Collaborative Learning of Label Semantics and Deep Label-Specific Features for Multi-Label Classification
In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label examples by accounting for the distinct discriminative properties of each class label. However, most existing approaches exploit the semantic relations among labels as immu...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 12; pp. 9860 - 9871 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0162-8828 1939-3539 2160-9292 1939-3539 |
DOI | 10.1109/TPAMI.2021.3136592 |
Cover
Loading…
Abstract | In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label examples by accounting for the distinct discriminative properties of each class label. However, most existing approaches exploit the semantic relations among labels as immutable prior knowledge, which may not be appropriate to constrain the learning process of label-specific features. In this paper, we propose to learn label semantics and label-specific features in a collaborative way. Accordingly, a deep neural network (DNN) based approach named Clif , i.e., C ollaborative L earning of label semant I cs and deep label-specific F eatures for multi-label classification , is proposed. By integrating a graph autoencoder for encoding semantic relations in the label space and a tailored feature-disentangling module for extracting label-specific features, Clif is able to employ the learned label semantics to guide mining label-specific features and propagate label-specific discriminative properties to the learning process of the label semantics. In such a way, the learning of label semantics and label-specific features interact and facilitate with each other so that label semantics can provide more accurate guidance to label-specific feature learning. Comprehensive experiments on 14 benchmark data sets show that our approach outperforms other well-established multi-label classification algorithms. |
---|---|
AbstractList | In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label examples by accounting for the distinct discriminative properties of each class label. However, most existing approaches exploit the semantic relations among labels as immutable prior knowledge, which may not be appropriate to constrain the learning process of label-specific features. In this paper, we propose to learn label semantics and label-specific features in a collaborative way. Accordingly, a deep neural network (DNN) based approach named CLIF, i.e. Collaborative Learning of label semantIcs and deep label-specific Features for multi-label classification, is proposed. By integrating a graph autoencoder for encoding semantic relations in the label space and a tailored feature-disentangling module for extracting label-specific features, CLIF is able to employ the learned label semantics to guide mining label-specific features and propagate label-specific discriminative properties to the learning process of the label semantics. In such a way, the learning of label semantics and label-specific features interact and facilitate with each other so that label semantics can provide more accurate guidance to label-specific feature learning. Comprehensive experiments on 14 benchmark data sets show that our approach outperforms other well-established multi-label classification algorithms.In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label examples by accounting for the distinct discriminative properties of each class label. However, most existing approaches exploit the semantic relations among labels as immutable prior knowledge, which may not be appropriate to constrain the learning process of label-specific features. In this paper, we propose to learn label semantics and label-specific features in a collaborative way. Accordingly, a deep neural network (DNN) based approach named CLIF, i.e. Collaborative Learning of label semantIcs and deep label-specific Features for multi-label classification, is proposed. By integrating a graph autoencoder for encoding semantic relations in the label space and a tailored feature-disentangling module for extracting label-specific features, CLIF is able to employ the learned label semantics to guide mining label-specific features and propagate label-specific discriminative properties to the learning process of the label semantics. In such a way, the learning of label semantics and label-specific features interact and facilitate with each other so that label semantics can provide more accurate guidance to label-specific feature learning. Comprehensive experiments on 14 benchmark data sets show that our approach outperforms other well-established multi-label classification algorithms. In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label examples by accounting for the distinct discriminative properties of each class label. However, most existing approaches exploit the semantic relations among labels as immutable prior knowledge, which may not be appropriate to constrain the learning process of label-specific features. In this paper, we propose to learn label semantics and label-specific features in a collaborative way. Accordingly, a deep neural network (DNN) based approach named Clif , i.e., C ollaborative L earning of label semant I cs and deep label-specific F eatures for multi-label classification , is proposed. By integrating a graph autoencoder for encoding semantic relations in the label space and a tailored feature-disentangling module for extracting label-specific features, Clif is able to employ the learned label semantics to guide mining label-specific features and propagate label-specific discriminative properties to the learning process of the label semantics. In such a way, the learning of label semantics and label-specific features interact and facilitate with each other so that label semantics can provide more accurate guidance to label-specific feature learning. Comprehensive experiments on 14 benchmark data sets show that our approach outperforms other well-established multi-label classification algorithms. In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label examples by accounting for the distinct discriminative properties of each class label. However, most existing approaches exploit the semantic relations among labels as immutable prior knowledge, which may not be appropriate to constrain the learning process of label-specific features. In this paper, we propose to learn label semantics and label-specific features in a collaborative way. Accordingly, a deep neural network (DNN) based approach named CLIF, i.e. Collaborative Learning of label semantIcs and deep label-specific Features for multi-label classification, is proposed. By integrating a graph autoencoder for encoding semantic relations in the label space and a tailored feature-disentangling module for extracting label-specific features, CLIF is able to employ the learned label semantics to guide mining label-specific features and propagate label-specific discriminative properties to the learning process of the label semantics. In such a way, the learning of label semantics and label-specific features interact and facilitate with each other so that label semantics can provide more accurate guidance to label-specific feature learning. Comprehensive experiments on 14 benchmark data sets show that our approach outperforms other well-established multi-label classification algorithms. |
Author | Zhang, Min-Ling Hang, Jun-Yi |
Author_xml | – sequence: 1 givenname: Jun-Yi orcidid: 0000-0002-0345-8637 surname: Hang fullname: Hang, Jun-Yi email: hangjy@seu.edu.cn organization: School of Computer Science and Engineering, Southeast University, Nanjing, China – sequence: 2 givenname: Min-Ling orcidid: 0000-0003-1880-5918 surname: Zhang fullname: Zhang, Min-Ling email: zhangml@seu.edu.cn organization: School of Computer Science and Engineering, Southeast University, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34928787$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAURi1URKeFFwAJRWLTTQb_x15WQwuVpgKpZW05zjVylbEHO6nE2-Nppiy6YOWFz_l07_3O0ElMERB6T_CaEKw_3_-4vL1ZU0zJmhEmhaav0IoSiVtNNT1BK0wkbZWi6hSdlfKAMeECszfolHFNVae6FQqbNI62T9lO4RGaLdgcQ_zVJN9sbQ9jcwc7G6fgSmPj0HwB2C8f7d0eXPDBNddgpzlDaXzKze08TqFd1M1oSzkgNTvFt-i1t2OBd8f3HP28vrrffGu337_ebC63rWOCTK333PphAOwYY9w7oLau5DTnimIiemy7gQ-KEWBCCNXb3hFJwA6acsEdYefoYsnd5_R7hjKZXSgO6pYR0lwMlYQyXQN4RT-9QB_SnGOdztCOcaZEp2WlPh6pud_BYPY57Gz-Y56PWAG1AC6nUjJ448L0tPOUbRgNwebQl3nqyxz6Mse-qkpfqM_p_5U-LFIAgH-ClkLKOvZfT_Gf_w |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1016_j_patcog_2023_109357 crossref_primary_10_3390_math11081969 crossref_primary_10_1007_s10489_023_04585_6 crossref_primary_10_1007_s10115_025_02359_9 crossref_primary_10_1007_s10489_024_05498_8 crossref_primary_10_1007_s10489_024_05668_8 crossref_primary_10_1016_j_neucom_2023_126605 crossref_primary_10_3390_math11020275 crossref_primary_10_3233_IDA_230897 crossref_primary_10_1007_s00521_024_09810_y crossref_primary_10_1007_s11063_024_11460_z crossref_primary_10_1109_TPAMI_2024_3522298 crossref_primary_10_1145_3705006 crossref_primary_10_1016_j_knosys_2024_112832 crossref_primary_10_1007_s11432_023_4230_2 crossref_primary_10_1109_TCYB_2024_3433519 crossref_primary_10_1016_j_ins_2024_121579 crossref_primary_10_1016_j_neunet_2024_106674 |
Cites_doi | 10.1007/s10462-016-9516-4 10.1109/TKDE.2019.2951561 10.24963/ijcai.2019/533 10.1109/TPAMI.2014.2339815 10.1145/3442381.3449815 10.1109/ICPR.2016.7899867 10.1109/LSP.2016.2554361 10.1609/aaai.v32i1.11722 10.1007/s11704-020-9294-7 10.1080/01621459.1961.10482090 10.1016/j.ins.2019.10.022 10.1007/978-3-030-01216-8_25 10.1109/ACCESS.2019.2891611 10.1007/978-3-319-10840-7_1 10.1007/s10994-011-5256-5 10.1145/2835776.2835821 10.1007/s11390-020-9900-z 10.1109/TKDE.2019.2947040 10.1609/aaai.v31i1.10769 10.1109/TNNLS.2020.3027745 10.24963/ijcai.2019/539 10.1109/TCYB.2017.2663838 10.1145/3319911 10.1109/TMM.2020.3002185 10.2197/ipsjjip.23.767 10.1109/TPAMI.2020.3025814 10.1109/TPAMI.2021.3070215 10.1109/CVPR.2016.251 10.1016/j.patcog.2004.03.009 10.1109/TCYB.2021.3049630 10.1145/2647868.2654904 10.24963/ijcai.2018/371 10.1016/j.neucom.2020.07.107 10.1109/CVPR.2019.00532 10.1145/3219819.3219958 10.1109/TKDE.2013.39 10.1109/ICDM.2014.102 10.1109/ICDM.2015.67 10.1016/j.neucom.2019.10.016 10.1609/aaai.v33i01.33013304 10.1186/1687-4722-2011-426793 10.1109/ICCV48922.2021.00015 10.1007/s10994-011-5270-7 10.1007/s11432-020-3132-4 10.1007/978-3-030-46147-8_9 10.1007/s10994-011-5272-5 10.1109/DSAA.2017.75 10.1007/s11704-017-7031-7 10.24963/ijcai.2020/595 10.1109/TKDE.2010.164 10.1109/ICCV.2015.123 10.1109/TKDE.2016.2608339 10.1109/TKDE.2006.162 10.1016/j.knosys.2016.04.012 10.1016/j.neucom.2017.07.044 10.1145/3394486.3403191 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2021.3136592 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 9871 |
ExternalDocumentID | 34928787 10_1109_TPAMI_2021_3136592 9656627 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China; National Science Foundation of China grantid: 62176055 funderid: 10.13039/501100001809 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c351t-ff4afdde0c3334fce2a216c94482015b0a7d4d831e35558babc161ead92454c13 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Fri Jul 11 08:18:46 EDT 2025 Sun Jun 29 15:23:19 EDT 2025 Thu Apr 03 07:10:46 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 Sun Jul 06 05:02:23 EDT 2025 Wed Aug 27 02:04:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-ff4afdde0c3334fce2a216c94482015b0a7d4d831e35558babc161ead92454c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1880-5918 0000-0002-0345-8637 |
PMID | 34928787 |
PQID | 2734385796 |
PQPubID | 85458 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TPAMI_2021_3136592 proquest_miscellaneous_2612398314 proquest_journals_2734385796 pubmed_primary_34928787 crossref_citationtrail_10_1109_TPAMI_2021_3136592 ieee_primary_9656627 |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref53 elisseeff (ref25) 2001 ref52 ref55 ref11 ref54 ref10 ioffe (ref68) 2015 ref17 ref16 bhatia (ref33) 2015 ref19 ref18 mencía (ref26) 2008 xu (ref67) 2019 yazici (ref66) 2020 ref46 demsar (ref72) 2006; 7 ref45 ref47 wilcoxon (ref74) 1992 ref42 ref41 guo (ref28) 2011 ref44 ref43 ref49 wang (ref50) 2018 ref8 ref7 ref9 ref4 hamilton (ref75) 2017 ref6 ref40 ref35 ref37 ref36 ref31 ref30 ref76 ref32 ref2 ref1 ref39 ref38 maas (ref69) 2013 ref71 you (ref48) 2019 ref70 mccallum (ref5) 1999 ref73 tsoumakas (ref20) 2009 ref24 ref23 ref64 chen (ref62) 2018 ref63 ref22 ref65 ref21 chen (ref14) 2019 chen (ref34) 2012 ref27 ref29 ref60 yang (ref51) 2020; 325 cabral (ref3) 2011 ref61 |
References_xml | – start-page: 931 year: 2018 ident: ref62 article-title: End-to-end learning for the deep multivariate probit model publication-title: Proc 35th Int Conf Mach Learn – ident: ref32 doi: 10.1007/s10462-016-9516-4 – ident: ref22 doi: 10.1109/TKDE.2019.2951561 – ident: ref49 doi: 10.24963/ijcai.2019/533 – ident: ref8 doi: 10.1109/TPAMI.2014.2339815 – ident: ref63 doi: 10.1145/3442381.3449815 – ident: ref46 doi: 10.1109/ICPR.2016.7899867 – start-page: 411 year: 2019 ident: ref14 article-title: Multi-label learning with regularization enriched label-specific features publication-title: Proc 11th Asian Conf Mach Learn – ident: ref31 doi: 10.1109/LSP.2016.2554361 – ident: ref37 doi: 10.1609/aaai.v32i1.11722 – ident: ref35 doi: 10.1007/s11704-020-9294-7 – ident: ref73 doi: 10.1080/01621459.1961.10482090 – ident: ref12 doi: 10.1016/j.ins.2019.10.022 – ident: ref55 doi: 10.1007/978-3-030-01216-8_25 – ident: ref13 doi: 10.1109/ACCESS.2019.2891611 – ident: ref70 doi: 10.1007/978-3-319-10840-7_1 – ident: ref29 doi: 10.1007/s10994-011-5256-5 – ident: ref38 doi: 10.1145/2835776.2835821 – start-page: 1024 year: 2017 ident: ref75 article-title: Inductive representation learning on large graphs publication-title: Proc Adv Neural Inf Process Syst – ident: ref10 doi: 10.1007/s11390-020-9900-z – ident: ref21 doi: 10.1109/TKDE.2019.2947040 – ident: ref59 doi: 10.1609/aaai.v31i1.10769 – ident: ref11 doi: 10.1109/TNNLS.2020.3027745 – ident: ref36 doi: 10.24963/ijcai.2019/539 – ident: ref16 doi: 10.1109/TCYB.2017.2663838 – ident: ref44 doi: 10.1145/3319911 – start-page: 681 year: 2001 ident: ref25 article-title: A Kernel method for multi-labelled classification publication-title: Proc Adv Neural Inf Process Syst – start-page: 730 year: 2015 ident: ref33 article-title: Sparse local embeddings for extreme multi-label classification publication-title: Proc Adv Neural Inf Process Syst – ident: ref17 doi: 10.1109/TMM.2020.3002185 – ident: ref2 doi: 10.2197/ipsjjip.23.767 – ident: ref52 doi: 10.1109/TPAMI.2020.3025814 – ident: ref45 doi: 10.1109/TPAMI.2021.3070215 – ident: ref65 doi: 10.1109/CVPR.2016.251 – ident: ref23 doi: 10.1016/j.patcog.2004.03.009 – ident: ref53 doi: 10.1109/TCYB.2021.3049630 – ident: ref7 doi: 10.1145/2647868.2654904 – ident: ref58 doi: 10.24963/ijcai.2018/371 – ident: ref41 doi: 10.1016/j.neucom.2020.07.107 – ident: ref64 doi: 10.1109/CVPR.2019.00532 – volume: 7 start-page: 1 year: 2006 ident: ref72 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – start-page: 448 year: 2015 ident: ref68 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc 32nd Int Conf Mach Learn – ident: ref19 doi: 10.1145/3219819.3219958 – ident: ref1 doi: 10.1109/TKDE.2013.39 – start-page: 2899 year: 2008 ident: ref26 article-title: Pairwise learning of multilabel classifications with perceptrons publication-title: Proc Int Joint Conf Neural Netw – start-page: 1 year: 2018 ident: ref50 article-title: Deep correlation structure preserved label space embedding for multi-label classification publication-title: Proc 10th Asian Conf Mach Learn – start-page: 667 year: 2009 ident: ref20 publication-title: Mining Multi-label Data – ident: ref27 doi: 10.1109/ICDM.2014.102 – ident: ref9 doi: 10.1109/ICDM.2015.67 – ident: ref47 doi: 10.1016/j.neucom.2019.10.016 – start-page: 196 year: 1992 ident: ref74 publication-title: Individual Comparisons by Ranking Methods – ident: ref57 doi: 10.1609/aaai.v33i01.33013304 – ident: ref6 doi: 10.1186/1687-4722-2011-426793 – ident: ref76 doi: 10.1109/ICCV48922.2021.00015 – ident: ref39 doi: 10.1007/s10994-011-5270-7 – start-page: 1300 year: 2011 ident: ref28 article-title: Multi-label classification using conditional dependency networks publication-title: Proc 22nd Int Joint Conf Artif Intell – ident: ref54 doi: 10.1007/s11432-020-3132-4 – ident: ref61 doi: 10.1007/978-3-030-46147-8_9 – start-page: 190 year: 2011 ident: ref3 article-title: Matrix completion for multi-label image classification publication-title: Proc Adv Neural Inf Process Syst – volume: 325 start-page: 1634 year: 2020 ident: ref51 article-title: Multi-label learning with deep forest publication-title: Proc 24th Eur Conf Arti Intell – ident: ref4 doi: 10.1007/s10994-011-5272-5 – start-page: 1538 year: 2012 ident: ref34 article-title: Feature-aware label space dimension reduction for multi-label classification publication-title: Proc Adv Neural Inf Process Syst – ident: ref42 doi: 10.1109/DSAA.2017.75 – ident: ref24 doi: 10.1007/s11704-017-7031-7 – ident: ref60 doi: 10.24963/ijcai.2020/595 – ident: ref30 doi: 10.1109/TKDE.2010.164 – year: 1999 ident: ref5 article-title: Multi-label text classification with a mixture model trained by EM publication-title: Proc AAAI'99 Workshop Text Learn – ident: ref71 doi: 10.1109/ICCV.2015.123 – start-page: 13 437 year: 2020 ident: ref66 article-title: Orderless recurrent models for multi-label classification publication-title: Proc 33rd IEEE Conf Comput Vis Pattern Recognit – year: 2019 ident: ref67 article-title: How powerful are graph neural networks? publication-title: Proc 7th Int Conf Learn Representations – ident: ref15 doi: 10.1109/TKDE.2016.2608339 – ident: ref56 doi: 10.1109/TKDE.2006.162 – ident: ref40 doi: 10.1016/j.knosys.2016.04.012 – start-page: 1 year: 2013 ident: ref69 article-title: Rectifier nonlinearities improve neural network acoustic models publication-title: Proc 30th Int Conf Mach Learn – ident: ref43 doi: 10.1016/j.neucom.2017.07.044 – ident: ref18 doi: 10.1145/3394486.3403191 – start-page: 5812 year: 2019 ident: ref48 article-title: AttentionXML: Label tree-based attention-aware deep model for high-performance extreme multi-label text classification publication-title: Proc Adv Neural Inf Process Syst |
SSID | ssj0014503 |
Score | 2.5242934 |
Snippet | In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label examples by accounting for the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9860 |
SubjectTerms | Algorithms Artificial neural networks Classification Collaboration collaborative learning Correlation Deep learning Encoding Feature extraction label semantics label-specific features Learning Machine learning multi-label classification Representation learning Semantic relations Semantics |
Title | Collaborative Learning of Label Semantics and Deep Label-Specific Features for Multi-Label Classification |
URI | https://ieeexplore.ieee.org/document/9656627 https://www.ncbi.nlm.nih.gov/pubmed/34928787 https://www.proquest.com/docview/2734385796 https://www.proquest.com/docview/2612398314 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4VHhA8jEHH1g2QJ-1tS0lq59cjKqCCBkJakXiLbOcyVevSam32sL9-d86PVdOGeIsUO4515_j74rvvAD7kcVxElrPbUaKndERrTpvY06FOZGJ9wswuyvcumjyom8fwsQefulwYRHTBZzjkS3eWny9sxb_KzlIGH6N4C7aIuNW5Wt2JgQpdFWRCMDQa0Yg2QcZPz6b357fXRAVHATFUyeeIu7DDqnxJzJF0G_uRK7Dyf6zp9pyrfbht37YONfk2rNZmaH_9JeT43Om8hBcN-BTntbccQA_LQ9hvCzuIZp0fwt6GSmEfZuM_vvITRaPI-lUsCvFZG5yLL_id7DOzK6HLXFwgLusbnituX8ysYKBZEbEXBJGFy_n16q6uJic3cQ7yCh6uLqfjiddUaPCsDIO1VxRKF_SB9K2UUhVcXGwUkOmJ8xGwCI2v41zliQxQsq6Y0cYSwiTnJdYXKhvII9guFyW-AeHnEtOUKHMkteK-QYT0lDxSgTFxpAYQtHbKbCNfzlU05pmjMX6aOTNnbOasMfMAPnZ9lrV4x5Ot-2yjrmVjngEct-6QNet7lbEokEw4j3cA77vbtDL5uEWXuKioDSvbpDR5evfXtRt1z2697-2_x3wHuyNOs3BhM8ewvf5R4QmBn7U5dV7_G84W_FU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8gJogPIKB4iLomvkGP7u3265GA5NA7YuKR8NbsbqfmIvSIXH3wr3dm-yExYnxrsl_dzEz3N92Z3wC8L5KkjB1nt6PCQJuYbM7YJDCRSVXqQsLMPsr3Ih5f6o9X0dUKHPa5MIjog89wyI_-Lr9YuJp_lR1lDD5GySN4TOd-JJtsrf7OQEe-DjJhGFqPHIkuRSbMjmafj6fn5AyOJPmoim8S12GNefnShGPp7p1IvsTKw2jTnzpnmzDt3rcJNvk2rJd26H7-QeX4vxt6Bhst_BTHjb5swQpW27DZlXYQraVvw9N7PIU7MD_5rS0_ULScrF_FohQTY_FafMEbktDc3QlTFeIU8bZpCHx5-3LuBEPNmlx7QSBZ-KzfoBnqq3JyF68iz-Hy7MPsZBy0NRoCpyK5DMpSm5I-kaFTSumSy4uNJAmfvD6CFpENTVLoIlUSFTOLWWMdYUxSX_L7Iu2kegGr1aLClyDCQmGWkdMcK6N5rIyRZiliLa1NYj0A2ckpdy2BOdfRuM69IxNmuRdzzmLOWzEP4KAfc9vQd_yz9w7LqO_ZimcA-5065K2F3-VMC6RSzuQdwLu-mWyTL1xMhYua-jC3TUabp3ffbdSon7vTvr2_r_kWnoxn00k-Ob_49ArWR5x04YNo9mF1-b3G1wSFlvaNt4BfHYL_ng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Learning+of+Label+Semantics+and+Deep+Label-Specific+Features+for+Multi-Label+Classification&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Hang%2C+Jun-Yi&rft.au=Zhang%2C+Min-Ling&rft.date=2022-12-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=PP&rft_id=info:doi/10.1109%2FTPAMI.2021.3136592&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |