Rapid 3D Printing Magnetically Active Microstructures with High Solid Loading
The capability of fabricating magnetically active 3D microstructures is crucial for miniaturization of microrobots or microactuators. While additive manufacturing using magnetic nanoparticle‐infused polymer resin offers the highly desirable precision and flexibility, the difficulty in handling resin...
Saved in:
Published in | Advanced engineering materials Vol. 22; no. 3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The capability of fabricating magnetically active 3D microstructures is crucial for miniaturization of microrobots or microactuators. While additive manufacturing using magnetic nanoparticle‐infused polymer resin offers the highly desirable precision and flexibility, the difficulty in handling resin with higher solid loading of magnetic nanoparticles needed to maximize the magnetic actuation forces remains to be the main obstacle. The increased viscosity of the magnetic resin not only significantly reduces the fabrication speed, but also makes the process vulnerable to the precipitation of the suspended magnetic nanoparticles. Herein, a comprehensive solution that synergizes the optimization of magnetic photopolymerizable resin and the high‐speed 3D printing using microcontinuous liquid interface production (μCLIP) process is reported. An optimized magnetic photopolymerizable resin with 30 wt% solid loading of Fe3O4 nanoparticles is well dispersed over 72 h. Process characteristics of the magnetic photopolymerizable resins with variation in the solid loading of magnetic nanoparticles are investigated experimentally. The capability of 3D printing centimeter‐size samples with sub‐75 μm fine features using high solid loading (30 wt%) is also demonstrated. The increased printing speed using μCLIP significantly reduces the fabrication time to the order of minutes to hours, making the process more robust against the precipitation of the magnetic particles.
Magnetic photopolymerizable resin with up to 30 wt% solid loading of Fe3O4 nanoparticles is developed and demonstrated to be well dispersed for long duration. Microcontinuous liquid interface production is utilized to accelerate the 3D printing process. The new strategy for 3D printing magnetic microstructures shows the capability to fabricate centimeter‐height magnetically active device with sub‐75 μm microstructures within 2 h. |
---|---|
AbstractList | The capability of fabricating magnetically active 3D microstructures is crucial for miniaturization of microrobots or microactuators. While additive manufacturing using magnetic nanoparticle‐infused polymer resin offers the highly desirable precision and flexibility, the difficulty in handling resin with higher solid loading of magnetic nanoparticles needed to maximize the magnetic actuation forces remains to be the main obstacle. The increased viscosity of the magnetic resin not only significantly reduces the fabrication speed, but also makes the process vulnerable to the precipitation of the suspended magnetic nanoparticles. Herein, a comprehensive solution that synergizes the optimization of magnetic photopolymerizable resin and the high‐speed 3D printing using microcontinuous liquid interface production (μCLIP) process is reported. An optimized magnetic photopolymerizable resin with 30 wt% solid loading of Fe
3
O
4
nanoparticles is well dispersed over 72 h. Process characteristics of the magnetic photopolymerizable resins with variation in the solid loading of magnetic nanoparticles are investigated experimentally. The capability of 3D printing centimeter‐size samples with sub‐75 μm fine features using high solid loading (30 wt%) is also demonstrated. The increased printing speed using μCLIP significantly reduces the fabrication time to the order of minutes to hours, making the process more robust against the precipitation of the magnetic particles. The capability of fabricating magnetically active 3D microstructures is crucial for miniaturization of microrobots or microactuators. While additive manufacturing using magnetic nanoparticle‐infused polymer resin offers the highly desirable precision and flexibility, the difficulty in handling resin with higher solid loading of magnetic nanoparticles needed to maximize the magnetic actuation forces remains to be the main obstacle. The increased viscosity of the magnetic resin not only significantly reduces the fabrication speed, but also makes the process vulnerable to the precipitation of the suspended magnetic nanoparticles. Herein, a comprehensive solution that synergizes the optimization of magnetic photopolymerizable resin and the high‐speed 3D printing using microcontinuous liquid interface production (μCLIP) process is reported. An optimized magnetic photopolymerizable resin with 30 wt% solid loading of Fe3O4 nanoparticles is well dispersed over 72 h. Process characteristics of the magnetic photopolymerizable resins with variation in the solid loading of magnetic nanoparticles are investigated experimentally. The capability of 3D printing centimeter‐size samples with sub‐75 μm fine features using high solid loading (30 wt%) is also demonstrated. The increased printing speed using μCLIP significantly reduces the fabrication time to the order of minutes to hours, making the process more robust against the precipitation of the magnetic particles. Magnetic photopolymerizable resin with up to 30 wt% solid loading of Fe3O4 nanoparticles is developed and demonstrated to be well dispersed for long duration. Microcontinuous liquid interface production is utilized to accelerate the 3D printing process. The new strategy for 3D printing magnetic microstructures shows the capability to fabricate centimeter‐height magnetically active device with sub‐75 μm microstructures within 2 h. |
Author | Shao, Guangbin Ware, Henry Oliver T. Sun, Cheng Li, Longqiu |
Author_xml | – sequence: 1 givenname: Guangbin orcidid: 0000-0001-5183-277X surname: Shao fullname: Shao, Guangbin organization: Northwestern University – sequence: 2 givenname: Henry Oliver T. surname: Ware fullname: Ware, Henry Oliver T. organization: Northwestern University – sequence: 3 givenname: Longqiu surname: Li fullname: Li, Longqiu email: longqiuli@hit.edu.cn organization: Harbin Institute of Technology – sequence: 4 givenname: Cheng orcidid: 0000-0002-2744-0896 surname: Sun fullname: Sun, Cheng email: c-sun@northwestern.edu organization: Northwestern University |
BookMark | eNqFkE1PwkAQhjcGEwG9et4_UJzZj5Y9EkAxodH4cW7W_YA1pSXbIuHf2wajRzOHmcP7TN48IzKo6soRcoswQQB2p63bTRigAlCIF2SIkmUJS8V00N2CTxNMZXpFRk3zCYAIyIckf9H7YClf0OcYqjZUG5rrTeXaYHRZnujMtOHL0TyYWDdtPJj2EF1Dj6Hd0lXYbOlrXXb8uta2Y6_Jpddl425-9pi83y_f5qtk_fTwOJ-tE8MlwyTzH85LQKOElUw4q3zajXfGeMuF0Izrrp8yBpTLvFQ8s5gpMIwLyUDzMZmc__atmuh8sY9hp-OpQCh6GUUvo_iV0QHqDBxD6U7_pIvZYpn_sd_vjWVy |
CitedBy_id | crossref_primary_10_1039_D1MH00641J crossref_primary_10_3390_polym15224402 crossref_primary_10_1021_acs_chemrev_1c00481 crossref_primary_10_1088_2631_7990_acccbb crossref_primary_10_1016_j_pmatsci_2020_100742 crossref_primary_10_3390_designs7040083 crossref_primary_10_1002_adma_202301916 crossref_primary_10_1016_j_pmatsci_2022_101020 crossref_primary_10_1002_admi_202201270 crossref_primary_10_3390_cryst12060819 crossref_primary_10_3390_polym13183101 crossref_primary_10_1007_s40145_022_0567_5 crossref_primary_10_1016_j_matdes_2021_110172 crossref_primary_10_1002_adem_202100477 crossref_primary_10_1016_j_addma_2022_103088 |
Cites_doi | 10.1002/admi.201700629 10.1021/acsnano.7b06398 10.1186/s40638-014-0018-z 10.1002/admt.201600138 10.1038/micronano.2017.35 10.1016/S1672-6529(16)60324-4 10.1002/adma.201705683 10.1016/j.matdes.2016.11.006 10.1007/s00542-016-2948-6 10.1063/1.2954011 10.1038/ncomms9643 10.1115/1.4035964 10.1016/j.matdes.2018.05.005 10.1016/0021-9797(77)90151-5 10.1007/978-0-387-92904-0 10.1021/acs.nanolett.7b02383 10.1002/admt.201800528 10.1126/science.aaa2397 10.1021/acsami.6b08880 10.1016/j.jmmm.2017.06.070 10.1016/j.mtchem.2017.10.002 10.1039/c0jm00994f 10.1016/j.sna.2004.12.011 10.1016/j.jmmm.2018.08.073 10.1021/acsami.6b13634 10.1038/srep30713 10.1038/ncomms9641 10.7567/JJAP.55.06GP18 10.1115/1.4038574 10.1007/s10404-015-1548-6 10.1038/s41586-018-0185-0 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION |
DOI | 10.1002/adem.201900911 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1527-2648 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adem_201900911 ADEM201900911 |
Genre | article |
GrantInformation_xml | – fundername: National Science and Technology Major Project funderid: 2016ZX0510-006 – fundername: Foundation GRFP funderid: 1000182151 – fundername: China Scholarship Council – fundername: Farley Foundation – fundername: National Natural Science Foundation of China funderid: 51574098 – fundername: PetroChina Innovation Foundation funderid: 2018D5007-0305 – fundername: Assisted Project by Heilongjiang Postdoctoral Funds for Scientific Research Initiation – fundername: National Science Foundation funderid: EEC-1530734 |
GroupedDBID | -~X 05W 0R~ 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 50Y 52U 5GY 5VS 66C 6P2 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F5P FEDTE G-S GNP GODZA HGLYW HVGLF HZ~ IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E QRW R.K ROL RWI RX1 RYL SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR WYJ XPP XV2 ZZTAW AAYXX CITATION |
ID | FETCH-LOGICAL-c3521-7fbef501c94d524ed9f6f6ffeccfd344a23a1109cc09e7f5937d1790c234520a3 |
IEDL.DBID | DR2 |
ISSN | 1438-1656 |
IngestDate | Fri Aug 23 03:25:23 EDT 2024 Sat Aug 24 01:09:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3521-7fbef501c94d524ed9f6f6ffeccfd344a23a1109cc09e7f5937d1790c234520a3 |
ORCID | 0000-0002-2744-0896 0000-0001-5183-277X |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1002_adem_201900911 wiley_primary_10_1002_adem_201900911_ADEM201900911 |
PublicationCentury | 2000 |
PublicationDate | March 2020 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationTitle | Advanced engineering materials |
PublicationYear | 2020 |
References | 2018; 7 2017 2018 2016 2017 2018 2019; 139 6 8 4 153 469 2016; 6 2016; 1 2017; 3 2015; 19 2015 2015 2016; 6 6 55 2005; 121 2015; 347 2014 2010 2016; 1 20 22 2011 1977; 58 2017; 17 2017 2017 2018 2019; 114 442 558 4 2018; 30 2018; 12 2008; 92 2017; 9 2016; 13 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_3_1 e_1_2_7_7_4 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_12_6 e_1_2_7_17_1 e_1_2_7_12_5 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_12_4 e_1_2_7_15_1 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_11_3 e_1_2_7_12_2 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_20_1 |
References_xml | – year: 2011 – volume: 114 442 558 4 start-page: 391 97 274 1800528 year: 2017 2017 2018 2019 publication-title: Mater. Des. J. Magn. Magn. Mater. Nature Adv. Mater. Technol. – volume: 347 start-page: 1349 year: 2015 publication-title: Science – volume: 6 6 55 start-page: 8643 8641 06GP18 year: 2015 2015 2016 publication-title: Nat. Commun. Nat. Commun. Jpn. J. Appl. Phys. – volume: 13 start-page: 515 year: 2016 publication-title: J. Bionic Eng. – volume: 1 start-page: 1600138 year: 2016 publication-title: Adv. Mater. Technol. – volume: 19 start-page: 67 year: 2015 publication-title: Microfluid. Nanofluid. – volume: 12 start-page: 327 year: 2018 publication-title: ACS Nano – volume: 17 start-page: 5092 year: 2017 publication-title: Nano Lett. – volume: 92 start-page: 262505 year: 2008 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 5457 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 1 20 22 start-page: 18 8760 2371 year: 2014 2010 2016 publication-title: Rob. Biomimetics J. Mater. Chem. Microsyst. Technol. – volume: 7 start-page: 25 year: 2018 publication-title: Mater. Today Chem. – volume: 6 start-page: 30713 year: 2016 publication-title: Sci. Rep. – volume: 139 6 8 4 153 469 start-page: 071008 010904 26332 1700629 120 456 year: 2017 2018 2016 2017 2018 2019 publication-title: J. Manuf. Sci. Eng. J. Micro. Nano-Manuf. ACS Appl. Mater. Interfaces Adv. Mater. Interfaces Mater. Des. J. Magn. Magn. Mater. – volume: 30 start-page: 1705683 year: 2018 publication-title: Adv. Mater. – volume: 58 start-page: 408 year: 1977 publication-title: J. Colloid Interface Sci. – volume: 3 start-page: 17035 year: 2017 publication-title: Microsyst. Nanoeng. – volume: 121 start-page: 113 year: 2005 publication-title: Sens. Actuators A – ident: e_1_2_7_12_4 doi: 10.1002/admi.201700629 – ident: e_1_2_7_6_1 doi: 10.1021/acsnano.7b06398 – ident: e_1_2_7_2_1 doi: 10.1186/s40638-014-0018-z – ident: e_1_2_7_16_1 doi: 10.1002/admt.201600138 – ident: e_1_2_7_14_1 doi: 10.1038/micronano.2017.35 – ident: e_1_2_7_3_1 doi: 10.1016/S1672-6529(16)60324-4 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201705683 – ident: e_1_2_7_7_1 doi: 10.1016/j.matdes.2016.11.006 – ident: e_1_2_7_2_3 doi: 10.1007/s00542-016-2948-6 – ident: e_1_2_7_13_1 doi: 10.1063/1.2954011 – ident: e_1_2_7_11_1 doi: 10.1038/ncomms9643 – ident: e_1_2_7_12_1 doi: 10.1115/1.4035964 – ident: e_1_2_7_12_5 doi: 10.1016/j.matdes.2018.05.005 – ident: e_1_2_7_20_1 doi: 10.1016/0021-9797(77)90151-5 – ident: e_1_2_7_5_1 doi: 10.1007/978-0-387-92904-0 – ident: e_1_2_7_4_1 doi: 10.1021/acs.nanolett.7b02383 – ident: e_1_2_7_7_4 doi: 10.1002/admt.201800528 – ident: e_1_2_7_10_1 doi: 10.1126/science.aaa2397 – ident: e_1_2_7_12_3 doi: 10.1021/acsami.6b08880 – ident: e_1_2_7_7_2 doi: 10.1016/j.jmmm.2017.06.070 – ident: e_1_2_7_17_1 doi: 10.1016/j.mtchem.2017.10.002 – ident: e_1_2_7_2_2 doi: 10.1039/c0jm00994f – ident: e_1_2_7_9_1 doi: 10.1016/j.sna.2004.12.011 – ident: e_1_2_7_12_6 doi: 10.1016/j.jmmm.2018.08.073 – ident: e_1_2_7_18_1 doi: 10.1021/acsami.6b13634 – ident: e_1_2_7_8_1 doi: 10.1038/srep30713 – ident: e_1_2_7_11_2 doi: 10.1038/ncomms9641 – ident: e_1_2_7_11_3 doi: 10.7567/JJAP.55.06GP18 – ident: e_1_2_7_12_2 doi: 10.1115/1.4038574 – ident: e_1_2_7_19_1 doi: 10.1007/s10404-015-1548-6 – ident: e_1_2_7_7_3 doi: 10.1038/s41586-018-0185-0 |
SSID | ssj0011013 |
Score | 2.4258265 |
Snippet | The capability of fabricating magnetically active 3D microstructures is crucial for miniaturization of microrobots or microactuators. While additive... |
SourceID | crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | 3D printing high solid loading magnetic resins microcontinuous liquid interface production microstructures |
Title | Rapid 3D Printing Magnetically Active Microstructures with High Solid Loading |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.201900911 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kJz34FuuLPQiets2-EnMs1lLEiFQLvYXdza6IJS3YHvTXu7NpY-tFUHJKyEAyO7vz4JtvELr0ZkBNLDUxIhZE0MQRnRhLuLUyEkKJItR0s4e4PxR3Izla6eKv-CHqghvsjHBewwZX-r39TRoK6HGAZqU-SgjNvZQngOnqDmr-KO_awnxkGPFNgGZmydoYsfa6-JpXWo1Sg5vp7SC1_MAKXfLWms90y3z-4G78zx_sou1FDIo7ldHsoQ1b7qOtFWbCA5QN1PS1wLyLH_0DgEbjTL2UVcfj-AN3wjGJM4DzVRS0c5-3Y6jqYoCO4KfJ2MvfTwJE_xANe7fPN32ymLxAjA_IKEmctk5G1KSikEzYInWxv5xfb1dwv4SMK6AqNSZKbeKkj3EKoPoyjAvJIsWPUKOclPYYYZ-_WGXttaaWCy20TnSaOGqlcS6hqWmiq6Xm82lFsJFXVMosBwXltYKaiAVt_vJaDhZc3538RegUbTJIqwPU7Aw1vBrtuY89Zvoi2NcXtBHQyw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYCBN6I8PSAxuU38SMhYUaoCTYVKK7FFsWMjRJV2aAf49ficJrQsSKBMiXJScr7znU_ffYfQlTUDXwVCEsUDTrgfGiJDpQnTWnicpzxzNd24H3RH_OFFlGhC6IUp-CGqght4htuvwcGhIN38Zg0F-DhgsyKbJkB377r1eQbTG9qDikHKBjc3IRmGfBMgmil5Gz3aXJVfiUvLeaoLNJ0dJMtPLPAl7435TDbU5w_2xn_9wy7aXqShuFXYzR5a0_k-2loiJzxA8SCdvmWYtfGTfQDoaBynr3nR9Dj-wC23U-IYEH0FC-3cHt0xFHYxoEfw82Rs5XsTh9I_RKPO3fC2SxbDF4iyOZlPQiO1EZ6vIp4JynUWmcBexi65yZhdRcpSYCtVyot0aIRNczJg-1KUcUG9lB2hWj7J9THC9gijU61vpK8Zl1zKUEah8bVQxoR-pOroulR9Mi04NpKCTZkmoKCkUlAdUafOX15LwIiru5O_CF2ije4w7iW9-_7jKdqkcMp2yLMzVLMq1ec2FZnJC2dsX9H31OM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_IBNGD3-L8zEHwlK1Nk9Yeh3P4sY4xHexWmjQRcWw7bAf9681Lt7p5EZSeWvqgfXnJ-73we78AXNkw8FUoJFU85JT7kaEyUpoGWguP84znbk836YT3ff44EIOlLv5CH6LccMOZ4dZrnOCT3NS_RUORPY7UrNiiBGzuXeehhb8Ii3qlgJTNbe6AZDzjm6LOzEK20WP1VfuVtLQMU12eae1AtvjCgl7yXptNZU19_hBv_M8v7ML2HISSRhE1e7CmR_uwtSRNeABJL5u85SRokq59gNxokmSvo6LlcfhBGm6dJAny-QoN2pkt3Alu6xLkjpDn8dDat8eOo38I_dbdy-09nR-9QJVFZD6NjNRGeL6KeS4Y13lsQnsZO-AmD-wYsiBDrVKlvFhHRliQk6PWl2IBF8zLgiOojMYjfQzEFjA60_pG-jrgkksZyTgyvhbKmMiPVRWuF55PJ4XCRlpoKbMUHZSWDqoCc9785bUUQ7i8O_mL0SVsdJuttP3QeTqFTYYltqOdnUHFelSfWxwylRcu1L4AcorTkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+3D+Printing+Magnetically+Active+Microstructures+with+High+Solid+Loading&rft.jtitle=Advanced+engineering+materials&rft.au=Shao%2C+Guangbin&rft.au=Ware%2C+Henry+Oliver+T.&rft.au=Li%2C+Longqiu&rft.au=Sun%2C+Cheng&rft.date=2020-03-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=22&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadem.201900911&rft.externalDBID=10.1002%252Fadem.201900911&rft.externalDocID=ADEM201900911 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon |