Electric Vehicle Battery State of Charge Prediction Based on Graph Convolutional Network
The state of charge (SoC) of a vehicle battery can tend to vary depending on the driver’s driving patterns and circumstances. To accurately predict the SoC level, it is necessary to consider various circumstances. That is why traditional statistical models may not be sufficient. To address this issu...
Saved in:
Published in | International journal of automotive technology Vol. 24; no. 6; pp. 1519 - 1530 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Society of Automotive Engineers
01.12.2023
Springer Nature B.V 한국자동차공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1229-9138 1976-3832 |
DOI | 10.1007/s12239-023-0122-6 |
Cover
Abstract | The state of charge (SoC) of a vehicle battery can tend to vary depending on the driver’s driving patterns and circumstances. To accurately predict the SoC level, it is necessary to consider various circumstances. That is why traditional statistical models may not be sufficient. To address this issue, recurrent neural network (RNN) models have been proposed for time series prediction tasks due to their superior performance. In this paper, we propose a new approach using a graph convolutional network (GCN)-based model that shows better performance than RNN-based models. The GCN requires an adjacency matrix as input, which represents the relationships between variables. We set this matrix to be learnable during model training rather than predefined. We also use two different adjacency matrices: one with variables as nodes, and the other with timestamps as nodes, to enhance the interpretability of the data by considering different elements as nodes. This allows the model to interpret the data from different perspectives. The proposed GCN model was tested using real-world electric vehicle (EV) data and demonstrated improved performance compared to RNN-based baselines. In addition, the GCN model has advantage of being able to clearly express the relationships between variables in a graph, improving interpretabilty. |
---|---|
AbstractList | The state of charge (SoC) of a vehicle battery can tend to vary depending on the driver’s driving patterns and circumstances. To accurately predict the SoC level, it is necessary to consider various circumstances. That is why traditional statistical models may not be sufficient. To address this issue, recurrent neural network (RNN) models have been proposed for time series prediction tasks due to their superior performance. In this paper, we propose a new approach using a graph convolutional network (GCN)-based model that shows better performance than RNN-based models. The GCN requires an adjacency matrix as input, which represents the relationships between variables. We set this matrix to be learnable during model training rather than predefined. We also use two different adjacency matrices: one with variables as nodes, and the other with timestamps as nodes, to enhance the interpretability of the data by considering different elements as nodes. This allows the model to interpret the data from different perspectives. The proposed GCN model was tested using real-world electric vehicle (EV) data and demonstrated improved performance compared to RNN-based baselines. In addition, the GCN model has advantage of being able to clearly express the relationships between variables in a graph, improving interpretabilty. The state of charge (SoC) of a vehicle battery can tend to vary depending on the driver’s driving patterns and circumstances. To accurately predict the SoC level, it is necessary to consider various circumstances. That is why traditional statistical models may not be sufficient. To address this issue, recurrent neural network (RNN) models have been proposed for time series prediction tasks due to their superior performance. In this paper, we propose a new approach using a graph convolutional network (GCN)-based model that shows better performance than RNN-based models. The GCN requires an adjacency matrix as input, which represents the relationships between variables. We set this matrix to be learnable during model training rather than predefined. We also use two different adjacency matrices: one with variables as nodes, and the other with timestamps as nodes, to enhance the interpretability of the data by considering different elements as nodes. This allows the model to interpret the data from different perspectives. The proposed GCN model was tested using real-world electric vehicle (EV) data and demonstrated improved performance compared to RNN-based baselines. In addition, the GCN model has advantage of being able to clearly express the relationships between variables in a graph, improving interpretabilty. KCI Citation Count: 0 |
Author | Kim, Geunsu Park, Gyudo Kang, Soohyeok Min, Byung-Cheol |
Author_xml | – sequence: 1 givenname: Geunsu surname: Kim fullname: Kim, Geunsu organization: Hyundai Kefico Corp, Hyundai Motor Group, AI Machine Research Lab – sequence: 2 givenname: Soohyeok surname: Kang fullname: Kang, Soohyeok organization: Hyundai Kefico Corp, Hyundai Motor Group, AI Machine Research Lab – sequence: 3 givenname: Gyudo surname: Park fullname: Park, Gyudo organization: Hyundai Kefico Corp, Hyundai Motor Group, AI Machine Research Lab – sequence: 4 givenname: Byung-Cheol surname: Min fullname: Min, Byung-Cheol email: minb@purdue.edu organization: SMART Lab, Department of Computer and Information Technology, Purdue University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003018793$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kEtrGzEURkVwoHn0B3QnyC4wqR4jjWbpmLzApCVJS3dCI1_ZiqcjV5JT_O8rZwKBQru6H-h8l6tzjCZDGAChT5RcUEKaz4kyxtuKMF6REit5gI5o28iKK84mJTPWVi3l6gM6TumZECEpJ0fox1UPNkdv8XdYedsDvjQ5Q9zhx2wy4ODwbGXiEvDXCAtvsw9DQRIscAk30WxWeBaGl9Bv90-mx_eQf4e4PkWHzvQJPr7NE_Tt-uppdlvNv9zczabzynJBc-WgVgQ6Kox1YNqaUdlY1bGasYVSthNOEEWbunWKiU5Sopy0jaq7haBCNg0_Qefj3iE6vbZeB-Nf5zLoddTTh6c7TQlnite0wGcjvInh1xZS1s9hG8vVSTOlRCskr0WhmpGyMaQUwWnri4zyvRyN78s6vXeuR-e6ONd751qWJv2ruYn-p4m7_3bY2EmFHZYQ32_6d-kPv66Tng |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3481331 crossref_primary_10_1007_s12239_024_00148_x crossref_primary_10_1016_j_est_2025_115482 crossref_primary_10_1016_j_jpowsour_2024_235374 crossref_primary_10_3390_wevj16020057 |
Cites_doi | 10.1109/ICIST49303.2020.9201971 10.1016/j.est.2021.102494 10.1162/neco.1989.1.4.541 10.1109/JIOT.2021.3100509 10.1145/3292500.3330662 10.1109/TNNLS.2020.3008702 10.1016/j.jpowsour.2020.228051 10.1145/3357384.3358132 10.1002/er.7545 10.1007/s10994-019-05815-0 10.3390/math11010224 10.1609/aaai.v32i1.11635 10.3115/v1/D14-1179 10.1109/ICCEP.2011.6036301 10.3390/pr9091685 10.1016/S0360-8352(98)00066-7 10.1007/s12239-008-0090-x 10.1109/ECCE.2017.8096879 10.1007/b11963 10.1016/j.neucom.2019.12.118 10.1109/TVT.2012.2203160 10.1109/ACC.2003.1243757 10.1162/neco.1997.9.8.1735 10.1002/er.7202 10.1016/j.acha.2010.04.005 10.1109/ACCESS.2020.2996225 10.3390/app10217880 10.1109/ACCESS.2017.2779939 10.1007/s11356-022-22719-0 10.1016/j.neucom.2020.11.032 10.3390/en12050946 10.1016/j.est.2020.101459 10.1016/j.neucom.2021.03.091 |
ContentType | Journal Article |
Copyright | KSAE 2023 KSAE 2023. |
Copyright_xml | – notice: KSAE 2023 – notice: KSAE 2023. |
DBID | AAYXX CITATION 3V. 7TB 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU D1I DWQXO FR3 FRNLG F~G GNUQQ HCIFZ K60 K6~ KB. L.- M0C M2P PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U ACYCR |
DOI | 10.1007/s12239-023-0122-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Materials Science Database ABI/INFORM Professional Advanced ABI/INFORM Global Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Korean Citation Index |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea Materials Science Database ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1976-3832 |
EndPage | 1530 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10328341 10_1007_s12239_023_0122_6 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .UV .VR 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 6NX 7WY 88I 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP CZ9 D1I DBRKI DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GW5 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ I-F IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ K60 K6~ KB. KC. KOV KVFHK LLZTM M0C M2P M4Y MA- MK~ ML~ MZR NPVJJ NQJWS NU0 O9- O9J P9P PDBOC PF0 PQBIZ PQBZA PQQKQ PROAC PT4 Q2X QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TDB TR2 TSG TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z7Z Z83 Z88 ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT 7TB 7XB 8FD 8FK ABRTQ FR3 L.- PKEHL PQEST PQGLB PQUKI Q9U AAFGU ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC UNUBA |
ID | FETCH-LOGICAL-c351t-fe480eb15acfea942167c8b2422d88cb5f5081749f825b6108f6c784bd5156773 |
IEDL.DBID | AGYKE |
ISSN | 1229-9138 |
IngestDate | Tue Jun 25 21:13:11 EDT 2024 Fri Jul 25 19:02:37 EDT 2025 Tue Jul 01 02:44:16 EDT 2025 Thu Apr 24 22:58:46 EDT 2025 Fri Feb 21 02:43:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Electric vehicle (EV) Graph convolutional network Time series prediction Neural network State of charge (SoC) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c351t-fe480eb15acfea942167c8b2422d88cb5f5081749f825b6108f6c784bd5156773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2885956345 |
PQPubID | 54404 |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10328341 proquest_journals_2885956345 crossref_citationtrail_10_1007_s12239_023_0122_6 crossref_primary_10_1007_s12239_023_0122_6 springer_journals_10_1007_s12239_023_0122_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231200 2023-12-00 20231201 2023-12 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Dordrecht |
PublicationTitle | International journal of automotive technology |
PublicationTitleAbbrev | Int.J Automot. Technol |
PublicationYear | 2023 |
Publisher | The Korean Society of Automotive Engineers Springer Nature B.V 한국자동차공학회 |
Publisher_xml | – name: The Korean Society of Automotive Engineers – name: Springer Nature B.V – name: 한국자동차공학회 |
References | Chiasson, J. and Vairamohan, B. (2003). Estimating the state of charge of a battery. American Control Conf. (ACC), Denver, Colorado, USA. Zhao, R., Kollmeyer, P. J., Lorenz, R. D. and Jahns, T. M. (2017). A compact unified methodology via a recurrent neural network for accurate modeling of lithium-ion battery voltage and state-of-charge. IEEE Energy Conversion Cong. Exposition (ECCE), Cincinnati, Ohio, USA. JiaoMWangDQiuJA GRU-RNN based momentum optimized algorithm for SOC estimationJ. Power Sources202045922805110.1016/j.jpowsour.2020.228051 ChenZChenDZhangXYuanZChengXLearning graph structures with transformer for multivariate time-series anomaly detection in IoTIEEE Internet of Things J.20219129179918910.1109/JIOT.2021.3100509 Cordonnier, J. B., Loukas, A. and Jaggi, M. (2020). Multi-head attention: Collaborate instead of concatenate. arXiv: 2006. 16362. LeCunYBoserBDenkerJ SHendersonDHowardR EHubbardWJackelL DBackpropagation applied to handwritten zip code recognitionNeural Computation19891454155110.1162/neco.1989.1.4.541 Kovalenko, A., Pozdnyakov, V. and Makarov, I. (2022). Graph neural networks with trainable adjacency matrices for fault diagnosis on multivariate sensor data. arXiv: 2210. 11164. KarimFMajumdarSDarabiHChenSLSTM fully convolutional networks for time series classificationIEEE Access201761662166910.1109/ACCESS.2017.2779939 LazcanoAHerreraP JMongeMA combined model based on recurrent neural networks and graph convolutional networks for financial time series forecastingMathematics202311122410.3390/math11010224 Huang, S., Wang, D., Wu, X. and Tang, A. (2019). Dsanet: Dual self-attention network for multivariate time series forecasting. Proc. 28th ACM Int. Conf. Information and Knowledge Management (CIKM), Beijing, China. TranM KPanchalSChauhanVBrahmbhattNMevawallaAFraserRFowlerMPython-based scikit-learn machine learning models for thermal and electrical performance prediction of high-capacity lithium-ion batteryInt. J. Energy Research202246278679410.1002/er.7202 Chen, W., Tian, L., Chen, B., Dai, L., Duan, Z. and Zhou, M. (2022). Deep variational graph convolutional recurrent network for multivariate time series anomaly detection. 39th Int. Conf. Machine Learning (ICML), Baltimore, Maryland, USA. NiQCaoXTanCPengWKangXAn improved graph convolutional network with feature and temporal attention for multivariate water quality predictionEnvironmental Science and Pollution Research2023305115161152910.1007/s11356-022-22719-0 CuiZWangLLiQWangKA comprehensive review on the state of charge estimation for lithium-ion battery based on neural networkInt. J. Energy Research20224655423544010.1002/er.7545 YoungKWangCWangL YStrunzKElectric vehicle battery technologiesElectric Vehicle Integration into Modern Power Networks2012New York, NY, USASpringer.1556 LiuYShuXYuHShenJZhangYLiuYChenZState of charge prediction framework for lithium-ion batteries incorporating long short-term memory network and transfer learningJ. Energy Storage20213710249410.1016/j.est.2021.102494 JerouschekDTanÖKennelRTaskiranAData preparation and training methodology for modeling lithium-ion batteries using a long short-term memory neural network for mild-hybrid vehicle applicationsApplied Sciences20201021788010.3390/app10217880 Agafonov, A. (2020). Traffic flow prediction using graph convolution neural networks. 10th Int. Conf. Information Science and Technology (ICIST), Kopaonik, Serbia. BehnkeSHierarchical Neural Networks for Image Interpretation2003Berlin, GermanySpringer-Verlag.10.1007/b119631041.68076 Capizzi, G., Bonanno, F. and Napoli, C. (2011). Hybrid neural networks architectures for SOC and voltage prediction of new generation batteries storage. Int. Conf. Clean Electrical Power (ICCEP), Ischia, Italy. ZhouWZhengYPanZLuQReview on the battery model and SOC estimation methodProcesses202199168510.3390/pr9091685 Fan, C., Zhang, Y., Pan, Y., Li, X., Zhang, C., Yuan, R., Wu, D., Wang, W., Pei, J. and Huang, H. (2019). Multi-horizon time series forecasting with temporal attention learning. Proc. 25th ACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining, Anchorage, Alaska, USA. Defferrard, M., Bresson, X. and Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. 29th Advances in Neural Information Processing Systems (NIPS), Barcelona, Spain. HoS LXieMThe use of ARIMA models for reliability forecasting and analysisComputers & Industrial Engineering1998351–221321610.1016/S0360-8352(98)00066-7 NiuZZhongGYuHA review on the attention mechanism of deep learningNeurocomputing2021452486210.1016/j.neucom.2021.03.091 ShihS YSunF KLeeH YTemporal pattern attention for multivariate time series forecastingMachine Learning2019108814211441398813410.1007/s10994-019-05815-01493.62534 XuZKangYCaoYLiZSpatiotemporal graph convolution multifusion network for urban vehicle emission predictionIEEE Transactions on Neural Networks and Learning Systems20203283342335410.1109/TNNLS.2020.3008702 ZhaoFLiYWangXBaiLLiuTLithium-ion batteries state of charge prediction of electric vehicles using RNNs-CNNs neural networksIEEE Access20208981689818010.1109/ACCESS.2020.2996225 HongJWangZChenWWangL YQuCOnline joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehiclesJ. Energy Storage20203010145910.1016/j.est.2020.101459 Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv: 1609. 02907. Cho, K., van Merriënboer, B., Gůlçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H. and Bengio, Y. (2014). Learning phrase representations using RNN encoderdecoder for statistical machine translation. Proc. Conf. Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar. Bahdanau, D., Cho, K. H. and Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. 3rd Int. Conf. Learning Representations (ICLR), San Diego, California, USA. HammondD KVandergheynstPGribonvalRWavelets on graphs via spectral graph theoryApplied and Computational Harmonic Analysis2011302129150275477210.1016/j.acha.2010.04.0051213.42091 DuSLiTYangYHorngS JMultivariate time series forecasting via attention-based encoder–decoder frameworkNeurocomputing202038826927910.1016/j.neucom.2019.12.118 Bruna, J., Zaremba, W., Szlam, A. and LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv: 1312. 6203. Song, H., Rajan, D., Thiagarajan, J. and Spanias, A. (2018). Attend and diagnose: Clinical time series analysis using attention models. 32nd Proc. AAAI Conf. Artificial Intelligence (AAAI), New Orleans, Lousiana, USA. VargaB OSagoianAMariasiuFPrediction of electric vehicle range: A comprehensive review of current issues and challengesEnergies201912594610.3390/en12050946 ShiQ SZhangC HCuiN XEstimation of battery state-of-charge using v-support vector regression algorithmInt. J. Automotive Technology20089675976410.1007/s12239-008-0090-x LiWWangXZhangYWuQTraffic flow prediction over muti-sensor data correlation with graph convolution networkNeurocomputing2021427506310.1016/j.neucom.2020.11.032 PolisM PYinG GChenWFuYMiC CBattery cell identification and SOC estimation using string terminal voltage measurementsIEEE Trans. Vehicular Technology20126172925293510.1109/TVT.2012.2203160 HochreiterSSchmidhuberJLong short-term memoryNeural Computation1997981735178010.1162/neco.1997.9.8.1735 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. and Polosukhin, I. (2017). Attention is all you need. 30th Advances in Neural Information Processing Systems (NIPS), Long Beach, California, USA. M K Tran (122_CR35) 2022; 46 Z Cui (122_CR11) 2022; 46 122_CR24 122_CR23 122_CR1 122_CR2 122_CR4 122_CR41 122_CR5 122_CR6 Y LeCun (122_CR26) 1989; 1 122_CR8 122_CR9 S Du (122_CR13) 2020; 388 S L Ho (122_CR16) 1998; 35 Q S Shi (122_CR32) 2008; 9 Y Liu (122_CR28) 2021; 37 Q Ni (122_CR29) 2023; 30 B O Varga (122_CR36) 2019; 12 J Hong (122_CR18) 2020; 30 122_CR19 Z Niu (122_CR30) 2021; 452 W Zhou (122_CR42) 2021; 9 122_CR37 122_CR14 D Jerouschek (122_CR20) 2020; 10 M Jiao (122_CR21) 2020; 459 122_CR10 S Y Shih (122_CR33) 2019; 108 122_CR12 122_CR34 F Zhao (122_CR40) 2020; 8 Z Chen (122_CR7) 2021; 9 M P Polis (122_CR31) 2012; 61 A Lazcano (122_CR25) 2023; 11 F Karim (122_CR22) 2017; 6 S Behnke (122_CR3) 2003 Z Xu (122_CR38) 2020; 32 W Li (122_CR27) 2021; 427 D K Hammond (122_CR15) 2011; 30 K Young (122_CR39) 2012 S Hochreiter (122_CR17) 1997; 9 |
References_xml | – reference: ShiQ SZhangC HCuiN XEstimation of battery state-of-charge using v-support vector regression algorithmInt. J. Automotive Technology20089675976410.1007/s12239-008-0090-x – reference: DuSLiTYangYHorngS JMultivariate time series forecasting via attention-based encoder–decoder frameworkNeurocomputing202038826927910.1016/j.neucom.2019.12.118 – reference: TranM KPanchalSChauhanVBrahmbhattNMevawallaAFraserRFowlerMPython-based scikit-learn machine learning models for thermal and electrical performance prediction of high-capacity lithium-ion batteryInt. J. Energy Research202246278679410.1002/er.7202 – reference: ZhouWZhengYPanZLuQReview on the battery model and SOC estimation methodProcesses202199168510.3390/pr9091685 – reference: KarimFMajumdarSDarabiHChenSLSTM fully convolutional networks for time series classificationIEEE Access201761662166910.1109/ACCESS.2017.2779939 – reference: HochreiterSSchmidhuberJLong short-term memoryNeural Computation1997981735178010.1162/neco.1997.9.8.1735 – reference: VargaB OSagoianAMariasiuFPrediction of electric vehicle range: A comprehensive review of current issues and challengesEnergies201912594610.3390/en12050946 – reference: Chen, W., Tian, L., Chen, B., Dai, L., Duan, Z. and Zhou, M. (2022). Deep variational graph convolutional recurrent network for multivariate time series anomaly detection. 39th Int. Conf. Machine Learning (ICML), Baltimore, Maryland, USA. – reference: YoungKWangCWangL YStrunzKElectric vehicle battery technologiesElectric Vehicle Integration into Modern Power Networks2012New York, NY, USASpringer.1556 – reference: LiuYShuXYuHShenJZhangYLiuYChenZState of charge prediction framework for lithium-ion batteries incorporating long short-term memory network and transfer learningJ. Energy Storage20213710249410.1016/j.est.2021.102494 – reference: ShihS YSunF KLeeH YTemporal pattern attention for multivariate time series forecastingMachine Learning2019108814211441398813410.1007/s10994-019-05815-01493.62534 – reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. and Polosukhin, I. (2017). Attention is all you need. 30th Advances in Neural Information Processing Systems (NIPS), Long Beach, California, USA. – reference: Cho, K., van Merriënboer, B., Gůlçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H. and Bengio, Y. (2014). Learning phrase representations using RNN encoderdecoder for statistical machine translation. Proc. Conf. Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar. – reference: Kovalenko, A., Pozdnyakov, V. and Makarov, I. (2022). Graph neural networks with trainable adjacency matrices for fault diagnosis on multivariate sensor data. arXiv: 2210. 11164. – reference: JiaoMWangDQiuJA GRU-RNN based momentum optimized algorithm for SOC estimationJ. Power Sources202045922805110.1016/j.jpowsour.2020.228051 – reference: Zhao, R., Kollmeyer, P. J., Lorenz, R. D. and Jahns, T. M. (2017). A compact unified methodology via a recurrent neural network for accurate modeling of lithium-ion battery voltage and state-of-charge. IEEE Energy Conversion Cong. Exposition (ECCE), Cincinnati, Ohio, USA. – reference: Cordonnier, J. B., Loukas, A. and Jaggi, M. (2020). Multi-head attention: Collaborate instead of concatenate. arXiv: 2006. 16362. – reference: BehnkeSHierarchical Neural Networks for Image Interpretation2003Berlin, GermanySpringer-Verlag.10.1007/b119631041.68076 – reference: NiQCaoXTanCPengWKangXAn improved graph convolutional network with feature and temporal attention for multivariate water quality predictionEnvironmental Science and Pollution Research2023305115161152910.1007/s11356-022-22719-0 – reference: XuZKangYCaoYLiZSpatiotemporal graph convolution multifusion network for urban vehicle emission predictionIEEE Transactions on Neural Networks and Learning Systems20203283342335410.1109/TNNLS.2020.3008702 – reference: Bruna, J., Zaremba, W., Szlam, A. and LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv: 1312. 6203. – reference: CuiZWangLLiQWangKA comprehensive review on the state of charge estimation for lithium-ion battery based on neural networkInt. J. Energy Research20224655423544010.1002/er.7545 – reference: HongJWangZChenWWangL YQuCOnline joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehiclesJ. Energy Storage20203010145910.1016/j.est.2020.101459 – reference: LeCunYBoserBDenkerJ SHendersonDHowardR EHubbardWJackelL DBackpropagation applied to handwritten zip code recognitionNeural Computation19891454155110.1162/neco.1989.1.4.541 – reference: Chiasson, J. and Vairamohan, B. (2003). Estimating the state of charge of a battery. American Control Conf. (ACC), Denver, Colorado, USA. – reference: HammondD KVandergheynstPGribonvalRWavelets on graphs via spectral graph theoryApplied and Computational Harmonic Analysis2011302129150275477210.1016/j.acha.2010.04.0051213.42091 – reference: Fan, C., Zhang, Y., Pan, Y., Li, X., Zhang, C., Yuan, R., Wu, D., Wang, W., Pei, J. and Huang, H. (2019). Multi-horizon time series forecasting with temporal attention learning. Proc. 25th ACM SIGKDD Int. Conf. Knowledge Discovery & Data Mining, Anchorage, Alaska, USA. – reference: Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv: 1609. 02907. – reference: JerouschekDTanÖKennelRTaskiranAData preparation and training methodology for modeling lithium-ion batteries using a long short-term memory neural network for mild-hybrid vehicle applicationsApplied Sciences20201021788010.3390/app10217880 – reference: ChenZChenDZhangXYuanZChengXLearning graph structures with transformer for multivariate time-series anomaly detection in IoTIEEE Internet of Things J.20219129179918910.1109/JIOT.2021.3100509 – reference: Bahdanau, D., Cho, K. H. and Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. 3rd Int. Conf. Learning Representations (ICLR), San Diego, California, USA. – reference: ZhaoFLiYWangXBaiLLiuTLithium-ion batteries state of charge prediction of electric vehicles using RNNs-CNNs neural networksIEEE Access20208981689818010.1109/ACCESS.2020.2996225 – reference: Agafonov, A. (2020). Traffic flow prediction using graph convolution neural networks. 10th Int. Conf. Information Science and Technology (ICIST), Kopaonik, Serbia. – reference: NiuZZhongGYuHA review on the attention mechanism of deep learningNeurocomputing2021452486210.1016/j.neucom.2021.03.091 – reference: PolisM PYinG GChenWFuYMiC CBattery cell identification and SOC estimation using string terminal voltage measurementsIEEE Trans. Vehicular Technology20126172925293510.1109/TVT.2012.2203160 – reference: Defferrard, M., Bresson, X. and Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. 29th Advances in Neural Information Processing Systems (NIPS), Barcelona, Spain. – reference: HoS LXieMThe use of ARIMA models for reliability forecasting and analysisComputers & Industrial Engineering1998351–221321610.1016/S0360-8352(98)00066-7 – reference: Huang, S., Wang, D., Wu, X. and Tang, A. (2019). Dsanet: Dual self-attention network for multivariate time series forecasting. Proc. 28th ACM Int. Conf. Information and Knowledge Management (CIKM), Beijing, China. – reference: Song, H., Rajan, D., Thiagarajan, J. and Spanias, A. (2018). Attend and diagnose: Clinical time series analysis using attention models. 32nd Proc. AAAI Conf. Artificial Intelligence (AAAI), New Orleans, Lousiana, USA. – reference: Capizzi, G., Bonanno, F. and Napoli, C. (2011). Hybrid neural networks architectures for SOC and voltage prediction of new generation batteries storage. Int. Conf. Clean Electrical Power (ICCEP), Ischia, Italy. – reference: LazcanoAHerreraP JMongeMA combined model based on recurrent neural networks and graph convolutional networks for financial time series forecastingMathematics202311122410.3390/math11010224 – reference: LiWWangXZhangYWuQTraffic flow prediction over muti-sensor data correlation with graph convolution networkNeurocomputing2021427506310.1016/j.neucom.2020.11.032 – ident: 122_CR12 – ident: 122_CR37 – ident: 122_CR1 doi: 10.1109/ICIST49303.2020.9201971 – volume: 37 start-page: 102494 year: 2021 ident: 122_CR28 publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102494 – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 122_CR26 publication-title: Neural Computation doi: 10.1162/neco.1989.1.4.541 – volume: 9 start-page: 9179 issue: 12 year: 2021 ident: 122_CR7 publication-title: IEEE Internet of Things J. doi: 10.1109/JIOT.2021.3100509 – ident: 122_CR14 doi: 10.1145/3292500.3330662 – volume: 32 start-page: 3342 issue: 8 year: 2020 ident: 122_CR38 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.3008702 – volume: 459 start-page: 228051 year: 2020 ident: 122_CR21 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228051 – ident: 122_CR6 – ident: 122_CR4 – ident: 122_CR24 – ident: 122_CR19 doi: 10.1145/3357384.3358132 – volume: 46 start-page: 5423 issue: 5 year: 2022 ident: 122_CR11 publication-title: Int. J. Energy Research doi: 10.1002/er.7545 – volume: 108 start-page: 1421 issue: 8 year: 2019 ident: 122_CR33 publication-title: Machine Learning doi: 10.1007/s10994-019-05815-0 – volume: 11 start-page: 224 issue: 1 year: 2023 ident: 122_CR25 publication-title: Mathematics doi: 10.3390/math11010224 – ident: 122_CR10 – ident: 122_CR34 doi: 10.1609/aaai.v32i1.11635 – ident: 122_CR9 doi: 10.3115/v1/D14-1179 – ident: 122_CR5 doi: 10.1109/ICCEP.2011.6036301 – volume: 9 start-page: 1685 issue: 9 year: 2021 ident: 122_CR42 publication-title: Processes doi: 10.3390/pr9091685 – volume: 35 start-page: 213 issue: 1–2 year: 1998 ident: 122_CR16 publication-title: Computers & Industrial Engineering doi: 10.1016/S0360-8352(98)00066-7 – volume: 9 start-page: 759 issue: 6 year: 2008 ident: 122_CR32 publication-title: Int. J. Automotive Technology doi: 10.1007/s12239-008-0090-x – ident: 122_CR41 doi: 10.1109/ECCE.2017.8096879 – volume-title: Hierarchical Neural Networks for Image Interpretation year: 2003 ident: 122_CR3 doi: 10.1007/b11963 – ident: 122_CR2 – volume: 388 start-page: 269 year: 2020 ident: 122_CR13 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.118 – volume: 61 start-page: 2925 issue: 7 year: 2012 ident: 122_CR31 publication-title: IEEE Trans. Vehicular Technology doi: 10.1109/TVT.2012.2203160 – ident: 122_CR8 doi: 10.1109/ACC.2003.1243757 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 122_CR17 publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 46 start-page: 786 issue: 2 year: 2022 ident: 122_CR35 publication-title: Int. J. Energy Research doi: 10.1002/er.7202 – volume: 30 start-page: 129 issue: 2 year: 2011 ident: 122_CR15 publication-title: Applied and Computational Harmonic Analysis doi: 10.1016/j.acha.2010.04.005 – volume: 8 start-page: 98168 year: 2020 ident: 122_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2996225 – volume: 10 start-page: 7880 issue: 21 year: 2020 ident: 122_CR20 publication-title: Applied Sciences doi: 10.3390/app10217880 – volume: 6 start-page: 1662 year: 2017 ident: 122_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2779939 – ident: 122_CR23 – volume: 30 start-page: 11516 issue: 5 year: 2023 ident: 122_CR29 publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-022-22719-0 – volume: 427 start-page: 50 year: 2021 ident: 122_CR27 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.11.032 – volume: 12 start-page: 946 issue: 5 year: 2019 ident: 122_CR36 publication-title: Energies doi: 10.3390/en12050946 – volume: 30 start-page: 101459 year: 2020 ident: 122_CR18 publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101459 – start-page: 15 volume-title: Electric Vehicle Integration into Modern Power Networks year: 2012 ident: 122_CR39 – volume: 452 start-page: 48 year: 2021 ident: 122_CR30 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.091 |
SSID | ssj0056130 |
Score | 2.3409321 |
Snippet | The state of charge (SoC) of a vehicle battery can tend to vary depending on the driver’s driving patterns and circumstances. To accurately predict the SoC... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1519 |
SubjectTerms | Artificial neural networks Automobile industry Automotive Engineering Electric charge Electric vehicles Engineering Nodes Recurrent neural networks State of charge Statistical models 자동차공학 |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-LnoQn7i-COhJCW7bJE1PIovrKigeVPYWNmmii9Lq7ir4751JW1cFPbWl0wZmpplvMuk3hBwA6ASQbCQzqbCMe5-wAXeQrGTSCpP6yIX1jqtr2bvjl33RrxfcxvW2ymZODBN1XlpcIz-OFTJxyYSLk5dXhl2jsLpat9CYJfMRRBr0c9U9b2bigI0x4YrjDCvMqqlqhl_nIC5mDCIWw-ISkz_i0mwx8j8g568qaQg-3WWyVKNGelqZeYXMuGKVLH7jElwj_bPQ0GZo6b17RClaUWd-0IAnaekpltYfHL0ZYXEGDQIiY5dTODlH3mraKYv32hVhtOtqh_g6ueue3XZ6rG6bwGwiognzjqs2TMFiYL0bZDyOZGqVgVgc50pZIzyAMkhEMg_ZoQH4pLy0qeImB2wj0zTZIHNFWbhNQtMsFsoLm5j2gCdtlFTGCR7Blc8tb5F2ozRta05xbG3xrKdsyKhnDXrWqGctW-Tw65GXilDjP-F9sIR-skONNNh4fCj100gD2L_QgQsQonCL7DSW0vUXONZTf2mRo8Z609t_Drn1_8u2yQI2nK82tOyQucnoze0CLJmYveB7nwLL2og priority: 102 providerName: ProQuest |
Title | Electric Vehicle Battery State of Charge Prediction Based on Graph Convolutional Network |
URI | https://link.springer.com/article/10.1007/s12239-023-0122-6 https://www.proquest.com/docview/2885956345 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003018793 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | International Journal of Automotive Technology, 2023, 24(6), 136, pp.1519-1530 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7RcoEDLAuIAosssadFRk1iO86xoLYsiAqtKConq3btgopS1BYk-PWM86CAYCVOzmMSJ7bj-SYz_gbgN4JOBMlaUB1zQ5lzEe0zi8ZKIgzXsQts9r_jvCNOuuy0x3vFOu5pGe1euiSzmXq-2A01WUJRx1DvDqKiAos8kImswmKjfX3WLCfgDBJ7OysME-9YlqUz87ObvFNHlXTi3iHND87RTOe0VuGyfNo81GR0-DDTh-b5A5HjN1_nB6wUGJQ08kGzBgs2_QnLb5gJ16HXzNLj3BpyZW-8FMmJOJ9Ihk7J2BHvqB9acjHxrh7fvSgytQOCG23Pgk2Ox-ljMbCxtk4eb74B3Vbz8viEFkkYqIl4MKPOMlnHCZ33jbP9hIWBiI3UqNnDgZRGc4cQD82axKGtqRGMSSdMLJkeIFIScRxtQjUdp3YLSJyEXDpuIl3vs6juJaW2nAW45waG1aBe9oUyBUO5T5Rxp-bcyr7RFDaa8o2mRA3-vF5yn9Nz_E94HztYjcyt8qTavhyO1Wii0HT4qzJmQdTpNdgtB4AqvuepCqXngRMR4zU4KPtzfvrLKre_Jb0DSz6bfR4tswvV2eTB_kLMM9N7UJGt9l4x0rE8anYu_uHRbth4AW5A9xQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB612wNwQC0PsdCHJeACsthNbMc5VKiPLbu0XVWoRXsza8cuVVFSdpei_il-IzN5dFskeuspieLY0szE843H_gbgDYJOBMlWcZtIx0UIMR8Lj8FKqpy0Sej6cr3jcKj6J-LzSI4W4E9zFoa2VTZzYjlRZ4WjNfIPkSYmLhUL-fHiJ6eqUZRdbUpoVGax769-Y8g23Rzson7fRtFe73inz-uqAtzFsjvjwQvdwRlKjl3w41REXZU4bdFVRZnWzsqAmAVxehoweLKILnRQLtHCZuj6VZLE2O8iLAk60dqCpe3e8OhLM_eXaJxCvChKKaetmzxqeVgPPXHK0UdySmdxdcsTLuaTcAvk_pOXLd3d3jI8rnEq26oMawUWfP4EHt1gL3wKo15ZQufMsa_-O7ViFVnnFSsRLCsCo2T-qWdHE0oHkQlgk6nPGN58IqZstlPkl7Xx42jDak_6Mzi5F5E-h1Ze5P4FsCSNpA7SxbYzFnGHWmrrpejiU8icaEOnEZpxNYs5FdP4Yeb8yyRng3I2JGej2vDu-pOLisLjrsavURPm3J0ZIt6m62lhzicGw4uBKdkH0e-3YbXRlKn_-amZW2gb3jfam7_-75Av7-5sAx70jw8PzMFguP8KHlK5-2o7zSq0ZpNffg1B0cyu15bI4Nt9G_9fUE8Xtg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tnYTgAfFTlA2wBLyArLWOnTgPCMHWsjKoKsRQ37zasce0KRltAe1f46_jzkkoQ2Jve0qiOLF0Pvu-852_A3iGoBNBsk25zZTjMoSEz6RHZyVPnbJZ6Pu43_FxnO4dyPdTNV2DX-1ZGEqrbNfEuFAXlaM98m2hiYkrTaTaDk1axGR3-PrsG6cKUhRpbctp1Cqy789_ovu2eDXaxbF-LsRw8HlnjzcVBrhLVH_Jg5e6h6uVmrngZ7kU_TRz2qLZEoXWzqqA-AUxex7QkbKINHRIXaalLRAGpFmW4H_XYSNDqyg7sPF2MJ58au1ARObk7gmRU3xbtzHVeHAPrXLO0V5yCm3x9IJVXC_n4QLg_SdGG03f8BbcbDAre1Mr2W1Y8-UduPEXk-FdmA5iOZ1jx774r9SK1cSd5yyiWVYFRoH9I88mcwoNkTpgk4UvGN68I9ZstlOVP5qJgL2N6_z0e3BwJSK9D52yKv0DYFkulA7KJbY3k0mPWmrrlezjUyic7EKvFZpxDaM5FdY4NSsuZpKzQTkbkrNJu_DizydnNZ3HZY2f4kiYE3dsiISbrkeVOZkbdDVGJjIRIgbowlY7UqaZ_wuz0tYuvGxHb_X6v10-vPxnT-AaKr35MBrvb8J1QfoTM2u2oLOcf_ePEB8t7eNGERkcXrXu_wZwrxvi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electric+Vehicle+Battery+State+of+Charge+Prediction+Based+on+Graph+Convolutional+Network&rft.jtitle=International+journal+of+automotive+technology&rft.au=Kim%2C+Geunsu&rft.au=Kang%2C+Soohyeok&rft.au=Park%2C+Gyudo&rft.au=Min%2C+Byung-Cheol&rft.date=2023-12-01&rft.pub=The+Korean+Society+of+Automotive+Engineers&rft.issn=1229-9138&rft.eissn=1976-3832&rft.volume=24&rft.issue=6&rft.spage=1519&rft.epage=1530&rft_id=info:doi/10.1007%2Fs12239-023-0122-6&rft.externalDocID=10_1007_s12239_023_0122_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-9138&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-9138&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-9138&client=summon |