Collaborative Learning of Label Semantics and Deep Label-Specific Features for Multi-Label Classification

In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label examples by accounting for the distinct discriminative properties of each class label. However, most existing approaches exploit the semantic relations among labels as immu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 12; pp. 9860 - 9871
Main Authors Hang, Jun-Yi, Zhang, Min-Ling
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2021.3136592

Cover

Loading…
Abstract In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label examples by accounting for the distinct discriminative properties of each class label. However, most existing approaches exploit the semantic relations among labels as immutable prior knowledge, which may not be appropriate to constrain the learning process of label-specific features. In this paper, we propose to learn label semantics and label-specific features in a collaborative way. Accordingly, a deep neural network (DNN) based approach named Clif , i.e., C ollaborative L earning of label semant I cs and deep label-specific F eatures for multi-label classification , is proposed. By integrating a graph autoencoder for encoding semantic relations in the label space and a tailored feature-disentangling module for extracting label-specific features, Clif is able to employ the learned label semantics to guide mining label-specific features and propagate label-specific discriminative properties to the learning process of the label semantics. In such a way, the learning of label semantics and label-specific features interact and facilitate with each other so that label semantics can provide more accurate guidance to label-specific feature learning. Comprehensive experiments on 14 benchmark data sets show that our approach outperforms other well-established multi-label classification algorithms.
AbstractList In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label examples by accounting for the distinct discriminative properties of each class label. However, most existing approaches exploit the semantic relations among labels as immutable prior knowledge, which may not be appropriate to constrain the learning process of label-specific features. In this paper, we propose to learn label semantics and label-specific features in a collaborative way. Accordingly, a deep neural network (DNN) based approach named CLIF, i.e. Collaborative Learning of label semantIcs and deep label-specific Features for multi-label classification, is proposed. By integrating a graph autoencoder for encoding semantic relations in the label space and a tailored feature-disentangling module for extracting label-specific features, CLIF is able to employ the learned label semantics to guide mining label-specific features and propagate label-specific discriminative properties to the learning process of the label semantics. In such a way, the learning of label semantics and label-specific features interact and facilitate with each other so that label semantics can provide more accurate guidance to label-specific feature learning. Comprehensive experiments on 14 benchmark data sets show that our approach outperforms other well-established multi-label classification algorithms.In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label examples by accounting for the distinct discriminative properties of each class label. However, most existing approaches exploit the semantic relations among labels as immutable prior knowledge, which may not be appropriate to constrain the learning process of label-specific features. In this paper, we propose to learn label semantics and label-specific features in a collaborative way. Accordingly, a deep neural network (DNN) based approach named CLIF, i.e. Collaborative Learning of label semantIcs and deep label-specific Features for multi-label classification, is proposed. By integrating a graph autoencoder for encoding semantic relations in the label space and a tailored feature-disentangling module for extracting label-specific features, CLIF is able to employ the learned label semantics to guide mining label-specific features and propagate label-specific discriminative properties to the learning process of the label semantics. In such a way, the learning of label semantics and label-specific features interact and facilitate with each other so that label semantics can provide more accurate guidance to label-specific feature learning. Comprehensive experiments on 14 benchmark data sets show that our approach outperforms other well-established multi-label classification algorithms.
In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label examples by accounting for the distinct discriminative properties of each class label. However, most existing approaches exploit the semantic relations among labels as immutable prior knowledge, which may not be appropriate to constrain the learning process of label-specific features. In this paper, we propose to learn label semantics and label-specific features in a collaborative way. Accordingly, a deep neural network (DNN) based approach named Clif , i.e., C ollaborative L earning of label semant I cs and deep label-specific F eatures for multi-label classification , is proposed. By integrating a graph autoencoder for encoding semantic relations in the label space and a tailored feature-disentangling module for extracting label-specific features, Clif is able to employ the learned label semantics to guide mining label-specific features and propagate label-specific discriminative properties to the learning process of the label semantics. In such a way, the learning of label semantics and label-specific features interact and facilitate with each other so that label semantics can provide more accurate guidance to label-specific feature learning. Comprehensive experiments on 14 benchmark data sets show that our approach outperforms other well-established multi-label classification algorithms.
In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label examples by accounting for the distinct discriminative properties of each class label. However, most existing approaches exploit the semantic relations among labels as immutable prior knowledge, which may not be appropriate to constrain the learning process of label-specific features. In this paper, we propose to learn label semantics and label-specific features in a collaborative way. Accordingly, a deep neural network (DNN) based approach named CLIF, i.e. Collaborative Learning of label semantIcs and deep label-specific Features for multi-label classification, is proposed. By integrating a graph autoencoder for encoding semantic relations in the label space and a tailored feature-disentangling module for extracting label-specific features, CLIF is able to employ the learned label semantics to guide mining label-specific features and propagate label-specific discriminative properties to the learning process of the label semantics. In such a way, the learning of label semantics and label-specific features interact and facilitate with each other so that label semantics can provide more accurate guidance to label-specific feature learning. Comprehensive experiments on 14 benchmark data sets show that our approach outperforms other well-established multi-label classification algorithms.
Author Zhang, Min-Ling
Hang, Jun-Yi
Author_xml – sequence: 1
  givenname: Jun-Yi
  orcidid: 0000-0002-0345-8637
  surname: Hang
  fullname: Hang, Jun-Yi
  email: hangjy@seu.edu.cn
  organization: School of Computer Science and Engineering, Southeast University, Nanjing, China
– sequence: 2
  givenname: Min-Ling
  orcidid: 0000-0003-1880-5918
  surname: Zhang
  fullname: Zhang, Min-Ling
  email: zhangml@seu.edu.cn
  organization: School of Computer Science and Engineering, Southeast University, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34928787$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAURi1URKeFFwAJRWLTTQb_x15WQwuVpgKpZW05zjVylbEHO6nE2-Nppiy6YOWFz_l07_3O0ElMERB6T_CaEKw_3_-4vL1ZU0zJmhEmhaav0IoSiVtNNT1BK0wkbZWi6hSdlfKAMeECszfolHFNVae6FQqbNI62T9lO4RGaLdgcQ_zVJN9sbQ9jcwc7G6fgSmPj0HwB2C8f7d0eXPDBNddgpzlDaXzKze08TqFd1M1oSzkgNTvFt-i1t2OBd8f3HP28vrrffGu337_ebC63rWOCTK333PphAOwYY9w7oLau5DTnimIiemy7gQ-KEWBCCNXb3hFJwA6acsEdYefoYsnd5_R7hjKZXSgO6pYR0lwMlYQyXQN4RT-9QB_SnGOdztCOcaZEp2WlPh6pud_BYPY57Gz-Y56PWAG1AC6nUjJ448L0tPOUbRgNwebQl3nqyxz6Mse-qkpfqM_p_5U-LFIAgH-ClkLKOvZfT_Gf_w
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_patcog_2023_109357
crossref_primary_10_3390_math11081969
crossref_primary_10_1007_s10489_023_04585_6
crossref_primary_10_1007_s10115_025_02359_9
crossref_primary_10_1007_s10489_024_05498_8
crossref_primary_10_1007_s10489_024_05668_8
crossref_primary_10_1016_j_neucom_2023_126605
crossref_primary_10_3390_math11020275
crossref_primary_10_3233_IDA_230897
crossref_primary_10_1007_s00521_024_09810_y
crossref_primary_10_1007_s11063_024_11460_z
crossref_primary_10_1109_TPAMI_2024_3522298
crossref_primary_10_1145_3705006
crossref_primary_10_1016_j_knosys_2024_112832
crossref_primary_10_1007_s11432_023_4230_2
crossref_primary_10_1109_TCYB_2024_3433519
crossref_primary_10_1016_j_ins_2024_121579
crossref_primary_10_1016_j_neunet_2024_106674
Cites_doi 10.1007/s10462-016-9516-4
10.1109/TKDE.2019.2951561
10.24963/ijcai.2019/533
10.1109/TPAMI.2014.2339815
10.1145/3442381.3449815
10.1109/ICPR.2016.7899867
10.1109/LSP.2016.2554361
10.1609/aaai.v32i1.11722
10.1007/s11704-020-9294-7
10.1080/01621459.1961.10482090
10.1016/j.ins.2019.10.022
10.1007/978-3-030-01216-8_25
10.1109/ACCESS.2019.2891611
10.1007/978-3-319-10840-7_1
10.1007/s10994-011-5256-5
10.1145/2835776.2835821
10.1007/s11390-020-9900-z
10.1109/TKDE.2019.2947040
10.1609/aaai.v31i1.10769
10.1109/TNNLS.2020.3027745
10.24963/ijcai.2019/539
10.1109/TCYB.2017.2663838
10.1145/3319911
10.1109/TMM.2020.3002185
10.2197/ipsjjip.23.767
10.1109/TPAMI.2020.3025814
10.1109/TPAMI.2021.3070215
10.1109/CVPR.2016.251
10.1016/j.patcog.2004.03.009
10.1109/TCYB.2021.3049630
10.1145/2647868.2654904
10.24963/ijcai.2018/371
10.1016/j.neucom.2020.07.107
10.1109/CVPR.2019.00532
10.1145/3219819.3219958
10.1109/TKDE.2013.39
10.1109/ICDM.2014.102
10.1109/ICDM.2015.67
10.1016/j.neucom.2019.10.016
10.1609/aaai.v33i01.33013304
10.1186/1687-4722-2011-426793
10.1109/ICCV48922.2021.00015
10.1007/s10994-011-5270-7
10.1007/s11432-020-3132-4
10.1007/978-3-030-46147-8_9
10.1007/s10994-011-5272-5
10.1109/DSAA.2017.75
10.1007/s11704-017-7031-7
10.24963/ijcai.2020/595
10.1109/TKDE.2010.164
10.1109/ICCV.2015.123
10.1109/TKDE.2016.2608339
10.1109/TKDE.2006.162
10.1016/j.knosys.2016.04.012
10.1016/j.neucom.2017.07.044
10.1145/3394486.3403191
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2021.3136592
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 9871
ExternalDocumentID 34928787
10_1109_TPAMI_2021_3136592
9656627
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China; National Science Foundation of China
  grantid: 62176055
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-ff4afdde0c3334fce2a216c94482015b0a7d4d831e35558babc161ead92454c13
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 08:18:46 EDT 2025
Sun Jun 29 15:23:19 EDT 2025
Thu Apr 03 07:10:46 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Sun Jul 06 05:02:23 EDT 2025
Wed Aug 27 02:04:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-ff4afdde0c3334fce2a216c94482015b0a7d4d831e35558babc161ead92454c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1880-5918
0000-0002-0345-8637
PMID 34928787
PQID 2734385796
PQPubID 85458
PageCount 12
ParticipantIDs crossref_primary_10_1109_TPAMI_2021_3136592
proquest_miscellaneous_2612398314
proquest_journals_2734385796
pubmed_primary_34928787
crossref_citationtrail_10_1109_TPAMI_2021_3136592
ieee_primary_9656627
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref53
elisseeff (ref25) 2001
ref52
ref55
ref11
ref54
ref10
ioffe (ref68) 2015
ref17
ref16
bhatia (ref33) 2015
ref19
ref18
mencía (ref26) 2008
xu (ref67) 2019
yazici (ref66) 2020
ref46
demsar (ref72) 2006; 7
ref45
ref47
wilcoxon (ref74) 1992
ref42
ref41
guo (ref28) 2011
ref44
ref43
ref49
wang (ref50) 2018
ref8
ref7
ref9
ref4
hamilton (ref75) 2017
ref6
ref40
ref35
ref37
ref36
ref31
ref30
ref76
ref32
ref2
ref1
ref39
ref38
maas (ref69) 2013
ref71
you (ref48) 2019
ref70
mccallum (ref5) 1999
ref73
tsoumakas (ref20) 2009
ref24
ref23
ref64
chen (ref62) 2018
ref63
ref22
ref65
ref21
chen (ref14) 2019
chen (ref34) 2012
ref27
ref29
ref60
yang (ref51) 2020; 325
cabral (ref3) 2011
ref61
References_xml – start-page: 931
  year: 2018
  ident: ref62
  article-title: End-to-end learning for the deep multivariate probit model
  publication-title: Proc 35th Int Conf Mach Learn
– ident: ref32
  doi: 10.1007/s10462-016-9516-4
– ident: ref22
  doi: 10.1109/TKDE.2019.2951561
– ident: ref49
  doi: 10.24963/ijcai.2019/533
– ident: ref8
  doi: 10.1109/TPAMI.2014.2339815
– ident: ref63
  doi: 10.1145/3442381.3449815
– ident: ref46
  doi: 10.1109/ICPR.2016.7899867
– start-page: 411
  year: 2019
  ident: ref14
  article-title: Multi-label learning with regularization enriched label-specific features
  publication-title: Proc 11th Asian Conf Mach Learn
– ident: ref31
  doi: 10.1109/LSP.2016.2554361
– ident: ref37
  doi: 10.1609/aaai.v32i1.11722
– ident: ref35
  doi: 10.1007/s11704-020-9294-7
– ident: ref73
  doi: 10.1080/01621459.1961.10482090
– ident: ref12
  doi: 10.1016/j.ins.2019.10.022
– ident: ref55
  doi: 10.1007/978-3-030-01216-8_25
– ident: ref13
  doi: 10.1109/ACCESS.2019.2891611
– ident: ref70
  doi: 10.1007/978-3-319-10840-7_1
– ident: ref29
  doi: 10.1007/s10994-011-5256-5
– ident: ref38
  doi: 10.1145/2835776.2835821
– start-page: 1024
  year: 2017
  ident: ref75
  article-title: Inductive representation learning on large graphs
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref10
  doi: 10.1007/s11390-020-9900-z
– ident: ref21
  doi: 10.1109/TKDE.2019.2947040
– ident: ref59
  doi: 10.1609/aaai.v31i1.10769
– ident: ref11
  doi: 10.1109/TNNLS.2020.3027745
– ident: ref36
  doi: 10.24963/ijcai.2019/539
– ident: ref16
  doi: 10.1109/TCYB.2017.2663838
– ident: ref44
  doi: 10.1145/3319911
– start-page: 681
  year: 2001
  ident: ref25
  article-title: A Kernel method for multi-labelled classification
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 730
  year: 2015
  ident: ref33
  article-title: Sparse local embeddings for extreme multi-label classification
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref17
  doi: 10.1109/TMM.2020.3002185
– ident: ref2
  doi: 10.2197/ipsjjip.23.767
– ident: ref52
  doi: 10.1109/TPAMI.2020.3025814
– ident: ref45
  doi: 10.1109/TPAMI.2021.3070215
– ident: ref65
  doi: 10.1109/CVPR.2016.251
– ident: ref23
  doi: 10.1016/j.patcog.2004.03.009
– ident: ref53
  doi: 10.1109/TCYB.2021.3049630
– ident: ref7
  doi: 10.1145/2647868.2654904
– ident: ref58
  doi: 10.24963/ijcai.2018/371
– ident: ref41
  doi: 10.1016/j.neucom.2020.07.107
– ident: ref64
  doi: 10.1109/CVPR.2019.00532
– volume: 7
  start-page: 1
  year: 2006
  ident: ref72
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– start-page: 448
  year: 2015
  ident: ref68
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc 32nd Int Conf Mach Learn
– ident: ref19
  doi: 10.1145/3219819.3219958
– ident: ref1
  doi: 10.1109/TKDE.2013.39
– start-page: 2899
  year: 2008
  ident: ref26
  article-title: Pairwise learning of multilabel classifications with perceptrons
  publication-title: Proc Int Joint Conf Neural Netw
– start-page: 1
  year: 2018
  ident: ref50
  article-title: Deep correlation structure preserved label space embedding for multi-label classification
  publication-title: Proc 10th Asian Conf Mach Learn
– start-page: 667
  year: 2009
  ident: ref20
  publication-title: Mining Multi-label Data
– ident: ref27
  doi: 10.1109/ICDM.2014.102
– ident: ref9
  doi: 10.1109/ICDM.2015.67
– ident: ref47
  doi: 10.1016/j.neucom.2019.10.016
– start-page: 196
  year: 1992
  ident: ref74
  publication-title: Individual Comparisons by Ranking Methods
– ident: ref57
  doi: 10.1609/aaai.v33i01.33013304
– ident: ref6
  doi: 10.1186/1687-4722-2011-426793
– ident: ref76
  doi: 10.1109/ICCV48922.2021.00015
– ident: ref39
  doi: 10.1007/s10994-011-5270-7
– start-page: 1300
  year: 2011
  ident: ref28
  article-title: Multi-label classification using conditional dependency networks
  publication-title: Proc 22nd Int Joint Conf Artif Intell
– ident: ref54
  doi: 10.1007/s11432-020-3132-4
– ident: ref61
  doi: 10.1007/978-3-030-46147-8_9
– start-page: 190
  year: 2011
  ident: ref3
  article-title: Matrix completion for multi-label image classification
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 325
  start-page: 1634
  year: 2020
  ident: ref51
  article-title: Multi-label learning with deep forest
  publication-title: Proc 24th Eur Conf Arti Intell
– ident: ref4
  doi: 10.1007/s10994-011-5272-5
– start-page: 1538
  year: 2012
  ident: ref34
  article-title: Feature-aware label space dimension reduction for multi-label classification
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref42
  doi: 10.1109/DSAA.2017.75
– ident: ref24
  doi: 10.1007/s11704-017-7031-7
– ident: ref60
  doi: 10.24963/ijcai.2020/595
– ident: ref30
  doi: 10.1109/TKDE.2010.164
– year: 1999
  ident: ref5
  article-title: Multi-label text classification with a mixture model trained by EM
  publication-title: Proc AAAI'99 Workshop Text Learn
– ident: ref71
  doi: 10.1109/ICCV.2015.123
– start-page: 13 437
  year: 2020
  ident: ref66
  article-title: Orderless recurrent models for multi-label classification
  publication-title: Proc 33rd IEEE Conf Comput Vis Pattern Recognit
– year: 2019
  ident: ref67
  article-title: How powerful are graph neural networks?
  publication-title: Proc 7th Int Conf Learn Representations
– ident: ref15
  doi: 10.1109/TKDE.2016.2608339
– ident: ref56
  doi: 10.1109/TKDE.2006.162
– ident: ref40
  doi: 10.1016/j.knosys.2016.04.012
– start-page: 1
  year: 2013
  ident: ref69
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc 30th Int Conf Mach Learn
– ident: ref43
  doi: 10.1016/j.neucom.2017.07.044
– ident: ref18
  doi: 10.1145/3394486.3403191
– start-page: 5812
  year: 2019
  ident: ref48
  article-title: AttentionXML: Label tree-based attention-aware deep model for high-performance extreme multi-label text classification
  publication-title: Proc Adv Neural Inf Process Syst
SSID ssj0014503
Score 2.5242934
Snippet In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label examples by accounting for the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9860
SubjectTerms Algorithms
Artificial neural networks
Classification
Collaboration
collaborative learning
Correlation
Deep learning
Encoding
Feature extraction
label semantics
label-specific features
Learning
Machine learning
multi-label classification
Representation learning
Semantic relations
Semantics
Title Collaborative Learning of Label Semantics and Deep Label-Specific Features for Multi-Label Classification
URI https://ieeexplore.ieee.org/document/9656627
https://www.ncbi.nlm.nih.gov/pubmed/34928787
https://www.proquest.com/docview/2734385796
https://www.proquest.com/docview/2612398314
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4VHhA8jEHH1g2QJ-1tS0lq59cjKqCCBkJakXiLbOcyVevSam32sL9-d86PVdOGeIsUO4515_j74rvvAD7kcVxElrPbUaKndERrTpvY06FOZGJ9wswuyvcumjyom8fwsQefulwYRHTBZzjkS3eWny9sxb_KzlIGH6N4C7aIuNW5Wt2JgQpdFWRCMDQa0Yg2QcZPz6b357fXRAVHATFUyeeIu7DDqnxJzJF0G_uRK7Dyf6zp9pyrfbht37YONfk2rNZmaH_9JeT43Om8hBcN-BTntbccQA_LQ9hvCzuIZp0fwt6GSmEfZuM_vvITRaPI-lUsCvFZG5yLL_id7DOzK6HLXFwgLusbnituX8ysYKBZEbEXBJGFy_n16q6uJic3cQ7yCh6uLqfjiddUaPCsDIO1VxRKF_SB9K2UUhVcXGwUkOmJ8xGwCI2v41zliQxQsq6Y0cYSwiTnJdYXKhvII9guFyW-AeHnEtOUKHMkteK-QYT0lDxSgTFxpAYQtHbKbCNfzlU05pmjMX6aOTNnbOasMfMAPnZ9lrV4x5Ot-2yjrmVjngEct-6QNet7lbEokEw4j3cA77vbtDL5uEWXuKioDSvbpDR5evfXtRt1z2697-2_x3wHuyNOs3BhM8ewvf5R4QmBn7U5dV7_G84W_FU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8gJogPIKB4iLomvkGP7u3265GA5NA7YuKR8NbsbqfmIvSIXH3wr3dm-yExYnxrsl_dzEz3N92Z3wC8L5KkjB1nt6PCQJuYbM7YJDCRSVXqQsLMPsr3Ih5f6o9X0dUKHPa5MIjog89wyI_-Lr9YuJp_lR1lDD5GySN4TOd-JJtsrf7OQEe-DjJhGFqPHIkuRSbMjmafj6fn5AyOJPmoim8S12GNefnShGPp7p1IvsTKw2jTnzpnmzDt3rcJNvk2rJd26H7-QeX4vxt6Bhst_BTHjb5swQpW27DZlXYQraVvw9N7PIU7MD_5rS0_ULScrF_FohQTY_FafMEbktDc3QlTFeIU8bZpCHx5-3LuBEPNmlx7QSBZ-KzfoBnqq3JyF68iz-Hy7MPsZBy0NRoCpyK5DMpSm5I-kaFTSumSy4uNJAmfvD6CFpENTVLoIlUSFTOLWWMdYUxSX_L7Iu2kegGr1aLClyDCQmGWkdMcK6N5rIyRZiliLa1NYj0A2ckpdy2BOdfRuM69IxNmuRdzzmLOWzEP4KAfc9vQd_yz9w7LqO_ZimcA-5065K2F3-VMC6RSzuQdwLu-mWyTL1xMhYua-jC3TUabp3ffbdSon7vTvr2_r_kWnoxn00k-Ob_49ArWR5x04YNo9mF1-b3G1wSFlvaNt4BfHYL_ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Learning+of+Label+Semantics+and+Deep+Label-Specific+Features+for+Multi-Label+Classification&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Hang%2C+Jun-Yi&rft.au=Zhang%2C+Min-Ling&rft.date=2022-12-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=PP&rft_id=info:doi/10.1109%2FTPAMI.2021.3136592&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon