSB06
– fundername: The program for Gusu Medical Talent of Suzhou City
  grantid: GSWS2020009
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGXDD
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3521-d83e5bae2c069d7480d01052e4fb4bf06cc9fd293018d9d264ef0ed4c89087bb3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 12:18:44 EDT 2025
Sun Jul 27 04:10:36 EDT 2025
Mon Jul 21 05:56:44 EDT 2025
Sun Jul 06 05:08:49 EDT 2025
Sat Apr 12 09:10:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords multiparametric MRI
prostate cancer
fat fraction
D'Amico score
T2
Language English
License 2024 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3521-d83e5bae2c069d7480d01052e4fb4bf06cc9fd293018d9d264ef0ed4c89087bb3
Notes Yunshu Zhao and Guangzheng Li are co‐first authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8793-4644
0009-0002-1166-6441
0000-0001-8974-3094
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.29661
PMID 39529304
PQID 3188759592
PQPubID 1006400
PageCount 11
ParticipantIDs proquest_miscellaneous_3128758436
proquest_journals_3188759592
pubmed_primary_39529304
crossref_primary_10_1002_jmri_29661
wiley_primary_10_1002_jmri_29661_JMRI29661
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
2025-May
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 1995; 50
2018; 28
2019; 50
2021; 44
2015; 204
2019; 30
2024; 129
2015; 75
2017; 45
2019; 17
2022; 24
2023; 104
2009; 113
2020; 77
2008; 246
2008; 102
2012; 56
2005; 23
2004; 10
2015; 67
2016; 7
2020; 3
2021; 53
2021; 255
2017; 77
2015; 42
2007; 177
2015; 274
2019; 29
2016; 40
2014; 19
2014; 39
2008; 112
2012; 23
2018; 53
2003; 21
2021; 81
2022; 169
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 255
  start-page: 166
  year: 2021
  end-page: 176
  article-title: Lipophagy and prostate cancer: Association with disease aggressiveness and proximity to periprostatic adipose tissue
  publication-title: J Pathol
– volume: 81
  start-page: 4385
  year: 2021
  end-page: 4393
  article-title: Fatty acid synthesis in prostate cancer: Vulnerability or epiphenomenon?
  publication-title: Cancer Res
– volume: 19
  start-page: 393
  year: 2014
  end-page: 406
  article-title: Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness
  publication-title: Cell Metab
– volume: 50
  start-page: 490
  year: 2019
  end-page: 496
  article-title: 3T chemical shift‐encoded MRI: Detection of altered proximal femur marrow adipose tissue composition in glucocorticoid users and validation with magnetic resonance spectroscopy
  publication-title: J Magn Reson Imaging
– volume: 17
  start-page: e745
  year: 2019
  end-page: e750
  article-title: Can we improve the preoperative prediction of prostate cancer recurrence with multiparametric MRI?
  publication-title: Clin Genitourin Cancer
– volume: 7
  start-page: 10230
  year: 2016
  article-title: Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity
  publication-title: Nat Commun
– volume: 112
  start-page: 225
  year: 2008
  end-page: 227
  article-title: Treatment failure after primary and salvage therapy for prostate cancer
  publication-title: Cancer
– volume: 169
  year: 2022
  article-title: Obesity and prostate cancer: A narrative review
  publication-title: Crit Rev Oncol Hematol
– volume: 45
  start-page: 586
  year: 2017
  end-page: 596
  article-title: MR‐based prognostic nomogram for prostate cancer after radical prostatectomy
  publication-title: J Magn Reson Imaging
– volume: 23
  start-page: 8165
  year: 2005
  end-page: 8169
  article-title: Active surveillance for prostate cancer: For whom?
  publication-title: J Clin Oncol
– volume: 104
  start-page: 552
  year: 2023
  end-page: 559
  article-title: T2* map at cardiac MRI reveals incidental hepatic and cardiac iron overload
  publication-title: Diagn Interv Imaging
– volume: 129
  start-page: 1394
  year: 2024
  end-page: 1404
  article-title: Association between mpMRI detected tumor apparent diffusion coefficient and 5‐year biochemical recurrence risk after radical prostatectomy
  publication-title: Radiol Med (Torino)
– volume: 204
  start-page: W43
  year: 2015
  end-page: W47
  article-title: Periprostatic fat thickness on MRI: Correlation with Gleason score in prostate cancer
  publication-title: AJR Am J Roentgenol
– volume: 30
  start-page: 255
  year: 2019
  article-title: Smaller prostate volume is associated with adverse pathological features and biochemical recurrence after radical prostatectomy
  publication-title: Urol Sci
– volume: 44
  start-page: 287
  year: 2021
  end-page: 296
  article-title: Peri‐prostatic adipose tissue measurements using MRI predict prostate cancer aggressiveness in men undergoing radical prostatectomy
  publication-title: J Endocrinol Invest
– volume: 23
  start-page: 1665
  year: 2012
  end-page: 1671
  article-title: Body mass index and incidence of localized and advanced prostate cancer‐‐a dose‐response meta‐analysis of prospective studies
  publication-title: Ann Oncol
– volume: 21
  start-page: 2163
  year: 2003
  end-page: 2172
  article-title: Cancer‐specific mortality after surgery or radiation for patients with clinically localized prostate cancer managed during the prostate‐specific antigen era
  publication-title: J Clin Oncol
– volume: 75
  start-page: 2254
  year: 2015
  end-page: 2263
  article-title: Hepcidin regulation in prostate and its disruption in prostate cancer
  publication-title: Cancer Res
– volume: 40
  start-page: 244
  year: 2016
  end-page: 252
  article-title: The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma: Definition of grading patterns and proposal for a new grading system
  publication-title: Am J Surg Pathol
– volume: 177
  start-page: 540
  year: 2007
  end-page: 545
  article-title: Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: The American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes
  publication-title: J Urol
– volume: 42
  start-page: 460
  year: 2015
  end-page: 467
  article-title: Correlation of gleason scores with magnetic resonance diffusion tensor imaging in peripheral zone prostate cancer
  publication-title: J Magn Reson Imaging
– volume: 67
  start-page: 1168
  year: 2015
  end-page: 1176
  article-title: Oncologic outcomes at 10 years following robotic radical prostatectomy
  publication-title: Eur Urol
– volume: 274
  start-page: 416
  year: 2015
  end-page: 425
  article-title: Accuracy of MR imaging‐estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease
  publication-title: Radiology
– volume: 113
  start-page: 4853
  year: 2009
  end-page: 4855
  article-title: R2* magnetic resonance imaging of the liver in patients with iron overload
  publication-title: Blood
– volume: 10
  start-page: 7252
  year: 2004
  end-page: 7259
  article-title: X‐tile: A new bio‐informatics tool for biomarker assessment and outcome‐based cut‐point optimization
  publication-title: Clin Cancer Res
– volume: 28
  start-page: 1016
  year: 2018
  end-page: 1026
  article-title: Optimising preoperative risk stratification tools for prostate cancer using mpMRI
  publication-title: Eur Radiol
– volume: 53
  start-page: 720
  year: 2018
  end-page: 727
  article-title: Preoperative evaluation of pancreatic fibrosis and lipomatosis: Correlation of magnetic resonance findings with histology using magnetization transfer imaging and multigradient echo magnetic resonance imaging
  publication-title: Invest Radiol
– volume: 3
  start-page: 739
  year: 2020
  end-page: 747
  article-title: Prognostic implications of multiparametric magnetic resonance imaging and concomitant systematic biopsy in predicting biochemical recurrence after radical prostatectomy in prostate cancer patients diagnosed with magnetic resonance imaging‐targeted biopsy
  publication-title: Eur Urol Oncol
– volume: 53
  start-page: 1623
  year: 2021
  end-page: 1631
  article-title: Multiparametric MRI in patients with nonalcoholic fatty liver disease
  publication-title: J Magn Reson Imaging
– volume: 50
  start-page: 593
  year: 1995
  end-page: 600
  article-title: Optimization of prostate carcinoma staging: Comparison of imaging and clinical methods
  publication-title: Clin Radiol
– volume: 17
  start-page: 1155
  year: 2019
  end-page: 1165
  article-title: Molecular characterization of prostate cancer with associated Gleason score using mass spectrometry imaging
  publication-title: Mol Cancer Res
– volume: 29
  start-page: 599
  year: 2019
  end-page: 608
  article-title: Association of paraspinal muscle water‐fat MRI‐based measurements with isometric strength measurements
  publication-title: Eur Radiol
– volume: 246
  start-page: 168
  year: 2008
  end-page: 176
  article-title: Assessment of biologic aggressiveness of prostate cancer: Correlation of MR signal intensity with Gleason grade after radical prostatectomy
  publication-title: Radiology
– volume: 77
  start-page: 38
  year: 2020
  end-page: 52
  article-title: Recent global patterns in prostate cancer incidence and mortality rates
  publication-title: Eur Urol
– volume: 77
  start-page: 211
  year: 2017
  end-page: 221
  article-title: Elevated C‐peptides, abdominal obesity, and abnormal adipokine profile are associated with higher Gleason scores in prostate cancer
  publication-title: Prostate
– volume: 56
  start-page: 922
  year: 2012
  end-page: 932
  article-title: Effect of colesevelam on liver fat quantified by magnetic resonance in nonalcoholic steatohepatitis: A randomized controlled trial
  publication-title: Hepatol
– volume: 102
  start-page: 383
  year: 2008
  end-page: 388
  article-title: Mitogenic and anti‐apoptotic actions of adipocyte‐derived hormone leptin in prostate cancer cells
  publication-title: BJU Int
– volume: 39
  start-page: 307
  year: 2014
  end-page: 316
  article-title: MR characterization of hepatic storage iron in transfusional iron overload
  publication-title: J Magn Reson Imaging
– volume: 24
  start-page: 671
  year: 2022
  article-title: A correlative study of iron metabolism based on q‐Dixon MRI in benign prostatic hyperplasia and prostate cancer
  publication-title: Asian J Androl
– ident: e_1_2_7_14_1
  doi: 10.1002/pros.23262
– ident: e_1_2_7_30_1
  doi: 10.1158/1078-0432.CCR-04-0713
– ident: e_1_2_7_37_1
  doi: 10.1158/0008-5472.CAN-21-1392
– ident: e_1_2_7_2_1
  doi: 10.1016/j.eururo.2019.08.005
– ident: e_1_2_7_18_1
  doi: 10.1097/RLI.0000000000000496
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1464-410X.2008.07534.x
– ident: e_1_2_7_22_1
  doi: 10.1016/j.diii.2023.07.005
– ident: e_1_2_7_29_1
  doi: 10.1097/PAS.0000000000000530
– ident: e_1_2_7_3_1
– ident: e_1_2_7_10_1
  doi: 10.1007/s00330-017-5031-5
– ident: e_1_2_7_6_1
  doi: 10.1200/JCO.2003.01.075
– ident: e_1_2_7_7_1
  doi: 10.1016/S0009-9260(05)83287-8
– ident: e_1_2_7_21_1
  doi: 10.1182/blood-2008-12-191643
– ident: e_1_2_7_39_1
  doi: 10.1158/1541-7786.MCR-18-1057
– ident: e_1_2_7_31_1
  doi: 10.1016/j.eururo.2014.06.025
– ident: e_1_2_7_34_1
  doi: 10.1007/s11547-024-01857-0
– ident: e_1_2_7_4_1
  doi: 10.1016/j.juro.2006.10.097
– ident: e_1_2_7_20_1
  doi: 10.1007/s00330-018-5631-8
– ident: e_1_2_7_9_1
  doi: 10.1016/j.clgc.2019.03.022
– ident: e_1_2_7_17_1
  doi: 10.1148/radiol.14140754
– ident: e_1_2_7_11_1
  doi: 10.1016/j.euo.2020.07.008
– ident: e_1_2_7_27_1
  doi: 10.4103/UROS.UROS_28_19
– ident: e_1_2_7_23_1
  doi: 10.1007/s40618-020-01294-6
– ident: e_1_2_7_35_1
  doi: 10.1002/hep.25731
– ident: e_1_2_7_28_1
  doi: 10.2214/AJR.14.12689
– ident: e_1_2_7_33_1
  doi: 10.1002/jmri.24813
– ident: e_1_2_7_36_1
  doi: 10.1002/path.5754
– ident: e_1_2_7_32_1
  doi: 10.1002/jmri.25441
– ident: e_1_2_7_41_1
  doi: 10.4103/aja2021116
– ident: e_1_2_7_8_1
  doi: 10.1200/JCO.2005.03.3134
– ident: e_1_2_7_5_1
  doi: 10.1002/cncr.23158
– ident: e_1_2_7_13_1
  doi: 10.1038/ncomms10230
– ident: e_1_2_7_25_1
  doi: 10.1002/jmri.27292
– ident: e_1_2_7_26_1
  doi: 10.1148/radiol.2461070057
– ident: e_1_2_7_19_1
  doi: 10.1002/jmri.26586
– ident: e_1_2_7_24_1
  doi: 10.1093/annonc/mdr603
– ident: e_1_2_7_16_1
  doi: 10.1158/0008-5472.CAN-14-2465
– ident: e_1_2_7_40_1
  doi: 10.1002/jmri.24171
– ident: e_1_2_7_12_1
  doi: 10.1016/j.critrevonc.2021.103543
– ident: e_1_2_7_38_1
  doi: 10.1016/j.cmet.2014.01.019
SSID ssj0009945
Score 2.4604383
Snippet Background The risk of biochemical recurrence (BCR) in prostate cancer (PCa) is typically assessed using D'Amico score. However, iron and fat content in PCa...
The risk of biochemical recurrence (BCR) in prostate cancer (PCa) is typically assessed using D'Amico score. However, iron and fat content in PCa are closely...
BackgroundThe risk of biochemical recurrence (BCR) in prostate cancer (PCa) is typically assessed using D'Amico score. However, iron and fat content in PCa are...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2223
SubjectTerms Adipose Tissue - diagnostic imaging
Aged
Cell proliferation
Contrast Media
D'Amico score
Diffusion coefficient
fat fraction
Field strength
Humans
Iron
Iron - analysis
Lesions
Lipids
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Males
Medical imaging
Middle Aged
Multiparametric Magnetic Resonance Imaging - methods
multiparametric MRI
Neoplasm Recurrence, Local - diagnostic imaging
Prospective Studies
Prostate - diagnostic imaging
Prostate cancer
Prostatic Neoplasms - diagnostic imaging
Regression analysis
Risk assessment
ROC Curve
Statistical analysis
Statistical tests
Thickness
Title Quantitative Estimation of Iron and Fat Content in Prostate Cancer by Multiparametric MRI and Its Application in Optimizing D'Amico Score
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.29661
https://www.ncbi.nlm.nih.gov/pubmed/39529304
https://www.proquest.com/docview/3188759592
https://www.proquest.com/docview/3128758436
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CDiWXvtKH26QotFAoeCPLsi1BLkuaJRvYJk0byKUY62HYlPWWXe-h-Qf9152R90FaKDQX22AJWaPR6BtL8w3AO5kQhUjB0TcxCi9WU5qXNM6VVamsssIWFO88-pSfXsmz6-x6C45WsTAdP8T6hxvNjGCvaYJXZn64IQ29mczGPYFonXwfOqxFiOhywx2ldchQjPghjRPFizU3qTjcVL27Gv0FMe8i1rDkDB7Bt9XHdidNvvcWrenZ2z94HO_bm8fwcIlFWb9Tniew5Zun8GC03G3fhV-fF1UTgtDQJLITNAZdnCOb1mw4w3vVODaoWhYorpqWjRt2QVEkiF_ZManTjJmfLMT4EsX4hLJ3WTa6HIaaw3bO-pv9c6p9jgZsMr7F5ZR9fN-foJayL8Sz-QyuBidfj0_jZeqG2CKiS2KnUp-ZygvLc-0KqbijVJzCy9pIU_PcWl07hBo8UU47RGW-5t5JqzRXhTHpc9hupo1_CQyFwp1LtBc1enNVoozIvcydcNyhvUkieLsawvJHx9BRdlzMoiSplkGqEeytRrdcztJ5ifYM3TWdaRHBwfo1zi_aNKkaP11QGfQpEaWleQQvOq1YN5PqjLogI_gQxvYf7ZdnKNzw9Op_Cr-GHUEJh8MJyz3YbmcLv48oqDVvgrb_BlbrAiU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBejhW0vbffVuh-bSgeDgVNZlm3pMbQNSdd0W9dC34z1YUhLnJI4D-1_sP96d7Kb0A0G24ttsITQ6XT6naT7HSEfRYQUIhkD30RLeBiFaV7iMJVGxqJIMpNhvPPwPO1fidPr5Lq9m4OxMA0_xGLDDWeGt9c4wXFD-nDJGnozno46HOA6OD-rmNIbqfOPL5bsUUr5HMWAIOIwkixbsJPyw2Xdp-vRHyDzKWb1i05vvcmsOvNchXjX5LYzr3XHPPzG5Pjf_dkgay0cpd1Gf16RZ656TZ4P2wP3N-Tn93lR-Tg0sIr0BOxBE-pIJyUdTOFdVJb2ipp6lquqpqOKfsNAEoCw9Ag1akr1PfVhvsgyPsYEXoYOLwa-5qCe0e7yCB1rfwUbNh49wIpKjz91x6Co9AdSbb4lV72Ty6N-2GZvCA2Auii0MnaJLhw3LFU2E5JZzMbJnSi10CVLjVGlBbTBImmVBWDmSuasMFIxmWkdvyMr1aRyW4SCUJi1kXK8BIeuiKTmqROp5ZZZMDlRQA4exzC_a0g68oaOmeco1dxLNSC7j8ObtxN1loNJA49NJYoHZH_xG6YYnpsUlZvMsQy4lQDU4jQgm41aLJqJVYJdEAH57Af3L-3npyBc_7X9L4U_kBf9y-FZfjY4_7JDXnLMP-wvXO6SlXo6d3sAimr93qv-L2_PBkE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KheKL3x_RqisKgpDrZrNJdsGXo9ejV71aq4W-SMh-BE65XLnmHux_4H_tzOY-qIKgL0kgu2x2dnb2N9md3wC8lglRiBQcfROj8GI1pXlJ41xZlcoqK2xB8c7j4_zwTB6dZ-db8G4VC9PxQ6x_uNHMCPaaJviFq_c2pKHfpvNJTyBaR9_nhsy5psQNg9MNeZTWIUUxAog0ThQv1uSkYm9T9_py9AfGvA5Zw5ozvA1fV1_bHTX53lu0pmevfiNy_N_u3IFbSzDK-p323IUt39yDnfFyu_0-_Py0qJoQhYY2kR2gNegCHdmsZqM53qvGsWHVssBx1bRs0rATCiNBAMv2SZ_mzPxgIciXOManlL7LsvHpKNQctZesv9lAp9of0YJNJ1e4nrLBm_4U1ZR9JqLNB3A2PPiyfxgvczfEFiFdEjuV-sxUXliea1dIxR3l4hRe1kaamufW6toh1uCJctohLPM1905apbkqjEkfwnYza_xjYCgU7lyivajRnasSZUTuZe6E4w4NThLBq9UQlhcdRUfZkTGLkqRaBqlGsLsa3XI5TS9LNGjor-lMiwherl_jBKNdk6rxswWVQacSYVqaR_Co04p1M6nOqAsygrdhbP_SfnmEwg1PT_6l8AvYORkMyw-j4_dP4aag5MPhtOUubLfzhX-GiKg1z4Pi_wJdWgTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Estimation+of+Iron+and+Fat+Content+in+Prostate+Cancer+by+Multiparametric+MRI+and+Its+Application+in+Optimizing+D%27Amico+Score&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Zhao%2C+Yunshu&rft.au=Li%2C+Guangzheng&rft.au=Tian%2C+Zhen&rft.au=Zhu%2C+Mengying&rft.date=2025-05-01&rft.issn=1522-2586&rft.eissn=1522-2586&rft.volume=61&rft.issue=5&rft.spage=2223&rft_id=info:doi/10.1002%2Fjmri.29661&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon