Rapid 3D Printing Magnetically Active Microstructures with High Solid Loading

The capability of fabricating magnetically active 3D microstructures is crucial for miniaturization of microrobots or microactuators. While additive manufacturing using magnetic nanoparticle‐infused polymer resin offers the highly desirable precision and flexibility, the difficulty in handling resin...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering materials Vol. 22; no. 3
Main Authors Shao, Guangbin, Ware, Henry Oliver T., Li, Longqiu, Sun, Cheng
Format Journal Article
LanguageEnglish
Published 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The capability of fabricating magnetically active 3D microstructures is crucial for miniaturization of microrobots or microactuators. While additive manufacturing using magnetic nanoparticle‐infused polymer resin offers the highly desirable precision and flexibility, the difficulty in handling resin with higher solid loading of magnetic nanoparticles needed to maximize the magnetic actuation forces remains to be the main obstacle. The increased viscosity of the magnetic resin not only significantly reduces the fabrication speed, but also makes the process vulnerable to the precipitation of the suspended magnetic nanoparticles. Herein, a comprehensive solution that synergizes the optimization of magnetic photopolymerizable resin and the high‐speed 3D printing using microcontinuous liquid interface production (μCLIP) process is reported. An optimized magnetic photopolymerizable resin with 30 wt% solid loading of Fe3O4 nanoparticles is well dispersed over 72 h. Process characteristics of the magnetic photopolymerizable resins with variation in the solid loading of magnetic nanoparticles are investigated experimentally. The capability of 3D printing centimeter‐size samples with sub‐75 μm fine features using high solid loading (30 wt%) is also demonstrated. The increased printing speed using μCLIP significantly reduces the fabrication time to the order of minutes to hours, making the process more robust against the precipitation of the magnetic particles. Magnetic photopolymerizable resin with up to 30 wt% solid loading of Fe3O4 nanoparticles is developed and demonstrated to be well dispersed for long duration. Microcontinuous liquid interface production is utilized to accelerate the 3D printing process. The new strategy for 3D printing magnetic microstructures shows the capability to fabricate centimeter‐height magnetically active device with sub‐75 μm microstructures within 2 h.
AbstractList The capability of fabricating magnetically active 3D microstructures is crucial for miniaturization of microrobots or microactuators. While additive manufacturing using magnetic nanoparticle‐infused polymer resin offers the highly desirable precision and flexibility, the difficulty in handling resin with higher solid loading of magnetic nanoparticles needed to maximize the magnetic actuation forces remains to be the main obstacle. The increased viscosity of the magnetic resin not only significantly reduces the fabrication speed, but also makes the process vulnerable to the precipitation of the suspended magnetic nanoparticles. Herein, a comprehensive solution that synergizes the optimization of magnetic photopolymerizable resin and the high‐speed 3D printing using microcontinuous liquid interface production (μCLIP) process is reported. An optimized magnetic photopolymerizable resin with 30 wt% solid loading of Fe 3 O 4 nanoparticles is well dispersed over 72 h. Process characteristics of the magnetic photopolymerizable resins with variation in the solid loading of magnetic nanoparticles are investigated experimentally. The capability of 3D printing centimeter‐size samples with sub‐75 μm fine features using high solid loading (30 wt%) is also demonstrated. The increased printing speed using μCLIP significantly reduces the fabrication time to the order of minutes to hours, making the process more robust against the precipitation of the magnetic particles.
