Electric Vehicle Battery State of Charge Prediction Based on Graph Convolutional Network

The state of charge (SoC) of a vehicle battery can tend to vary depending on the driver’s driving patterns and circumstances. To accurately predict the SoC level, it is necessary to consider various circumstances. That is why traditional statistical models may not be sufficient. To address this issu...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of automotive technology Vol. 24; no. 6; pp. 1519 - 1530
Main Authors Kim, Geunsu, Kang, Soohyeok, Park, Gyudo, Min, Byung-Cheol
Format Journal Article
LanguageEnglish
Published Seoul The Korean Society of Automotive Engineers 01.12.2023
Springer Nature B.V
한국자동차공학회
Subjects
Online AccessGet full text
ISSN1229-9138
1976-3832
DOI10.1007/s12239-023-0122-6

Cover

Abstract The state of charge (SoC) of a vehicle battery can tend to vary depending on the driver’s driving patterns and circumstances. To accurately predict the SoC level, it is necessary to consider various circumstances. That is why traditional statistical models may not be sufficient. To address this issue, recurrent neural network (RNN) models have been proposed for time series prediction tasks due to their superior performance. In this paper, we propose a new approach using a graph convolutional network (GCN)-based model that shows better performance than RNN-based models. The GCN requires an adjacency matrix as input, which represents the relationships between variables. We set this matrix to be learnable during model training rather than predefined. We also use two different adjacency matrices: one with variables as nodes, and the other with timestamps as nodes, to enhance the interpretability of the data by considering different elements as nodes. This allows the model to interpret the data from different perspectives. The proposed GCN model was tested using real-world electric vehicle (EV) data and demonstrated improved performance compared to RNN-based baselines. In addition, the GCN model has advantage of being able to clearly express the relationships between variables in a graph, improving interpretabilty.
AbstractList The state of charge (SoC) of a vehicle battery can tend to vary depending on the driver’s driving patterns and circumstances. To accurately predict the SoC level, it is necessary to consider various circumstances. That is why traditional statistical models may not be sufficient. To address this issue, recurrent neural network (RNN) models have been proposed for time series prediction tasks due to their superior performance. In this paper, we propose a new approach using a graph convolutional network (GCN)-based model that shows better performance than RNN-based models. The GCN requires an adjacency matrix as input, which represents the relationships between variables. We set this matrix to be learnable during model training rather than predefined. We also use two different adjacency matrices: one with variables as nodes, and the other with timestamps as nodes, to enhance the interpretability of the data by considering different elements as nodes. This allows the model to interpret the data from different perspectives. The proposed GCN model was tested using real-world electric vehicle (EV) data and demonstrated improved performance compared to RNN-based baselines. In addition, the GCN model has advantage of being able to clearly express the relationships between variables in a graph, improving interpretabilty.
The state of charge (SoC) of a vehicle battery can tend to vary depending on the driver’s driving patterns and circumstances. To accurately predict the SoC level, it is necessary to consider various circumstances. That is why traditional statistical models may not be sufficient. To address this issue, recurrent neural network (RNN) models have been proposed for time series prediction tasks due to their superior performance. In this paper, we propose a new approach using a graph convolutional network (GCN)-based model that shows better performance than RNN-based models. The GCN requires an adjacency matrix as input, which represents the relationships between variables. We set this matrix to be learnable during model training rather than predefined. We also use two different adjacency matrices: one with variables as nodes, and the other with timestamps as nodes, to enhance the interpretability of the data by considering different elements as nodes. This allows the model to interpret the data from different perspectives. The proposed GCN model was tested using real-world electric vehicle (EV) data and demonstrated improved performance compared to RNN-based baselines. In addition, the GCN model has advantage of being able to clearly express the relationships between variables in a graph, improving interpretabilty. KCI Citation Count: 0
Author Kim, Geunsu
Park, Gyudo
Kang, Soohyeok
Min, Byung-Cheol
Author_xml – sequence: 1
  givenname: Geunsu
  surname: Kim
  fullname: Kim, Geunsu
  organization: Hyundai Kefico Corp, Hyundai Motor Group, AI Machine Research Lab
– sequence: 2
  givenname: Soohyeok
  surname: Kang
  fullname: Kang, Soohyeok
  organization: Hyundai Kefico Corp, Hyundai Motor Group, AI Machine Research Lab
– sequence: 3
  givenname: Gyudo
  surname: Park
  fullname: Park, Gyudo
  organization: Hyundai Kefico Corp, Hyundai Motor Group, AI Machine Research Lab
– sequence: 4
  givenname: Byung-Cheol
  surname: Min
  fullname: Min, Byung-Cheol
  email: minb@purdue.edu
  organization: SMART Lab, Department of Computer and Information Technology, Purdue University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003018793$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kEtrGzEURkVwoHn0B3QnyC4wqR4jjWbpmLzApCVJS3dCI1_ZiqcjV5JT_O8rZwKBQru6H-h8l6tzjCZDGAChT5RcUEKaz4kyxtuKMF6REit5gI5o28iKK84mJTPWVi3l6gM6TumZECEpJ0fox1UPNkdv8XdYedsDvjQ5Q9zhx2wy4ODwbGXiEvDXCAtvsw9DQRIscAk30WxWeBaGl9Bv90-mx_eQf4e4PkWHzvQJPr7NE_Tt-uppdlvNv9zczabzynJBc-WgVgQ6Kox1YNqaUdlY1bGasYVSthNOEEWbunWKiU5Sopy0jaq7haBCNg0_Qefj3iE6vbZeB-Nf5zLoddTTh6c7TQlnite0wGcjvInh1xZS1s9hG8vVSTOlRCskr0WhmpGyMaQUwWnri4zyvRyN78s6vXeuR-e6ONd751qWJv2ruYn-p4m7_3bY2EmFHZYQ32_6d-kPv66Tng
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3481331
crossref_primary_10_1007_s12239_024_00148_x
crossref_primary_10_1016_j_est_2025_115482
crossref_primary_10_1016_j_jpowsour_2024_235374
crossref_primary_10_3390_wevj16020057
Cites_doi 10.1109/ICIST49303.2020.9201971
10.1016/j.est.2021.102494
10.1162/neco.1989.1.4.541
10.1109/JIOT.2021.3100509
10.1145/3292500.3330662
10.1109/TNNLS.2020.3008702
10.1016/j.jpowsour.2020.228051
10.1145/3357384.3358132
10.1002/er.7545
10.1007/s10994-019-05815-0
10.3390/math11010224
10.1609/aaai.v32i1.11635
10.3115/v1/D14-1179
10.1109/ICCEP.2011.6036301
10.3390/pr9091685
10.1016/S0360-8352(98)00066-7
10.1007/s12239-008-0090-x
10.1109/ECCE.2017.8096879
10.1007/b11963
10.1016/j.neucom.2019.12.118
10.1109/TVT.2012.2203160
10.1109/ACC.2003.1243757
10.1162/neco.1997.9.8.1735
10.1002/er.7202
10.1016/j.acha.2010.04.005
10.1109/ACCESS.2020.2996225
10.3390/app10217880
10.1109/ACCESS.2017.2779939
10.1007/s11356-022-22719-0
10.1016/j.neucom.2020.11.032
10.3390/en12050946
10.1016/j.est.2020.101459
10.1016/j.neucom.2021.03.091
ContentType Journal Article
Copyright KSAE 2023
KSAE 2023.
Copyright_xml – notice: KSAE 2023
– notice: KSAE 2023.
DBID AAYXX
CITATION
3V.
7TB
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
K60
K6~
KB.
L.-
M0C
M2P
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
ACYCR
DOI 10.1007/s12239-023-0122-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Materials Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global
Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Korean Citation Index
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3832
EndPage 1530
ExternalDocumentID oai_kci_go_kr_ARTI_10328341
10_1007_s12239_023_0122_6
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.UV
.VR
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
6NX
7WY
88I
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
CZ9
D1I
DBRKI
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GW5
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
KB.
KC.
KOV
KVFHK
LLZTM
M0C
M2P
M4Y
MA-
MK~
ML~
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P9P
PDBOC
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TDB
TR2
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
7TB
7XB
8FD
8FK
ABRTQ
FR3
L.-
PKEHL
PQEST
PQGLB
PQUKI
Q9U
AAFGU
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
UNUBA
ID FETCH-LOGICAL-c351t-fe480eb15acfea942167c8b2422d88cb5f5081749f825b6108f6c784bd5156773
IEDL.DBID AGYKE
ISSN 1229-9138
IngestDate Tue Jun 25 21:13:11 EDT 2024
Fri Jul 25 19:02:37 EDT 2025
Tue Jul 01 02:44:16 EDT 2025
Thu Apr 24 22:58:46 EDT 2025
Fri Feb 21 02:43:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Electric vehicle (EV)
Graph convolutional network
Time series prediction
Neural network
State of charge (SoC)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-fe480eb15acfea942167c8b2422d88cb5f5081749f825b6108f6c784bd5156773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2885956345
PQPubID 54404
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10328341
proquest_journals_2885956345
crossref_citationtrail_10_1007_s12239_023_0122_6
crossref_primary_10_1007_s12239_023_0122_6
springer_journals_10_1007_s12239_023_0122_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
2023-12
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Dordrecht
PublicationTitle International journal of automotive technology
PublicationTitleAbbrev Int.J Automot. Technol
PublicationYear 2023
Publisher The Korean Society of Automotive Engineers
Springer Nature B.V
한국자동차공학회
Publisher_xml – name: The Korean Society of Automotive Engineers
– name: Springer Nature B.V
– name: 한국자동차공학회
References Chiasson, J. and Vairamohan, B. (2003). Estimating the state of charge of a battery. American Control Conf. (ACC), Denver, Colorado, USA.
Zhao, R., Kollmeyer, P. J., Lorenz, R. D. and Jahns, T. M. (2017). A compact unified methodology via a recurrent neural network for accurate modeling of lithium-ion battery voltage and state-of-charge. IEEE Energy Conversion Cong. Exposition (ECCE), Cincinnati, Ohio, USA.
JiaoMWangDQiuJA GRU-RNN based momentum optimized algorithm for SOC estimationJ. Power Sources202045922805110.1016/j.jpowsour.2020.228051
ChenZChenDZhangXYuanZChengXLearning graph structures with transformer for multivariate time-series anomaly detection in IoTIEEE Internet of Things J.20219129179918910.1109/JIOT.2021.3100509
Cordonnier, J. B., Loukas, A. and Jaggi, M. (2020). Multi-head attention: Collaborate instead of concatenate. arXiv: 2006. 16362.
LeCunYBoserBDenkerJ SHendersonDHowardR EHubbardWJackelL DBackpropagation applied to handwritten zip code recognitionNeural Computation19891454155110.1162/neco.1989.1.4.541
Kovalenko, A., Pozdnyakov, V. and Makarov, I. (2022). Graph neural networks with trainable adjacency matrices for fault diagnosis on multivariate sensor data. arXiv: 2210. 11164.
KarimFMajumdarSDarabiHChenSLSTM fully convolutional networks for time series classificationIEEE Access201761662166910.1109/ACCESS.2017.2779939
LazcanoAHerreraP JMongeMA combined model based on recurrent neural networks and graph convolutional networks for financial time series forecastingMathematics202311122410.3390/math11010224
Huang, S., Wang, D., Wu, X. and Tang, A. (2019). Dsanet: Dual self-attention network for multivariate time series forecasting. Proc. 28th ACM Int. Conf. Information and Knowledge Management (CIKM), Beijing, China.
TranM KPanchalSChauhanVBrahmbhattNMevawallaAFraserRFowlerMPython-based scikit-learn machine learning models for thermal and electrical performance prediction of high-capacity lithium-ion batteryInt. J. Energy Research202246278679410.1002/er.7202
Chen, W., Tian, L., Chen, B., Dai, L., Duan, Z. and Zhou, M. (2022). Deep variational graph convolutional recurrent network for multivariate time series anomaly detection. 39th Int. Conf. Machine Learning (ICML), Baltimore, Maryland, USA.
NiQCaoXTanCPengWKangXAn improved graph convolutional network with feature and temporal attention for multivariate water quality predictionEnvironmental Science and Pollution Research2023305115161152910.1007/s11356-022-22719-0
CuiZWangLLiQWangKA comprehensive review on the state of charge estimation for lithium-ion battery based on neural networkInt. J. Energy Research20224655423544010.1002/er.7545
YoungKWangCWangL YStrunzKElectric vehicle battery technologiesElectric Vehicle Integration into Modern Power Networks2012New York, NY, USASpringer.1556
LiuYShuXYuHShenJZhangYLiuYChenZState of charge prediction framework for lithium-ion batteries incorporating long short-term memory network and transfer learningJ. Energy Storage20213710249410.1016/j.est.2021.102494
JerouschekDTanÖKennelRTaskiranAData preparation and training methodology for modeling lithium-ion batteries using a long short-term memory neural network for mild-hybrid vehicle applicationsApplied Sciences20201021788010.3390/app10217880
Agafonov, A. (2020). Traffic flow prediction using graph convolution neural networks. 10th Int. Conf. Information Science and Technology (ICIST), Kopaonik, Serbia.
BehnkeSHierarchical Neural Networks for Image Interpretation2003Berlin, GermanySpringer-Verlag.10.1007/b119631041.68076
Capizzi, G., Bonanno, F. and Napoli, C. (2011). Hybrid neural networks architectures for SOC and voltage prediction of new generation batteries storage. Int. Conf. Clean Electrical Power (ICCEP), Ischia, Italy.
ZhouWZhengYPanZLuQReview on the battery model and SOC estimation methodProcesses202199168510.3390/pr9091685
Fan, C., Zhang, Y., Pan, Y., Li, X., Zhang, C., Yuan, R., Wu, D., Wang, W., Pei, J. and Huang, H. (2019). Multi-horizon time series forecasting with temporal attention learning. Proc. 25th ACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining, Anchorage, Alaska, USA.
Defferrard, M., Bresson, X. and Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. 29th Advances in Neural Information Processing Systems (NIPS), Barcelona, Spain.
HoS LXieMThe use of ARIMA models for reliability forecasting and analysisComputers & Industrial Engineering1998351–221321610.1016/S0360-8352(98)00066-7
NiuZZhongGYuHA review on the attention mechanism of deep learningNeurocomputing2021452486210.1016/j.neucom.2021.03.091
ShihS YSunF KLeeH YTemporal pattern attention for multivariate time series forecastingMachine Learning2019108814211441398813410.1007/s10994-019-05815-01493.62534
XuZKangYCaoYLiZSpatiotemporal graph convolution multifusion network for urban vehicle emission predictionIEEE Transactions on Neural Networks and Learning Systems20203283342335410.1109/TNNLS.2020.3008702
ZhaoFLiYWangXBaiLLiuTLithium-ion batteries state of charge prediction of electric vehicles using RNNs-CNNs neural networksIEEE Access20208981689818010.1109/ACCESS.2020.2996225
HongJWangZChenWWangL YQuCOnline joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehiclesJ. Energy Storage20203010145910.1016/j.est.2020.101459
Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv: 1609. 02907.
Cho, K., van Merriënboer, B., Gůlçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H. and Bengio, Y. (2014). Learning phrase representations using RNN encoderdecoder for statistical machine translation. Proc. Conf. Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar.
Bahdanau, D., Cho, K. H. and Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. 3rd Int. Conf. Learning Representations (ICLR), San Diego, California, USA.
HammondD KVandergheynstPGribonvalRWavelets on graphs via spectral graph theoryApplied and Computational Harmonic Analysis2011302129150275477210.1016/j.acha.2010.04.0051213.42091
DuSLiTYangYHorngS JMultivariate time series forecasting via attention-based encoder–decoder frameworkNeurocomputing202038826927910.1016/j.neucom.2019.12.118
Bruna, J., Zaremba, W., Szlam, A. and LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv: 1312. 6203.
Song, H., Rajan, D., Thiagarajan, J. and Spanias, A. (2018). Attend and diagnose: Clinical time series analysis using attention models. 32nd Proc. AAAI Conf. Artificial Intelligence (AAAI), New Orleans, Lousiana, USA.
VargaB OSagoianAMariasiuFPrediction of electric vehicle range: A comprehensive review of current issues and challengesEnergies201912594610.3390/en12050946
ShiQ SZhangC HCuiN XEstimation of battery state-of-charge using v-support vector regression algorithmInt. J. Automotive Technology20089675976410.1007/s12239-008-0090-x
LiWWangXZhangYWuQTraffic flow prediction over muti-sensor data correlation with graph convolution networkNeurocomputing2021427506310.1016/j.neucom.2020.11.032
PolisM PYinG GChenWFuYMiC CBattery cell identification and SOC estimation using string terminal voltage measurementsIEEE Trans. Vehicular Technology20126172925293510.1109/TVT.2012.2203160
HochreiterSSchmidhuberJLong short-term memoryNeural Computation1997981735178010.1162/neco.1997.9.8.1735
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. and Polosukhin, I. (2017). Attention is all you need. 30th Advances in Neural Information Processing Systems (NIPS), Long Beach, California, USA.
M K Tran (122_CR35) 2022; 46
Z Cui (122_CR11) 2022; 46
122_CR24
122_CR23
122_CR1
122_CR2
122_CR4
122_CR41
122_CR5
122_CR6
Y LeCun (122_CR26) 1989; 1
122_CR8
122_CR9
S Du (122_CR13) 2020; 388
S L Ho (122_CR16) 1998; 35
Q S Shi (122_CR32) 2008; 9
Y Liu (122_CR28) 2021; 37
Q Ni (122_CR29) 2023; 30
B O Varga (122_CR36) 2019; 12
J Hong (122_CR18) 2020; 30
122_CR19
Z Niu (122_CR30) 2021; 452
W Zhou (122_CR42) 2021; 9
122_CR37
122_CR14
D Jerouschek (122_CR20) 2020; 10
M Jiao (122_CR21) 2020; 459
122_CR10
S Y Shih (122_CR33) 2019; 108
122_CR12
122_CR34
F Zhao (122_CR40) 2020; 8
Z Chen (122_CR7) 2021; 9
M P Polis (122_CR31) 2012; 61
A Lazcano (122_CR25) 2023; 11
F Karim (122_CR22) 2017; 6
S Behnke (122_CR3) 2003
Z Xu (122_CR38) 2020; 32
W Li (122_CR27) 2021; 427
D K Hammond (122_CR15) 2011; 30
K Young (122_CR39) 2012
S Hochreiter (122_CR17) 1997; 9
References_xml – reference: ShiQ SZhangC HCuiN XEstimation of battery state-of-charge using v-support vector regression algorithmInt. J. Automotive Technology20089675976410.1007/s12239-008-0090-x
– reference: DuSLiTYangYHorngS JMultivariate time series forecasting via attention-based encoder–decoder frameworkNeurocomputing202038826927910.1016/j.neucom.2019.12.118
– reference: TranM KPanchalSChauhanVBrahmbhattNMevawallaAFraserRFowlerMPython-based scikit-learn machine learning models for thermal and electrical performance prediction of high-capacity lithium-ion batteryInt. J. Energy Research202246278679410.1002/er.7202
– reference: ZhouWZhengYPanZLuQReview on the battery model and SOC estimation methodProcesses202199168510.3390/pr9091685
– reference: KarimFMajumdarSDarabiHChenSLSTM fully convolutional networks for time series classificationIEEE Access201761662166910.1109/ACCESS.2017.2779939
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Computation1997981735178010.1162/neco.1997.9.8.1735
– reference: VargaB OSagoianAMariasiuFPrediction of electric vehicle range: A comprehensive review of current issues and challengesEnergies201912594610.3390/en12050946
– reference: Chen, W., Tian, L., Chen, B., Dai, L., Duan, Z. and Zhou, M. (2022). Deep variational graph convolutional recurrent network for multivariate time series anomaly detection. 39th Int. Conf. Machine Learning (ICML), Baltimore, Maryland, USA.
– reference: YoungKWangCWangL YStrunzKElectric vehicle battery technologiesElectric Vehicle Integration into Modern Power Networks2012New York, NY, USASpringer.1556
– reference: LiuYShuXYuHShenJZhangYLiuYChenZState of charge prediction framework for lithium-ion batteries incorporating long short-term memory network and transfer learningJ. Energy Storage20213710249410.1016/j.est.2021.102494
– reference: ShihS YSunF KLeeH YTemporal pattern attention for multivariate time series forecastingMachine Learning2019108814211441398813410.1007/s10994-019-05815-01493.62534
– reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. and Polosukhin, I. (2017). Attention is all you need. 30th Advances in Neural Information Processing Systems (NIPS), Long Beach, California, USA.
– reference: Cho, K., van Merriënboer, B., Gůlçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H. and Bengio, Y. (2014). Learning phrase representations using RNN encoderdecoder for statistical machine translation. Proc. Conf. Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar.
– reference: Kovalenko, A., Pozdnyakov, V. and Makarov, I. (2022). Graph neural networks with trainable adjacency matrices for fault diagnosis on multivariate sensor data. arXiv: 2210. 11164.
– reference: JiaoMWangDQiuJA GRU-RNN based momentum optimized algorithm for SOC estimationJ. Power Sources202045922805110.1016/j.jpowsour.2020.228051
– reference: Zhao, R., Kollmeyer, P. J., Lorenz, R. D. and Jahns, T. M. (2017). A compact unified methodology via a recurrent neural network for accurate modeling of lithium-ion battery voltage and state-of-charge. IEEE Energy Conversion Cong. Exposition (ECCE), Cincinnati, Ohio, USA.
– reference: Cordonnier, J. B., Loukas, A. and Jaggi, M. (2020). Multi-head attention: Collaborate instead of concatenate. arXiv: 2006. 16362.
– reference: BehnkeSHierarchical Neural Networks for Image Interpretation2003Berlin, GermanySpringer-Verlag.10.1007/b119631041.68076
– reference: NiQCaoXTanCPengWKangXAn improved graph convolutional network with feature and temporal attention for multivariate water quality predictionEnvironmental Science and Pollution Research2023305115161152910.1007/s11356-022-22719-0
– reference: XuZKangYCaoYLiZSpatiotemporal graph convolution multifusion network for urban vehicle emission predictionIEEE Transactions on Neural Networks and Learning Systems20203283342335410.1109/TNNLS.2020.3008702
– reference: Bruna, J., Zaremba, W., Szlam, A. and LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv: 1312. 6203.
– reference: CuiZWangLLiQWangKA comprehensive review on the state of charge estimation for lithium-ion battery based on neural networkInt. J. Energy Research20224655423544010.1002/er.7545
– reference: HongJWangZChenWWangL YQuCOnline joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehiclesJ. Energy Storage20203010145910.1016/j.est.2020.101459
– reference: LeCunYBoserBDenkerJ SHendersonDHowardR EHubbardWJackelL DBackpropagation applied to handwritten zip code recognitionNeural Computation19891454155110.1162/neco.1989.1.4.541
– reference: Chiasson, J. and Vairamohan, B. (2003). Estimating the state of charge of a battery. American Control Conf. (ACC), Denver, Colorado, USA.
– reference: HammondD KVandergheynstPGribonvalRWavelets on graphs via spectral graph theoryApplied and Computational Harmonic Analysis2011302129150275477210.1016/j.acha.2010.04.0051213.42091
– reference: Fan, C., Zhang, Y., Pan, Y., Li, X., Zhang, C., Yuan, R., Wu, D., Wang, W., Pei, J. and Huang, H. (2019). Multi-horizon time series forecasting with temporal attention learning. Proc. 25th ACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining, Anchorage, Alaska, USA.
– reference: Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv: 1609. 02907.
– reference: JerouschekDTanÖKennelRTaskiranAData preparation and training methodology for modeling lithium-ion batteries using a long short-term memory neural network for mild-hybrid vehicle applicationsApplied Sciences20201021788010.3390/app10217880
– reference: ChenZChenDZhangXYuanZChengXLearning graph structures with transformer for multivariate time-series anomaly detection in IoTIEEE Internet of Things J.20219129179918910.1109/JIOT.2021.3100509
– reference: Bahdanau, D., Cho, K. H. and Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. 3rd Int. Conf. Learning Representations (ICLR), San Diego, California, USA.
– reference: ZhaoFLiYWangXBaiLLiuTLithium-ion batteries state of charge prediction of electric vehicles using RNNs-CNNs neural networksIEEE Access20208981689818010.1109/ACCESS.2020.2996225
– reference: Agafonov, A. (2020). Traffic flow prediction using graph convolution neural networks. 10th Int. Conf. Information Science and Technology (ICIST), Kopaonik, Serbia.
– reference: NiuZZhongGYuHA review on the attention mechanism of deep learningNeurocomputing2021452486210.1016/j.neucom.2021.03.091
– reference: PolisM PYinG GChenWFuYMiC CBattery cell identification and SOC estimation using string terminal voltage measurementsIEEE Trans. Vehicular Technology20126172925293510.1109/TVT.2012.2203160
– reference: Defferrard, M., Bresson, X. and Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. 29th Advances in Neural Information Processing Systems (NIPS), Barcelona, Spain.
– reference: HoS LXieMThe use of ARIMA models for reliability forecasting and analysisComputers & Industrial Engineering1998351–221321610.1016/S0360-8352(98)00066-7
– reference: Huang, S., Wang, D., Wu, X. and Tang, A. (2019). Dsanet: Dual self-attention network for multivariate time series forecasting. Proc. 28th ACM Int. Conf. Information and Knowledge Management (CIKM), Beijing, China.
– reference: Song, H., Rajan, D., Thiagarajan, J. and Spanias, A. (2018). Attend and diagnose: Clinical time series analysis using attention models. 32nd Proc. AAAI Conf. Artificial Intelligence (AAAI), New Orleans, Lousiana, USA.
– reference: Capizzi, G., Bonanno, F. and Napoli, C. (2011). Hybrid neural networks architectures for SOC and voltage prediction of new generation batteries storage. Int. Conf. Clean Electrical Power (ICCEP), Ischia, Italy.
– reference: LazcanoAHerreraP JMongeMA combined model based on recurrent neural networks and graph convolutional networks for financial time series forecastingMathematics202311122410.3390/math11010224
– reference: LiWWangXZhangYWuQTraffic flow prediction over muti-sensor data correlation with graph convolution networkNeurocomputing2021427506310.1016/j.neucom.2020.11.032
– ident: 122_CR12
– ident: 122_CR37
– ident: 122_CR1
  doi: 10.1109/ICIST49303.2020.9201971
– volume: 37
  start-page: 102494
  year: 2021
  ident: 122_CR28
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102494
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 122_CR26
  publication-title: Neural Computation
  doi: 10.1162/neco.1989.1.4.541
– volume: 9
  start-page: 9179
  issue: 12
  year: 2021
  ident: 122_CR7
  publication-title: IEEE Internet of Things J.
  doi: 10.1109/JIOT.2021.3100509
– ident: 122_CR14
  doi: 10.1145/3292500.3330662
– volume: 32
  start-page: 3342
  issue: 8
  year: 2020
  ident: 122_CR38
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3008702
– volume: 459
  start-page: 228051
  year: 2020
  ident: 122_CR21
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228051
– ident: 122_CR6
– ident: 122_CR4
– ident: 122_CR24
– ident: 122_CR19
  doi: 10.1145/3357384.3358132
– volume: 46
  start-page: 5423
  issue: 5
  year: 2022
  ident: 122_CR11
  publication-title: Int. J. Energy Research
  doi: 10.1002/er.7545
– volume: 108
  start-page: 1421
  issue: 8
  year: 2019
  ident: 122_CR33
  publication-title: Machine Learning
  doi: 10.1007/s10994-019-05815-0
– volume: 11
  start-page: 224
  issue: 1
  year: 2023
  ident: 122_CR25
  publication-title: Mathematics
  doi: 10.3390/math11010224
– ident: 122_CR10
– ident: 122_CR34
  doi: 10.1609/aaai.v32i1.11635
– ident: 122_CR9
  doi: 10.3115/v1/D14-1179
– ident: 122_CR5
  doi: 10.1109/ICCEP.2011.6036301
– volume: 9
  start-page: 1685
  issue: 9
  year: 2021
  ident: 122_CR42
  publication-title: Processes
  doi: 10.3390/pr9091685
– volume: 35
  start-page: 213
  issue: 1–2
  year: 1998
  ident: 122_CR16
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/S0360-8352(98)00066-7
– volume: 9
  start-page: 759
  issue: 6
  year: 2008
  ident: 122_CR32
  publication-title: Int. J. Automotive Technology
  doi: 10.1007/s12239-008-0090-x
– ident: 122_CR41
  doi: 10.1109/ECCE.2017.8096879
– volume-title: Hierarchical Neural Networks for Image Interpretation
  year: 2003
  ident: 122_CR3
  doi: 10.1007/b11963
– ident: 122_CR2
– volume: 388
  start-page: 269
  year: 2020
  ident: 122_CR13
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.118
– volume: 61
  start-page: 2925
  issue: 7
  year: 2012
  ident: 122_CR31
  publication-title: IEEE Trans. Vehicular Technology
  doi: 10.1109/TVT.2012.2203160
– ident: 122_CR8
  doi: 10.1109/ACC.2003.1243757
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 122_CR17
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 46
  start-page: 786
  issue: 2
  year: 2022
  ident: 122_CR35
  publication-title: Int. J. Energy Research
  doi: 10.1002/er.7202
– volume: 30
  start-page: 129
  issue: 2
  year: 2011
  ident: 122_CR15
  publication-title: Applied and Computational Harmonic Analysis
  doi: 10.1016/j.acha.2010.04.005
– volume: 8
  start-page: 98168
  year: 2020
  ident: 122_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2996225
– volume: 10
  start-page: 7880
  issue: 21
  year: 2020
  ident: 122_CR20
  publication-title: Applied Sciences
  doi: 10.3390/app10217880
– volume: 6
  start-page: 1662
  year: 2017
  ident: 122_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2779939
– ident: 122_CR23
– volume: 30
  start-page: 11516
  issue: 5
  year: 2023
  ident: 122_CR29
  publication-title: Environmental Science and Pollution Research
  doi: 10.1007/s11356-022-22719-0
– volume: 427
  start-page: 50
  year: 2021
  ident: 122_CR27
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.11.032
– volume: 12
  start-page: 946
  issue: 5
  year: 2019
  ident: 122_CR36
  publication-title: Energies
  doi: 10.3390/en12050946
– volume: 30
  start-page: 101459
  year: 2020
  ident: 122_CR18
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101459
– start-page: 15
  volume-title: Electric Vehicle Integration into Modern Power Networks
  year: 2012
  ident: 122_CR39
– volume: 452
  start-page: 48
  year: 2021
  ident: 122_CR30
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
SSID ssj0056130
Score 2.3409321
Snippet The state of charge (SoC) of a vehicle battery can tend to vary depending on the driver’s driving patterns and circumstances. To accurately predict the SoC...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1519
SubjectTerms Artificial neural networks
Automobile industry
Automotive Engineering
Electric charge
Electric vehicles
Engineering
Nodes
Recurrent neural networks
State of charge
Statistical models
자동차공학
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-LnoQn7i-COhJCW7bJE1PIovrKigeVPYWNmmii9Lq7ir4751JW1cFPbWl0wZmpplvMuk3hBwA6ASQbCQzqbCMe5-wAXeQrGTSCpP6yIX1jqtr2bvjl33RrxfcxvW2ymZODBN1XlpcIz-OFTJxyYSLk5dXhl2jsLpat9CYJfMRRBr0c9U9b2bigI0x4YrjDCvMqqlqhl_nIC5mDCIWw-ISkz_i0mwx8j8g568qaQg-3WWyVKNGelqZeYXMuGKVLH7jElwj_bPQ0GZo6b17RClaUWd-0IAnaekpltYfHL0ZYXEGDQIiY5dTODlH3mraKYv32hVhtOtqh_g6ueue3XZ6rG6bwGwiognzjqs2TMFiYL0bZDyOZGqVgVgc50pZIzyAMkhEMg_ZoQH4pLy0qeImB2wj0zTZIHNFWbhNQtMsFsoLm5j2gCdtlFTGCR7Blc8tb5F2ozRta05xbG3xrKdsyKhnDXrWqGctW-Tw65GXilDjP-F9sIR-skONNNh4fCj100gD2L_QgQsQonCL7DSW0vUXONZTf2mRo8Z609t_Drn1_8u2yQI2nK82tOyQucnoze0CLJmYveB7nwLL2og
  priority: 102
  providerName: ProQuest
Title Electric Vehicle Battery State of Charge Prediction Based on Graph Convolutional Network
URI https://link.springer.com/article/10.1007/s12239-023-0122-6
https://www.proquest.com/docview/2885956345
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003018793
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Journal of Automotive Technology, 2023, 24(6), 136, pp.1519-1530
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7RcoEDLAuIAosssadFRk1iO86xoLYsiAqtKConq3btgopS1BYk-PWM86CAYCVOzmMSJ7bj-SYz_gbgN4JOBMlaUB1zQ5lzEe0zi8ZKIgzXsQts9r_jvCNOuuy0x3vFOu5pGe1euiSzmXq-2A01WUJRx1DvDqKiAos8kImswmKjfX3WLCfgDBJ7OysME-9YlqUz87ObvFNHlXTi3iHND87RTOe0VuGyfNo81GR0-DDTh-b5A5HjN1_nB6wUGJQ08kGzBgs2_QnLb5gJ16HXzNLj3BpyZW-8FMmJOJ9Ihk7J2BHvqB9acjHxrh7fvSgytQOCG23Pgk2Ox-ljMbCxtk4eb74B3Vbz8viEFkkYqIl4MKPOMlnHCZ33jbP9hIWBiI3UqNnDgZRGc4cQD82axKGtqRGMSSdMLJkeIFIScRxtQjUdp3YLSJyEXDpuIl3vs6juJaW2nAW45waG1aBe9oUyBUO5T5Rxp-bcyr7RFDaa8o2mRA3-vF5yn9Nz_E94HztYjcyt8qTavhyO1Wii0HT4qzJmQdTpNdgtB4AqvuepCqXngRMR4zU4KPtzfvrLKre_Jb0DSz6bfR4tswvV2eTB_kLMM9N7UJGt9l4x0rE8anYu_uHRbth4AW5A9xQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB612wNwQC0PsdCHJeACsthNbMc5VKiPLbu0XVWoRXsza8cuVVFSdpei_il-IzN5dFskeuspieLY0szE843H_gbgDYJOBMlWcZtIx0UIMR8Lj8FKqpy0Sej6cr3jcKj6J-LzSI4W4E9zFoa2VTZzYjlRZ4WjNfIPkSYmLhUL-fHiJ6eqUZRdbUpoVGax769-Y8g23Rzson7fRtFe73inz-uqAtzFsjvjwQvdwRlKjl3w41REXZU4bdFVRZnWzsqAmAVxehoweLKILnRQLtHCZuj6VZLE2O8iLAk60dqCpe3e8OhLM_eXaJxCvChKKaetmzxqeVgPPXHK0UdySmdxdcsTLuaTcAvk_pOXLd3d3jI8rnEq26oMawUWfP4EHt1gL3wKo15ZQufMsa_-O7ViFVnnFSsRLCsCo2T-qWdHE0oHkQlgk6nPGN58IqZstlPkl7Xx42jDak_6Mzi5F5E-h1Ze5P4FsCSNpA7SxbYzFnGHWmrrpejiU8icaEOnEZpxNYs5FdP4Yeb8yyRng3I2JGej2vDu-pOLisLjrsavURPm3J0ZIt6m62lhzicGw4uBKdkH0e-3YbXRlKn_-amZW2gb3jfam7_-75Av7-5sAx70jw8PzMFguP8KHlK5-2o7zSq0ZpNffg1B0cyu15bI4Nt9G_9fUE8Xtg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tnYTgAfFTlA2wBLyArLWOnTgPCMHWsjKoKsRQ37zasce0KRltAe1f46_jzkkoQ2Jve0qiOLF0Pvu-852_A3iGoBNBsk25zZTjMoSEz6RHZyVPnbJZ6Pu43_FxnO4dyPdTNV2DX-1ZGEqrbNfEuFAXlaM98m2hiYkrTaTaDk1axGR3-PrsG6cKUhRpbctp1Cqy789_ovu2eDXaxbF-LsRw8HlnjzcVBrhLVH_Jg5e6h6uVmrngZ7kU_TRz2qLZEoXWzqqA-AUxex7QkbKINHRIXaalLRAGpFmW4H_XYSNDqyg7sPF2MJ58au1ARObk7gmRU3xbtzHVeHAPrXLO0V5yCm3x9IJVXC_n4QLg_SdGG03f8BbcbDAre1Mr2W1Y8-UduPEXk-FdmA5iOZ1jx774r9SK1cSd5yyiWVYFRoH9I88mcwoNkTpgk4UvGN68I9ZstlOVP5qJgL2N6_z0e3BwJSK9D52yKv0DYFkulA7KJbY3k0mPWmrrlezjUyic7EKvFZpxDaM5FdY4NSsuZpKzQTkbkrNJu_DizydnNZ3HZY2f4kiYE3dsiISbrkeVOZkbdDVGJjIRIgbowlY7UqaZ_wuz0tYuvGxHb_X6v10-vPxnT-AaKr35MBrvb8J1QfoTM2u2oLOcf_ePEB8t7eNGERkcXrXu_wZwrxvi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electric+Vehicle+Battery+State+of+Charge+Prediction+Based+on+Graph+Convolutional+Network&rft.jtitle=International+journal+of+automotive+technology&rft.au=Kim%2C+Geunsu&rft.au=Kang%2C+Soohyeok&rft.au=Park%2C+Gyudo&rft.au=Min%2C+Byung-Cheol&rft.date=2023-12-01&rft.pub=The+Korean+Society+of+Automotive+Engineers&rft.issn=1229-9138&rft.eissn=1976-3832&rft.volume=24&rft.issue=6&rft.spage=1519&rft.epage=1530&rft_id=info:doi/10.1007%2Fs12239-023-0122-6&rft.externalDocID=10_1007_s12239_023_0122_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-9138&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-9138&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-9138&client=summon