The capability of fabricating magnetically active 3D microstructures is crucial for miniaturization of microrobots or microactuators. While additive manufacturing using magnetic nanoparticle‐infused polymer resin offers the highly desirable precision and flexibility, the difficulty in handling resin with higher solid loading of magnetic nanoparticles needed to maximize the magnetic actuation forces remains to be the main obstacle. The increased viscosity of the magnetic resin not only significantly reduces the fabrication speed, but also makes the process vulnerable to the precipitation of the suspended magnetic nanoparticles. Herein, a comprehensive solution that synergizes the optimization of magnetic photopolymerizable resin and the high‐speed 3D printing using microcontinuous liquid interface production (μCLIP) process is reported. An optimized magnetic photopolymerizable resin with 30 wt% solid loading of Fe3O4 nanoparticles is well dispersed over 72 h. Process characteristics of the magnetic photopolymerizable resins with variation in the solid loading of magnetic nanoparticles are investigated experimentally. The capability of 3D printing centimeter‐size samples with sub‐75 μm fine features using high solid loading (30 wt%) is also demonstrated. The increased printing speed using μCLIP significantly reduces the fabrication time to the order of minutes to hours, making the process more robust against the precipitation of the magnetic particles. Magnetic photopolymerizable resin with up to 30 wt% solid loading of Fe3O4 nanoparticles is developed and demonstrated to be well dispersed for long duration. Microcontinuous liquid interface production is utilized to accelerate the 3D printing process. The new strategy for 3D printing magnetic microstructures shows the capability to fabricate centimeter‐height magnetically active device with sub‐75 μm microstructures within 2 h.
Author Shao, Guangbin
Ware, Henry Oliver T.
Sun, Cheng
Li, Longqiu
Author_xml – sequence: 1
  givenname: Guangbin
  orcidid: 0000-0001-5183-277X
  surname: Shao
  fullname: Shao, Guangbin
  organization: Northwestern University
– sequence: 2
  givenname: Henry Oliver T.
  surname: Ware
  fullname: Ware, Henry Oliver T.
  organization: Northwestern University
– sequence: 3
  givenname: Longqiu
  surname: Li
  fullname: Li, Longqiu
  email: longqiuli@hit.edu.cn
  organization: Harbin Institute of Technology
– sequence: 4
  givenname: Cheng
  orcidid: 0000-0002-2744-0896
  surname: Sun
  fullname: Sun, Cheng
  email: c-sun@northwestern.edu
  organization: Northwestern University
BookMark eNqFkE1PwkAQhjcGEwG9et4_UJzZj5Y9EkAxodH4cW7W_YA1pSXbIuHf2wajRzOHmcP7TN48IzKo6soRcoswQQB2p63bTRigAlCIF2SIkmUJS8V00N2CTxNMZXpFRk3zCYAIyIckf9H7YClf0OcYqjZUG5rrTeXaYHRZnujMtOHL0TyYWDdtPJj2EF1Dj6Hd0lXYbOlrXXb8uta2Y6_Jpddl425-9pi83y_f5qtk_fTwOJ-tE8MlwyTzH85LQKOElUw4q3zajXfGeMuF0Izrrp8yBpTLvFQ8s5gpMIwLyUDzMZmc__atmuh8sY9hp-OpQCh6GUUvo_iV0QHqDBxD6U7_pIvZYpn_sd_vjWVy
CitedBy_id crossref_primary_10_1039_D1MH00641J
crossref_primary_10_3390_polym15224402
crossref_primary_10_1021_acs_chemrev_1c00481
crossref_primary_10_1088_2631_7990_acccbb
crossref_primary_10_1016_j_pmatsci_2020_100742
crossref_primary_10_3390_designs7040083
crossref_primary_10_1002_adma_202301916
crossref_primary_10_1016_j_pmatsci_2022_101020
crossref_primary_10_1002_admi_202201270
crossref_primary_10_3390_cryst12060819
crossref_primary_10_3390_polym13183101
crossref_primary_10_1007_s40145_022_0567_5
crossref_primary_10_1016_j_matdes_2021_110172
crossref_primary_10_1002_adem_202100477
crossref_primary_10_1016_j_addma_2022_103088
Cites_doi 10.1002/admi.201700629
10.1021/acsnano.7b06398
10.1186/s40638-014-0018-z
10.1002/admt.201600138
10.1038/micronano.2017.35
10.1016/S1672-6529(16)60324-4
10.1002/adma.201705683
10.1016/j.matdes.2016.11.006
10.1007/s00542-016-2948-6
10.1063/1.2954011
10.1038/ncomms9643
10.1115/1.4035964
10.1016/j.matdes.2018.05.005
10.1016/0021-9797(77)90151-5
10.1007/978-0-387-92904-0
10.1021/acs.nanolett.7b02383
10.1002/admt.201800528
10.1126/science.aaa2397
10.1021/acsami.6b08880
10.1016/j.jmmm.2017.06.070
10.1016/j.mtchem.2017.10.002
10.1039/c0jm00994f
10.1016/j.sna.2004.12.011
10.1016/j.jmmm.2018.08.073
10.1021/acsami.6b13634
10.1038/srep30713
10.1038/ncomms9641
10.7567/JJAP.55.06GP18
10.1115/1.4038574
10.1007/s10404-015-1548-6
10.1038/s41586-018-0185-0
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/adem.201900911
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1527-2648
EndPage n/a
ExternalDocumentID 10_1002_adem_201900911
ADEM201900911
Genre article
GrantInformation_xml – fundername: National Science and Technology Major Project
  funderid: 2016ZX0510-006
– fundername: Foundation GRFP
  funderid: 1000182151
– fundername: China Scholarship Council
– fundername: Farley Foundation
– fundername: National Natural Science Foundation of China
  funderid: 51574098
– fundername: PetroChina Innovation Foundation
  funderid: 2018D5007-0305
– fundername: Assisted Project by Heilongjiang Postdoctoral Funds for Scientific Research Initiation
– fundername: National Science Foundation
  funderid: EEC-1530734
GroupedDBID -~X
05W
0R~
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
50Y
52U
5GY
5VS
66C
6P2
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HGLYW
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XPP
XV2
ZZTAW
AAYXX
CITATION
ID FETCH-LOGICAL-c3521-7fbef501c94d524ed9f6f6ffeccfd344a23a1109cc09e7f5937d1790c234520a3
IEDL.DBID DR2
ISSN 1438-1656
IngestDate Fri Aug 23 03:25:23 EDT 2024
Sat Aug 24 01:09:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3521-7fbef501c94d524ed9f6f6ffeccfd344a23a1109cc09e7f5937d1790c234520a3
ORCID 0000-0002-2744-0896
0000-0001-5183-277X
PageCount 7
ParticipantIDs crossref_primary_10_1002_adem_201900911
wiley_primary_10_1002_adem_201900911_ADEM201900911
PublicationCentury 2000
PublicationDate March 2020
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationTitle Advanced engineering materials
PublicationYear 2020
References 2018; 7
2017 2018 2016 2017 2018 2019; 139 6 8 4 153 469
2016; 6
2016; 1
2017; 3
2015; 19
2015 2015 2016; 6 6 55
2005; 121
2015; 347
2014 2010 2016; 1 20 22
2011
1977; 58
2017; 17
2017 2017 2018 2019; 114 442 558 4
2018; 30
2018; 12
2008; 92
2017; 9
2016; 13
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_3_1
e_1_2_7_7_4
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_12_6
e_1_2_7_17_1
e_1_2_7_12_5
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_12_4
e_1_2_7_15_1
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_11_3
e_1_2_7_12_2
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_20_1
References_xml – year: 2011
– volume: 114 442 558 4
  start-page: 391 97 274 1800528
  year: 2017 2017 2018 2019
  publication-title: Mater. Des. J. Magn. Magn. Mater. Nature Adv. Mater. Technol.
– volume: 347
  start-page: 1349
  year: 2015
  publication-title: Science
– volume: 6 6 55
  start-page: 8643 8641 06GP18
  year: 2015 2015 2016
  publication-title: Nat. Commun. Nat. Commun. Jpn. J. Appl. Phys.
– volume: 13
  start-page: 515
  year: 2016
  publication-title: J. Bionic Eng.
– volume: 1
  start-page: 1600138
  year: 2016
  publication-title: Adv. Mater. Technol.
– volume: 19
  start-page: 67
  year: 2015
  publication-title: Microfluid. Nanofluid.
– volume: 12
  start-page: 327
  year: 2018
  publication-title: ACS Nano
– volume: 17
  start-page: 5092
  year: 2017
  publication-title: Nano Lett.
– volume: 92
  start-page: 262505
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 5457
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1 20 22
  start-page: 18 8760 2371
  year: 2014 2010 2016
  publication-title: Rob. Biomimetics J. Mater. Chem. Microsyst. Technol.
– volume: 7
  start-page: 25
  year: 2018
  publication-title: Mater. Today Chem.
– volume: 6
  start-page: 30713
  year: 2016
  publication-title: Sci. Rep.
– volume: 139 6 8 4 153 469
  start-page: 071008 010904 26332 1700629 120 456
  year: 2017 2018 2016 2017 2018 2019
  publication-title: J. Manuf. Sci. Eng. J. Micro. Nano-Manuf. ACS Appl. Mater. Interfaces Adv. Mater. Interfaces Mater. Des. J. Magn. Magn. Mater.
– volume: 30
  start-page: 1705683
  year: 2018
  publication-title: Adv. Mater.
– volume: 58
  start-page: 408
  year: 1977
  publication-title: J. Colloid Interface Sci.
– volume: 3
  start-page: 17035
  year: 2017
  publication-title: Microsyst. Nanoeng.
– volume: 121
  start-page: 113
  year: 2005
  publication-title: Sens. Actuators A
– ident: e_1_2_7_12_4
  doi: 10.1002/admi.201700629
– ident: e_1_2_7_6_1
  doi: 10.1021/acsnano.7b06398
– ident: e_1_2_7_2_1
  doi: 10.1186/s40638-014-0018-z
– ident: e_1_2_7_16_1
  doi: 10.1002/admt.201600138
– ident: e_1_2_7_14_1
  doi: 10.1038/micronano.2017.35
– ident: e_1_2_7_3_1
  doi: 10.1016/S1672-6529(16)60324-4
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201705683
– ident: e_1_2_7_7_1
  doi: 10.1016/j.matdes.2016.11.006
– ident: e_1_2_7_2_3
  doi: 10.1007/s00542-016-2948-6
– ident: e_1_2_7_13_1
  doi: 10.1063/1.2954011
– ident: e_1_2_7_11_1
  doi: 10.1038/ncomms9643
– ident: e_1_2_7_12_1
  doi: 10.1115/1.4035964
– ident: e_1_2_7_12_5
  doi: 10.1016/j.matdes.2018.05.005
– ident: e_1_2_7_20_1
  doi: 10.1016/0021-9797(77)90151-5
– ident: e_1_2_7_5_1
  doi: 10.1007/978-0-387-92904-0
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.nanolett.7b02383
– ident: e_1_2_7_7_4
  doi: 10.1002/admt.201800528
– ident: e_1_2_7_10_1
  doi: 10.1126/science.aaa2397
– ident: e_1_2_7_12_3
  doi: 10.1021/acsami.6b08880
– ident: e_1_2_7_7_2
  doi: 10.1016/j.jmmm.2017.06.070
– ident: e_1_2_7_17_1
  doi: 10.1016/j.mtchem.2017.10.002
– ident: e_1_2_7_2_2
  doi: 10.1039/c0jm00994f
– ident: e_1_2_7_9_1
  doi: 10.1016/j.sna.2004.12.011
– ident: e_1_2_7_12_6
  doi: 10.1016/j.jmmm.2018.08.073
– ident: e_1_2_7_18_1
  doi: 10.1021/acsami.6b13634
– ident: e_1_2_7_8_1
  doi: 10.1038/srep30713
– ident: e_1_2_7_11_2
  doi: 10.1038/ncomms9641
– ident: e_1_2_7_11_3
  doi: 10.7567/JJAP.55.06GP18
– ident: e_1_2_7_12_2
  doi: 10.1115/1.4038574
– ident: e_1_2_7_19_1
  doi: 10.1007/s10404-015-1548-6
– ident: e_1_2_7_7_3
  doi: 10.1038/s41586-018-0185-0
SSID ssj0011013
Score 2.4258265
Snippet The capability of fabricating magnetically active 3D microstructures is crucial for miniaturization of microrobots or microactuators. While additive...
SourceID crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms 3D printing
high solid loading
magnetic resins
microcontinuous liquid interface production
microstructures
Title Rapid 3D Printing Magnetically Active Microstructures with High Solid Loading
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.201900911
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kJz34FuuLPQiets2-EnMs1lLEiFQLvYXdza6IJS3YHvTXu7NpY-tFUHJKyEAyO7vz4JtvELr0ZkBNLDUxIhZE0MQRnRhLuLUyEkKJItR0s4e4PxR3Izla6eKv-CHqghvsjHBewwZX-r39TRoK6HGAZqU-SgjNvZQngOnqDmr-KO_awnxkGPFNgGZmydoYsfa6-JpXWo1Sg5vp7SC1_MAKXfLWms90y3z-4G78zx_sou1FDIo7ldHsoQ1b7qOtFWbCA5QN1PS1wLyLH_0DgEbjTL2UVcfj-AN3wjGJM4DzVRS0c5-3Y6jqYoCO4KfJ2MvfTwJE_xANe7fPN32ymLxAjA_IKEmctk5G1KSikEzYInWxv5xfb1dwv4SMK6AqNSZKbeKkj3EKoPoyjAvJIsWPUKOclPYYYZ-_WGXttaaWCy20TnSaOGqlcS6hqWmiq6Xm82lFsJFXVMosBwXltYKaiAVt_vJaDhZc3538RegUbTJIqwPU7Aw1vBrtuY89Zvoi2NcXtBHQyw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYCBN6I8PSAxuU38SMhYUaoCTYVKK7FFsWMjRJV2aAf49ficJrQsSKBMiXJScr7znU_ffYfQlTUDXwVCEsUDTrgfGiJDpQnTWnicpzxzNd24H3RH_OFFlGhC6IUp-CGqght4htuvwcGhIN38Zg0F-DhgsyKbJkB377r1eQbTG9qDikHKBjc3IRmGfBMgmil5Gz3aXJVfiUvLeaoLNJ0dJMtPLPAl7435TDbU5w_2xn_9wy7aXqShuFXYzR5a0_k-2loiJzxA8SCdvmWYtfGTfQDoaBynr3nR9Dj-wC23U-IYEH0FC-3cHt0xFHYxoEfw82Rs5XsTh9I_RKPO3fC2SxbDF4iyOZlPQiO1EZ6vIp4JynUWmcBexi65yZhdRcpSYCtVyot0aIRNczJg-1KUcUG9lB2hWj7J9THC9gijU61vpK8Zl1zKUEah8bVQxoR-pOroulR9Mi04NpKCTZkmoKCkUlAdUafOX15LwIiru5O_CF2ije4w7iW9-_7jKdqkcMp2yLMzVLMq1ec2FZnJC2dsX9H31OM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_IBNGD3-L8zEHwlK1Nk9Yeh3P4sY4xHexWmjQRcWw7bAf9681Lt7p5EZSeWvqgfXnJ-73we78AXNkw8FUoJFU85JT7kaEyUpoGWguP84znbk836YT3ff44EIOlLv5CH6LccMOZ4dZrnOCT3NS_RUORPY7UrNiiBGzuXeehhb8Ii3qlgJTNbe6AZDzjm6LOzEK20WP1VfuVtLQMU12eae1AtvjCgl7yXptNZU19_hBv_M8v7ML2HISSRhE1e7CmR_uwtSRNeABJL5u85SRokq59gNxokmSvo6LlcfhBGm6dJAny-QoN2pkt3Alu6xLkjpDn8dDat8eOo38I_dbdy-09nR-9QJVFZD6NjNRGeL6KeS4Y13lsQnsZO-AmD-wYsiBDrVKlvFhHRliQk6PWl2IBF8zLgiOojMYjfQzEFjA60_pG-jrgkksZyTgyvhbKmMiPVRWuF55PJ4XCRlpoKbMUHZSWDqoCc9785bUUQ7i8O_mL0SVsdJuttP3QeTqFTYYltqOdnUHFelSfWxwylRcu1L4AcorTkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+3D+Printing+Magnetically+Active+Microstructures+with+High+Solid+Loading&rft.jtitle=Advanced+engineering+materials&rft.au=Shao%2C+Guangbin&rft.au=Ware%2C+Henry+Oliver+T.&rft.au=Li%2C+Longqiu&rft.au=Sun%2C+Cheng&rft.date=2020-03-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=22&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadem.201900911&rft.externalDBID=10.1002%252Fadem.201900911&rft.externalDocID=ADEM201900911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon